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Abstract

In this article, we consider identification, estimation, and inference procedures for treatment effect

parameters using Difference-in-Differences (DID) with (i) multiple time periods, (ii) variation in treat-

ment timing, and (iii) when the “parallel trends assumption” holds potentially only after conditioning

on observed covariates. We propose a simple two-step estimation strategy, establish the asymptotic

properties of the proposed estimators, and prove the validity of a computationally convenient boot-

strap procedure to conduct asymptotically valid simultaneous (instead of pointwise) inference. We also

propose a semiparametric data-driven testing procedure to assess the credibility of the DID design in

our context. Finally, we illustrate the relevance of our proposed tools by analyzing the effect of the

minimum wage on teen employment from 2001–2007. Open-source software is available for implement-

ing the proposed methods.

JEL: C14, C21, C23, J23, J38.

Keywords: Difference-in-Differences, Event Study, Multiple Periods, Variation in Treatment Timing,

Pre-Testing, Semi-Paramatric.

1 Introduction

Difference-in-Differences (DID) has become one of the most popular designs used to evaluate causal effects

of policy interventions. In its canonical format, there are two time periods and two groups: in the first

period no one is treated, and in the second period some individuals are treated (the treated group), and

some individuals are not (the control group). If, in the absence of treatment, the average outcomes for

treated and control groups would have followed parallel paths over time (which is the so-called parallel

∗First complete version: March 23, 2018. A previous version of this paper has been circulated with the title “Difference-in-
Differences with Multiple Time Periods and an Application on the Minimum Wage and Employment”. We thank Sebastian
Calonico, Xiaohong Chen, Clement de Chaisemartin, Xavier D’Haultfoeuille, Bruno Ferman, Andrew Goodman-Bacon,
Federico Gutierrez, Sukjin Han, Hugo Jales, Vishal Kamat, Tong Li, Catherine Maclean, Aureo de Paula, Donald Ru-
bin, Bernhard Schmidpeter, Yuya Sasaki, Na’Ama Shenhav, Tymon S loczyński, Sebastian Tello-Trillo, Jeffrey Wooldridge,
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trends assumption), one can estimate the average treatment effect for the treated subpopulation (ATT)

by comparing the average change in outcomes experienced by the treated group to the average change

in outcomes experienced by the control group. Most methodological extensions of DID methods focus

on this standard two periods, two groups setup; see, e.g., Heckman et al. (1997, 1998), Abadie (2005),

Athey and Imbens (2006), Qin and Zhang (2008), Bonhomme and Sauder (2011), Botosaru and Gutierrez

(2017), de Chaisemartin and D’Haultfœuille (2017), and Callaway et al. (2018); see Section 6 of Athey

and Imbens (2006) and Theorem S1 in de Chaisemartin and D’Haultfœuille (2017) for notable exceptions

that cover multiple periods and multiple groups.

Many DID empirical applications, however, deviate from the standard DID setup and have more than

two time periods and variation in treatment timing. In this article, we consider identification, estimation,

and inference procedures for average treatment effects in DID models with (i) multiple time periods, (ii)

variation in treatment timing, and (iii) when the parallel trends assumption holds potentially only after

conditioning on observed covariates. We concentrate our attention on DID with staggered adoption, i.e.,

to DID setups such that once an individual/group is treated, he/she remains treated in the following

periods. Importantly, we emphasize that our proposal does not rely on functional form restrictions about

the potential outcomes and automatically accommodates general forms of treatment effect heterogeneity

that can also vary with observed covariates and time.

We develop our approach in several steps. To fix ideas, consider the popular “two-way fixed effects”

(TWFE) regression model

Yit = αt + ci + βDit + θXi + εit, (1.1)

where Yit is the outcome of interest, αt is a time fixed effect, ci is an “individual/group” fixed effect,1 Dit

is a treatment indicator that is equal to one if an individual i is treated at time t and zero otherwise, Xi is

a vector of observed characteristics, and εit is an error term. In some cases the β coefficient in (1.1) is of

intrinsic interest, for example if treatment effects are homogeneous. On the other hand, in many situations

β may not be closely related to the causal parameter of interest. For instance, when there is variation in

treatment timing and treatment effects are dynamic, Borusyak and Jaravel (2017), de Chaisemartin and

D’Haultfœuille (2018), Goodman-Bacon (2018), Abraham and Sun (2018) and Athey and Imbens (2018)

point out that β represents a weighted average of these dynamic effects where some of these weights can

be negative.2 In such cases, β is not the relevant parameter for evaluating policy changes as it is possible,

for example, for β to be negative even in the case where the effect of participating in the treatment is

always positive.

In this paper, we propose a general framework that allows one to identify, estimate, and make inference

about treatment effect parameters other than β in (1.1). The main building block of our analysis is the

group-time average treatment effects, i.e., the average treatment effect for group g at time t, where a

“group” is defined by the time period when units are first treated; in the canonical DID setup, they

collapse to the ATT. Two attractive features of the group-time average treatment effect parameters are

that (i) they are not determined by the estimation method one adopts (e.g., first difference or fixed

1Group fixed effects are defined at a different level of aggregation than the covariates Xi; otherwise, one cannot separately
identity the effect of ci and Xi on Yit.

2See also Wooldridge (2005), Chernozhukov et al. (2013) and S loczyński (2018) for results related to causal interpretation
of β under other sources of treatment effect heterogeneity.
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effect linear regression), and (ii) they do not directly restrict heterogeneity with respect to observed

covariates, the time one is first treated (group), or the evolution of treatment effects over time. As a

consequence, these easy-to-interpret causal parameters can be directly used for learning about treatment

effect heterogeneity, and/or to construct many other more aggregated causal parameters. We view this

level of generality and flexibility as one of the main advantages of our proposal.

In some applications, our approach may deliver many group-time average treatment effects, and a

second contribution of our paper is to consider different ways one can aggregate group-time average

treatment effects into summary measures of the causal effects. Although the “best” way to aggregate

these parameters is, in general, application specific, we consider several leading cases and aggregation

schemes that are motivated by economic theory and the context of the analysis. In particular, we propose

aggregation procedures depending on whether one is concerned with (a) selective treatment timing, i.e.,

allowing, for example, the possibility that individuals with the largest benefits from participating in a

treatment choose to become treated earlier than those with a smaller benefit; (b) dynamic treatment

effects – where the effect of a treatment can depend on the length of exposure to the treatment; or (c)

calendar time effects – where the effect of treatment may depend on the time period. Overall, like the β

coefficient in (1.1), our proposed aggregation procedures result in a single estimated “effect” of treatment.

A third contribution of this paper is to propose estimators and provide asymptotically valid inference

procedures for the causal parameters of interest. In the same spirit as Abadie (2005), we consider inverse

probability weighted estimators for the treatment effects. We extend Abadie (2005)’s estimators in two

directions. First and most importantly, we account for variation in treatment timing. Second, our

proposed estimators are of the Hájek (1971) type, whereas the Abadie (2005) estimator is of the Horvitz

and Thompson (1952) type. In other words, our proposed weights are normalized to one, while the

weights in Abadie (2005) are not. As discussed in Robins et al. (2007), Hájek-type estimators are sample

bounded - i.e., the estimates are enforced to lie within the range of the observed outcomes - whereas

Horvitz-Thompson estimators are not. In practice, this modification usually translates to estimators

with improved finite sample properties; see, e.g., Busso et al. (2014).

In order to conduct asymptotically valid inference, we justify the use of a computationally convenient

multiplier-type bootstrap procedure to obtain simultaneous confidence bands for the group-time average

treatment effects. Unlike commonly used pointwise confidence bands, our simultaneous confidence bands

asymptotically cover the entire path of the group-time average treatment effects with probability 1− α,
and take into account the dependency across different group-time average treatment effects estimators.

Thus, our proposed confidence bands are arguably more suitable for visualizing the overall estimation

uncertainty than more traditional pointwise confidence intervals.

Finally, it is worth mentioning that the reliability of the causal interpretation of all aforementioned

results relies on the validity of a conditional parallel trends assumption. However, the conditional parallel

trends assumption we adopt in this article is fundamentally untestable. On the other hand, we show that

if one is willing to strengthen the conditional parallel trends assumption such that it holds not only in

post-treatment but also in pre-treatment periods, this augmented conditional parallel trends assumption

has testable implications when more than two time periods are available. A fourth contribution of this

article is to take advantage of this observation and propose a falsification test based on it.

Our pre-test for the plausibility of the conditional parallel trends assumption is based on the integrated
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moments approach, completely avoids having to select tuning parameters, and is fully data-driven. To the

best of our knowledge, we are the first to note that we can use the conditional moment restrictions to pre-

test for the reliability of the conditional parallel trends identifying assumption. We derive the asymptotic

null distribution of our falsification test statistic, prove that it is consistent against fixed nonparametric

alternatives, and show that critical values can be computed with the assistance of an easy to implement

multiplier-type bootstrap. These results build on many papers in the goodness-of-fit literature – see, e.g.,

Bierens (1982), Bierens and Ploberger (1997), Stute (1997), and Escanciano (2006b, 2008); for a recent

overview, see González-Manteiga and Crujeiras (2013). However, in contrast with most specification

testing proposals, our null hypothesis involves multiple conditional moment restrictions instead of a

single conditional moment restriction; see Escanciano (2008) for an exception.

We illustrate the appeal of our method by revisiting findings about the effect of the minimum wage

on teen employment. Although classical economic models suggest that a wage floor should result in lower

employment, there is a bulk of literature that finds no disemployment effects of the minimum wage – see,

e.g., Card and Krueger (1994) and Dube et al. (2010), among many others. However, another strand of

the literature argues that raising the minimum wage leads to lower employment – see, e.g., Neumark and

Wascher (1992, 2000, 2008), Neumark et al. (2014), and Jardim et al. (2017).

We use data from 2001-2007, where the federal minimum wage was flat at $5.15 per hour. Using

a period where the federal minimum wage is flat allows for a clear source of identification – state level

changes in minimum wage policy. However, we also need to confront the issue that states changed their

minimum wage policy at different points in time over this period – an issue not encountered in the case

study approach to studying the employment effects of the minimum wage. In addition, for states that

changed their minimum wage policy in later periods, we can pre-test the parallel trends assumption which

serves as a check of the internal consistency of the models used to identify minimum wage effects.

We consider both an unconditional and conditional DID approach to estimating the effect of increasing

the minimum wage on teen employment rates. For the unconditional DID case, we find that increases

in the minimum wage tend to decrease teen employment, which is in line with most of the work on

the minimum wage that uses a similar setup. As Dube et al. (2010) points out, such negative effects

may be spurious given potential violations of the parallel trends assumption. Indeed, when we test

for the reliability of the unconditional parallel trends assumption, we reject it at the usual significance

levels. Next, we focus on conditional DID. First, we follow an approach suggested in Dube et al. (2010)

and consider a TWFE regression model with region-year fixed effects. As in Dube et al. (2010), such an

estimation strategy finds no adverse effect on teen employment. Nonetheless, one must bear in mind that,

as discussed before, such a TWFE regression may not identify an easy to interpret causal parameter. To

circumvent this issue, we use our conditional DID approach and find that increasing the minimum wage

does tend to decrease teen employment, though the magnitude of the effect is slightly smaller than in the

unconditional case. The contrast of the findings based on TWFE regression and our proposed method

highlights the importance of taking treatment effect heterogeneity into account. On the other hand, when

we apply our pre-test for the reliability of the conditional DID setup, we do find evidence against the

conditional parallel trends assumption. Thus, one should interpret the findings with care.

Recent Related Literature: This paper is related to the recent and emerging literature on het-
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erogeneous treatment effects in DID and/or event studies with variation in treatment timing; see, e.g.,

de Chaisemartin and D’Haultfœuille (2018), Goodman-Bacon (2018), Imai et al. (2018), Han (2018),

Borusyak and Jaravel (2017), Athey and Imbens (2018) and Abraham and Sun (2018).3 de Chaisemartin

and D’Haultfœuille (2018), Goodman-Bacon (2018), Imai et al. (2018), and Han (2018) consider a general

framework where individuals can dynamically select in and out of treatment over time, whereas Borusyak

and Jaravel (2017), Abraham and Sun (2018), and Athey and Imbens (2018) focus on staggered adoption

designs as we do in this paper.

de Chaisemartin and D’Haultfœuille (2018) show that, in a setting without covariates, the causal in-

terpretation of β in (1.1) heavily relies on homogeneous treatment effect assumptions, and given that such

assumptions are often implausible, they also propose alternative estimators that can recover a weighted

average of treatment effects among the switchers. Their proposal differs from ours in many dimensions.

For instance, while we pay particular attention to the role played by covariates, de Chaisemartin and

D’Haultfœuille (2018) mainly focus on unconditional designs.4 Second, whereas de Chaisemartin and

D’Haultfœuille (2018) propose an estimator that recovers a particular weighted average of the many

treatment effects, our setup allows one to recover the disaggregated causal parameter and form a family

of different aggregate parameters in a unified manner. On the other hand, the setup in de Chaisemartin

and D’Haultfœuille (2018) is more general than ours as we consider staggered adoption designs and they

allow for more general treatment selection. Nonetheless, we note that our parallel trends assumption

is strictly weaker than the one in de Chaisemartin and D’Haultfœuille (2018), even if one were to spe-

cialize their setup to staggered adoptions designs. Overall, given that our and de Chaisemartin and

D’Haultfœuille (2018) setups do not nest each other, we emphasize that one should view this paper and

de Chaisemartin and D’Haultfœuille (2018) as complements rather than substitutes.

Goodman-Bacon (2018) provides a detailed decomposition of β in TWFE models without covariates in

terms of all possible two period−two group DID coefficients. This decomposition highlights that negative

weighting appears when treatment effects vary over time essentially because already treated individuals

sometimes act as control groups. He also proposes diagnostic checks to assess the relative importance of

the different sources of variation in a given application. Finally, we note that in Goodman-Bacon (2018),

the parameter of interest is directly tied to β in (1.1), which is much different from our proposal.

Imai et al. (2018) proposes matching-based estimators for the average treatment effect for treated

individuals, k periods after they were treated. Han (2018) establishes nonparametric identification of

different dynamic treatment effect parameters in settings where sequences of outcomes and treatment

choices may influence one another in a dynamic manner. The frameworks of Imai et al. (2018) and Han

(2018) are also much different from ours as neither rely on conditional parallel trends assumptions as we

do, but instead adopt alternative sets of identifying assumptions.5

3Importantly, all the aforementioned papers are not yet published. Among these, the only two articles that predate the
first complete version of our paper (posted in arXiv on March 23, 2018) are de Chaisemartin and D’Haultfœuille (2018) and
Borusyak and Jaravel (2017).

4We note that de Chaisemartin and D’Haultfœuille (2018) allow for covariates in their model but in a rather restrictive
form. Nonetheless, the same authors have considered covariates in a more flexible manner in previous work; see, e.g., Section
1.4 of the Web Appendix of de Chaisemartin and D’Haultfœuille (2017).

5The identifying assumptions adopted by Imai et al. (2018), such as sequential ignorability or parallel trends conditional
on covariates and past outcomes, do not nest nor are nested by our conditional parallel trends assumption; see, e.g.,
Section 6.5.4 of Imbens and Wooldridge (2009), Section 3.2.8 of Lechner (2010), Chabé-Ferret (2015, 2017), and Daw and
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Although Borusyak and Jaravel (2017), Athey and Imbens (2018) and Abraham and Sun (2018)

consider staggered adoption designs like we do, the focus of their analysis is very different from ours. For

instance, Borusyak and Jaravel (2017) shows that the coefficients of TWFE models with treatment leads

and lags are, in general, not point identified unless one introduces additional conditions, e.g., existence

of valid comparison groups. They also show that β in “static” TWFE least squares models like (1.1)

can be expressed as a weighted average of the dynamic effects, but these weights can be negative for

long-run effects and also “overweight” short-run effects; to the best of our knowledge, they are the first to

document this phenomenon in designs with staggered adoption. Although Borusyak and Jaravel (2017)

briefly discuss potential solutions to these issues, they do not provide a formal analysis of alternative

estimators like we do. In addition, they are mainly focused on parametric linear models whereas we use

a semi/nonparametric approach.

Athey and Imbens (2018) mainly focus on providing design-based inference procedures for uncondi-

tional DID estimators under staggered adoption designs. However, the design-based inference procedures

proposed by Athey and Imbens (2018) rely on a “random assignment” type assumption that is strictly

stronger than our parallel trends assumption.

Abraham and Sun (2018) adapt de Chaisemartin and D’Haultfœuille (2018)’s results to the staggered

design and show that the β coefficient in TWFE models does not have a clear causal interpretation under

treatment effect heterogeneity. They also consider specifications with leads and lags of treatment indica-

tors, formally show that these specifications are not suitable to “pre-test” for parallel trends, and propose

an estimator that is able to recover an easy to understand weighted average of the average treatment ef-

fects. In contrast to our approach, Abraham and Sun (2018) mainly focus on unconditional DID designs,

and our identification assumptions are strictly weaker than theirs (see Remark 1 and Appendix C in the

Supplementary Appendix for further discussion). Our inference procedures are also quite different from

theirs since we cover both the panel data and the repeated cross-section data case, explicitly account for

potential multiple-testing problems when constructing confidence intervals, and propose pre-tests for the

reliability of the parallel trends assumption. Finally, our general framework allows us to study additional

parameters of interest that can take economic theory and/or the context of the analysis into account.

Organization of the paper: The remainder of this article is organized as follows. Section 2 presents

our main identification results. We discuss estimation and inference procedures for the treatment effects of

interest in Section 3. Section 4 describes our pre-tests for the credibility of the conditional parallel trends

assumption. We revisit the effect of minimum wage on employment in Section 5. Section 6 concludes.

Proofs as well as additional methodological results are reported in the Supplementary Appendix.

Hatfield (2018). Han (2018)’s identifying assumptions include two-way exclusion restrictions, weak separability and a strict
monotonicity conditions, and sequential rank similarity. These also do not nest nor are nested by our conditional parallel
trends assumption.
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2 Identification

2.1 Framework

We first introduce the notation we use throughout the article. We consider the case with T periods and

denote a particular time period by t where t = 1, . . . , T . In a standard DID setup, T = 2 and no one

is treated in period 1. Let Dt be a binary variable equal to one if an individual is treated in period t

and equal to zero otherwise. Also, define Gg to be a binary variable that is equal to one if an individual

is first treated in period g, and define C as a binary variable that is equal to one for individuals in the

control group – these are individuals who are never treated so the notation is not indexed by time. For

each individual, exactly one of the Gg or C is equal to one. Denote the generalized propensity score as

pg(X) = P (Gg = 1|X,Gg + C = 1). Note that pg(X) indicates the probability that an individual is

treated conditional on having covariates X and conditional on being a member of group g or the control

group. Finally, let Yt (1) and Yt (0) be the potential outcome at time t with and without treatment,

respectively. The observed outcome in each period can be expressed as Yt = DtYt (1) + (1−Dt)Yt (0) .

Given that Yt (1) and Yt (0) cannot be observed for the same individual at the same time, researchers

often focus on estimating some function of the potential outcomes. For instance, in the standard DID

setup, the most popular treatment effect parameter is the average treatment effect on the treated, denoted

by6

ATT = E[Y2(1)− Y2(0)|G2 = 1].

Unlike the two period and two group case, when there are more than two periods and variation in

treatment timing, it is not obvious what the main causal parameter of interest should be. We focus on

the average treatment effect for individuals who are members of a particular group g in a particular time

period t, denoted by

ATT (g, t) = E[Yt(1)− Yt(0)|Gg = 1].

We call this causal parameter the group-time average treatment effect. In particular, note that in the

classical DID setup, ATT (2, 2) collapses to ATT .

In this article, we are interested in identifying and making inference about ATT (g, t) and functionals

of ATT (g, t). At this stage, one may wonder about the advantages of first focusing on the family of

ATT (g, t) instead of directly focusing on more aggregate measures of treatment effects. In our view,

the main advantage of first focusing on the family of ATT (g, t) is to understand treatment effect hetero-

geneity across different dimensions in a unified manner. In addition, by first focusing on ATT (g, t) one

can later construct different summary treatment effect measures that can highlight different sources of

heterogeneity. For instance, by identifying and estimating all possible ATT (g, t), one would be able to

answer questions like: (a) Are treatment effects heterogeneous by time of adoption? (b) Does the effect

of the treatment increase over time? (c) Are short-run effects more pronounced than long-run effects?

(d) Do treatment effect dynamics differ if people are first treated in recession years relative to expansion

years? Note that all these questions are application dependent, and it is unlikely that a single summary

measure of treatment effects can be used to answer them all. On the other hand, as we discuss in Section

2.3, one can build on the ATT (g, t) to construct appropriate summary measures that take the context

6Existence of expectations is assumed throughout.
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of the application into account. Given that the “best” way to construct summary measures is applica-

tion/context dependent, we view this level of generality and flexibility as one of the main advantages of

our framework that first focuses on the family of ATT (g, t).

In order to identify the ATT (g, t) and their functionals, we impose the following assumptions.

Assumption 1 (Sampling). {Yi1, Yi2, . . . YiT , Xi, Di1, Di2, . . . , DiT }ni=1 is independent and identically dis-

tributed (iid).

Assumption 2 (Conditional Parallel Trends). For all t = 2, . . . , T , g = 2, . . . , T such that g ≤ t,

E[Yt(0)− Yt−1(0)|X,Gg = 1] = E[Yt(0)− Yt−1(0)|X,C = 1] a.s..

Assumption 3 (Irreversibility of Treatment). For t = 2, . . . , T ,

Dt−1 = 1 implies that Dt = 1

Assumption 4 (Overlap). For all g = 2, . . . , T , P (Gg = 1) > 0 and for some ε > 0, pg(X) < 1− ε a.s..

Assumption 1 implies that we are considering the case with panel data. The extension to the case

with repeated cross sections is fully developed in Appendix B in the Supplementary Appendix though we

note here that the arguments are very similar.

Assumption 2, which we refer to as the (conditional) parallel trends assumption throughout the paper,

is the crucial identifying restriction for our DID model, and it generalizes the two-period DID assumption

to the case where it holds in multiple periods for each group; see, e.g., Heckman et al. (1997, 1998),

Blundell et al. (2004), and Abadie (2005). It states that, conditional on covariates, the average outcomes

for the group first treated in period g and for the control group would have followed parallel paths in

the absence of treatment. We require this assumption to hold for all groups g and all time periods t

such that g ≤ t; that is, it holds in all periods after group g is first treated. Note that Assumption 2

does not restrict the evolution of potential outcomes for periods t < g. This subtle distinction turns out

to be important as we do not need to restrict “pre-trends” to nonparametrically identify the ATT (g, t).

Finally, it is important to emphasize that the parallel trends assumption holds only after conditioning

on some covariates X, therefore allowing for X-specific time trends. All of our analysis continues to go

through in the case where an unconditional parallel trends assumption holds by simply setting X = 1.

Assumption 3 states that once an individual becomes treated, that individual will also be treated in

the next period. With regards to the minimum wage application, Assumption 3 says that once a state

increases its minimum wage above the federal level, it does not decrease it back to the federal level during

the analyzed period. Moreover, this assumption is consistent with most DID setups that exploit the

enacting of a policy in some location while the policy is not enacted in another location.

Finally, Assumption 4 states that a positive fraction of the population start to be treated in period g,

and that, for any possible value of the covariates X, there is some positive probability that an individual

is not treated.7 This is a standard covariate overlap condition; see, e.g., Heckman et al. (1997, 1998),

Blundell et al. (2004), Abadie (2005).

7In our application on the minimum wage, we must take somewhat more care here as there are some periods where
there are no states that increase their minimum wage. In this case, let G denote the set of first treatment times with
G ⊆ {1, . . . , T }. Then, one can compute ATT (g, t) for groups g ∈ G with g ≤ t. This is a simple complication to deal with
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Remark 1. In some applications, eventually all units are treated, implying that C is never equal to one.

In such cases one can consider the “not yet treated” (Dt = 0) as a control group instead of the “never

treated” (C = 1). That is, instead of relying on Assumption 2, one could instead assume that for all

t = 2, . . . , T , g = 2, . . . , T such that g ≤ t,

E[Yt(0)− Yt−1(0)|X,Gg = 1] = E[Yt(0)− Yt−1(0)|X,Dt = 0] a.s.. (2.1)

We present a detailed discussion of this case in Appendix C in the Supplementary Appendix.

When there is a “never treated” group, we note that the parallel trends assumption (2.1) and As-

sumption 2 are non-nested, though. On the other hand, the parallel trends assumption (2.1) is strictly

weaker than the assumptions made by Abraham and Sun (2018), for example, as Abraham and Sun

(2018) requires common trends for all groups g and (2.1) only requires parallel trends between those

individuals treated at time g and the “supergroup” of those not yet treated.8 In addition, we emphasize

that our assumptions do not restrict the evolution of potential outcomes before treatment. See Appendix

C in the Supplementary Appendix for additional details about this case.

2.2 Group-Time Average Treatment Effects

In this section, we introduce the nonparametric identification strategy for the group-time average treat-

ment effect ATT (g, t). Importantly, we allow for treatment effect heterogeneity and do not make func-

tional form assumptions about the evolution of potential outcomes.

Theorem 1. Under Assumptions 1 - 4 and for 2 ≤ g ≤ t ≤ T , the group-time average treatment effect

for group g in period t is nonparametrically identified, and given by

ATT (g, t) = E


 Gg
E [Gg]

−

pg (X)C

1− pg (X)

E
[
pg (X)C

1− pg (X)

]
 (Yt − Yg−1)

 . (2.2)

Theorem 1 says that, under Assumptions 1 - 4, a simple weighted average of “long differences” of the

outcome variable recovers the group-time average treatment effect. The weights depend on the generalized

propensity score pg (X), and are normalized to one. The intuition for the weights is simple. One takes

observations from the control group and group g, omitting other groups, and then weights up observations

from the control group that have characteristics similar to those frequently found in group g and weights

down observations from the control group that have characteristics that are rarely found in group g. Such

a reweighting procedure guarantees that the covariates of group g and the control group are balanced.

Interestingly, in the standard DID setup of two periods only, E [p2 (X)C/ (1− p2 (X))] = E [G2], and the

results of Theorem 1 reduce to Lemma 3.1 in Abadie (2005).

To shed light on the role of the “long difference”, we give a sketch of how this argument works in the

unconditional case, i.e., when X = 1. Recall that the key identification challenge is for E[Yt(0)|Gg = 1]

in practice, so we consider the notationally more convenient case where there are some individuals treated in all periods
(possibly excluding period 1) in the main text of the paper.

8The same caveat applies to the assumptions made by de Chaisemartin and D’Haultfœuille (2018), though they do not
restrict their attention to staggered treatment adoption as we do.
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which is not observed when g ≤ t. Under the parallel trends assumption,

E[Yt(0)|Gg = 1] = E[Yt(0)− Yt−1(0)|Gg = 1] + E[Yt−1(0)|Gg = 1]

= E[Yt − Yt−1|C = 1] + E[Yt−1(0)|Gg = 1]

The first term is identified; it is the change in outcomes between t− 1 and t experienced by the control

group. If g > t− 1, then the last term is identified. If not,

E[Yt−1(0)|Gg = 1] = E[Yt−1 − Yt−2|C = 1] + E[Yt−2(0)|Gg = 1]

which holds under the parallel trends assumption. If g > t − 2, then every term above is identified. If

not, one can proceed recursively in this same fashion until

E[Yt(0)|Gg = 1] = E[Yt − Yg−1|C = 1] + E[Yg−1|Gg = 1],

implying the result for ATT (g, t).

One final thing to consider in this section is the case when the parallel trends assumption holds

without needing to condition on covariates. In this case, (2.2) simplifies to

ATT (g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|C = 1], (2.3)

which is simpler than the weighted representation in (2.2) but also implies that all of our results will

also cover the unconditional case which is commonly used in empirical work. We discuss an alternative

regression based approach to obtaining ATT (g, t) in Appendix D in the Supplementary Appendix.9

Remark 2. From (2.3) one can see that when the parallel trends assumption holds unconditionally, the

ATT (g, t) parameter can be obtained by first subsetting the data to only contain observations at time t

and g− 1, from groups with either Gg = 1 or C = 1, and then, using only the observations of this subset,

running the (population) linear regression

Y = αg,t1 + αg,t2 ·Gg + αg,t3 · 1 {T = t}+ βg,t · (Gg × 1 {T = t}) + εg,t. (2.4)

It is then easy to verify that βg,t = ATT (g, t). Note that one would need to consider different partitions

of the data to characterize different ATT (g, t) in terms of regression parameters. The weighted average

representation in (2.2) avoids that.

In addition, note that when covariates are available, the β̃g,t coefficient of the population linear

regression

Y = α̃g,t1 + α̃g,t2 ·Gg + α̃g,t3 · 1 {T = t}+ β̃g,t · (Gg × 1 {T = t}) + γ̃ ·X + ε̃g,t

that uses the same subset of data as before is, in general, not equal to ATT (g, t) unless one is willing to

assume that

E[Yt(1)− Yt(0)|Gg = 1, X] = E[Yt(1)− Yt(0)|Gg = 1] a.s.,

a condition deemed too strong by most of the causal inference literature; see, e.g., S loczyński (2018) for a

9Unlike the two period, two group case, there does not appear to be any advantage to trying to obtain ATT (g, t) from
a regression as it appears to require post-processing the regression output.
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related discussion. The characterization of ATT (g, t) in (2.2) does not rely on this restrictive condition.

2.3 Summarizing Group-time Average Treatment Effects

The previous section shows that the group-time average treatment effect ATT (g, t) is identified for g ≤ t.
These are very useful parameters – they allow one to consider how the effect of treatment varies by

group and time. However, in some applications there may be many of them, perhaps too many to easily

interpret the effect of a given policy intervention. This section considers ways to aggregate group-time

average treatment effects into fewer interpretable causal effect parameters. In applications, aggregating

the group-time average treatment effects is also likely to increase statistical power, reducing estimation

uncertainty.

The two simplest ways of combining ATT (g, t) across g and t are

2

T (T − 1)

T∑
g=2

T∑
t=2

1{g ≤ t}ATT (g, t) and
1

κ

T∑
g=2

T∑
t=2

1{g ≤ t}ATT (g, t)P (G = g) (2.5)

where κ =
∑T

g=2

∑T
t=2 1{g ≤ t}P (G = g) (which ensures that the weights on ATT (g, t) in the second

term sum to 1).10 The first term in (2.5) is just the simple average of ATT (g, t); the second is a weighted

average of each ATT (g, t) putting more weight on ATT (g, t) with larger group sizes. Unlike β in the

TWFE regression model, these simple combinations of ATT (g, t) immediately rule out troubling cases due

to negative weights; as a particular example, when the effect of participating in the treatment is positive

for all individuals, these aggregated parameters cannot be negative. However, as we argue below, in

many cases, it appears that researchers can choose more appropriate summary treatment effect measures

that take into account economic theory and the context of the analysis. Interestingly, in the case with

homogeneous treatment effects across groups and time, all the group-time average treatment effects are

equal to each other and, therefore, all of the aggregated parameters that we consider in this section will

be equal to each other.

In contrast to our approach in this section, the most common approach to estimating the effect of

a binary treatment in a panel data setup is to interpret β in the following regression as the average

treatment effect

Yit = αt + ci + βDit + θXi + εit,

where αt is a time fixed effect and ci is an individual/group fixed effect. Interestingly, Wooldridge (2005),

Chernozhukov et al. (2013), Borusyak and Jaravel (2017), Goodman-Bacon (2018), S loczyński (2018),

de Chaisemartin and D’Haultfœuille (2018), Abraham and Sun (2018) and Athey and Imbens (2018) have

shown that, in general, β does not represent an easy to interpret average treatment effect parameter. The

results in this section can be used in exactly the same setup to identify a single interpretable average

treatment effect parameter and, thus, provide a way to circumvent the issues with the more common

approach.

10Here we use the shorthand notation P (G = g) to denote P (Gg = 1|G1 + C = 0) . Thus, P (G = g) is the probability
that an individual is first treated in period g conditional on not being in the control group or in the group first treated in
period 1. Throughout this section, conditional probabilities such as P (G = g|g ≤ t) also implicitly condition on not being
in the control group or in the group first treated in period 1.
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In the following, we consider several common cases that are likely to occur in practice: (a) selective

treatment timing, (b) dynamic treatment effects, and (c) calendar time effects. We provide some rec-

ommendations on constructing interpretable treatment effect parameters under each of these setups. It

is worth mentioning that in each of these cases, ATT (g, t) still provides the average causal effect of the

treatment for group g in period t; the issue in this section is how to aggregate ATT (g, t) into a smaller

number of causal effect parameters.

Selective Treatment Timing In many cases, when to become treated is a choice variable. The

parallel trends assumption does place some restrictions on how individuals select when to be treated. In

particular, in order for the path of untreated potential outcomes to be the same for a particular group and

the control group, the parallel trends assumption does not permit individuals to select into treatment

in period t because they anticipate a negative “shock” to their untreated potential outcomes in that

period. On the other hand, it does allow for some selection on the basis of time-invariant unobserved

characteristics. In addition, it does not place restrictions on how treated potential outcomes are generated

at all. Thus, our imposed DID assumptions fully allow for individuals to select into treatment on the

basis of expected future values of treated potential outcomes.

While some forms of selective treatment timing are permitted under the parallel trends assumption

and do not affect identification of group-time average treatment effects, they do have implications for

the “best ways” to combine ATT (g, t) into a single, easy to interpret treatment effect parameter. In

particular, when there is selective treatment timing, the period when an individual is first treated may

provide information about the size of the treatment effect. In such cases, we propose to summarize

the causal effect of a policy by first aggregating ATT (g, t) by group, and then combine group average

treatment effects based on the size of each group.

More precisely, we first consider

θ̃S(g) =
1

T − g + 1

T∑
t=2

1{g ≤ t}ATT (g, t).

Note that θ̃S(g) is the time-averaged treatment effect for individuals in group g, i.e., just a time-average

of each available ATT (g, t) for group g. Next, in order to further reduce the dimensionality of θ̃S(g), one

can average θ̃S(g) across groups to get

θS =
T∑
g=2

θ̃S(g)P (G = g). (2.6)

Note that θS appears to be quite similar to the second term in (2.5). The difference is in the weights.

The second term in (2.5) puts more weight on groups that are exposed to treatment longer. The weights

in (2.6) only depend on group size, not on the number of post-treatment periods available per group. For

example, suppose there is positive selective treatment timing so that individuals who are treated earlier

experience larger benefits from being treated than those who are treated later. In the presence of selective

treatment timing, the approach in (2.5) would tend to overstate the effect of the treatment due to putting

more weight on the groups that are treated the longest, which are precisely the ones that experience the
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largest benefits of being treated. Thus, we argue that, in the presence of selective treatment timing, θS

in (2.6) is a more natural causal parameter than the second term in (2.5).

Dynamic Treatment Effects In other cases, the effect of a policy intervention may depend on the

length of exposure to it. To give some examples, Jacobson et al. (1993) argues that workers that are

displaced from their jobs tend to have immediate large earnings effects that get smaller over time, and

both the immediate effect and the dynamic effect are of interest. In the case of the minimum wage, Meer

and West (2016) argue that increasing the minimum wage leads to lower job creation and thus that the

effect of the minimum wage on employment is dynamic – one should expect larger effects in subsequent

periods than in the initial period.

In the presence of dynamic treatment effects (but not selective treatment timing), we propose to

summarize the effects of the policy by first aggregating ATT (g, t) by the length of exposure to treatment

(we denote this by e), and then (possibly) combining average effects based on length of exposure by

averaging over different lengths of exposure. That is, we first consider the parameter

θ̃D(e) =

T∑
g=2

T∑
t=2

1{t− g + 1 = e}ATT (g, t)P (G = g|t− g + 1 = e),

which provides the average effect of treatment for individuals that have been treated for exactly e periods.

For example, when e = 1, it averages (based on group size) ATT (g, t) for g = t (groups that have been

exposed to treatment for exactly one period). Averaging over all possible values of e results in the

parameter

θD =
1

T − 1

T −1∑
e=1

θ̃D(e). (2.7)

The primary difference between θD, θS , and the second term in (2.5) is the weights. Relative to the

other parameters, θD puts the most weight on ATT (g, t) when g is much less than t, which corresponds

to large values of e, because there are few groups available for large values of e. In the absence of selective

treatment timing, these groups are informative about the dynamic effects of treatment for all groups.

Hence, we argue that θD is appealing when treatment effects evolve over time.

Calendar Time Effects In other cases, calendar time may matter. For example, graduating during

a recession may have a large effect on future earnings; see, e.g., Oreopoulos et al. (2012). The case

with calendar time effects is similar to the case with dynamic treatment effects. Our proposed summary

treatment effect parameter involves first computing an average treatment effect for all individuals that

are treated in period t, and then averaging across all periods. Consider the parameter

θ̃C(t) =

T∑
g=2

1{g ≤ t}ATT (g, t)P (G = g|g ≤ t).
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Here, θ̃C(t) can be interpreted as the average treatment effect in period t for all groups that are treated

by period t. With θ̃C(t) at hand, one can compute

θC =
1

T − 1

T∑
t=2

θ̃C(t),

which can be interpreted as the average treatment effect when calendar time matters. When calendar

time matters, the most weight is put on groups that are treated in the earliest periods. This is because

there are fewer groups available to estimate the average treatment effect in period t when t is small

relative to the number of groups available to estimate the average treatment effect in period t when t is

large.

Selective Treatment Timing and Dynamic Treatment Effects Finally, we consider the case

where the timing of treatment is selected and there are dynamic treatment effects. This might very well

be the most relevant case in studying the effect of increasing the minimum wage as (i) states are not

likely to raise their minimum wage during a recession and (ii) the effect of the minimum wage takes some

time to play out; see, e.g., Meer and West (2016).

The fundamental problem with using the dynamic treatment effects approach when there is selective

treatment timing is that the composition of the treated group changes when the length of exposure

to treatment (e) changes. Without selective treatment timing, this does not matter because when an

individual first becomes treated does not affect their outcomes. However, with selective treatment timing,

changing the composition of the treatment group can have a big effect (See Figure 1 for an example where

the dynamic treatment effect is declining with length of exposure to treatment for all groups but ignoring

selective treatment timing leads to the opposite (wrong) conclusion – that the effect of treatment is

increasing over time.).

To circumvent such an issue, we consider dynamic treatment effects only for e ≤ e′ and for groups with

at least e′ periods of post-treatment data available. This setup removes the effect of selective treatment

timing by keeping the same set of groups across all values of e. For example, one could consider the

dynamic effect of treatment over three periods by averaging ATT (g, t) for all the groups that have at

least three periods of post-treatment observations while not utilizing ATT (g, t) for groups that have less

than three periods of post-treatment observations. Note that there is some trade-off here. Setting e′

small results in many groups satisfying the requirement, but in only being able to study the effect of

length of exposure to treatment for relatively few periods. Setting e′ to be large decreases the number

of available groups but allows one to consider the effect of length of exposure to treatment for relatively

more periods.

Next, we describe how this proposed summary causal parameter is constructed. Let δgt(e, e
′) =

1{t− g + 1 = e}1{T − g + 1 ≥ e′}1{e ≤ e′}. Here, δgt(e, e
′) is equal to one in the period where group g

has been treated for exactly e periods, if group g has at least e′ post-treatment periods available, and if

the length of exposure e is less than the post-treatment periods requirement e′.

Then, the average treatment effect for groups that have been treated for e periods and have at least
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Figure 1: Example of Selective Treatment Timing and Dynamic Treatment Effects
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Notes: In this example, there are three groups: G2 (first treated in period 2), G3 (first treated in period
3), and G4 (first treated in period 4). Suppose that the last period available in the sample is period 4;
thus, the group-time average treatment effect is available in periods 2 through 4 – these are the dark lines
in the left panel of the figure. The light lines in the left panel represent group-time average treatment
effects that are not observed. Each group experiences a declining dynamic treatment effect, but there is
also selective treatment timing. Groups that are treated earlier experience larger effects of the treatment.
The right panel (dashed line) plots the dynamic treatment effect ignoring selective treatment timing and
allowing the composition of the treated group to change. In particular, this means that group G4 is only
included in the average for period 1, and group G3 only is included in the average for periods 1 and 2. In
this case, selective treatment timing leads to exactly the wrong interpretation of the dynamic treatment
effect – it appears as though the effect of the treatment is increasing. The solid line plots the dynamic
treatment effect as suggested in Equation (2.8) that adjusts for selective treatment timing and for e = 1, 2
and e′ = 2 and correctly determines the declining dynamic treatment effects.

e′ post-treatment periods of data available is given by

θ̃SD(e, e′) =
T∑
g=2

T∑
t=2

δgt(e, e
′)ATT (g, t)P (G = g|δgt(e, e′) = 1) (2.8)

which is defined for e ≤ e′. Effectively, we put zero weight on ATT (g, t) for groups that do not meet the

minimum required number of periods in order to prevent the composition of groups from changing. Once

θ̃SD(e, e′) is computed, one can further aggregate it to get

θSD(e′) =
1

T − e′
T −e′∑
e=1

θ̃SD(e, e′)

which should be interpreted as the average treatment effect for groups with at least e′ periods of post-

treatment data allowing for dynamic treatment effects and selective treatment timing. Such a causal

parameter has the strengths of both θS and θD in (2.6) and (2.7), respectively.

3 Estimation and Inference

In this section, we study estimation and inference procedures for estimators corresponding to the esti-

mands introduced in Section 2. Note that the nonparametric identification result in Theorem 1 suggests
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a simple two-step strategy to estimate ATT (g, t). In the first step, estimate the generalized propensity

score pg(x) = P (Gg = 1|X = x,Gg + C = 1) for each group g, and compute the fitted values for the

sample. In the second step, one plugs the fitted values into the sample analogue of ATT (g, t) in (2.2) to

obtain estimates of the group-time average treatment effect.

More concisely, we propose to estimate ATT (g, t) by

ÂTT (g, t) = En


 Gg
En [Gg]

−

p̂g (X)C

1− p̂g (X)

En
[
p̂g (X)C

1− p̂g (X)

]
 (Yt − Yg−1)

 ,
where p̂g (·) is an estimate of pg(·), and for a generic Z, En [Z] = n−1

∑n
i=1 Zi. As noted in Theorem 1,

ATT (g, t) is nonparametrically identified for 2 ≤ g ≤ t ≤ T .

With ÂTT (g, t) in hand, one can use the analogy principle and combine these to estimate the sum-

marized average treatment effect parameters discussed in Section 2.3.

In what follows, we consider the case in which one imposes a parametric restriction on pg and esti-

mates it by maximum likelihood. This is perhaps the most popular approach adopted by practitioners.

Nonetheless, under some additional regularity conditions, our results can be extended to allow nonpara-

metric estimators for the pg(·); see, e.g., Abadie (2005), Chen (2007), Chen et al. (2008), Donald and

Hsu (2014) and Sant’Anna (2016, 2017). Finally, we note that when propensity score misspecification is

a concern, one can use the data-driven specification tests proposed by Sant’Anna and Song (2019).

Assumption 5. For all g = 2, . . . , T , (i) there exists a known function Λ : R→ [0, 1] such that pg(X) =

P (Gg = 1|X,Gg + C = 1) = Λ(X ′π0g); (ii) π0g ∈ int(Π), where Π is a compact subset of Rk; (iii) the

support of X, X , is a subset of a compact set S, and E[XX ′|Gg + C = 1] is positive definite; (iv) let

U = {x′π : x ∈ X , π ∈ Π} ; ∀ u ∈ U , ∃ε > 0 such that Λ (u) ∈ [ε, 1− ε] , Λ (u) is strictly increasing and

twice continuously differentiable with first derivatives bounded away from zero and infinity, and bounded

second derivative; (vi)E
[
Y 2
t

]
<∞ for all t = 1, . . . , T .

Assumption 5 is standard in the literature (see, e.g., Section 9.2.2 in Amemiya (1985), Example 5.40

in van der Vaart (1998), or Assumption 4.2 in Abadie (2005)), and it allows for Logit and Probit models.

Under Assumption 5, π0g can be estimated by maximum likelihood:

π̂g = arg max
π

∑
i:Gig+Ci=1

Gig ln
(
Λ
(
X ′iπ

))
+ (1−Gig) ln

(
1− Λ

(
X ′iπ

))
.

Let W = (Y1, . . . , YT , X,G1, . . . , GT , C)′, p̂g (Xi) = Λ (X ′iπ̂g) , ṗg = ∂pg (u)/ ∂u, ṗg (X) = ṗg
(
X ′π0g

)
.

Under Assumption 5, π̂g is asymptotically linear, that is,

√
n
(
π̂g − π0g

)
=

1√
n

n∑
i=1

ξπg (Wi) + op (1) ,

where

ξπg (W) = E

[
(Gg + C) ṗg (X)2

pg (X) (1− pg (X))
XX ′

]−1
X

(Gg + C) (Gg − pg (X)) ṗg (X)

pg (X) (1− pg (X))
, (3.1)
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see Lemma A.2 in the Supplementary Appendix.

3.1 Asymptotic Theory for Group-Time Average Treatment Effects

Denote the normalized weights by

wGg =
Gg

E [Gg]
, wCg =

pg (X)C

1− pg (X)

/
E
[
pg (X)C

1− pg (X)

]
, (3.2)

and define

ψgt(Wi) = ψGgt(Wi)− ψCgt(Wi), (3.3)

where

ψGgt(W) = wGg
[
(Yt − Yg−1)− E

[
wGg (Yt − Yg−1)

]]
,

ψCgt(W) = wCg
[
(Yt − Yg−1)− E

[
wCg (Yt − Yg−1)

]]
+M ′

gt ξ
π
g (W) ,

and

Mgt =

E

[
X

(
C

1− pg (X)

)2

ṗg (X)
[
(Yit − Yig−1)− E

[
wCg (Yt − Yg−1)

]]]

E
[
pg (X)C

1− pg (X)

]
which is a k × 1 vector, with k the dimension of X, and ξπg (W) is as defined in (3.1).

Finally, let ATTg≤t and ÂTT g≤t denote the vector of ATT (g, t) and ÂTT (g, t), respectively, for all

g = 2, . . . , T and t = 2, . . . , T with g ≤ t. Analogously, let Ψg≤t denote the collection of ψgt across all

periods t and groups g such that g ≤ t.
The next theorem establishes the joint limiting distribution of ÂTT g≤t.

Theorem 2. Under Assumptions 1-5, for 2 ≤ g ≤ t ≤ T ,

√
n(ÂTT (g, t)−ATT (g, t)) =

1√
n

n∑
i=1

ψgt(Wi) + op(1).

Furthermore,
√
n(ÂTT g≤t −ATTg≤t)

d−→ N(0,Σ)

where Σ = E[Ψg≤t(W)Ψg≤t(W)′].

Theorem 2 provides the influence function for estimating the vector of group-time average treatment

effects ATTg≤t, as well as its limiting distribution. In order to conduct inference, one can show that the

sample analogue of Σ is a consistent estimator for Σ (see, e.g., Theorem 4.4 in Abadie (2005)) which

leads directly to standard errors and pointwise confidence intervals.

Instead of following this route, we propose to use a simple multiplier bootstrap procedure to conduct

asymptotically valid inference. Our proposed bootstrap leverages the asymptotic linear representations

derived in Theorem 2 and inherits important advantages. First, it is easy to implement and very fast to

compute. Each bootstrap iteration simply amounts to “perturbing” the influence function by a random

weight V , and it does not require re-estimating the propensity score in each bootstrap draw. Second,
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in each bootstrap iteration, there are always observations from each group. This can be a real problem

with the traditional empirical bootstrap where there may be no observations from a particular group in

some particular bootstrap iteration. Third, computation of simultaneously (in g and t) valid confidence

bands is relatively straightforward. This is particularly important, since researchers are likely to use

confidence bands to visualize estimation uncertainty about ATT (g, t) . Unlike pointwise confidence bands,

simultaneous confidences bands do not suffer from multiple-testing problems, and are guaranteed to cover

all ATT (g, t) with a probability at least 1− α. Finally, we note that our proposed bootstrap procedure

can be readily modified to account for clustering, see Remark 3 below.

To proceed, let Ψ̂g≤t(W) denote the sample-analogue of Ψg≤t(W), where population expectations are

replaced by their empirical analogue, and the true generalized propensity score, pg, and its derivatives,

ṗg, are replaced by their MLE estimates, p̂g and ̂̇pg, respectively. Let {Vi}ni=1 be a sequence of iid random

variables with zero mean, unit variance and bounded support, independent of the original sample {Wi}ni=1.

A popular example involves iid Bernoulli variates {Vi} with P (V = 1− κ) = κ/
√

5 and P (V = κ) =

1− κ/
√

5, where κ =
(√

5 + 1
)
/2, as suggested by Mammen (1993).

We define ÂTT
∗
g≤t , a bootstrap draw of ÂTT g≤t, via

ÂTT
∗
g≤t = ÂTT g≤t + En

[
V · Ψ̂g≤t(W)

]
. (3.4)

The next theorem establishes the asymptotic validity of the multiplier bootstrap procedure proposed

above.

Theorem 3. Under Assumptions 1-5,

√
n
(
ÂTT

∗
g≤t − ÂTT g≤t

)
d→
∗
N(0,Σ),

where Σ = E[Ψg≤t(W)Ψg≤t(W)′] as in Theorem 2, and
d→
∗

denotes weak convergence (convergence in

distribution) of the bootstrap law in probability, i.e., conditional on the original sample {Wi}ni=1. Addi-

tionally, for any continuous functional Γ(·)

Γ
(√

n
(
ÂTT

∗
g≤t − ÂTT g≤t

))
d→
∗

Γ (N(0,Σ)) .

We now describe a practical bootstrap algorithm to compute studentized confidence bands that cover

ATT (g, t) simultaneously over all g ≤ t with a prespecified probability 1 − α in large samples. This is

similar to the bootstrap procedure used in Kline and Santos (2012), Belloni et al. (2017) and Chernozhukov

et al. (2017) in different contexts.

Algorithm 1. 1) Draw a realization of {Vi}ni=1. 2) Compute ÂTT
∗
g≤t as in (3.4), denote its (g, t)-element

as ÂTT
∗

(g, t) , and form a bootstrap draw of its limiting distribution as R̂∗ (g, t) =
√
n
(
ÂTT

∗
(g, t)− ÂTT (g, t)

)
.

3) Repeat steps 1-2 B times. 4) Compute a bootstrap estimator of the main diagonal of Σ1/2 such as the

bootstrap interquartile range normalized by the interquartile range of the standard normal distribution,

Σ̂1/2 (g, t) = (q0.75 (g, t)− q0.25 (g, t)) / (z0.75 − z0.25) , where qp (g, t) is the pth sample quantile of the

R̂∗ (g, t) in the B draws, and zp is the pth quantile of the standard normal distribution. 5) For each

bootstrap draw, compute t-testg≤t = max(g,t)

∣∣∣R̂∗ (g, t)
∣∣∣ Σ̂ (g, t)−1/2 . 5) Construct ĉ1−α as the empirical
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(1− a)-quantile of the B bootstrap draws of t-testg≤t. 6) Construct the bootstrapped simultaneous confi-

dence band for ATT (g, t), g ≤ t, as Ĉ (g, t) = [ÂTT (g, t)± ĉ1−αΣ̂ (g, t)−1/2 /
√
n].

The next corollary to Theorem 3 states that the simultaneous confidence band for ATT (g, t) described

in Algorithm 1 has correct asymptotic coverage.

Corollary 1. Under the Assumptions of Theorem 3, for any 0 < α < 1, as n→∞,

P
(
ATT (g, t) ∈ Ĉ (g, t) : g ≤ t

)
→ 1− α,

where Ĉ (g, t) is as defined in Algorithm 1.

Remark 3. In DID applications, it is common to use “cluster-robust” inference procedures; see, e.g.,

Wooldridge (2003) and Bertrand et al. (2004). However, we note that the choice of whether to cluster or

not is usually not obvious, and depends on the kind of uncertainty one is trying to reflect. As suggested

in Abadie et al. (2017), if one takes the traditional view in the panel data case that the treatment and

control groups are fixed, and one obtains random samples from these subpopulations, then clustering is

not recommended. However, if one wants to allow for reassignment of the control and treatment groups

across samples, then one should cluster.11

In the case that one wishes to account for clustering, we note that this is can be done in a straightfor-

ward manner using a small modification of the multiplier bootstrap described above, provided that the

number of cluster is “large.” More precisely, instead of drawing observation-specific V ’s, one simply need

to draw cluster-specific V ’s; see, e.g., Sherman and Le Cessie (2007), Kline and Santos (2012), Cheng

et al. (2013), and MacKinnon and Webb (2016, 2018). If the number of clusters is “small,” however, the

application of the aforementioned bootstrap procedure is not warranted.12

Remark 4. In Algorithm 1 we have required an estimator for the main diagonal of Σ. However, we

note that if one takes Σ̂ (g, t) = 1 for all (g, t), the result in Corollary 1 continues to hold. However, the

resulting “constant width” simultaneous confidence band may be of larger length; see, e.g., Montiel Olea

and Plagborg-Møller (2018) and Freyberger and Rai (2018).

3.2 Asymptotic Theory for Summary Parameters

Let θ generically represent one of the parameters from Section 2.3, including the ones indexed by some

variable (for example, θ̃S(g) or θ̃SD(e, e′)). Notice that all of the parameters in Section 2.3 can be

expressed as weighted averages of ATT (g, t). Write this generically as

θ =

T∑
g=2

T∑
t=2

wgtATT (g, t)

11The formal results in Abadie et al. (2017) focus on the cross section case and rely on additional functional restrictions
that we do not impose in this paper. Therefore, the aforementioned “recommendation” should be interpreted with care.
Fully extending the results of Abadie et al. (2017) to the semiparametric panel data case is well beyond the scope of our
paper.

12In such cases, provided that one is comfortable imposing additional functional form assumptions, one could use alter-
native procedures such as Conley and Taber (2011) and Ferman and Pinto (2018). Extending these proposals to our setup
is beyond the scope of this paper though.
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where wgt are some potentially random weights. θ can be estimated by

θ̂ =
T∑
g=2

T∑
t=2

ŵgtÂTT (g, t),

where ŵgt are estimators for wgt such that for all g, t = 2, . . . , T ,

√
n (ŵgt − wgt) =

1√
n

n∑
i=1

ξwgt(Wi) + op (1) ,

with E
[
ξwgt(W)

]
= 0 and E

[
ξwgt(W)ξwgt(W)′

]
finite and positive definite. Estimators based on the sample

analogue of the weights discussed in Section 2.3 satisfy this condition.

Let

lw (Wi) =
T∑
g=2

T∑
t=2

wgt · ψgt(Wi) + ξwgt(Wi) ·ATT (g, t),

where ψgt(W) are as defined in (3.3).

The following result follows immediately from Theorem 2, and can be used to conduct asymptotically

valid inference for the summary causal parameters θ.

Corollary 2. Under Assumptions 1-5,

√
n(θ̂ − θ) =

1√
n

n∑
i=1

lw (Wi) + op(1)

d−→ N
(

0,E
[
lw (W)2

])
Corollary 2 implies that one can construct standard errors and confidence intervals for summary

treatment effect parameters based on a consistent estimator of E
[
lw (W)2

]
or by using a bootstrap

procedure like the one in Algorithm 1.

Remark 5. As discussed in Remark 3, the validity of the “cluster-robust” multiplier bootstrap procedure

relies on the number of clusters being “large.” In some applications such a condition may be more plausible

when analyzing the aggregated parameter θ than when analyzing the ATT (g, t) themselves.

4 Pre-testing the Conditional Parallel Trends Assumption

So far, we have discussed how one can nonparametrically identify and conduct asymptotically valid

inference about causal treatment effect parameters using conditional DID models with multiple periods

and variation in treatment timing. The credibility of our results crucially relies on the conditional parallel

trends assumption stated in Assumption 2. This assumption is fundamentally untestable. However, when

one imposes a stronger version of the conditional parallel trends assumption, that is, that Assumption 2

holds for all periods t, and not only for the periods g ≤ t, one can assess the reliability of the parallel

trends assumption. Relative to Assumption 2, the additional time periods are ones where g > t which

are pre-treatment time periods. In this section, we describe how one can construct such a test in our

context. Interestingly, our proposed testing procedure exploits more information than simply testing

20



whether ATT (g, t) are equal to zero for all 2 ≤ t < g, and therefore is able to detect a broader set of

violations of the stronger conditional parallel trends condition.

Before proceeding, we state the “augmented” conditional parallel trends assumption that allows us

to “pre-test” for the conditional parallel trends assumption stated in Assumption 2.

Assumption 6 (Augmented Conditional Parallel Trends). For all t = 2, . . . , T , g = 2, . . . , T ,

E[Yt(0)− Yt−1(0)|X,Gg = 1] = E[Yt(0)− Yt−1(0)|X,C = 1] a.s..

In order to understand how such an assumption leads to testable implications, note that, under

Assumption 6, for 2 ≤ t < g ≤ T , E[Yt(0)|X,Gg = 1] can be expressed as

E[Yt(0)|X,Gg = 1] = E[Yt(0)− Yt−1(0)|X,C = 1] + E[Yt−1(0)|X,Gg = 1]

= E[Yt − Yt−1|X,C = 1] + E[Yt−1|X,Gg = 1], (4.1)

where the second equality follows since for individuals in group g when g > t, Yt−1(0) is observed

since treatment has not occurred yet. Using exactly the same logic, Yt(0) is also the observed out-

come for individuals in group g when g > t. Thus, the construction of our test is based on comparing

E[Yt(0)|X,Gg = 1] in (4.1) to E[Yt|X,Gg = 1] for all periods such 2 ≤ t < g: under Assumption 6 these

conditional expectations should be equal.

Formally, the null hypothesis we seek to test is

H0 : E[Yt − Yt−1|X,Gg = 1]− E[Yt − Yt−1|X,C = 1] = 0 a.s. for all 2 ≤ t < g ≤ T . (4.2)

One option to assess H0 is to nonparametrically estimate each conditional expectation in (4.2), and

compare how close their difference is to zero. Such a procedure would deviate from the estimation

and inference procedures described in Section 3 and would involve choosing smoothing parameters such

as bandwidths, assuming additional smoothness conditions of these expectations, potentially ruling out

discrete covariates X, and would also suffer from the “curse of dimensionality” when the dimension of X

is moderate.

Alternatively, one can test an implication of H0 by using the results of Theorem 1, and compare how

close to zero are the estimates of ATT (g, t) for all 2 ≤ t < g ≤ T . Although intuitive, such a procedure

does not exploit all the restrictions imposed by H0. For instance, deviations from H0 in opposite directions

for different values of X could offset each other, implying that one may fail to reject the plausibility of

the conditional parallel trends assumption, even when H0 is violated in some directions. See Remark 6

at the end of this section for more details about this case.

We adopt an alternative approach that avoids all the aforementioned drawbacks: it is compatible with

the framework adopted in Section 3, it does not involve choosing bandwidths, does not impose additional

smoothness conditions, does not suffer from the “curse of dimensionality,” and exploits all the testable

restrictions implied by the augmented conditional parallel trends assumption. Our proposal builds on

the integrated conditional moments (ICM) approach commonly used in the goodness-of-fit literature; see,

e.g., Bierens (1982), Bierens and Ploberger (1997), Stute (1997), Stinchcombe and White (1998), and

Escanciano (2006a,b, 2008). To the best of our knowledge, we are the first to propose to use ICM to assess
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the plausibility of the parallel trends assumption, even when there is no treatment timing variation.

Let wGg and wCg be defined as in (3.2). After some algebra, under Assumptions 1-5, we can rewrite

H0 as

H0 : E
[(
wGg − wCg

)
(Yt − Yt−1) |X

]
= 0 a.s. for all 2 ≤ t < g ≤ T , (4.3)

see Lemma A.4 in the Appendix. In fact, by exploiting Lemma 1 in Escanciano (2006b), we can further

characterize (4.3) as

H0 : E
[(
wGg − wCg

)
γ(X,u) (Yt − Yt−1)

]
= 0 ∀u ∈ Ξ for all 2 ≤ t < g ≤ T , (4.4)

where Ξ is a properly chosen space, and the parametric family {γ(·, u) : u ∈ Ξ} is a family of weighting

functions such that the equivalence between (4.3) and (4.4) holds. The most popular weighting functions

include γ(X,u) = exp(iX ′u) as in Bierens (1982) and γ(X,u) = 1{X ≤ u} as in Stute (1997). In the

following, to ease the notation, we concentrate our attention on the indicator functions, γ(X,u) = 1{X ≤
u}, with Ξ = X , the support of the covariates X.

The advantage of the representation in (4.4) is that it resembles the expression for ATT (g, t) in (2.2),

and therefore we can use a similar estimation procedure that avoids the use of smoothing parameters.

To see this, let

J(u, g, t, pg) = E
[(
wGg − wCg

)
1(X ≤ u) (Yt − Yt−1)

]
,

and, for each u in the support of X, we can estimate J(u, g, t, pg) by

Ĵ(u, g, t, p̂g) = En


 Gg
En [Gg]

−

p̂g (X)C

1− p̂g (X)

En
[
p̂g (X)C

1− p̂g (X)

]
 1(X ≤ u) (Yt − Yt−1)

 ,
where p̂g is a first-step estimator of pg.

With Ĵ(u, g, t, p̂g) in hand, one should reject H0 when it is not “too close” to zero across different

values of u, g, and t, 2 ≤ t < g ≤ T . In order to evaluate the distance from Ĵ(u, g, t, p̂g) to zero, we

consider the Cramér-von Mises norm,

CvMn =

∫
X

∣∣∣√nĴg>t (u)
∣∣∣2
M
Fn,X (du)

where Jg>t (u) and Ĵg>t (u) denote the vector of J(u, g, t, pg) and Ĵ(u, g, t, p̂g), respectively, for all g =

2, . . . , T and t = 2, . . . , T , such that 2 ≤ t < g ≤ T , |A|M denotes the weighted seminorm
√
A′MA for

a positive semidefinite matrix M and a real vector A, and Fn,X is the empirical CDF of X. To simplify

exposition and leverage intuition, we fix M to be a (T − 1)2 × (T − 1)2 diagonal matrix such that its

(g, t)-th diagonal element is given by 1 {g > t}. As a result, we can write CvMn as

CvMn =

T∑
g=2

T∑
t=2

1 {g > t}
∫
X

∣∣∣√nĴ(u, g, t, p̂g)
∣∣∣2 Fn,X (du) . (4.5)

This choice of test statistic is similar to the one used by Escanciano (2008) in a different context. However,

one can choose some other M or other norms as well.
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The key step to derive the asymptotic properties of CvMn is to study the process
√
nĴ(u, g, t, p̂g).

Here, note that in contrast to ÂTT (g, t), Ĵ(u, g, t, pg) is infinite dimensional (since it involves a continuum

of u), and therefore we need to use uniform (instead of pointwise) arguments. Furthermore, we must

account for the uncertainty inherited by using the estimated generalized propensity scores p̂g instead of

the unknown true pg. To accomplish this, we build on the existing literature on empirical processes with

a first step estimation of the propensity score; see, e.g., Donald and Hsu (2014) and Sant’Anna (2017) for

applications in the causal inference context. As before, we focus on the case where the pg is estimated

parametrically.

Define

ψtestugt (Wi) = ψG,testugt (Wi)− ψC,testugt (Wi), (4.6)

where

ψG,testugt (W) = wGg
[
(Yt − Yt−1) 1(X ≤ u)− E

[
wGg 1(X ≤ u) (Yt − Yt−1)

]]
,

ψC,testugt (W) = wCg
[
(Yt − Yt−1) 1(X ≤ u)− E

[
wCg 1(X ≤ u) (Yt − Yt−1)

]]
+M test ′

ugt ξπg (W) ,

with ξπg (W) as defined in (3.1), and

M test
ugt =

E

[
X

(
C

1− pg (X)

)2

ṗg (X)
[
1(X ≤ u) (Yt − Yt−1)− E

[
wCg 1(X ≤ u) (Yt − Yt−1)

]]]

E
[
pg (X)C

1− pg (X)

] .

Let Ψtest
g>t (Wi;u) denote the vector of ψtestugt (Wi) across all periods t and groups g such that 2 ≤ t < g ≤ T .

The next theorem establishes the weak convergence of the process
√
nĴg>t (u) under H0, characterizes

the limiting null distribution of CvMn, and shows that our proposed test is consistent. From these results,

we can conclude that our proposed test controls size, and if Assumption 6 does not hold, our test procedure

rejects H0 with probability approaching one as n goes to infinity. Hence, our tests can indeed be used to

assess the reliability of our main identification assumption.

Theorem 4. Suppose Assumptions 1-5 hold. Then,

1. If Assumption 6 holds, i.e., under the null hypothesis (4.4), as n→∞,

√
nĴg>t (u)⇒ G(u) in l∞ (X ) ,

where ⇒ denote weak convergence in the sense of J. Hoffmann-Jφrgensen (see, e.g., Definition 1.3.3 in

van der Vaart and Wellner (1996)), X is the support of X, and G is a zero-mean Gaussian process with

covariance function

V (u1, u2) = E[Ψtest
g>t (W;u1) Ψtest

g>t (W;u2)
′].

In particular, as n→∞.

CvMn
d→
∫
X
|G(u)|2M FX (du)
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2. If Assumption 6 does not hold, i.e., under the negation of the null hypothesis (4.4)

lim
n→∞

P
(
CvMn > cCvMα

)
= 1,

where cCvMα = inf {c ∈ [0,∞) : limn→∞ P (CvMn > c) = α}.

From Theorem 4, we see that the asymptotic distribution of CvMn depends on the underlying data

generating process (DGP) and standardization is complicated. To overcome this problem, we propose

to compute critical values with the assistance of the multiplier bootstrap akin to the one discussed in

Theorem 3.

To proceed, let Ψ̂test
g>t(·;u) denote the sample-analogue of Ψtest

g>t(·;u), where population expectations are

replaced by their empirical analogues, and the true generalized propensity score, pg, and its derivatives,

ṗg, are replaced by their MLE estimates, p̂g and ̂̇pg, respectively. Let

Ĵ∗g>t (u) = En
[
V · Ψ̂test

g>t(W;u)
]
, (4.7)

where {Vi}ni=1 is defined as in Section 3. The next algorithm provides a step-by-step procedure to

approximate cα, the critical value of our test CvMn.

Algorithm 2. 1) Draw a realization of {Vi}ni=1. 2) For each u ∈ X , compute Ĵ∗g>t (u) as in (4.7). 3)

Compute CvM∗n =
∫
X

∣∣∣√nĴ∗g>t (u)
∣∣∣2
M
Fn,X (du). 4) Repeat steps 1-3 B times. 5) Construct ĉCvM1−α as the

empirical (1− a)-quantile of the B bootstrap draws of CvM∗n.

The next theorem establishes the asymptotic validity of the multiplier bootstrap described in Algo-

rithm 2.

Theorem 5. Suppose Assumptions 1-5 hold. Then, under the null hypothesis (4.4) and under fixed

alternatives (i.e., the negation of (4.4)),

√
nĴ∗g>t (u)⇒

∗
G(u) in l∞ (X ) ,

where G(u) in l∞ (X ) is the same Gaussian process of Theorem 4 and ⇒
∗

indicates weak convergence in

probability under the bootstrap law, see Giné and Zinn (1990). In particular,

CvM∗n
d→
∗

∫
X
|G(u)|2M FX (du) .

Remark 6. As described above, our proposed test CvMn fully exploits the null hypothesis (4.4), and can

detect a broad set of violations against the conditional parallel trends assumption. However, sometimes

researchers are also interested in visualizing deviations from the conditional parallel trends assumption,

but our proposed Cramér-von Mises test does not directly provide that. In such cases, we note that one

can test an implication of the augmented conditional parallel trends assumption, at the cost of losing

power against some directions. Namely, under the augmented conditional parallel trends assumptions,

ATT (g, t) should be equal to 0 in periods before individuals become treated, that is, when g > t.

This test is simple to implement in practice though it is distinct from the tests commonly employed in

DID with multiple periods and multiple groups (see, e.g., Autor et al. (2007) and Angrist and Pischke
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(2009)) which we briefly discuss in Appendix D in the Supplementary Appendix. In fact, as formally

shown by Abraham and Sun (2018), traditional regression-based tests for (unconditional) pre-trends may

be unreliable in settings with treatment effect heterogeneity. Our proposal does not suffer from this

drawback.

Let ATTg>t denote the “ATT” in periods before an individual in group g is treated (and also satisfying

2 ≤ g). Using exactly the same arguments as in Section 3, one can establish the limiting distribution of

an estimator of ATTg>t (we omit the details for brevity). And one can implement a test of the augmented

parallel trends assumption using a Wald-type test. We also found it helpful in the application to obtain

the joint limiting distribution of estimators of ATTg≤t and ATTg>t (once again using the same arguments

as in Section 3) and then reporting uniform confidence bands that cover both pre-tests and estimates

of ATT (g, t) across all g = 2, . . . , T and t = 2, . . . , T . From these uniform confidence bands, one can

immediately infer whether or not the implication of the augmented parallel trends assumption is violated.

5 The Effect of Minimum Wage Policy on Teen Employment

In this section, we illustrate the empirical relevance of our proposed methods by studying the effect of

the minimum wage on teen employment.

From 1999-2007, the federal minimum wage was flat at $5.15 per hour. In July 2007, the federal

minimum wage was raised from $5.15 to $5.85. We focus on county level teen employment in states

whose minimum wage was equal to the federal minimum wage at the beginning of the period. Some

of these states increased their minimum wage over this period – these become treated groups. Others

did not – these are the untreated group. This setup allows us to have more data than local case study

approaches. On the other hand, it also allows us to have cleaner identification (state-level minimum

wage policy changes) than in studies with more periods; the latter setup is more complicated than ours

particularly because of the variation in the federal minimum wage over time. It also allows us to check

for internal consistency of identifying assumptions – namely whether or not the identifying assumptions

hold in periods before particular states raised their minimum wages.

We use county-level data on teen employment and other county characteristics. County level teen

employment as well as minimum wage levels by state comes from the Quarterly Workforce Indicators

(QWI), as in Dube et al. (2016); see Dube et al. (2016) for a detailed discussion of this dataset. Other

county characteristics come from the 2000 County Data Book. These include county population in 2000,

the fraction of the population that is black, educational characteristics from 1990, median income in 1997,

and the fraction of the population below the poverty level in 1997.

For forty-one states, the federal minimum wage was binding in quarter 2 of 1999. We omit two states

that raised their minimum wage between then and the first quarter of 2004. We drop several other

states for lack of data. We also drop states in the Northern census region because all but two of them

had minimum wages higher than the federal minimum wage at the beginning of the period and census

region is an important control in the minimum wage literature. We use quarterly employment in the first

quarter of each year from 2001 to 2007 for employment among teenagers. Alternatively, we could use

more periods of data, but this would come at the cost of losing several states due to lack of data. Also,

we choose first quarter employment because it is further away from the federal minimum wage increase
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in Q3 of 2007. Our final sample includes county level teen employment for 29 states matched with county

characteristics.

Our strategy is to divide the observations based on the timing of when a state increased its minimum

wage above the federal minimum wage. States that did not raise their minimum wage during this period

form the untreated group. We also have groups of states that increased their minimum wage during 2004,

2006, and 2007.13 Before 2004, Illinois did not have a state minimum wage. In Q1 of 2004, Illinois set

a state minimum wage of $5.50 which was 35 cents higher than the federal minimum wage. In Q1 of

2005, Illinois increased its minimum wage to $6.50 where it stayed for the remainder of the period that

we consider. No other states changed their minimum wage policy by the first quarter of 2005. In the

second quarter of 2005, Florida and Wisconsin set a state minimum wage above the federal minimum

wage. In Q3 of 2005, Minnesota also set a state minimum wage. Florida and Wisconsin each gradually

increased their minimum wages over time, while Minnesota’s was flat over the rest of the period. These

three states constitute the treated group for 2006. West Virginia increased its minimum wage in Q3 of

2006; Michigan and Nevada increased their minimum wages in Q4 of 2006; Colorado, Maryland, Missouri,

Montana, North Carolina, and Ohio increased their state minimum wages in Q1 of 2007. These states

form the 2007 treated group. Among these there is some heterogeneity in the size of the minimum wage

increase. For example, North Carolina only increased its minimum wage to $6.15 though each state

increased its minimum wage to strictly more than the new federal minimum wage of $5.85 per hour in

Q3 of 2007. At the other extreme, Michigan increased its minimum wage to $6.95 and then to $7.15 by

Q2 of 2007.14

Summary statistics for county characteristics are provided in Table 1. As discussed above, treated

counties are much less likely to be in the South. They also have much lower population (on average

53,000 compared to 94,000 for treated counties). The proportion of black residents is much higher in

treated counties (on average, 10% compared to 6% for untreated counties). There are smaller differences

in the fraction with high school degrees and the poverty rate though the differences are both statistically

significant. Treated counties have a somewhat smaller fraction of high school graduates and a somewhat

higher poverty rate.

In the following we discuss different sets of results using different identification strategies. In partic-

ular, we consider the cases in which one would assume that the parallel trends assumption would hold

unconditionally, and when it holds only after controlling for observed characteristics X.

The first set of results comes from using the unconditional parallel trends assumption to estimate the

effect of raising the minimum wage on teen employment. The results for group-time average treatment

effects are reported in Figure 2 along with a uniform 95% confidence band. All inference procedures use

clustered bootstrapped standard errors at the county level, and account for the autocorrelation of the

data. The plot contains pre-treatment estimates that can be used to test the parallel trends assumption

as well as treatment effect estimates in post-treatment periods.

The group-time average treatment effect estimates provide support for the view that increases on

13To be precise, we use only employment data from the first quarter of each year. A state is considered to raise its
minimum wage in year y if it raised its minimum wage in Q2, Q3, or Q4 of year y − 1 or in Q1 of year y.

14See Appendix E in the Supplementary Appendix for additional details about the adoption time and the spatial distri-
bution of the state-level minimum wage policy changes in our sample.
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Table 1: Summary Statistics for Main Dataset

Treated States Untreated States Diff P-val on Difference

Midwest 0.59 0.34 0.259 0.00

South 0.27 0.59 -0.326 0.00

West 0.14 0.07 0.067 0.00

Black 0.06 0.10 -0.042 0.00

HS Graduates 0.59 0.55 0.327 0.00

Population (1000s) 94.32 53.43 40.896 0.00

Poverty Rate 0.13 0.16 -0.259 0.00

Median Income (1000s) 33.91 31.89 2.024 0.00

Notes: Summary statistics for counties located in states that raised their minimum wage between Q2 of 2003
and Q1 of 2007 (treated) and states whose minimum wage was effectively set at the federal minimum wage for
the entire period (untreated). The sample consists of 2284 counties. Sources: Quarterly Workforce Indicators
and 2000 County Data Book

the minimum wage lead to a reduction in teen employment. For 4 out of 7 group-time average treat-

ment effects, there is a clear statistically significant negative effect on employment. The other three

are marginally insignificant (and negative). The group-time average treatment effects range from 2.3%

lower teen employment to 13.6% lower teen employment. The simple average (weighted only by group

size) is 5.2% lower teen employment (see Table 2). A two-way fixed effects model with a post treatment

dummy variable also provides similar results, indicating 3.7% lower teen employment due to increasing

the minimum wage. In light of the literature on the minimum wage these results are not surprising as

they correspond to the types of regressions that tend to find that increasing the minimum wage decreases

employment; see the discussion in Dube et al. (2010).

As in Meer and West (2016), there also appears to be a dynamic effect of increasing the minimum wage.

For Illinois (the only state in the group that first raised its minimum wage in 2004), teen employment is

3.4% lower on average in 2004 than it would have been if the minimum wage had not been increased. In

2005, teen employment is estimated to be 7.1% lower; in 2006, 12.5% lower; and in 2007, 13.6% lower.

For states first treated in 2006, there is a small effect in 2006: 2.3% lower teen employment; however, it

is larger in 2007: 7.1% lower teen employment.

Table 2 reports aggregated treatment effect measures. Allowing for dynamic treatment effects is

perhaps the most useful for our study. These parameters paint largely the same picture as the group-

time average treatment effects. The effect of increasing the minimum wage on teen employment appears

to be negative and getting stronger the longer states are exposed to the higher minimum wage. In

particular, in the first year that a state increases its minimum wage, teen employment is estimated to

decrease by 2.7%, in the second year it is estimated to decrease by 7.1%, in the third year by 12.5%, and

in the fourth year by 13.6%. Notice that the last two dynamic treatment effect estimates are exactly the

same as the estimates coming from Illinois alone because Illinois is the only state that is treated for more

than two years. These results are robust to keeping the treated group constant to make sure that selective

treatment timing does not bias the results (see the row in Table 2 labeled ‘Selectivity and Dynamics’).

When we restrict the sample to only include groups with at least two years of exposure to treatment

27



Figure 2: Minimum Wage Results under Unconditional Parallel Trends
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Notes: The effect of the minimum wage on teen employment estimated under the unconditional parallel
trends assumption. Red lines give point estimates and uniform 95% confidence bands for pre-treatment
periods allowing for clustering at the county level. Under the null hypothesis of the unconditional parallel
trends assumption holding in all periods, these should be equal to 0. Blue lines provide point estimates
and uniform 95% confidence bands for the treatment effect of increasing the minimum wage allowing
for clustering at the county level. The top panel includes states that increased their minimum wage in
2004, the middle panel includes states that increased their minimum wage in 2006, and the bottom panel
includes states that increased their minimum wage in 2007. No states raised their minimum wages in
other years prior to 2007.
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(and only considering the first two periods of exposure which keeps the groups constant across length of

exposure), we estimate that the effect of minimum wage increases in the first period of exposure is 2.7%

lower teen employment and 7.1% lower teen employment in the second period.15

Table 2: Aggregate Treatment Effect Parameters under Unconditional Parallel Trends

Partially Aggregated Single Parameters
Standard DID

-0.037
(0.006)

Simple Weighted Average
-0.052
(0.006)

Selective Treatment Timing g=2004 g=2006 g=2007
-0.091 -0.047 -0.028 -0.039
(0.019) (0.008) (0.007) (0.007)

Dynamic Treatment Effects e=1 e=2 e=3 e=4
-0.027 -0.071 -0.125 -0.136 -0.090
(0.006) (0.009) (0.021) (0.023) (0.013)

Calendar Time Effects t=2004 t=2005 t=2006 t=2007
-0.034 -0.071 -0.055 -0.050 -0.052
(0.019) (0.02) (0.009) (0.006) (0.013)

Selectivity and Dynamics e=1 e=2
-0.027 -0.071 -0.049
(0.009) (0.009) (0.008)

Notes: The table reports aggregated treatment effect parameters under the unconditional parallel trends assumption
and with clustering at the county level. The row ‘Standard DID’ reports the coefficient on a post-treatment dummy
variable from a two-way fixed effects regression. The row ‘Single Weighted Average’ reports the weighted average (by
group size) of all available group-time average treatment effects as in Equation (2.5). The row ‘Selective Treatment
Timing’ allows for period that a county is first treated to affect its group-time average treatment effect; here, g indexes
the year that a county is first treated. The row ‘Dynamic Treatment Effects’ allows for the effect of the minimum wage
to depend on length of exposure; here, e indexes the length of exposure to the treatment. The row ‘Calendar Time
Effects’ allows the effect of the minimum wage to change across years; here, t indexes the year. The row ‘Selectivity
and Dynamics’ allows for the effect of the minimum wage to depend on length of exposure while making sure that
the composition of the treatment group does not change with e; here, e indexes the length of exposure and the
sample consists of counties that have at least two years of exposure to minimum wage increases. The column ‘Single
Parameters’ represents a further aggregation of each type of parameter, as discussed in the text.

Allowing for calendar time effects or selective treatment timing also is consistent with the idea that

states that increased their minimum wage experienced negative effects on teen employment relative to

what they would have experienced if they had not increased their minimum wage.

We consider testing the unconditional parallel trends assumption. First, since the confidence bands

in Figure 2 are uniform, one can immediately infer that the unconditional parallel trends assumption

should be rejected based on the implication of the unconditional parallel trends assumption that the

“ATT” in periods before treatment should be equal to 0. Likewise, our proposed test also rejects the

unconditional parallel trends assumption (p-value: 0.000). The estimated uniform confidence bands in

Figure 2 also provide some insight into how to think about our pre-tests. For the group first treated in

2004, the parallel trends assumption is not rejected in any period. For the group first treated in 2006,

15Notice that these estimates are exactly the same as in the first two periods for the dynamic treatment effect estimates
that do not condition on the group remaining constant. The reason that they are the same for the first period is coincidental;
the estimated effect of the minimum wage in 2007 for the group of states first treated in 2007 is 2.76% lower teen employment
which just happens to correspond to the estimated effect in the latter case. For the second period, they correspond by
construction.
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it is rejected in 2003; for the group first treated in 2007, it is rejected in 2006. Interestingly, with the

exception of 2006 for the group first treated in 2007, in each of the cases where it is rejected, the placebo

estimates are positive.

The second set of results comes from using the conditional parallel trends assumption; that is, we

assume only that counties with the same characteristics would follow the same trend in teen employment

in the absence of treatment. The county characteristics that we use are region of the country, county

population, county median income, the fraction of the population that is white, the fraction of the

population with a high school education, and the county’s poverty rate. Estimation requires a first step

estimation of the generalized propensity score. For each generalized propensity score, we estimate a logit

model that includes each county characteristic along with quadratic terms for population and median

income.16 In particular, the conditional results allow for differential trends in teen employment across

different regions as well as in the other county characteristics mentioned above. In what follows, all

inference procedures use clustered bootstrapped standard errors at the county level.

For comparison’s sake, we first estimate the coefficient on a post-treatment dummy variable in a model

with individual fixed effects and region-year fixed effects. This is very similar to one of the sorts of models

that Dube et al. (2010) finds to eliminate the correlation between the minimum wage and employment.

Like Dube et al. (2010), using this specification, we find that the estimated coefficient is small and not

statistically different from 0. However, one must have in mind that the approach we proposed in this

article is different from the two-way fixed effects regression. In particular, we explicitly identify group-

time average treatment effects for different groups and different times, allowing for arbitrary treatment

effect heterogeneity as long as the conditional parallel trends assumption is satisfied. Thus, our causal

parameters have a clear interpretation. As pointed out by Wooldridge (2005), Chernozhukov et al. (2013),

de Chaisemartin and D’Haultfœuille (2018), Borusyak and Jaravel (2017), Goodman-Bacon (2018) and

S loczyński (2018), the same may not be true for two-way fixed effect regressions in the presence of

treatment effect heterogeneity.17

The results using our approach are available in Figure 3 and Table 3. Interestingly, we find quite

different results using our approach than are suggested by the two-way fixed effect regression approach.

In particular, we continue to find evidence that increasing the minimum wage tended to reduce teen

employment. The estimated group-time average treatment effects range from 0.8% lower teen employment

(not statistically different from 0) in 2006 for the group of states first treated in 2006 to 7.3% lower teen

employment in 2007 for states first treated in 2004. Now only 2 of 7 group-time average treatment effects

are statistically significant. The pattern of dynamic treatment effects where the effect of minimum wage

increases tends to increase with length of exposure is the same as in the unconditional case. Similarly,

using our aggregated treatment effect parameters, allowing for dynamic treatment effects, we estimate

that increasing the minimum wage led on average to 4.8% lower teen employment. Allowing for dynamic

16Using the propensity score specification tests proposed by Sant’Anna and Song (2019), we fail to reject the null hy-
pothesis that these models are correctly specified at the usual significance levels.

17Our approach is also different from that of Dube et al. (2010) in several other ways that are worth mentioning. We focus
on teen employment; Dube et al. (2010) considers employment in the restaurant industry. Their most similar specification to
the one mentioned above includes census division-time fixed effects rather than region-time fixed effects though the results
are similar. Finally, our period of analysis is different from theirs; in particular, there are no federal minimum wage changes
over the periods we analyze.
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Figure 3: Minimum Wage Results under Conditional Parallel Trends
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Notes: The effect of the minimum wage on teen employment estimated under the conditional parallel
trends assumption. Red lines give point estimates and uniform 95% confidence bands for pre-treatment
periods allowing for clustering at the county level. Under the null hypothesis of the conditional parallel
trends assumption holding in all periods, these should be equal to 0. Blue lines provide point estimates
and uniform 95% confidence bands for the treatment effect of increasing the minimum wage allowing
for clustering at the county level. The top panel includes states that increased their minimum wage in
2004, the middle panel includes states that increased their minimum wage in 2006, and the bottom panel
includes states that increased their minimum wage in 2007. No states raised their minimum wages in
other years prior to 2007.

treatment effects and selective treatment timing, we estimate that increasing the minimum wage lowers

teen employment by 2.8%.
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Table 3: Aggregate Treatment Effect Parameters under Conditional Parallel Trends

Partially Aggregated Single Parameters
Standard DID

-0.008
(0.006)

Simple Weighted Average
-0.034
(0.008)

Selective Treatment Timing g=2004 g=2006 g=2007
-0.046 -0.027 -0.032 -0.032
(0.020) (0.008) (0.008) (0.007)

Dynamic Treatment Effects e=1 e=2 e=3 e=4
-0.026 -0.041 -0.051 -0.073 -0.048
(0.006) (0.010) (0.025) (0.024) (0.014)

Calendar Time Effects t=2004 t=2005 t=2006 t=2007
-0.032 -0.027 -0.021 -0.040 -0.030
(0.019) (0.024) (0.011) (0.007) (0.013)

Selectivity and Dynamics e=1 e=2
-0.016 -0.041 -0.028
(0.009) (0.010) (0.008)

Notes: The table reports aggregated treatment effect parameters under the conditional parallel assumption and with
clustering at the county level. The row ‘Standard DID’ reports the coefficient on a post-treatment dummy variable from
a fixed effects regression with individual fixed effects and region-year fixed effects. The row ‘Single Weighted Average’
reports the weighted average (by group size) of all available group-time average treatment effects as in Equation (2.5).
The row ‘Selective Treatment Timing’ allows for period that a county is first treated to affect its group-time average
treatment effect; here, g indexes the year that a county is first treated. The row ‘Dynamic Treatment Effects’ allows
for the effect of the minimum wage to depend on length of exposure; here, e indexes the length of exposure to the
treatment. The row ‘Calendar Time Effects’ allows the effect of the minimum wage to change across years; here, t
indexes the year. The row ‘Selectivity and Dynamics’ allows for the effect of the minimum wage to depend on length
of exposure while making sure that the composition of the treatment group does not change with e; here, e indexes
the length of exposure and the sample consists of counties that have at least two years of exposure to minimum wage
increases. The column ‘Single Parameters’ represents a further aggregation of each type of parameter, as discussed in
the text.

The evidence of the negative effect of minimum wage increases is somewhat mitigated by the fact that

we reject the conditional parallel trends assumption in pre-treatment periods. This is immediately evident

from Figure 3 because we can reject that the “ATT” is equal to zero in 2 out of 11 pre-treatment periods.

Using the consistent Cramér-von Mises tests discussed in Section 4, we also reject the conditional parallel

trends assumption (p-value: 0.000). In addition, we conducted our test of the augmented conditional

parallel trends assumption separately for states first treated in 2004 because the pre-treatment “ATT” is

not statistically significant in any period for this group. Here, we reject the augmented conditional parallel

trends assumption. This is an interesting result because the “visual” test often conducted in empirical

work would incorrectly lead the researcher to believe that the conditional parallel trends assumption is

valid for states first treated in 2004.

Overall, our results suggests that the minimum wage decreased teen employment in states that in-

creased their minimum wage relative to what it would have been had those states not increased their

minimum wage. Nonetheless, our proposed tests indicate that the parallel trends assumption should be

rejected in pre-treatment periods, implying that the DID research design may lead to non-reliable con-

clusions. Perhaps not surprisingly, given the amount of disagreement in the minimum wage literature,

our results should be interpreted with care and are ultimately inconclusive.
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6 Conclusion

This paper has considered Difference-in-Differences methods in the case where there are more than two

periods and individuals can become treated at different points in time – a commonly encountered setup in

empirical work in economics. In this setup, we have suggested computing group-time average treatment

effects, ATT (g, t), that are the average treatment effect in period t for the group of individuals first

treated in period g. Unlike the more common approach of running a regression with a post-treatment

dummy variable, ATT (g, t) corresponds to a well defined treatment effect parameter. And once ATT (g, t)

has been obtained for different values of g and t, they can be aggregated into a single parameter, though

the exact implementation depends on the particular case. We view such a flexibility as a plus of our

proposed methodology.

Given that our nonparametric identification results are constructive, we proposed to estimateATT (g, t)

using its sample analogue. We established consistency and asymptotic normality of the proposed esti-

mators, and proved the validity of a powerful, but easy to implement, multiplier bootstrap procedure

to construct simultaneous confidence bands for ATT (g, t). Importantly, we have also proposed a new

pre-test for the reliability of the conditional parallel trends assumption.

We applied our approach to study the effect of minimum wage increases on teen employment. We

found some evidence that increasing the minimum wage led to reductions in teen employment and found

strikingly different results from the more common approach of interpreting the coefficient on a post-

treatment dummy variable as the effect of the minimum wage on employment. However, using the pre-

tests developed in the current paper, we found evidence against both the unconditional and conditional

parallel trends assumption.

Our results can be extended to other situations of practical interest. For instance, one can combine

our proposal with Callaway and Li (2018) in order to consider group-time quantile treatment effects.

In light of our empirical application, we note that it is worth considering DID procedures that relax

the conditional parallel trends assumption. A possibility in this direction is to use conditional moment

inequalities. More precisely, one could assume that, for all t = 2, . . . , T , g = 2, . . . , T , such that g ≤ t,

E [Yt (0)− Yt−1 (0) |X,Gg = 1] ≥ E [Yt (0)− Yt−1 (0) |X,C = 1] a.s.. (6.1)

Note that (6.1) implies that

ATT (g, t) ≤ E [Yt (1)− Yt−1 (0) |X,Gg = 1]− E [Yt (0)− Yt−1 (0) |X,C = 1] a.s..

Thus, this one-sided relaxation of the conditional parallel trends assumption suggests that, under (6.1),

ÂTT (g, t) would be an estimator for the upper bound of the ATT (g, t). By combining our pre-test

procedure with Andrews and Shi (2013), one would then be able to assess the reliability of (6.1). These

extensions are beyond the scope of this article and are left for future research.
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S loczyński, T. (2018), “A general weighted average representation of the ordinary and two-stage least squares

estimands,” Working Paper.

36



Stinchcombe, M. B., and White, H. (1998), “Consistent specification testing with nuisance parameters present only

under the alternative,” Econometric theory, 14, 295–325.

Stute, W. (1997), “Nonparametric model checks for regression,” The Annals of Statistics, 25(2), 613–641.

van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge: Cambridge University Press.

van der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence and Empirical Processes, New York: Springer.

Wooldridge, J. M. (2003), “Cluster-sample methods in applied econometrics,” American Economic Review P&P,

93(2), 133–138.

Wooldridge, J. M. (2005), “Fixed-effects and related estimators for correlated random-coefficient and treatment-

effect panel data models,” Review of Economics and Statistics, 87(2), 385–390.

37


	Introduction
	Identification
	Framework
	Group-Time Average Treatment Effects
	Summarizing Group-time Average Treatment Effects  

	Estimation and Inference
	Asymptotic Theory for Group-Time Average Treatment Effects
	Asymptotic Theory for Summary Parameters

	Pre-testing the Conditional Parallel Trends Assumption
	The Effect of Minimum Wage Policy on Teen Employment
	Conclusion

