Can Employment Programs Reduce Poverty and Social Instability?

Experimental evidence from a Ugandan aid program (Mid-term results)

Christopher Blattman
Yale University

Nathan Fiala
DIW

Sebastian Martinez
IDB
Average age: 25
Average education: 8th grade
Average cash earnings: $0.48/day PPP
Average employment: 10 hours/week
Female: 33%
The “Youth Opportunities Program” in Uganda

• NUSAF: Uganda’s second largest development program
 1. Raise incomes and employment
 2. Increase community cohesion and reduce conflict

• YOP: groups of 15 to 30 young adults (ages 16 to 40) apply to government for cash transfers of $7-$10k ($377 per person on average)

• If your group is selected:
 – Central bank transfers lump sum to bank account in names of group leaders
 – Groups pay training fees for group members and distribute cash or in-kind assets

• Conditions:
 – Must propose to use for vocational training fees, tools, and start-up costs
 – After transfer, no further government monitoring, support, or accountability
Aid strategy rooted in at least four assumptions

1. Money will not be “wasted”
 – Poor people have agency and can make informed economic decisions
 – i.e. will save/invest rather than eat right away

2. Poor have high potential returns to capital

3. Poor are constrained from reaching high returns
 – e.g. Missing markets (credit, insurance) and production non-convexities

4. Poverty reduction will have positive socio-political impacts
 – More empowered and engaged citizens (especially if participatory)
 – Less alienated
 – Less violent
1. Is (relatively) unconditional cash transfer invested on training and equipment?

2. Do the poor have high returns to capital?

3. Do employment programs promote social stability?
 – i.e. externalities
Work opportunities outside intervention
Distribution of hours worked in control group (at endline)

- Domestic work: 23%
- Farming: 33%
- Vocation: 12%
- Wage worker: 4%
- Own business: 3%
- Other unskilled: 8%
- Casual labor: 4%
- Animal raising: 7%
- Selling food/items: 6%
Distribution of per capita grant size across groups

Heterogeneity driven mainly by differences in group size

Average grant size within groups (USD)

- **Percent**
 - 0
 - 10
 - 20
 - 30

- **Average grant size within groups (USD)**
 - 0
 - 1000
 - 2000
 - 3000
Timeline of events

2006 Tens of thousands apply, hundreds of groups funded

2007 Funds remain for 265 groups in 10 districts
 Government selects, screens and approves 535 groups

2/2008 Baseline survey with 5 people per group
 Randomization at group level

7-9/2008 Government transfers funds to treatment groups

10/2010 Mid-term survey commences roughly 2 years after transfer
 Effective attrition rate of 8%

5/2012 Next survey in the field
Data and attrition

• Baseline survey
 – Successfully tracked 524 of 535 groups
 • 6 discovered to be “ghosts” and discarded
 – Interviewed 5 random members per group
 – Balanced along most characteristics

• Mid-term follow-up survey
 – Sought all 5 members of each group, tracking migrants (4 attempts per person)
 – Attrition of 13%
 • 9% of control group not found
 • 15% of treatment group not found
 – Attrition relatively unsystematic
Investments in vocational skills and capital
ATEs on investments in vocational skills and capital

<table>
<thead>
<tr>
<th></th>
<th>Vocational training</th>
<th>Tools and machines acquired since baseline</th>
<th>Existing stock of raw materials, tools, and machines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enrolled</td>
<td>Hours</td>
<td>Level ('000s of UGX)</td>
</tr>
<tr>
<td>Treated</td>
<td>0.607</td>
<td>400.264</td>
<td>791.904</td>
</tr>
<tr>
<td></td>
<td>[0.030]***</td>
<td>[25.162]***</td>
<td>[130.305]***</td>
</tr>
<tr>
<td>Treated × Female</td>
<td>0.033</td>
<td>13.996</td>
<td>-409.800</td>
</tr>
<tr>
<td></td>
<td>[0.046]</td>
<td>[46.693]</td>
<td>[171.343]**</td>
</tr>
<tr>
<td>Female</td>
<td>-0.014</td>
<td>27.474</td>
<td>-49.611</td>
</tr>
<tr>
<td></td>
<td>[0.031]</td>
<td>[25.389]</td>
<td>[85.262]</td>
</tr>
<tr>
<td>Control means</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>0.169</td>
<td>41.80</td>
<td>159.8</td>
</tr>
<tr>
<td>Females</td>
<td>0.157</td>
<td>63.34</td>
<td>96.71</td>
</tr>
<tr>
<td>Female Treatment Effect</td>
<td>0.640</td>
<td>414.3</td>
<td>382.1</td>
</tr>
<tr>
<td>p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>ATE as % of control mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>359%</td>
<td>958%</td>
<td>496%</td>
</tr>
<tr>
<td>Females</td>
<td>407%</td>
<td>655%</td>
<td>395%</td>
</tr>
</tbody>
</table>

Robust standard errors in brackets, clustered by group and stratified by district.

Omitted regressors include an age quartic, district indicators, and baseline measures of employment and human and working capital.

*** $p<0.01$, ** $p<0.05$, * $p<0.1$
Types of training received

- Tailoring: 40%
- Carpentry: 20%
- Welding: 10%
- Salon: 5%
- Business: 5%
- Mechanics: 5%
- Borehole Repair: 5%
- Brickmaking: 5%
- Shoe Repair: 5%
- Plumbing: 5%
- Bicycle Repair: 5%
- Blacksmith: 5%
- Bee Keeping: 5%
- Fisheries: 5%
- Other: 20%
Implications

- Appears that two thirds of grant was invested in either training fees or tool/capital purchases

- Remaining third could have been consumed, or could have been invested in inventory, materials, etc. (No data on this)
Impacts on income, consumption and employment
ATEs on income, consumption and employment

<table>
<thead>
<tr>
<th></th>
<th>Profits in last 4 weeks</th>
<th>Poverty</th>
<th>Employment levels in past 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level (000s of UGX)</td>
<td>ln(Profits)</td>
<td>Index of wealth (z-score)</td>
</tr>
<tr>
<td>Treated</td>
<td>26.225 [7.326]***</td>
<td>0.813 [0.179]***</td>
<td>0.182 [0.067]***</td>
</tr>
<tr>
<td>Treated × Female</td>
<td>-20.234 [11.317]*</td>
<td>0.164 [0.327]</td>
<td>-0.156 [0.106]</td>
</tr>
<tr>
<td>Female</td>
<td>-9.547 [7.379]</td>
<td>-0.571 [0.232]**</td>
<td>-0.006 [0.066]</td>
</tr>
</tbody>
</table>

Control means

<table>
<thead>
<tr>
<th></th>
<th>Profits in last 4 weeks</th>
<th>Poverty</th>
<th>Employment levels in past 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>50.01</td>
<td>8.653</td>
<td>-0.00328</td>
</tr>
<tr>
<td>Females</td>
<td>32.27</td>
<td>8.010</td>
<td>-0.0476</td>
</tr>
<tr>
<td>Female Treatment Effect</td>
<td>5.992</td>
<td>0.977</td>
<td>0.0261</td>
</tr>
<tr>
<td>p-value</td>
<td>0.447</td>
<td>0.000482</td>
<td>0.762</td>
</tr>
</tbody>
</table>

ATE as % of control mean

<table>
<thead>
<tr>
<th></th>
<th>Profits in last 4 weeks</th>
<th>Poverty</th>
<th>Employment levels in past 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>0.524</td>
<td></td>
<td>0.254</td>
</tr>
<tr>
<td>Females</td>
<td>0.186</td>
<td></td>
<td>0.489</td>
</tr>
</tbody>
</table>

Robust standard errors in brackets, clustered by group and stratified by district. Omitted regressors include an age quartic, district indicators, and baseline measures of employment and human and worker capital. *** p<0.01, ** p<0.05, * p<0.1
Are these high rates of return?

<table>
<thead>
<tr>
<th>Treatment effects</th>
<th>Real rate of return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income ATE</td>
<td>35%</td>
</tr>
<tr>
<td>Income QTE</td>
<td>22%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Available rates</th>
<th>Real rate of return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime rate</td>
<td>5%</td>
</tr>
<tr>
<td>Commercial low</td>
<td>15%</td>
</tr>
<tr>
<td>Commercial high</td>
<td>25%</td>
</tr>
<tr>
<td>ROSCAs</td>
<td>200%</td>
</tr>
<tr>
<td>Moneylenders</td>
<td>200%</td>
</tr>
</tbody>
</table>

- ATE and QTE higher than real commercial lending rates
- ATE implies a “Payback” time of 3 years
- But returns lower than 40 to 60% rates seen among microenterprises in Sri Lanka, Mexico or Ghana
Impacts on aggression and alienation
Survey measurement

• Social alienation/integration
 – **Participation**: Community group participation/leadership, community leadership, attending and speaking out in community meetings
 – **Interpersonal**: social support, family relationship, neighbor relations, elder/leader relations
 – **Emotional depression and distress**: 9 self-reported symptoms

• Interpersonal aggression
 – Frequency & intensity of disputes
 – Self-reported hostile behaviors
 – Peer behavior

• Political behavior – prevented from asking in mid-round
 – Preferences
 – Participation
 – Violence
Impacts on social cohesion and alienation

Standardized ATEs for Outcome Families (by gender)

- **Males: Participation**
 - ATE: 0.08

- **Females: Participation**
 - ATE: 0.10

- **Males: Social integration**
 - ATE: 0.13

- **Females: Social integration**
 - ATE: -0.15
Evidence consistent with idea that economic performance changes social role and esteem

- Treated give 25%-50% more transfers within and outside the household

- Robust positive correlation between social integration and participation and:
 - Economic performance (real and perceived rankings)
 - Transfers
Impacts on mental health and aggression

Standardized ATEs on Outcome families (by gender)

- Males: Distress symptoms
- Females: Distress symptoms
- Males: Aggression and hostile behavior
- Females: Aggression and hostile behavior

ATE values:
- 0.12
- -0.16
- 0.20
- 0.25
In absolute terms the changes in aggression are small

Distribution of index of aggressive behaviors

- But aggression levels changing at all points in the distribution
 - Especially those who at baseline report the highest number of disputes
- Proportionally the impact is huge
Next steps

• New round of data collection in 2012
 – Better data on de facto group size
 – Longitudinal performance data
 – More extensive social, political and violent participation outcomes
 – More extensive data on time preference and cognitive/non-cognitive skills