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Abstract

The paper analyzes vertical separation in a duopoly with decreasing returns to scale. It

demonstrates, in contrast to classical results, the existence of asymmetric equilibria, where

one �rm separates and another integrates, whenever diseconomy of scale is high for at least

one �rm. Moreover, if the diseconomy of scale is low for one �rm and moderate for another,

a more e¢ cient �rm separates in a unique equilibrium, while its rival integrates. Also, the

research herein shows that asymmetric equilibria exist even in a completely symmetric game.

This provides an explanation for a widely observed di¤erence in �rm sales strategies.
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1 Introduction

Commonly, strategic separation refers to a manufacturer�s decision to sell goods through an

exclusive retailer, who makes the �nal decision on quantity or price. Strategic delegation means

that an owner delegates a decision on �nal output or price to a manager within the �rm. If the

agent (the retailer or the manager) has no bargaining power, then a principal (the manufacturer

or the owner) completely controls his/her objective through contract terms. The strategic role

of both separation and delegation remains the same: by manipulating the agent�s objective, the

principal alters its agent�s as well as its rivals�behaviors to achieve a more preferable outcome.

In contrast to separation, integration implies that the pro�t maximizing principal makes the

decision on �nal output or price directly.

Classical works of Vickers (1985), Sklivas (1987), Fershtman and Judd (1987), and Bonanno

and Vickers (1988) demonstrate that delegating a decission to an agebt is in the interest of

each principal.1 Hence, in a unique equilibrium, each principal takes advantage of delegation,

and coexistence of vertical separation and vertical integration never occurs as an equilibrium

outcome. This result proves robust in respect to the nature of a competition (price or quantity

competition), number of �rms, and a demand function speci�cation. Moreover, the result holds

under di¤erent assumptions of agents� objectives: linear combinations of pro�t and quantity

(Vickers, 1985), pro�t and revenue (Sklivas 1987; Fershtman and Judd, 1987), or retailer pro�t

(Bonanno and Vickers, 1988). More recently, Jansen et al. (2007) and Ritz (2008) assume that

agents maximize a linear combination of the principal�s pro�t and market share and also maintain

that in a unique equilibrium each owner delegates the decision to a manager.

Basu (1995) and Jansen (2003) show one possibility of the coexistence of vertical separation

and vertical integration. To obtain the result, the authors assume that separated �rms bear an

additional �xed cost. This e¤ectively implies that separation alters a �rm�s technology. Thus,

in their models, separation relates to both a choice of technology and a choice of the agent�s

incentive scheme.

A common feature of all the models mentioned above is the assumption of linearity of cost

functions. This paper extends the existing analysis by allowing for decreasing return to scales.

We analyze a case of duopolists competing in quantities and, following a standard approach,

assume that each separated �rm uses a two-part tari¤ in a trade with its retailer.

Under mild assumptions on demand and �rm costs, we demonstrate that vertical separation

and vertical integration coexist whenever a cost function of at least one �rm exhibits a su¢ cient

degree of scale diseconomy (or, in other words, when a marginal cost curve is steep enough).

Furthermore, we show the existence of asymmetric equilibria in a perfectly symmetric game.

The intuition for our results follows. If only one �rm separates, then, e¤ectively, it has the

advantage of �rst mover and makes a Stackelberg leader�s pro�t. Thus, each �rm prefers to

separate given that its rival integrates. If both �rms separate, it may create strong competition

1 If �rms compete in prices, then delegation leads to a Pareto e¢ cient outcome; while if �rms compete in
quantities, it lowers the pro�t of at least one �rm.
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between their retailers and, under a decreasing economy of scale, it may lead to pro�ts lower than

a Stackelberg follower�s pro�t. In this case, each �rm prefers to integrate given its rival separates,

and, therefore, there exist two equilibria, where one �rm separates and another integrates.

Moreover, we provide a closed form solution for the case of linear demand and quadratic

cost. We show that, in addition to the previous result, if diseconomy of scale is low for one �rm

and moderate for another, then there exists a unique equilibrium where the more e¢ cient �rm

separates and the less e¢ cient integrates. Welfare analysis shows that both consumer surplus

and total welfare are higher if both �rms separate; thus, asymmetric equilibria are not optimal.

The rest of the paper is organized as follows. Section 2 describes the model and characterizes

subgame outcomes. Section 3 provides equilibrium analysis and the main results for the general

case. Section 4 examines the case of linear demand and quadratic costs, and, �nally, Section 5

concludes. The Appendix contains all proofs.

2 Model

We now consider two �rms, i = 1; 2, producing homogeneous goods and competing in quantities.

A demand function, P (Q); with Q = q1 + q2; where qi is an output of �rm i, and cost functions,

Ci(qi); i = 1; 2; are such that:

A1. 9Q > 0: P (Q) > 0 for Q 2 [0; Q) and P (Q) = 0 for Q � Q; P 00(Q) is continuous;

P (0) = P > 0, �P 0(Q) > � > 0, P 0(Q) + P 00(Q)qi < 0 for Q 2 [0; Q).
A2. Ci(q) is a twice continuously di¤erentiable increasing convex function, Ci(0) = 0, C 0i(0) =

0, 0 < C 00i (Q) < b for all qi 2 (0; Q] and some b > 0.
A3. P (3)(Q) � 0 for all Q 2 [0; Q):
Assumptions A1-A2 o¤er su¢ cient conditions for the existence of a unique equilibrium in a

Cournot game2 and together with Assumption 3 ensure existence of a solution in a whole game.

We consider the following two stage game. At the �rst stage, each �rm i chooses mi 2
fSeparate; Integrateg � fS; Ig. If mi = I; then �rm i becomes the retailer of its goods. If

mi = S; then �rm i sets the terms of a two-part tari¤ contact f!i; Aig where !i is a per unit
price, and Ai is a franchise fee.

At the second stage, all decisions are observed3 and retailers choose quantities simultaneously

and independently to maximize their own pro�ts. The pro�t of the integrated �rm i is �i =

P (Q)qi � Ci(qi). If �rm i separates, its own and its retailer�s pro�ts are �Fi = !iqi(!i) + Ai �
Ci(qi(!i)) and �Ri = P (Q)qi�!iqi�Ai, respectively. Thus, �i(q1; q2) = �Fi (q1; q2) + �Ri (q1; q2),
i.e., separation does not alter production technology, it only changes the retailer�s objective.

2See Van Long and Soubeyranb (2000) for details.
3We assume that decisions are observable and irreversible and thus there is no commitment problem. For

a discussion of observability and commitment in a delegation game see Katz (1991), Bagwell (1995), Corts and
Neher (2003).
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Let �(P;C1; C2) denote the game described above for a given demand function P (Q) and cost

functions C1(q1), C2(q2). We use is the subgame perfect Nash Equilibrium in pure strategies as

the solution concept.

Subgame outcomes

There are four subgames depending on the choice mi 2 fS; Ig; i = 1; 2 of each �rm at the �rst

stage. If both �rms integrate, they play the Cournot game. A unique equilibrium is determined

by �rst order conditions(
P 0qi + P � C 0i = 0

i = 1; 2:
: (1)

Let fq�C1 ; q�C2 g and f��C1 ; ��C1 g denote equilibrium values and let q�Mi be an output of �rm i if

it were a monopolist.

If �rm 1 separates and �rm 2 integrates, then the retailers�game48<: max
q1
�R1 = Pq1 � !1q1

max
q2
�R2 = Pq2 � C2

(2)

has �rst-order conditions(
P 0q1 + P � !1 = 0
P 0q2 + P � C 02 = 0

:

Retailer 2 has the Cournot reaction curve, while the position of retailer 1�s reaction curve depends

on �rm 1�s choice of !1. Thus, by choosing !1, �rm 1 determines a point of intersection of reaction

curves. Clearly, the optimal !1 is such that an equilibrium outcome replicates the Stackelberg

outcome of the [I; I]-subgame. Therefore, we may characterize the solution of the [S; I]-subgame

as the following: qF2 (q1) solves

P 0q2 + P � C 02 = 0

and qL1 is such that

P 0q1 + P � C 01 + P 0q1
@qF2 (q1)

@q1
= 0: (3)

4Clearly, in equilibrium each separated �rm entirely extracts its retailer�s pro�t using a franchise fee, and the
retailer gets zero pro�t. Thus, to keep notation brief, we skip Ai henceforth.
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By the implicit function theorem, we have that

@qF2
@q1

= � P 00qF2 + P
0

P 00qF2 + 2P
0 � C 002

:

Let !�L1 , fq�L1 ; q�F2 ; g and f��L1 ; ��F2 g be equilibrium values of the [S; I]-subgame. Applying

similar arguments and notation to the [I; S]-subgame, let !�L2 , fq�F1 ; q�L2 ; g and f��F1 ; ��L2 g be
equilibrium values of the [I; S]-subgame.

If both �rms separate, then retailers�maximization problems are

max
qi
�Ri = Pqi � !iqi; i = 1; 2

where !1; !2 are set by �rms at the previous stage. As the feasibility constraint, qi � 0, implies
that qi = 0 for all !i � P , we assume without loss of generality that !i � P . Then, a solution
of the retailers�problem is determined by the system of �rst order conditions:(

P 0q1 + P � !1 = 0
P 0q2 + P � !2 = 0

: (4)

The Jacobian matrix of (4) is

J =

 
P 00q1 + 2P

0 P 00q1 + P
0

P 00q2 + P
0 P 00q2 + 2P

0

!
;

with det (J) > 0 for any (q1; q2) and by the implicit function theorem we have that

@q

@!
=

1

det (J)

 
P 00q2 + 2P

0 � (P 00q1 + P 0)
� (P 00q2 + P 0) P 00q1 + 2P

0

!
; (5)

where q = (q1; q2) and != (!1; !2).

Let fqs1(!1; !2); qs2(!1; !2)g denote the solution of (4). Then optimal values of !1; !2 satisfy:

@�Si
@!i

= P 0
�
@qsi
@!i

+
@qsj
@!i

�
qsi + P

@qsi
@!i

� C 0i
@qsi
@!i

= 0; i 6= j: (6)

Directly di¤erentiating (6) in respect to !i and using (5) one can obtain that @2�i=@!2i < 0

under Assumptions 1 and 2 and provided P (3)(Q) � 0. Therefore, Assumptions 1-3 ensure the
existence of a pure strategy equilibrium in the [S; S]-subgame. It is convenient to rewrite (6) in

the form

P 0qsi + P � C 0i + P 0qsi
�
@qsj
@!i

=
@qsi
@!i

�
= 0;
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where

@qsj
@!i

=
@qsi
@!i

= �
P 00qsj + P

0

P 00qsj + 2P
0 : (7)

Let fq�S1 ; q�S2 g and f��S1 ; ��S1 g be the equilibrium values in the [S; S]-subgame. Now we may

represent the game as the following table.

Firm 2

Separate Integrate

Separate ��S1 ; �
�S
2 ��L1 ; �

�F
2

Firm 1 Integrate ��F1 ; ��L2 ��C1 ; ��C2

3 Equilibrium

First, we note that the Stackelberg leader�s pro�t always exceeds the Cournot pro�t, ��Li > ��Ci ,

and therefore we have the following result.

Proposition 1 The [I; I]-subgame is never played in equilibrium.

The equilibrium is determined by a relation of manufacturers� pro�ts ��Li ; �
�F
i ; and ��Si .

More speci�cally, in the equilibrium, [S; I] is played if ��F2 � ��S2 ; [I; S] if ��F1 � ��S1 ; [S; S] if
both ��F1 � ��S1 and ��F2 � ��S2 hold.

Now, we consider a family of games f� (P;C1; �C2)gj�>0.

Lemma 1 As �!1, both q�F2 (q1; �) and @qF2 =@q1(q1; �) uniformly converges to zero.

Lemma�s statement is quite intuitive: the steeper is �rm 2�s marginal curve (the greater

is �), the more negligibly are both its output, q�F2 (q1; �), and its response to changes in q1,

@qF2 =@q1(q1; �), for any q1 2 [0; Q).
In general, separation has two e¤ects. First, it allows a �rm to manipulate its retailer�s

reaction curve and thus gives a strategic advantage to a separated �rm. Second, it increases

competition between retailers. This occurs because retailers�reaction curves (determined by (4))

are steeper than �rms� reaction curves (determined by (1)). While the �rst always increases

the �rm�s pro�t, the second harms it. Thus, a decision on separation depends on which e¤ect

dominates. The following proposition states that if a �rm�s cost function exhibits a high enough

diseconomy of scale, then the �rm prefers to integrate given that its rival separates.

Proposition 2 9� > 0 such that for any � � � the game � (P;C1; �C2) has equilibrium with

[S; I] played at the �rst stage.
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The intuition for the result follows. As �rm 2�s cost function exhibits high diseconomy of scale,

an advantage of manipulating the retailer�s objective is small, while more aggressive behavior by

retailer 1 lowers �rm 2�s pro�ts below the Stackelberg follower�s pro�ts. Thus, �rm 2 prefers to

integrate given that �rm 1 separates.

In contrast to Proposition 2, Proposition 3 states that if �rm 2 being ine¢ cient separates,

then �rm 1 prefers to integrate.

Proposition 3 9b� > 0 such that for any � � b� the game � (P;C1; �C2) has equilibrium with

[I; S] played at the �rst stage.

This occurs for the following reason. As �rm 2 is ine¢ cient, �rm 1, being a Stackelberg

follower, achieves almost monopolistic pro�ts. If it separates, its own and �rm 2�s retailers

compete more aggressively, which leads to an excessive output and signi�cantly lowers �rm 1�s

pro�ts. Thus, �rm 1, operating even more e¢ ciently, prefers to integrate given that �rm 2

separates.

Combining Propositions 2 and 3, we arrive at a Corollary that states that two equilibria exist

whenever at least one �rm has a su¢ ciently steep marginal curve.

Corollary 1 For any � � maxfb�; �g the game � (P;C1; �C2) has two equilibria where one �rm
separates and another integrates.

Note that Corollary 1 does not imply existence of asymmetric equilibria in a symmetric game.

To cover this case, we formulate the following proposition.

Proposition 4 9b� > 0 such that for any � > b� the symmetric game � (P; �C; �C) has two
asymmetric equilibria with [S; I] and [I; S] played at the �rst stage.

Proposition 4 says that in the symmetric game, whenever the slop of marginal cost curve for

each �rm is steep enough, a loss from more aggressive retailers�behavior dominates a gain from

separation. Thus, each �rm prefers to integrate given that its rival separates, and hence there

exist two asymmetric equilibria in a symmetric game.

4 Linear demand and quadratic costs

This section provides analysis for the case of linear demand, P (Q) = 1�Q, and quadratic cost
functions, Ci(qi) = iq

2
i =2, where i � 0. This form of demand and cost functions allows us,

�rst, to capture the e¤ects of scale diseconomies on the equilibrium structure and, second, to

obtain a closed-form solution.

Using (1) we get the solution of the [I; I]-subgame:

q�Ci =
1 + j

(3 + 2i + ji + 2j)
and ��Ci =

(2 + i)(1 + j)
2

2(3 + 2j + ji + 2i)
2
; i; j = 1; 2:
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If �rm 1 separates and �rm 2 integrates, the retailers�pro�t maximization problems (3) have

the following solution:(
qL1 =

1+2�!1(2+1)
3+22

qF2 =
1+!1
3+22

: (8)

Plugging (8) into �rm 1�s pro�ts and optimizing with respect to !1, we obtain:

!L�1 =
(1 + 2)(21 + 12 � 1)

(2 + 2)(2 + 22 + 12 + 21)
:

Equilibrium quantities and pro�ts are given, respectively, by:(
qL�1 = 1+2

(2+22+12+21)

qF�2 = 1+2+21+12
(2+2)(2+22+12+21)

and (
�L1 =

(1+2)
2

2(2+2)(2+22+12+21)

�F2 =
(1+2+21+12)

2

2(2+2)(2+22+12+21)
2

:

If both �rms vertically separate, �rst-order conditions of the retailers�pro�t maximization

problems (4) give optimal outputs q1; q2 as functions of (!1; !2);

qi =
1� 2!si + !sj

3
; i; j = 1; 2;

and the total output and the �nal price, respectively:

Q =
2� !s1 � !s2

3
; P =

1 + !s1 + !
s
2

3
:

First-order conditions of �rms�maximization problem (6) determine �rms�reaction curves in the

space f!s1; !s2g:

!si =
(�1 + 2i)(1 + !sj)

4(1 + i)
; i; j = 1; 2: (9)

Note that @!si=@!
s
j strictly increases in i and does not depend on j . Thus, the degree of

substitution between !si and !
s
j decreases in i; if i < 1=2; !si is a substitute for !

s
j , and if

i > 1=2; !
s
i is a complement to !

s
j :Moreover, if i > 1=2 and j < 1=2; then !

s
i is a complement

to !sj , whereas !
s
j is a substitute for !

s
i .

System (9) has the solution:

!s�i =
2i � 2j + 4ij � 1
5 + 6i + 6j + 4ij

; i; j = 1; 2:
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Respective equilibrium quantities and pro�ts are given by:

qSi =
2 + 4j

(5 + 6i + 4ij + 6j)
;

�Si =
2(1 + i)(1 + 2j)

2

(5 + 6i + 4ij + 6j)
2
;

i; j = 1; 2:

We can easy see that �Li > �
C
i > �

F
i and, as prescribed by Proposition 1, the outcome of the

subgame [I; I] is never played in SPNE. To determine the equilibrium outcome, we compare �Fi
and �Si . Consider the set (1; 2) such that �rm i is indi¤erent to separating and integrating,

given that �rm j separates:

�Fi =
(1 + i + 2j + ij)

2

2(2 + i)(2 + 2j + ij + 2i)
2
=

2(1 + i)(1 + 2j)
2

(5 + 6i + 4ij + 6j)
2
= �Si : (10)

It can be shown that i = �i(j); i; j = 1; 2 determined by (10) are such that: (i) i =

�i(j); i; j = 1; 2 are strictly concave and have a unique maximum, (ii) �i(0) > 0 and (iii)

9j < +1 : �i(j) = 0: Figure 1 gives a graphical representation of �i(j) and �j(i).

�F2 > �
S
2 above the dashed line, �

F
1 > �

S
1 right of the dotted line.

In zone A (low 1 and low 2), both �rms have relatively �at marginal cost curves. Each
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�rm prefers to separate given that its rival separates; hence, in the unique equilibrium, �rms

play [S; S] at the �rst stage. The equilibrium pro�t of each �rm is lower than in the Cournot

equilibrium, yet higher than the Stackelberg follower�s pro�t: �Fi < �
S
i < �

C
i . Although inside

zone A, �rms may di¤er in e¢ ciency, this di¤erence ranks as su¢ ciently small. In zone C (low

1 and moderate 2), �rm 1 is more e¢ cient than the �rm 2, but the di¤erence in e¢ ciency is

not too high. Then the strategy Separate is dominant for �rm 1, while �rm 2 chooses Integrate,

�F1 < �
S
1 ; �

F
2 > �

S
2 : In zone D (low 1 and moderate 2), the situation is the opposite of that in

zone C: �rm 2 is more e¢ cient than �rm 1, and the di¤erence in e¢ ciency is not too high. The

strategy Separate is dominant for �rm 1, while �rm 2 chooses Integrate: �F1 < �
S
1 , �

F
2 > �

S
2 .

Finally, zone B is such that (either 1 or 2 or both are su¢ ciently high), either both �rms are

su¢ ciently ine¢ cient, or the asymmetry in costs is very high. In this case, each �rm integrates

if its rival separates. Therefore, two asymmetric equilibria, with strategies [I; S] and [S; I], exist.

The following Proposition summarizes the above results:

Proposition 5 At the �rst stage �rms play
(i) [S; S] if (1; 2) 2 A � f (1; 2)j 1 � �1(2); 2 � �2(1)g;
(ii) either [S; I] or [I; S] if (1; 2) 2 B � f (1; 2)j 1 � �1(2); 2 � �2(1)g;
(iii) [S; I] if (1; 2) 2 C � f (1; 2)j 1 � �1(2); 2 � �2(1)g;
(iv) [I; S] if (1; 2) 2 D � f (1; 2)j 1 � �1(2); 2 � �2(1)g.

Intuition for this result is the following. If �rm 1 separates and �rm 2 integrates, then they get

Stackelberg leader and follower pro�ts, respectively. Let�s consider e!1 and e!2 which replicates
this Stackelberg outcome in the [S; S]-subgame, that is qS1 (e!1; e!2) = qL�1 and qS2 (e!1; e!2) = qF�2 .

Now, a deviation of �rm 2 from strategy Integrate to strategy Separate is equivalent to switching

from the outcome determined by fe!1; e!2g to the outcome determined by f!s�1 ; !s�2 g in the [S; S]-
subgame. The deviation implies that e!2 > !s�2 , while either e!1 < !s�1 or e!1 > !s�1 depends on

values of 1 and 2.

A decrease in !2 raises �rm 2�s output and lowers �rm 1�s. If e!1 < !s�1 , an increase in !1
has the same qualitative e¤ect on outputs: q2 increases and q1 decreases. Both changes raise

�rm 2�s pro�t, and thus �rm 2 strictly prefers to deviate from Integration to Separation. This

holds on the subset of zone A with 1 and 2 close enough to zero.

In contrast, if e!1 > !s�1 , a decrease in !1 raises �rm 1�s output, lowers �rm 2�s output, and

negatively a¤ects �rm 2�s pro�t. In this case, a total e¤ect of both changes depends on values of

1 and 2. If both 1 and 2 are su¢ ciently low (the rest of zone A and zone D), the positive

e¤ect of the change in !2 dominates the negative e¤ect of the change in !1 and the deviation is

pro�table. Otherwise, �rm 2 prefers to integrate, given that �rm 1 separates (zones C and B).

Symmetric arguments apply for the case when �rm 1 chooses between separation and in-

tegration given that �rm 2 separates. Therefore, zone A is the set of f1; 2g such that each
�rm strictly prefers to separate, and thus, [S; S] is played in a unique equilibrium. In zone C

separation is a dominant strategy for �rm 1 while �rm 2�s pro�t is higher if it integrates. Thus,
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we have a unique asymmetric equilibrium. Similarly, in zone D; there exists a unique asymmetric

equilibrium where �rm 2 separates and �rm 1 integrates. Finally, each �rm prefers to integrate,

given that its rival separates in the zone B, and there exist two asymmetric equilibria.

Corollary 2 In the symmetric game with 1 = 2 = , there exists a unique b such that, if
 < b; then in the unique equilibrium [S; S]-played at the �rst stage, and if  > b, then there
exist two asymmetric equilibria with [I; S] and [S; I] played at the �rst stage.

In particular, for given demand and cost speci�cations, we have that b � 0:47 and in equilib-
rium (@!i=@!j)j!1=!2=!� � �0:01 < 0; i; j = 1; 2: Thus, asymmetric equilibria in the symmetric
game arise even if the wholesale prices are not strategic complements, but given that the degree

of substitution between them is su¢ ciently low.

4.1 Welfare analysis

Using explicit solutions for outputs in every subgame we have that for any 1; 2 the consumer

surplus is maximized if both �rms separate, that is

qC1 + q
C
2 < q

L
1 + q

F
2 < q

S
1 + q

S
2 :

Thus, if (1; 2) 2 A, then �rms�actions fSeparate; Separateg are optimal from the point of

view of the consumers surplus.

In respect to pro�ts, we have reverse relationship

�C1 + �
C
2 > �

L
1 + �

F
2 > �

S
1 + �

S
2 ;

which implies that total industry pro�t maximized in the Cournot setting. Calculating total

welfare as the sum of consumers surplus and �rm pro�ts for each subgame, arrive at the result

that total welfare in the [S; S]-subgame (WSS) is always greater than the one in both the [S; I]-

subgame (WSI) and the [I; I]-subgame (W II):

WSS(1; 2) > W
SI(1; 2);W

SS(1; 2) > W
II(1; 2) for any 1; 2:

Thus, if (1; 2) 2 A; then the �rm�s choice of separation at the �rst stage also maximizes total
welfare.

5 Conclusion

This study investigates �rms�incentives to vertically separate (i.e., to sell their products through

independent exclusive retailers) and to vertically integrate (i.e., to retail their own products)

in a framework of Cournot duopoly with decreasing returns to scale. In contrast to existing
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results, our analysis shows that the equilibrium market structure critically depends on a �rms�

cost structure.

Under very mild assumptions of demand and cost functions, we demonstrate that vertical

integration and separation coexist whenever diseconomy of scale is high enough for at least one

�rm. Moreover, two asymmetric equilibria may exist in a completely symmetric game.

The intuition for the results follows. If only one �rm separates, then it makes a Stackelberg

leader�s pro�t while its rival gets a Stackelberg follower�s pro�t. As the Stackelberg leader�s

pro�t is always greater than a Cournot pro�t, each �rm prefers to separate given that its rival

integrates.

If both �rms separate, then they compete at per unit prices. Retailers� reaction curves in

this case are steeper than those of integrated �rms� and, therefore, an increase in their own

retailer�output leads to a greater reduction in the output of the rival�s retailer as compared to

the Cournot game. This leads to tough competition in per unit prices between separated �rms

and may lead to excessive production and low �nal pro�ts.

If the separated �rm, say �rm 2, is ine¢ cient enough (that is, it has a steep enough marginal

cost curve), then �rm 1 - the Stackelberg follower - makes an almost monopolistic pro�t. In

this case, separation is not pro�table for �rm 1 as it would raise its retailer�s output beyond the

monopolistic output and, thus, would lower �rm 1�s pro�ts. If, in contrast, �rm 1, being more

e¢ cient, separates, then �rm 2 prefers to integrate as a tough competition in per unit prices

would lower its pro�t below the Stackelberg follower�s pro�t.

In the symmetric case, the higher the diseconomy of scale, the lower the gain each �rm

gets by manipulating its own retailer�s objectives; moreover, the higher the losses from tough

competition on per-unit prices. Hence, if the diseconomy of scale is su¢ ciently high, each �rm

prefers to integrate given that its rival separates.

Furthermore, we provide a closed form solution for the case of quadratic costs and a linear

demand. Under these assumptions, we show that in addition to previous results, one additional

type of equilibrium arises. In particular, if diseconomy of scale is low for one �rm and moderate

for another, then there exists a unique equilibrium where the more e¢ cient �rm separates and

the less e¢ cient one integrates. We show also that both consumer surplus and total welfare are

maximized if both �rms separate, while the �rms�pro�ts are higher under Cournot competition.

Our analysis provides a possible explanation for a widely observed asymmetry in �rm sales

strategies based on decreasing economies of scales and cost asymmetry. Notably, in the model,

separation neither implies a change in the production function nor relates to additional costs. In

this sense, we have shown the existence of asymmetric equilibria in a "pure" separation game.

The literature has applied the separation game to analyze a variety of issues, including mergers

(Krakel and Sliwka, 2006; Ziss, 2001) and collusions (Lambertini and Trombetta, 2002; Spagnolo,

2005). All these applications employ the assumption of constant returns to scale. As our analysis

shows, the equilibrium structure of the separation game itself is robust to this assumption only

to a certain extent. Thus, we expect that substantially di¤erent results in these applications may

12



be obtained for cases when the diseconomies of scale are signi�cant. We leave this for future

research.

A Appendix

Proof of Lemma 1. qF2 (q1; �) solves P
0q2 + P � �C 02(q2) = 0 for all � > 0 and all q1 2 [0; Q).

Both P 0(�) and P (�) are bounded, therefore �C 02(qF2 (q1; �)) is bounded also for all q1 2 [0; Q):
With necessity this implies that qF2 (q1; �) !

�!1
0 uniformly. Moreover,

lim
�!1

�C 02(q
F
2 (q1; �)) = lim

�!1
P (q1) > 0

for all q1 2 [0; Q).
Now, we show that

lim
�!1

�C 02(q
F
2 (q1; �)) 2 (0;1)

implies that

lim
�!1

�C
00

2 (q
F
2 (q1; �)) =1

for all q1 2 [0; Q). If C 00(0) = 0, then by the Taylor theorem 9� 2 [0; q]: C 0i(q) = C
00

i (�)q: As

C 00i (q) > 0 for any q > 0; we have that C
00
i (q) is increasing at q = 0 and, hence, C

00

i (�) < C
00

i (q)

for q small enough. Thus,

lim
q!0

C 0i(q)

C
00
i (q)

� lim
q!0

C
00

i (�)

C
00
i (q)

q � lim
q!0

q = 0:

If C 00(0) > 0; then lim
q!0

C 0i(q)=C
00

i (0) = 0:

Therefore, for any q1 2 [0; Q) we have that

lim
�!1

�C
00

2 (q
F
2 (q1; �)) = lim

�!1

 
�C

0

2(q2)
C

00

2 (q2)

C
0
2(q2)

!�����
q2=qF2 (q1;�)

=

= P (q1)

 
lim
�!1

C
0

2(q2)

C
00
2 (q2)

!�1������
q2=qF2 (q1;�)

=1:

Finally, this provides that @q
F
2

@q1
= � P 00qF2 +P

0

P 00qF2 +2P
0��C00

2
uniformly converges to zero as �!1.

Proof of Propositions 2 and 3. We consider [S; I]-subgame. By Lemma 1, @qF2 =@q1 ! 0 and

qF2 (q1; �) ! 0 uniformly as � ! 1 and, therefore, (3) uniformly converges to the monopolist�s
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�rst order condition:

P 0(Q)q1 + P (Q)� C 01(q1) + P 0(Q)q1
@qF2
@q1

!
�!1

P 0(q1)q1 + P (q1)� C 01(q1): (11)

Thus, fq�L1 (�); q�F2 (�)g ! fq�M ; 0g as �!1:
Now, we consider [S; S]-subgame. As there exists an internal solution of @�S2 (�)=@!2 = 0 for

all � > 0; we have that �C 0(q�S2 ) is bounded and thus q
S
2 (�)! 0 as �!1. Therefore, we have

that � P 00qS2 +P
0

P 00qS2 +2P
0 ! �1

2 and, in the limit, �rm 1�s �rst order condition takes a form:

P 0(QS)qS1 + P (Q
S)� C 01(qS1 ) + P 0(QS)qS1

�
@qS2
@!S1

=
@qS1
@!S1

�
!

�!1

!
�!1

P 0(qS1 )q
S
1 =2 + P (q

S
1 )� C 01(qS1 ) = 0: (12)

Comparing (11) and (12), we get that lim�!1 q
�S
1 (�) > q

�M = lim�!1 q
�L
1 (�). Thus, if �rm 2

separates, then �rm 1�s output is higher than the Stackelberg leader�s output. As the �rm 2�s

pro�t, �2(q1; q2), decreases in q1 we have that ��F2 = maxq2 �2(q
�L
1 ; q2) > maxq2 �2(q

�S
1 ; q2) = �

�S
2

whenever q�S1 > q�L1 . Thus, for � big enough �
�F
2 � ��S2 , which proves Proposition 2.

Finally, applying a similar argument to the [I; S]-subgame, we get that fq�F1 (�); q�L2 (�)g !
fq�M ; 0g as �!1: Therefore, lim�!1 q

�S
1 (�) > q

M = lim�!1 q
�F
1 (�) implies that ��F1 � ��S1

for � big enough, which proves Proposition 3.

Proof of Proposition 4. Suppose �rm i separates and �rm j integrates. As � ! 1; both
q�Li (�) and q

�F
i (�) converge to zero as well as

@qFj
@qi

= �
P 00qFj + P

0

P 00qFj + 2P
0 � �C 00

does. Thus, the term P 0(Q)qi
�
@qFj =@qi

�
is of higher order of smallness than qi. Therefore, �rst

order conditions of the Stackelberg game(
P 0(Q)qi + P (Q)� �C 0(qi) + P 0(Q)qi

@qFj
@qi

= 0

P 0(Q)qj + P (Q)� �C 0(qj) = 0

uniformly converge to �rst order conditions of the Cournot game:(
P 0qi + P � �C 0 = 0
i = 1; 2

: (13)

This means that

lim
�!1

qLi (�)

qC(�)
= lim

�!1

qFj (�)

qC(�)
= 1:
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Equilibrium values of fqS1 (�); qS2 (�)g converge to f0; 0g as �!1 and thus

@qsj
@!i

=
@qsi
@!i

= �
P 00qsj + P

0

P 00qsj + 2P
0 ! �1=2:

Therefore, �rst order conditions of the [S; S]-subgame(
P 0qsi + P � �C 0i + P 0qsi

�
@qsj
@!si

=
@qsi
@!si

�
= 0;

i; j = 1; 2; i 6= j

converge to the system(
P 0qsi + P � �C 0 � 1

2P
0qsi = 0;

i = 1; 2:
(14)

as �!1: Comparing (13) and (14) we obtain

lim
�!1

qCi (�)

qLi (�)
= 1 > lim

�!1

qCi (�)

qSi (�)
:

This implies qLi (�) < qSi (�) for � big enough. Therefore �Fj > �Sj ; �
L
i > �Si ;which proves

Proposition 4.
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