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1 Introduction

There are large differences in earnings among individuals possessing college degrees in different

majors. For example in the American Community Survey, STEM and business majors each earn

approximately 30% more than education majors, even after controlling for a rich set of demo-

graphic characteristics. However, there are two potential determinants of earnings differences

across majors that have not been fully exmined by the existing literature: post-college migration,

and post-college occupational choice.1

Indeed, there is an important interaction among earnings, locational choice, and occupa-

tional choice of college graduates that has yet to be fully understood. For example, education

majors have the lowest earnings on average, but also have the lowest propensity to live outside

their state of birth and the highest propensity to work in an occupation related to their major.

On the other hand, STEM majors have the highest earnings, the highest propensity to migrate,

and work in related occupations at a rate close to education majors. As a third example, there

also appears to be a local labor market component to college major earnings. Business and eco-

nomics majors have earnings and related occupation employment propensities that are close to

STEMmajors, but have migration behavior that more closely resembles education majors. Each

of these three cases motivates a deeper understanding of the role of post-college decisions on the

earnings of college majors.

The object of this paper is to uncover the extent to which selection into residence location

and occupation biases the observed earnings differences across college majors. The Roy (1951)

model is the canonical lens through which to understand selectivity bias in observed earnings,

and this paper adds to the vast literature that has used that model to empirically disentangle the

returns to education from selection.

As it relates to the college major question, selective migration and occupational choice could

play an important role in explaining wage differences because individuals who have moved loca-

tions or who are working in a particular occupation may have made the decision in response to

a more favorable wage draw. If this is the case on average, then one would expect the returns to

major to be upward biased. At the same time, individuals may have non-wage preferences asso-

ciated with a particular location or occupation. If these preferences outweigh the responsiveness

to wage draws, then the returns to major might be downward biased.

The exact magnitude and direction of selection bias is an empirical question. To account

for all possibilities, I estimate an extended Roy model that allows for non-pecuniary tastes in

both the location and occupation dimensions. This paper bridges together previous work that

has examined the role of selective migration on the college wage premium (Dahl, 2002; Bayer,

Khan, and Timmins, 2011) and the role of selective occupational choice on the returns to college

major (Kinsler and Pavan, 2015).

1Important exceptions to this include Altonji, Arcidiacono, and Maurel (2016a), Altonji, Kahn, and Speer
(2016b), Kinsler and Pavan (2015), and Winters (Forthcoming).
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Estimation of an extended Roy model is difficult when one allows for many locations and

non-pecuniary preferences. To estimate the model, I supplement methods pioneered by Lee

(1983) and Dahl (2002) with machine learning methods that are becoming more popular in

economics (Varian, 2014; Bajari et al., 2015). The Dahl approach shows that selection can be

corrected for by including a polynomial function of a small number of observed choice proba-

bilities.2 This polynomial serves as a multidimensional analog of the inverse Mill’s ratio in the

classic Heckman (1979) correction model. As a result, the researcher can obtain unbiased and

consistent estimates of the selection-corrected returns using OLS.

I estimate the probabilities that enter the selection correction term using nonparametric ma-

chine learning methods, which focus on balancing in- and out-of-sample fit and allow for model

selection by cross-validation. In general, machine learning algorithms are tailored towards pre-

dictive accuracy instead of causal inference and hence can predict more accurately than esti-

mators traditionally found in the economics literature. The specific prediction setting in this

paper is multiclass classification using decision trees. I classify individuals into occupations and

destination locations based on their observable characteristics, which include birth location,

completed college major, and demographic characteristics. The probability of belonging to a

particular class (i.e. the probability of choosing a particular location-occupation combination)

serves as the basis of the selection correction estimator.

I find that the returns to college major are downward biased by selective migration and occu-

pational choice, but that the magnitude of the bias is small—on the order of 15%. This suggests

that nonpecuniary preferences associated with location and occupation are important determi-

nants of earnings differences across majors. This finding is consistent with Kinsler and Pavan

(2015), who show that post-college occupational choice does not narrow the STEM earnings

gap.

The remainder of the paper is organized as follows: Section 2 details the Roy model which

serves as the empirical basis of understanding selection. Section3 outlines the statistical frame-

work that allows me to reduce the dimensionality of the choice set. Section 4 describes the data

construction and key variables used in the estimation, and Section 5 discusses the estimation of

the model, including the non-parametric machine learning decision tree algorithm. Section 6

discusses the main empirical findings, and Section 7 concludes.

2 A Roy Model of Migration, Occupation, and Earnings

In this section, I introduce an extended Roy (1951) model of college major, occupation, and

location choice, using the framework developed in Dahl (2002). The model is an extended

Roy model because it extends Roy’s original model in two ways: (i) both pecuniary and non-

pecuniary factors influence an individual’s decision; and (ii) there are more than two alternatives

2This is referred to as the index sufficiency assumption.
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in the choice set.3

An extended Roy model serves as an appropriate lens through which to view the location

decisions of college graduates because location has been shown to be an increasingly important

determinant of labor market outcomes (Moretti, 2012; Diamond, 2016). Furthermore, any

study of migration needs to incorporate utility maximization rather than income maximization

because non-pecuniary factors such as amenities and distance are important determinants of

migration decisions (Kennan and Walker, 2011; Ransom, 2016; Zabek, 2016).

2.1 Model

This section formalizes each component of the Roy model and how each component interacts

with each other. The primary components of the model are earnings (the outcome equation)

and preferences (the selection equation).

The framework of the model is as follows. A geographical area (e.g. the United States) is

divided into L mutually exclusive locations (e.g. states). The model has two periods. In the

first period, individuals are born and make human capital investment decisions. In the second

period, individuals choose where to live and in which occupation to work, and receive utility

from both earnings and non-pecuniary aspects of the chosen location and occupation.

The focus of this paper is on how selective migration and occupational choice in the United

States affects the measured returns to the specific human capital investment of college major.

A number of studies have established that earnings differentials exist across majors (e.g. Arcidi-

acono, 2004; Altonji et al., 2016b,a), and that certain majors have more distinct occupational

distributions than others (e.g. Ransom and Phipps, 2016). This paper serves to examine how

much of the cross-location earnings differentials reflect selection on location and occupation,

emphasizing the fact that some locations are more conducive to certain occupations.

2.1.1 Earnings

Log annual earnings for individual i residing in location ` and working in occupation k are

given by the following equation:

wi`k = γ0` + x iγ1` + siγ2`k + ηi`k, ` = 1, . . . ,L , k = 1, . . . ,K (2.1)

where x i is a vector of individual characteristics and si is a (S + 4)-dimensional vector of dummy

variables indicating i’s educational attainment. Specifically, the vector distinguishes among S

separate college majors if i holds at least a bachelor’s degree.4 Importantly, ηi`k will not gener-

3See Heckman and Taber (2008) for an overview of the original Roy (1951) model and its various extensions.
Heckman and Honoré (1990) discusses identification of the Roy model, including the assumptions on the distribu-
tion of earnings that are required to generate empirical content of the Roy model.

4The complete set of categories is: high school dropout, high school graduate (or GED recipient), some college,
college graduate (each of K major categories), and advanced degree.
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ally be mean-zero because of selection, which would bias OLS estimates of γ1` and γ2`k . The

parameter of interest in (2.1) is γ2`k , which measures the link between earnings, schooling in-

vestments, and location and occupational choice.

It is important to note that i’s location of birth does not enter (2.1). This is because I utilize

birth location as an exclusion restriction in order to separately identify non-pecuniary prefer-

ences from earnings.5 This assumption is discussed in more detail in the following footnote.6

2.1.2 Preferences

Individuals have preferences for both earnings and non-pecuniary utility:

Vi j`k = wi`k + ui j`k, ` = 1, . . . ,L , k = 1, . . . ,K (2.2)

where j indexes birth location, ` indexes current location, and k indexes occupation. ui j`k
encompasses all non-pecuniary utility components that could determine the utility of residing

in location ` and working in occupation k given origin j . These include location characteristics

such as climate, crime, commuting time, distance from j , geographical and cultural amenities,

and many others. Also included are occupational characteristics such as working conditions,

relevance to previous human capital investments, coincidence with personal preferences, and

flexibility of hours, among many others.

2.1.3 Residuals

To show concretely how preferences for and earnings in a location-occupation combination

might affect decisions, consider deviations from the mean of each component in (2.2):

wi`k − E [wi`k | x i, si] = ηi`k (2.3)

ui j`k − E
[
ui j`k | z i

]
= εi j`k (2.4)

5Other exclusion restrictions used in this analysis to distinguish preferences for locations and occupations from
earnings include spousal employment status (if married), ages of co-resident children, whether a family member is
present (if unmarried), and whether the residence is owned or rented.

6The validity of this assumption has been analyzed in previous work by Coate (2013). He notes that the effect
of birth location on earnings is ambiguous because of two competing forces: (i) individuals who prefer living close
to family may forgo higher earnings available elsewhere in order to stay home; and (ii) individuals staying home
may have higher earnings because family networks enable a better job match than could be had elsewhere. He finds
that the earnings effect is heterogeneous by education level, where the positive force is stronger for high-school
educated workers while the opposite is true for college-educated workers. Given the mixed empirical evidence and
the absence of other suitable exclusion restrictions, I maintain this assumption throughout the paper.
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then

Vi j`k = v j`k + ei j`k

= E [wi`k | x i, si] + E
[
ui j`k | z i

]
︸                                 ︷︷                                 ︸

v j`k

+ ηi`k + εi j`k
︸        ︷︷        ︸

ei j`k

(2.5)

where v j`k is referred to as either the subutility function (in the selection literature) or the

conditional value function (in the dynamic discrete choice literature).

2.1.4 Utility maximization

Individuals maximize utility such that

di j`k = 1
[
v j`k + ei j`k ≥ v jmn + ei jmn ∀ (m, n) ,

�
`, k

�]
(2.6)

where 1[A] is an indicator variable that takes a value of 1 when condition A is true and 0

otherwise. (2.6) emphasizes that utility depends not only on the location of residence, but also

on the deterministic and stochastic elements of utility in each location, including the location of

birth. Furthermore, earnings are observed only in the location that is selected:

2.1.5 Selection rule

The selection rule is given by

wi`k observed ⇐⇒ di j`k = 1 (2.7)

Specifically, earnings are only observed if all L selection equations in (2.6) are simultaneously

satisfied. Thus, individuals observed to reside in ` are not a random sample of the population;

hence

E [ηi`k |wi`k observed] = E
[
ηi`k | di j`k = 1

]
(2.8)

= E

[
ηi`k | ei jmn − ei j`k ≤ v j`k − v jmn, ∀ (m, n) ,

�
`, k

�]

, 0

Dahl refers to E
[
ηi`k | di j`k = 1

]
as the selectivity bias for i. If E

[
ηi`k | di j`k = 1

]
is correlated

with x i or si then OLS will returned biased estimates.

Equations (2.1) through (2.7) comprise an extended Roy model of earnings, migration, and

occupational choice.

Unfortunately, this extended Roy model is difficult to estimate without making additional

assumptions about how the subutility functions affect the selection term (i.e. the conditional
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expectation in (2.7)). There are two reasons for this: (i) the number of locations L needs to be

sufficiently large in migration models in order to accurately reflect the actual choice set faced by

individuals, thus effecting the curse of dimensionality; and (ii) individuals derive utility from

both earnings and non-pecuniary aspects of the location, meaning that the researcher is required

to account for individual preferences. The problem with the latter reason is that there are a large

number of variables that are important factors in the non-pecuniary dimension, but which are

unobserved or poorly measured.

In the next section, I explain how I avoid these issues by implementing existing estimation

methods (Lee, 1983; Dahl, 2002) which are designed to circumvent parametric estimation of the

subutility functions, and which work well on choice sets that are otherwise prohibitively large.

3 Reducing the Dimensionality of the Problem

Estimating the problem described in Section 2 is infeasible without making additional assump-

tions. The difficulty arises out of the curse of dimensionality due to the large set of locations

and occupations in which a person can choose to live and work. In this section, I provide in-

tuition and a brief formal derivation on how to feasibly estimate the aforementioned extended

Roy model. The key point is that I follow the strategy developed by Lee (1983) and refined by

Dahl (2002) to express the selection in the earnings equation as a function of a small number of

observed choice probabilities.

The intuition of this approach is as follows: examining equations (2.6) and (2.7) reveals that

the probability of observing an individual’s earnings in location ` and occupation k is related

to the probability thatVj`k is the maximum of all subutility functions. Thus, the joint distribu-

tion between the error term in the earnings equation (ηi`k ) and the differenced subutility error

terms (e j11 − e jmn, . . . , e jLK − e jmn ) can be reduced from L × K dimensions to two dimensions:

the first dimension is the earnings error and the second is the maximum order statistic of the

differenced subutility functions. The key assumption is that this bivariate distribution does not

depend on the subutility functions themselves, except through a small number of choice prob-

abilities.7 This allows the researcher to express the selection correction term in the earnings

equation (analogous to the inverse Mills ratio term in the canonical Heckman selection model)

as a function of a small number of observed choice probabilities. Without this assumption,

the researcher would be required to estimate an (LK − 1)-dimensional integral. This becomes

quickly infeasible as L grows large, as is the case in the current setting.

To aid the exposition, I now briefly formalize the above intuition. Readers interested in a

more detailed derivation should consult Dahl (2002) and Lee (1983).

7Dahl (2002) refers to this assumption as the “index sufficiency assumption,” which I discuss below in more
detail.
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First consider a reformulation of (2.6) and (2.7):

wi`k observed ⇐⇒ v j`k + ei j`k ≥ v jmn + ei jmn ∀ (m, n) ,
�
`, k

�

⇐⇒

(

v j11 − v j`k + ei j11 − ei j`k, . . . , v jLK − v j`k + ei jLK − ei j`k
)′

≤ 0 (3.1)

⇐⇒ max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

≤ 0

Now consider the joint cumulative distribution F j`k of the earnings equation error term in

(2.1) and the selection rule error terms in (2.6), respectively evaluated at a constant r and the

corresponding difference in subutility functions:

F j`k

(

r , v j11 − v j`k, . . . , v jLK − v j`k

)

= Pr
(

ηi`k < r , ei j11 − ei j`k < v j11 − v j`k,

. . . , ei jLK − ei j`k < v jLK − v j`k

)

= Pr

(

ηi`k < r ,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

≤ 0

)

(3.2)

= G j`k (r , 0)

Re-expressing this in terms of probability density functions, we have the following one-to-

one mapping between the LK -dimensional density f j`k and the two-dimensional density g j`k .

This mapping is made possible by implementing maximum order statistics (see Lee, 1983):

f j`k
(

ηi`k, ei j11 − ei j`k, . . . , ei jLK − ei j`k
)

(3.3)

= g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| v j11 − v j`k, . . . , v jLK − v j`k

)

where the expression for g j`k in (3.3) is written as being conditional on the differences in the

subutility functions in order to emphasize this dependence.

Rewriting the earnings equation in (2.1) to correct for selection would yield

wi`k = γ0` + x iγ1` + siγ2`k +
L∑

j=1

K∑

k=1

di j`kψ j`k

(

v j11 − v j`k, . . . , v jLK − v j`k

)

+ ηi`k, (3.4)

where di j`k is as defined in (2.6) and ψ j`k (·) = E [ηi`k | ·]. Dahl notes that (3.4) is called a

partially-linear, multiple-index model because it combines a linear model with a set of non-

linear control functions ψ j`k of the multiple indices v j11 − v j`k, . . . , v jLK − v j`k . Because ψ (·)

still depends on the subutility associated with each choice alternative, (3.4) suffers from the curse

of dimensionality.

In order to reduce the dimensionality of the selection correction term ψ (·) in (3.4), Dahl
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proposes an index sufficiency assumption as follows:

g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| v j11 − v j`k, . . . , v jLK − v j`k

)

(3.5)

= g j`k

(

ηi`k,max
m,n

(

v jmn − v j`k + ei jmn − ei j`k
)

| pi j`k, pi jmn, pi jm ′n′

)

where pi j`k is the probability that i moves from location j to location ` and works in occupa-

tion k, pi jmn is the corresponding probability of moving from j to m and working in n, and

pi jm ′n′ is the corresponding probability of moving from j to m′ and working in n′. Note that

pi j`k corresponds to the individual’s observed first-best choice. I discuss later how the other

probabilities are constructed.8 The implicit assumption in (3.5) is that the probabilities pi j`k ,

pi jmn, and pi jm ′n′ contain all of the information about how the index of subutility functions

influences the joint distribution of the earnings error term and the maximum of the subutility

errors.

Applying the assumption in (3.5) to the earnings equation gives the following corrected

earnings equations that account for selective migration and occupational choice, and that are

feasibly estimated:

wi`k = γ0` + x iγ1` + siγ2`k +
L∑

j=1

K∑

k=1

di j`kλ j`k

(

pi j`k, pi jmn, pi jm ′n′
)

+ ωi`k, (3.6)

The implication of the assumption in (3.5) is that E
[
ωi`k | x i, si, pi j`k, pi jmn, pi jm ′n′, di j`k = 1

]
=

0, meaning that the selection problem has been resolved. Note also that the index sufficiency

assumption reduces the dimensionality of the selection correction functions from LK , LK -

dimensional control functions to LK bivariate control functions.

It is important to recognize the restrictions that the index sufficiency assumption levies.

Dahl (2002) discusses at length the types of models that satisfy index sufficiency and concludes

that the assumption is generally innocuous. He also provides proofs that ψ j`k (·) is equal to

λ j`k

(

pi j`k, pi jmn, pi jm ′n′
)

. Additionally, he provides evidence from Monte Carlo simulations

that λ j`k

(

pi j`k, pi jmn, pi jm ′n′
)

appropriately corrects for selection. Such proofs are beyond the

scope of this article.

In Section 5, I discuss details of the estimation of equation (3.6) including how to estimate the

probabilities of interest, and how to estimate the unknown correction functions λ j`k , including

additional assumptions made to reduce the number of control functions entering (3.6).

8Dahl discusses which of many potential probabilities would best serve as additional probabilities in (3.5). He
settles on defining the set of probabilities as pi j` and pi j j (if j , ` ). Note that he does not model occupational
choice.
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4 Data and Descriptive Analysis

I now discuss in detail the process used to construct the data that my estimation procedure is

based on. I also present a descriptive analysis of the data trends which, when compared with the

model estimates, will be used to quantify the amount of selection in migration and occupation

decisions.

4.1 Data

I use data from the American Community Survey (ACS) as compiled by Ruggles et al. (2015)

over the years 2010-2014. The ACS is an annual stratified random sample of 1% of US house-

holds produced by the US Census Bureau. Sampled households respond to the survey either on

paper or via the internet, and non-responding households receive a follow-up telephone call or

visit by a Census employee.

The ACS collects detailed data for each adult household member on income, employment,

education, demographic characteristics, and health. It also collects information about the house-

hold, such as household and family structure and housing unit characteristics. In this analysis,

I focus on the following variables: location of birth, location of residence, residence ownership

status, demographic characteristics (e.g. age, gender, race, ethnicity, household composition),

education level (including college major), occupation, and earnings.9

The analysis sample consists of all native-born individuals between the ages of 22 and 54

with exactly a bachelor’s degree, and who have observed earnings within a reasonable range,

who have observed college major, who are not in school, do not live in group quarters, and who

do not have imputed values for any of the variables of interest. This corresponds to a 5% sample

of the relevant US population. The estimation sample of the data comprises 593,848 individuals.

Details on the number of observations deleted with each criterion are listed in Table A1.

4.1.1 Data Construction

This section details the steps followed in creating each of the key variables of interest.

Education level I define education level as taking one of M different values, where M is the

number of distinct college major categories. In theory, the ACS records hundreds of distinct

college major fields. However, in order to focus the analysis and to maintain statistical power, I

aggregate such that M = 5. The set of aggregated majors is: education, social sciences, business,

STEM, and all others. A detailed mapping of the 51 Department of Education major fields

to these five aggregated fields is provided in Table A2. Notably, the business field includes

economics majors and the STEM field includes pre-med majors.

9Information on college major began to be collected in 2009. I focus on the years 2010-2014 in order to
maximize sample size while avoiding the most severe part of the Great Recession.
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Occupation I define occupation as having two values: “related” or “unrelated” (i.e. K = 2).

I define an occupation as related to a major if it is reported to have a 2% or larger share of

all 3-digit occupation codes within a detailed definition of major (i.e. the 51 Department of

Education codes).10 The set of occupations that are related to an aggregated major category is

then the union of the set of related occupations for each of the detailed majors corresponding to

the aggregate.

A list of related occupations for each of the 5 college major categories is listed in Table A3.

Broadly speaking, the list of related occupations makes sense, and coincides with other papers

in the literature.11 Importantly, the definition of relatedness explained here does not preclude

the same occupation from being related to two different majors. This distinction allows for the

occupation relatedness definition to match what is observed in the data.

To further illustrate my definition of occupation relatedness, I discuss four different extremes

observed from Table A3. First, engineering occupations are not considered to be related to any

major except STEM. Second, miscellaneous administrators are considered to be related to every

major. Third, lower-level service jobs in food services, tourism, and administrative support tend

to only be related to other majors, reflecting the occupations that aspiring performing artists

tend to work in. Finally, accountants and auditors are related to business majors, other majors,

and STEMmajors. Based on these illustrative examples, my definition of occupation relatedness

seems to be reasonable.12

Race and ethnicity I construct a measure of race and ethnicity by first assigning anyone of

Hispanic origin to be Hispanic, and then assigning race based on whether the reported race is

white, black, or other. Mixed-race individuals are classified as other.

Earnings and employment Earnings are measured as the individual’s annual wage and salary

income, expressed in constant 2010 dollars. I drop any nominal earnings measurements greater

than $600,000 or less than $20,000. I classify a person as employed if they reported being em-

ployed at the time of the survey. I also create a variable indicating if the individual’s spouse is

employed.

10This is similar to the “Top 5” occupation distinction made by Altonji et al. (2016b), but is more flexible in
defining relatedness by taking into account the distribution of occupations within a given major.

11As an example, Kinsler and Pavan (2015) use a self-reported measure of occupational relatedness and find that
there is considerable overlap across majors among workers who report being in the same related occupation. The
difference between my definition of relatedness and the self-reported definition in Kinsler and Pavan is that my
approach restricts all individuals in an occupation-major category to be either related or unrelated. In contrast, the
self-reported definition of relatedness allows for both unrelated and related jobs to be observed in every occupation-
major category.

12Note that, because I focus on individuals with exactly a bachelor’s degree, advanced professional degree occu-
pations such as lawyers, doctors, and professors are excluded from this list.
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Work experience I define work experience as potential experience in the usual way: age minus

number of years of schooling minus 6.

Birth place I create separate variables indicating in which state the individual was born, and

in which state the individual’s spouse was born (if applicable).

Marital status and household composition Marital status is self-reported in the survey as

one of six categories. I aggregate these categories into three: married (whether or not residing

with spouse); divorced or separated; and single or widowed. Number of co-resident children

is given in the survey and I distill this information into two dummies: one or more children

under the age of 5; and one or more children under the age of 18. Family co-residence status is

distilled into one dummy variable indicating whether the individual is in the same household as

any relative. The relationship can be blood, or through marriage.

Dwelling characteristics Home ownership status is divided into “owned” or “rented.”

4.2 Descriptive Analysis

I now discuss some descriptive evidence from the data that motivate my treatment of location-

and occupation-specific college major premiums.

I first present in Table 1 overall summary statistics for the estimation sample. Business and

STEM majors have the highest earnings. Education and business majors are the least likely to

move away from their state of birth, while other majors and STEM majors are most likely to

move. Education majors are also the most likely to work in a related occupation, followed

by STEM and Business majors. From a demographic perspective, education, social science,

and other majors are disproportionately female, while social science majors disproportionately

represent minorities.

Taken together, the results of Table 1 paint a complex, multi-dimensional picture of the la-

bor market outcomes of different college majors. Education majors have the lowest earnings and

the lowest moving propensity, but the highest related occupational employment propensity. On

the other hand, Science majors second among the five groups in terms of earnings, migration

propensity, and related occupational employment propensity. These facts motivate an analy-

sis of location-specific outcomes and location-specific preferences that are allowed to differ by

college major.

To analyze location-specific outcomes, I estimate regressions of the form

yi` = γ0` + x iγ1` + siγ2` + ηi`, ` = 1, . . . ,L (4.1)

where yi` is a vector of outcomes and x i and si are defined as in (2.1). I then plot the

frequency distribution of the estimated major dummies γ̂2` , where education major is the refer-
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ence category. The other covariates in these regressions include a cubic in potential experience,

and the following sets of dummies: married, female, race categories, and specific metropolitan

areas.13

Figure 1 plots these distributions for each major and reveals several interesting findings. First,

education majors earn the lowest in all locations except a small handful. Second, social science

majors and other majors have similar mean earnings, but social science majors have a higher

variance in the cross-location earnings distribution. Similarly, business and STEM majors have

similar means, but business majors have a higher variance across locations. There is little overlap

between the high-earning business and STEM distributions and the lower-earning social science

and other distributions.

I next examine the frequency of migration by college major and destination location. To do

so, I estimate (4.1), but where now yi` a dummy indicating that the individual has moved away

from her state of birth.The frequency distributions of γ̂2` are displayed in Figure 2. The graphs

illustrate that education majors are the least mobile, with the exception of business majors in a

small number of locations. STEM and other majors are the most mobile. Overall there is more

overlap and less variance across majors in this figure than in Figure 1. This motivates allowing

for nonpecuniary factors to influence migration decisions.

The discussion up until now has abstracted from occupational choice. To see how occu-

pational relatedness is concentrated across space, I estimate (4.1)but where now yi` a dummy

indicating that the individual works in an occupation related to her major. Occupational relat-

edness is defined above in Section 4.1.1. The results in Figure 3 show that education majors are

far more likely to work in a related occupation than any other major in most locations. Business

and STEMmajors show the highest levels of occupational relatedness, even surpassing education

majors for about half of locations. Like the migration distributions in Figure 2, the large amount

of overlap indicates that nonpecuniary preferences might be a large determinant of occupational

choice. This evidence supports my decision to model location-specific occupational choice.

I now investigate the effect of working in a related occupation on earnings by estimating a

descriptive model similar to (4.1), but allowing for location- and occupational-specific parame-

ters.

yi`k = γ0` + x iγ1` + siγ2`k + ηi`k, ` = 1, . . . ,L , k = 0, 1 (4.2)

where the primary difference relative to (4.1) is that the major dummies γ2` are fully interacted

with a dummy for occupational relatedness.

I plot in Figure 4 the frequency distributions of the differenced location-specific estimates

γ̂2`1 − γ̂2`0, which correspond to the within-location premium associated with working in a

related occupation. Interestingly, these distributions mimic the raw major premium distribu-

13For example, if the location is California, the metropolitan area dummies will indicate residence in Los Ange-
les, San Francisco, San Diego, San Jose, Riverside, etc.
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tions listed in Figure 1: STEM and business majors earn the most from working in a related

occupation, followed by other majors, then social science majors, with education majors being

the lowest. Interestingly, the premium for working in an occupation related to a STEM major

exhibits a slightly bimodal shape across locations, with modes at approximately 12% and 22%.

Another interesting finding from Figure 4 is that education majors face a negative occupational

relatedness premium in roughly half of all locations. This again highlights the role of nonpecu-

niary preferences in the occupation as well as the location decision. For instance, if an education

major has a strong preference for working as a teacher, why would she not move to the location

that has the highest premium to such a decision?

Finally, I examine the extent to which the distributions discussed above are simply due to

persistent characteristics about the chosen location rather than the chosen college major. For ex-

ample, is it the case that the location rank of earnings is the same for each major? Does location

explain occupational relatedness more than major? To analyze this dimension, I compute the

correlation matrix across majors for the four outcomes depicted in Figures 1 through 4. Table

3 presents these correlations. The most striking finding is in panel (c) which shows that occu-

pational relatedness appears to be a local characteristic much more than a major characteristic.

Earnings appear to be more locally determined than not. There is weaker evidence that certain

locations are “in-migrant” locations.14 Finally, the premium to working in a related occupation

seems to be completely independent of location and thus determined by major. This last piece

of evidence motivates modeling the link between migration and occupational choice.

I emphasize that the results of Figures 1 through 4 are contaminated with selection bias. In

order to better understand how much of the observed major-specific earnings premiums are due

to selectivity in location and occupation decisions, it is necessary to use the framework described

in Sections 2 and 3.

4.3 Transition Matrix

The results of the previous section indicate that there is substantial heterogeneity in the ob-

served earnings levels, occupational propensities, and migration behavior of different majors in

different states. I now examine the heterogeneity in migration and occupational choice across

majors originating and residing in different pairs of states.

Figure 5 displays the migration transition matrix by major for the five largest states. Rows

indicate birth location, while columns indicate residence location. The bottom section of each

bar corresponds to the related occupation, while the top section corresponds to the unrelated.

Upon examining Figure 5, a number of motivating facts stand out. First, Texas and Califor-

nia appear to be popular destinations for all majors. At the same time, Florida in particular is a

popular destination for New Yorkers, and more so for education majors. Interestingly, Floridian

14This finding is related to Zabek (2016) who shows that growing locations tend to have a higher fraction of
in-migrants, while declining locations tend to have a higher fraction of stayers.
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and Texan education majors work in related occupations at a much higher rate than their New

York or California counterparts. This is one explanation for why Florida is such an attractive

destination for New York education majors.

These results and others in the figure provide additional evidence of the presence of nonpe-

cuniary factors on the decision to migration and choose an occupation.

5 Estimation

In this section, I discuss how to estimate the final equation (3.6) of the model discussed in

Sections 2 and 3. The estimation proceeds in two stages. First, I estimate the migration proba-

bilities
(

pi j`k, pi jmn, pi jm ′n′
)

. Second, I estimate the parameters of equation (3.6), including the

unknown correction functions λ j`k .

5.1 Migration probabilities

There are a variety of ways in which one can estimate the migration probabilities. Some alter-

natives include the conditional logit model, the conditional probit model, or non-parametric

estimation techniques.

The conditional logit model is by far the most popular in estimating migration probabilities

(a setting where the dimension of the choice set is large) due to its simple closed-form expression

for the underlying choice probabilities. The primary drawback of this model is that it suffers

from the independence of irrelevant alternatives property.15

The conditional probit model (Hausman and Wise, 1978) allows for arbitrary correlations

among the choice alternatives, but is unsuitable for settings such as this where the choice set is

large. This is because the conditional probit model requires estimation of a (J − 1)-dimensional

integral, where J is the number of alternatives. Using this model would would eliminate the

gains afforded by the index sufficiency assumption discussed in Section 3. The conditional probit

model also requires the researcher to specify the covariance structure of the alternatives.

Non-parametric estimation has two advantages. First, it does not require the researcher to

model location-specific characteristics, of which there are an inordinate number and many of

which are poorly measured. Second, it does not require the researcher to specify the dependence

structure of the choice alternatives as would be required with the conditional probit model.16

The primary drawback to non-parametric estimation is deciding how finely and in which

ways to divide the state space. Probabilities that are estimated from cells that are too small will

15For tractability reasons, dynamic migration models such as Kennan and Walker (2011) and Ransom (2016)
assume that migration probabilities take a conditional logit form. Davies et al. (2001) assume this form in a static
setting. Monras (2015) argues that a nested logit is more appropriate for characterizing migration decisions.

16Hausman and Wise (1978) note that the conditional probit model produces inconsistent estimates of the
choice probabilities if dependence among the alternatives is incorrectly assumed. Likewise, the conditional logit
model produces inconsistent estimates if there is in fact any dependence among the alternatives.
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introduce a large amount of error into the estimation. On the other hand, failure to create

enough cells will result in probabilities that do not accurately represent the data.

5.1.1 Non-parametric estimation using machine learning

I estimate the location and occupational choice probabilities non-parametrically using a method

from the machine learning literature called conditional inference recursive partitioning, devel-

oped by Hothorn et al. (2006) and implemented in the R programming language by Hothorn

and Zeileis (2015).

The algorithm is designed to overcome the drawbacks associated with non-parametric esti-

mation. The main advantage is that it prevents the researcher from being required to make ad

hoc assumptions about how the state space should be divided when creating probability bins.

It also has the advantage of automatically merging together sparse bins such that the algorithm

does not return any empty bins or any bins of excessively small size. I detail the conditional

inference tree algorithm in the following subsection.

Generally speaking, machine learning methods combine estimation with model selection

to enhance out-of-sample prediction. In the current setting, the conditional inference recursive

partitioning algorithm selects which variables and which categories of the variables matter most

in predicting migration and occupations. For other settings where the set of covariates is larger

than the sample size, model selection methods automatically choose which covariates should be

included such that standard rank and order conditions for identification are satisfied.17 Varian

(2014) provides an overview of basic machine learning algorithms and suggests ways in which

they can be used to improve existing research methods in economics. Other examples of ma-

chine learning applications in economics include Athey and Imbens (2015), Gentzkow et al.

(2015), and Belloni et al. (2011).18

5.1.2 Conditional inference recursive partitioning algorithm

The conditional inference recursive partitioning algorithm is a classification tree algorithm de-

signed to non-parametrically predict a dependent variable from a set of covariates. The algo-

rithm takes as inputs the dependent variable and the covariates, and returns as outputs combina-

tions of the covariates that form clusters (nodes of the tree) or cells. Using an internal stopping

criterion based on hypothesis testing, it optimally trades off bias (creating too few clusters and,

as a result, poorly fitting the estimation data) and variance (creating too many clusters and, as a

17This setting applies to Bajari et al. (2015) who show how a variety of machine learning methods can be used
in demand estimation to evaluate advertising effectiveness.

18Athey and Imbens (2015) show how machine learning methods can be used to estimate heterogeneous treat-
ment effects. Gentzkow et al. (2015) illustrate how to use model selection to estimate polarization in high-
dimensional textual data. Belloni et al. (2011) develop methods for using model selection in instrumental variables
models when the number of instruments is larger than the sample size.
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result, poorly fitting out of sample) such that out-of-sample prediction is maximized.19 The algo-

rithm works for both continuous and categorical variables on both sides of the equation.20 The

current application contains a categorical dependent variable and covariates that are primarily

categorical, but some of which are continuous.

Below, I detail the algorithm, which recursively iterates on the following two steps:

1. Selection. The algorithm begins by testing whether the dependent variable is independent

of the covariates (i.e. testing whether the distribution of the dependent variable Y is dif-

ferent from the conditional distributionY |X j for all covariates). If any member of this set

of conditional distributions is significantly different from the unconditional distribution,

then the algorithm selects the covariate with the strongest association with Y as measured

by a p-value.

2. Splitting. Once a covariate has been selected, the algorithm optimally splits it. This is

done in a similar fashion as the selection, only the algorithm at this phase selects among

different subsets of the specified covariate. The optimal split is the one that creates the

most distinct pair of distributions of the dependent variable, as measured by a p-value.

There are other criteria involved in determining if a candidate split is carried out; namely

how large the resultant cluster will be. Clusters that are too small will predict poorly

out-of-sample and are skipped accordingly.

The algorithm then iterates on these two steps until at least one of the following criteria is met:21

• No additional covariates can be selected because they fail to reject the null hypothesis of

independence.

• Any further splits of the already-selected covariates would fail to reject the null hypothesis

of equality in the dependent variable across the split

• Any further splits would result in clusters with too few observations (i.e. unsuitable for

out-of-sample prediction)

• The candidate cluster already perfectly predicts the dependent variable

19Hothorn et al. (2006) emphasize that the internal stopping criterion acts similarly to pruning or cross-
validation methods that are commonly used in other machine learning settings to penalize complexity.

20In the case of a continuous dependent variable, the algorithm minimizes the sum of squared errors within
each cluster to find the optimal cluster division. In the case of a continuous covariate, the algorithm creates bins by
choosing cut points. Additionally, the algorithm can also be used in survival analysis.

21There are a few tuning parameters of the algorithm that the researcher can adjust. One is the p-value that
determines splitting, another is the smallest number of observations allowed in a cluster, and a third is the smallest
number of observations allowed in a candidate node split (i.e. the minimum number of observations required in
each resulting subset of the split). I choose 5% for the p-value parameter, 50 observations for the minimum cluster
size, and 50 observations for the minimum candidate node split size. These were chosen via cross-validation, but in
practice the predictive accuracy of the tree algorithm was not sensitive to these tuning parameters.
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• No further splits are possible because the candidate cluster is composed of a single combi-

nation of all independent variables

As an example of what the output of this algorithm looks like, I include Figure 6, which

depicts a simple example of the output from a fictitious migration dataset. Individuals are char-

acterized only by their level of work experience and can choose to live in 3 locations: New

York, Texas, or elsewhere. The algorithm shows that experience is the strongest predictor of

location choice, and that the most distinct difference occurs when splitting at three, followed

by an additional split that occurs at eight. The algorithm shows that New York is entirely com-

posed of individuals with less than four years of work experience, that Texas is composed nearly

perfectly of individuals with experience levels between four and eight years, and that workers

with nine or more years of experience almost certainly live elsewhere. In the actual estimation,

each node will be composed of 102 categories (rather than three), and each tree will typically

have many more than three terminal nodes.

5.1.3 Implementation of the non-parametric estimation algorithm

I now discuss in detail the estimation of the migration probabilities and which variables are

used to predict migration and occupational choice. Following Dahl (2002), I use cell decision

probabilities, where the cells are computed from the recursive partitioning algorithm detailed

above. The implicit assumption with this approach is that observably similar people face similar

unobserved earnings and preference shocks. Importantly, this implies that the researcher need

not model the characteristics of the alternatives, only the characteristics of the individuals.

Formally, the cell migration probability for all individuals, all origin locations j , and all

destination locations ` and occupations k is

pi j`k = Pr
(

di j`k = 1 | v j1k − v j`k, . . . , v jLK − v j`k

)

(5.1)

= Pr
(

di j`k = 1 | cell
)

The conditional inference tree algorithm assigns cells based on the following characteristics:

whether the individual was born in any of the following locations: the state of residence, an

adjacent state, within the same Census division, or the same Census region; college major; age;

race; gender; marital status; whether the current residence is owned or rented; whether or not

the individual is living with a family member or relative; whether or not the individual’s spouse

is working (if married); the presence of children ages 0-4 and ages 5-18; and the popularity of

related occupations in the state of birth for the given demographic cell (the exclusion restriction

governing the occupational relatedness choice). I estimate the cell probabilities using the so-

called “one-vs-all” classification method: for each residence location and occupation, I compute

the probability of belonging to the choice alternative under consideration.
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5.1.4 Tree algorithm performance relative to more commonly used methods

A valid question regarding the conditional inference tree algorithm is how it compares with a

non-parametric bin estimator or to a simple logit estimator. To assess the performance of each

of the estimators, I estimate the first-best choice probabilities for each algorithm using the 2010-

2014 ACS sample discussed previously. I then test the out-of-sample predictive performance of

each algorithm using a holdout sample of the 2010-2014 ACS. The results from this exercise are

detailed in Table A4. Each of the three classification algorithms performs similarly in terms of

raw predictive accuracy as well as penalized predictive accuracy. However, the tree algorithm

provides a much greater level of variation for the related occupation exclusion restriction, which

I detail later. This highlights the usefulness of the tree algorithm in allowing different divisions

of the state space for different observations. The definitions of each of these accuracy metrics

are detailed in Table A4. It is interesting to note that the multinomial logit slightly outper-

forms both of the nonparametric methods. While theoretically unappealing because of the IIA

property, the logit performs well from a pure predictive standpoint. This suggests that other

logit-based machine learning algorithms such as neural networks could possess even higher levels

of predictive accuracy of migration.

5.2 Correction functions

I now describe how to feasibly estimate the unknown selection correction functions in (3.6).

As written, this equation contains LK bivariate correction functions for each location ` and

occupation k. To further simplify this, I follow Dahl and make the assumption that the selection

correction functions are the same for movers, regardless of the location of origin. In formal

terms, this assumption imposes that the correction term in (3.6) be rewritten as

λ j`k

(

pi j`k, pi jmn, pi jm ′n′
)

= λ`k

(

pi j`k, pi jmn, pi jm ′n′
)

, j , `, k ∈ {0, 1} (5.2)

λ j`k

(

pi j`k, pi jmn

)

= λ jk

(

pi j jk, pi jmn

)

, j = `, k ∈ {0, 1}

A simplifying assumption akin to the one made in (5.2) is required in order to maintain

identification power. If migration were a more common occurrence in the data, so that the un-

derlying cells were more densely populated, it would be possible to estimate separate correction

functions for different origin locations.

I now discuss my choice for the probabilities pi j`k, pi jmn, pi jm ′n′. I assign as pi j`k the first-

best choice probability, which is readily observable in the data. For pi jmn, I use the probability

that individual i would stay in the first-best location, but work in the non-chosen occupation.

This is simply pi j`,k ′, where k′ denotes the non-chosen occupation. Finally, for pi jm ′n′, I use the

probability that individual i would stay in her birth location, summing over both occupation

probabilities within that location. This is analogous to the retention probability used in Dahl

(2002).
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To estimate the unknown correction functions λ`k , I use a flexible polynomial function of

the probabilities as discussed in Dahl (2002). For each birth location, there are 28 additional

variables in the regression. Specifically, I interact the following polynomial of probabilities with

each of the four dummies for the observed migration-occupation category (stayer or mover

crossed with related or unrelated): pi j` and its square, pi jmn and its square; pi jm ′n′ and its square;

and the three pairwise linear interactions between pi j`k , pi jmn, and pi jm ′n′. The resulting equa-

tion is of the same form as (3.6), where L = 2 (i.e. stay or move) and K = 2, and where λ`k is

approximated by the polynomial function just described.22

5.2.1 Exclusion restrictions

In order to distinguish between preferences and earnings (and thus identify the selection correc-

tion functions), there need to be covariates which affect the decision probabilities, but which do

not appear in the earnings equation. These covariates are as follows: state of birth, co-residence

with a family member, spouse’s work status, spouse’s birth place, presence of children aged 0-4

or 5-18, and home ownership status. Following Dahl, I allow birth state and demographic vari-

ables to affect migration. For occupational choice, I calculate the the share of workers in the

individual’s college major and birth state who are working in a related occupation, adjusted for

demographic characteristics. This exclusion restriction is similar in spirit to that implemented

by Kinsler and Pavan (2015). In this sense, the labor market characteristics of the individual’s

birth location can be thought of as a pre-market factor that contributes to her occupational

choice (Speer, 2016).

5.3 Earnings equation

The parameters of the earnings equation parameters in (2.1) are estimated by OLS after making

use of the index sufficiency assumption in (3.5) and the dimensionality reduction assumptions

discussed in the previous section.

The standard errors of the parameters associated with the selection functions must be ad-

justed to account for two elements of the estimation: (i) the selection probabilities are not i.i.d.

across individuals because of the cell assumption in (5.1); and (ii) the estimation of the cell

probabilities induces estimation error into the coefficients because the true probabilities are not

observed. Clustering the standard errors by decision cell (rather than by individual) resolves

(i). To resolve (ii), an additional formula that resembles the outer product of the gradients is

required, inserted into the standard clustering formula:

V = (X ′X )
−1



∑

c

u′cuc

(X ′X )

−1 (5.3)

22Note that, for stayers, the retention probability drops out of the polynomial and the selection terms have only
five polynomial components instead of nine.
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where X is the matrix of earnings equation covariates (including the correction function terms)

and uc is a term that accounts for the fact that the probabilities are estimated at the cell level

instead of the individual level:

uc =
∑

i∈c

ei x i

where ei is the OLS residual for individual i, and x i is the covariate vector for individual i,

including the 28 selection probability terms.

6 Empirical Results

In this section, I discuss the results of the estimation procedure described in the previous section.

I first present results on the estimation of the decision probabilities. I follow this by discussing

the estimates of the returns to majors and occupational relatedness.

6.1 Choice probabilities

The estimated choice probabilities are reported by mover status and chosen occupation in Ta-

bles 4 and 5. Each table lists components of the decision probability distribution conditional

on the listed education level and the observed migration path (i.e. stay or move) and occupa-

tional choice (i.e. related or not). The tables also report the number of individuals in each

migration-occupation-education classification and the number of different cells contributing to

each classification.

An important aspect of Tables 4 and 5 is the relationship between variation in the deci-

sion probabilities and identification of the returns to education and occupational relatedness.

Specifically, separating the effect of earnings from preferences requires that the decision proba-

bilities across majors within a migration-occupation bin be overlapping. Intuitively, the returns

to major can be calculated by comparing individuals in two different majors who have the same

selection bias. A similar argument can be used to identify the returns to occupation relatedness

within an education category. In this case, identification requires some amount of overlapping

between the probability distribution in panels (a) and (b) of each of the tables. Examination of,

e.g., panel (a) of Table 3 with panel (a) of Table 4 reveals that there is plenty of overlap in the

probability distributions for each major. The same holds true for, e.g., panel (a) of Table 3 and

panel (b) of Table 3 which is used to identify the returns to working in a related occupation.

6.2 Earnings

I now discuss and compare the estimates of the earnings equation with and without the selec-

tion correction. These results represent the returns to college majors and working in a related
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occupation, which may be heterogeneous across majors and across space.

6.2.1 Estimates for specific states

Table 6 lists the full estimates of equation (3.6) with the implemented simplifications discussed

in Section 5.2. While I estimate 51 equations, I present detailed results for only the five most

populous states: California, Texas, Florida, New York, and Illinois.

The main takeaway from this table is that the selection bias associated with the endogenous

choices of where to live and in which occupation to work is quite heterogeneous across chosen

occupation and across space. In some states, the selection bias is minimal, while in others, it

is quite large. Furthermore, the direction of the bias varies across states, and it also sometimes

varies across chosen occupation within the same state.

For example, in unrelated occupations in California and Texas, the OLS estimates of the

returns to majors are downward biased in both of the chosen occupations. However, in Florida,

Illinois, and New York, the direction of the bias differs based on the chosen occupation. The

implication of this heterogeneity is that the corrected return to working in a related occupation

will have a different sign across locations.

Of the five largest states, the selection magnitude in Texas is the largest, particularly for

majors in the related occupation. In general, the OLS estimates of the return to majors who are

working in related occupations are downward biased, with the exception of Florida.

6.2.2 Estimates for all states

I now present in Tables A5 through A8 specific returns to STEM and business majors working

in each occupation for all 51 locations. A common theme from each of these tables is that the

sign of the selection bias is quite variable across locations. Moreover, there does not appear to

be any systematic variation in which states have significantly different corrected returns. The

lone exception is Colorado, which exhibits upward bias in OLS estimates of the returns to both

STEM and business majors, regardless of occupation relatedness.

I now discuss the returns to working in a related occupation for each of the majors. Table 7

reports moments of the distribution of the return to working in a related occupation, defined

as γ̂2`1 − γ̂2`0 from equation (3.6). What is interesting is that the average of the distribution of

related occupation returns is quite similar for each of the majors, with and without selection

correction. This is in spite of the selection correction terms entering in significantly to the

earnings equation in almost all states. This finding is consistent with Dahl (2002), who finds

that the college wage premium does not narrow after correcting for selection.

6.2.3 Selection bias and the returns to related occupation

To examine the effect of selection on the location-specific returns to working in a related occu-

pation, I present three final results, which respectively plot the difference between the corrected
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and uncorrected returns to related occupation and characterize the distribution of these returns

across locations.

Figure 7 plots the uncorrected and corrected returns to related occupation for each of the

51 states and five majors, relative to a 45-degree line. For each of the majors, there appear to be

more dots above the line, indicating that, on average, OLS is downward biased. However, none

of the majors exhibit any overwhelming direction of bias.

Figure 8 plots the corrected and uncorrected distributions of the returns to related occupa-

tion for each major. The corrected returns are represented by shaded bars, while the uncorrected

returns are transparent bars. For each of the majors, the corrected distribution appears to have

both a higher mean and a higher variance.

Finally, I examine which specific components of the return to related occupation contribute

to the general downward bias of OLS. Table 8 reports the 10th, 50th, and 90th percentiles of the

percent change between the uncorrected and corrected returns to major. The first three columns

are for those who work in an unrelated occupation. The second set of columns are for those who

work in a related occupation. The final three columns are the difference between the first two

sets of columns, and represent the returns to working in a related occupation. Table 8 displays

a wide range of heterogeneity in the percentage change in returns to major when correcting for

selection. At the median, OLS estimates of the returns to major in an unrelated occupation tend

to be upward biased, while the opposite is true for majors in a related occupation. Together,

this implies that the corrected returns are downward biased. The magnitude of bias is largest for

education and social sciences majors and lowest for STEM and business majors. For the median

location, correcting for selective migration and occupational choice increases the returns to

working in a related occupation by anywhere from 10% to 30%.

7 Conclusion

This paper examines the extent to which selection into residence location and occupation biases

the observed earnings differences across college majors. To analyze this question, I develop

and estimate an extended Roy model where individuals have preferences for both earnings and

non-pecuniary aspects of given location-occupation pairs.

To estimate the model, I implement the framework of Dahl (2002) and Lee (1983) which

allow for feasible estimation of the extended Roy model by expressing the selection in terms

of a small number of observed choice probabilities. I estimate the model using data from the

American Community Survey from years 2010-2014. I also illustrate the advantages of using ma-

chine learning methods to non-parametrically estimate the selection probabilities. The primary

advantage of this is in combining model selection and estimation.

I find that the returns to college major are downward biased by selective migration and

occupational choice, but that the magnitude of the bias is small. This suggests that nonpecuniary

preferences associated with location and occupation are important determinants of earnings
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differences across majors.
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Figures and Tables

Table 1: Sample means of outcome and demographic variables, by college major

Education Soc Sci Other Business STEM Overall

Log Earnings 10.17 10.32 10.36 10.59 10.57 10.47
Lives outside birth state 35.63 43.41 46.04 41.66 44.92 43.29
Works in related occ. 67.93 45.85 50.31 60.09 62.12 57.36
Female 74.12 59.18 49.32 42.76 41.42 48.39
White 86.53 79.45 83.59 83.74 84.75 83.7
Black 5.82 9.24 6.57 7.11 6.05 6.84
Hispanic 5.36 6.76 5.95 5.02 4.59 5.35
Other race 2.29 4.55 3.89 4.13 4.62 4.11

Frequency 8.11 12.04 22.7 29.02 28.13 100
N 50,934 71,002 132,033 170,068 169,811 593,848

Notes: All variables except for log earnings are expressed in percentage points. Sample weights are included

in the computation.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Table 2: Sample means of outcome and demographic variables, by college major (Males only)

Education Soc Sci Other Business STEM Overall

Log Earnings 10.32 10.48 10.47 10.72 10.70 10.62
Lives outside birth state 37.05 46.58 46.83 42.81 47.29 45.26
Works in related occ. 56.19 43.30 52.09 61.77 61.49 57.53
White 85.20 82.19 84.97 86.43 86.16 85.57
Black 7.27 7.64 6.07 5.35 4.61 5.57
Hispanic 4.88 6.06 5.56 4.36 4.54 4.87
Other race 2.64 4.11 3.40 3.86 4.69 4.00

Frequency 4.06 9.53 22.29 32.19 31.93 100
N 13,046 28,581 66,706 96,379 99,583 304,295

Notes: All variables except for log earnings are expressed in percentage points. Sample weights are in-

cluded in the computation.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 1: Major-specific earnings distributions across locations
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Notes: Above are histograms of the coefficient on major dummies in a log earnings regression conditional on

residing in a specific U.S. State. Additional controls in the regression include a cubic in potential experience,

gender and race dummies, CBSA dummies, and a married dummy. Census population weights are used in the

calculations.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 2: Major-specific migration distributions across locations

(a) Social Sciences
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(b) Other
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Notes: Above are histograms of the coefficient on major dummies in a linear probability model where “moved away

from birth state” is the dependent variable, conditional on residing in a specific U.S. State. Additional controls in

the regression include a cubic in potential experience, gender and race dummies, CBSA dummies, and a married

dummy. Census population weights are used in the calculations.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 3: Major-specific occupation relatedness distributions across locations
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Notes: Above are histograms of the coefficient on major dummies in a linear probability model where “works

in an occupation related to the major” is the dependent variable, conditional on residing in a specific U.S. State.

Additional controls in the regression include a cubic in potential experience, gender and race dummies, CBSA

dummies, and a married dummy. Census population weights are used in the calculations.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 4: Distributions of within-location earnings premium for working in an occupation
related to one’s major

(a) Social Sciences
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Notes: Above are histograms of the within-location difference in the coefficient on major dummies interacted
with an occupation relatedness dummy in a log earnings regression, conditional on residing in a specific U.S. State.
Additional controls in the regression include a cubic in potential experience, gender and race dummies, CBSA
dummies, and a married dummy. Census population weights are used in the calculations.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Table 3: Cross-major correlations in outcomes

(a) Log earnings

Major Soc Sci Other Business STEM

Soc Sci 1.000
Other 0.822 1.000
Business 0.794 0.876 1.000
STEM 0.759 0.797 0.713 1.000

(b) Migration

Major Soc Sci Other Business STEM

Soc Sci 1.000
Other 0.690 1.000
Business 0.648 0.631 1.000
STEM 0.613 0.739 0.690 1.000

(c) Occupation relatedness propensity

Major Soc Sci Other Business STEM

Soc Sci 1.000
Other 0.936 1.000
Business 0.923 0.938 1.000
STEM 0.924 0.914 0.947 1.000

(d) Occupation relatedness premium

Major Edu Soc Sci Other Business STEM

Education 1.000
Soc Sci 0.032 1.000
Other -0.011 0.102 1.000
Business 0.031 -0.172 0.190 1.000
STEM 0.015 -0.200 -0.006 0.143 1.000

Note: This table computes the correlation across majors for various
outcomes. Correlations that are close to 1 imply that location charac-
teristics explain the outcome, regardless of major.
Source: Author’s calculations from American Community Survey,
2010-2014.
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Figure 5: Migration transition matrix by major for the five largest states
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Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 6: Simple example of tree structure from conditional inference recursive partitioning
algorithm
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Note: Sample tree output from fictitious data using the algorithm described in Section 5.1.2
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Table 4: Summary of cell probabilities of observed decisions: Stayers

(a) Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Social Sciences Major 299 23, 330 0.4979 0.1907 0.2712 0.7514
Other Major 319 18, 744 0.2899 0.0990 0.1881 0.4113
Business Major 324 35, 233 0.2966 0.0959 0.1941 0.3904
Education Major 380 59, 199 0.3637 0.1016 0.2481 0.4780
STEM Major 367 59, 018 0.3640 0.1116 0.2481 0.4821

(b) Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Social Sciences Major 290 9, 683 0.2403 0.1071 0.0983 0.3639
Other Major 318 21, 338 0.3034 0.1064 0.1999 0.4403
Business Major 334 35, 566 0.2865 0.0966 0.1970 0.4051
Education Major 335 40, 164 0.2473 0.0862 0.1721 0.3433
STEM Major 327 35, 227 0.2331 0.0913 0.1576 0.3433

Note: Estimated decision probabilities and cell structure from the conditional inference recursive partitioning algorithm
described in Section 5.1.2. Probabilities correspond to the probability of making the decision that is observed in the data.
Source: Author’s calculations from American Community Survey, 2010-2014.
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Table 5: Summary of cell probabilities of observed decisions: Movers

(a) Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Social Sciences Major 527 11, 776 0.0215 0.0254 0.0021 0.0487
Other Major 651 14, 068 0.0175 0.0232 0.0020 0.0381
Business Major 692 31, 387 0.0215 0.0262 0.0025 0.0538
Education Major 721 43, 225 0.0213 0.0252 0.0025 0.0477
STEM Major 717 47, 119 0.0197 0.0233 0.0025 0.0418

(b) Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile

Social Sciences Major 536 6, 145 0.0128 0.0186 0.0015 0.0269
Other Major 598 16, 852 0.0176 0.0224 0.0020 0.0386
Business Major 617 29, 847 0.0180 0.0224 0.0020 0.0417
Education Major 649 27, 480 0.0144 0.0197 0.0016 0.0298
STEM Major 642 28, 447 0.0131 0.0188 0.0015 0.0270

Note: Estimated decision probabilities and cell structure from the conditional inference recursive partitioning algorithm
described in Section 5.1.2. Probabilities correspond to the probability of making the decision that is observed in the data.
Source: Author’s calculations from American Community Survey, 2010-2014.
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Table 6: Uncorrected vs. corrected earnings equation estimates for select states

California Florida Illinois New York Texas
Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

Unrelated occupation
Education major 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Social sciences major 0.043* 0.120** 0.082*** 0.127*** 0.030 0.031 0.142*** 0.140*** 0.044** 0.076**

(0.023) (0.051) (0.024) (0.028) (0.024) (0.035) (0.026) (0.031) (0.021) (0.035)
Other major 0.017 0.092* 0.048** 0.092*** 0.004 0.001 0.091*** 0.083*** 0.011 0.036

(0.022) (0.047) (0.023) (0.025) (0.022) (0.033) (0.024) (0.029) (0.019) (0.036)
Business major 0.142*** 0.169*** 0.147*** 0.185*** 0.165*** 0.141*** 0.222*** 0.206*** 0.114*** 0.128***

(0.023) (0.044) (0.023) (0.026) (0.022) (0.020) (0.025) (0.044) (0.019) (0.033)
STEM major 0.136*** 0.165*** 0.137*** 0.170*** 0.177*** 0.158*** 0.209*** 0.185*** 0.186*** 0.198***

(0.023) (0.044) (0.023) (0.030) (0.023) (0.037) (0.025) (0.034) (0.019) (0.034)
Related occupation

Education major -0.040 0.010 -0.012 0.065 -0.036 0.067 -0.075** -0.018 0.008 0.009
(0.027) (0.094) (0.024) (0.118) (0.025) (0.100) (0.036) (0.113) (0.019) (0.078)

Social sciences major 0.121*** 0.226** 0.137*** 0.270** 0.129*** 0.237** 0.208*** 0.264** 0.073*** 0.181**
(0.023) (0.089) (0.025) (0.110) (0.025) (0.104) (0.026) (0.107) (0.021) (0.069)

Other major 0.131*** 0.238*** 0.140*** 0.271** 0.131*** 0.245** 0.202*** 0.250** 0.085*** 0.189***
(0.022) (0.088) (0.023) (0.111) (0.022) (0.100) (0.024) (0.107) (0.019) (0.070)

Business major 0.353*** 0.426*** 0.361*** 0.485*** 0.375*** 0.481*** 0.478*** 0.514*** 0.345*** 0.432***
(0.022) (0.088) (0.022) (0.106) (0.021) (0.103) (0.024) (0.107) (0.018) (0.074)

STEM major 0.362*** 0.432*** 0.332*** 0.452*** 0.299*** 0.407*** 0.404*** 0.434*** 0.297*** 0.382***
(0.022) (0.087) (0.022) (0.111) (0.022) (0.099) (0.025) (0.106) (0.018) (0.073)

Married 0.131*** 0.108*** 0.131*** 0.123*** 0.131*** 0.121*** 0.125*** 0.097*** 0.102*** 0.096***
(0.005) (0.016) (0.007) (0.013) (0.007) (0.013) (0.008) (0.019) (0.006) (0.011)

Female -0.192*** -0.192*** -0.239*** -0.239*** -0.222*** -0.224*** -0.192*** -0.193*** -0.251*** -0.252***
(0.005) (0.014) (0.007) (0.015) (0.007) (0.021) (0.007) (0.021) (0.005) (0.017)

Black -0.160*** -0.153*** -0.158*** -0.150*** -0.182*** -0.159*** -0.280*** -0.256*** -0.205*** -0.209***
(0.012) (0.019) (0.012) (0.018) (0.014) (0.017) (0.013) (0.024) (0.009) (0.017)

Hispanic -0.142*** -0.066*** -0.081*** -0.081*** -0.138*** -0.111*** -0.182*** -0.149*** -0.118*** -0.126***
(0.007) (0.019) (0.012) (0.021) (0.015) (0.023) (0.014) (0.022) (0.008) (0.017)

Other race -0.112*** -0.039** -0.089*** -0.108*** 0.009 0.024 -0.077*** -0.074*** -0.094*** -0.104***
(0.007) (0.017) (0.022) (0.033) (0.019) (0.027) (0.015) (0.023) (0.015) (0.021)

Cubic in experience X X X X X X X X X X

CBSA fixed effects X X X X X X X X X X

Wald test for λ terms 5.05 5.96 6.30 14.99 6.31
[0.000] [0.000] [0.000] [0.000] [0.000]

R2 0.244 0.252 0.229 0.234 0.267 0.268 0.231 0.244 0.253 0.259
Observations 58,377 58,377 28,288 28,288 28,697 28,697 34,511 34,511 46,932 46,932

Note: Standard errors are listed below coefficients in parentheses. P-values of statistical tests are listed below test statistics in brackets. *** p<0.01; ** p<0.05; * p<0.10.
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Table 7: Aggregate returns to working in related occupation

Uncorrected Corrected
Major Mean Std. Dev. Skewness Mean Std. Dev. Skewness

Education 0.0052 0.0789 0.3192 0.0183 0.1578 0.4484
Social Sciences 0.0814 0.0650 0.6528 0.1038 0.1513 -0.0952
Other 0.1105 0.0420 0.4411 0.1363 0.1434 -0.2149
Business 0.2052 0.0500 -0.8746 0.2322 0.1442 -0.5893
STEM 0.1657 0.0523 -1.0919 0.1915 0.1444 -0.2947

Note: Summary statistics of the 51-location distribution of the return to working in a related
occupation for each of the five majors, both with and without selection correction.
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Figure 7: Scatter plots of uncorrected and corrected returns to working in a related occupation
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Notes: Scatter plots of return to working in a related occupation, by major. Solid black lines are 45-degree lines.
Blue dots are state-specific pairs marking the uncorrected and corrected returns.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Figure 8: Distributions of corrected returns to working in an occupation related to major
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Notes: Above are histograms of the corrected and uncorrected returns to working in a related occupation, by
major.

Source: Author’s calculations from American Community Survey, 2010-2014.
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Table 8: Percent change in returns when correcting for selection

Unrelated occupation Related occupation Difference
Major p10 Median p90 p10 Median p90 p10 Median p90

Education 0 0 0 -610.4 -30.7 352.4 -610.4 -30.7 352.4
Social Sciences -104.6 -3.3 106.2 -207.2 41.8 190.9 -156 52.5 364.8
Other -81.6 3.4 185.6 -166.9 22.4 154.8 -146 27.1 193.1
Business -35.9 -.8 33.9 -60.8 7.5 45 -97.8 14.8 85.7
STEM -19.8 -1.5 25.4 -63 6.4 49.7 -112.1 14.5 114

Note: Summary statistics of the 51-location distribution of the percent change between uncorrected and corrected
returns to majors.
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A Data Appendix

Table A1: Sample selection details

Criterion No. obs deleted Remaining obs.

Respondents in 2010-2014 ACS — 15,552,144
Drop those without exactly a bachelor’s degree 13,498,591 2,053,553
Drop those outside of 22-54 age range 712,627 1,340,926
Drop those with imputed critical variables 279,720 1,061,206
Drop those currently enrolled in school 115,582 945,624
Drop those currently residing in group quarters 6,004 939,620
Drop those not born in the US 136,876 802,744
Drop those with positive annual earnings below $20,000 98,841 703,903
Drop those with annual earnings above $600,000 164 703,739
Drop those with zero annual earnings 109,891 593,848

Final analysis sample — 593,848
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Table A2: Aggregation of the 51 detailed Department of Education majors

Education STEM Other
Primary Education Agriculture and Agr. Science Architecture
Secondary Education All Other Engineering Area, Ethnic, and Civ. Studies

Biological Sciences Art History and Fine Arts
Social Sciences Chemical Engineering Commercial Art and Design
Family and Consumer Science Chemistry Communications
International Relations Civil Engineering Film and Other Arts
Other Social Science Computer Programming Foreign Language
Philosophy and Religion Computer and Info Tech History
Political Science Earth and Other Physical Sci Journalism
Psychology Electrical Engineering Leisure Studies
Social Work and HR Engineering Tech Letters: Lit, Writing, Other

Environmental Studies Music and Speech/Drama
Business Fitness and Nutrition Prec. Prod. and Ind. Arts
Accounting General Science Protective Services
Business Mgt. and Admin. Mathematics Public Admin and Law
Economics Mechanical Engineering Public Health
Finance Medical Tech
Marketing Nursing
Misc. Bus. and Med. Support Other Med/Health Services

Physics

Note: Aggregation of the 51 detailed Department of Education majors analyzed in Altonji et al. (2016b).
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Table A3: List of related majors for each occupation

Occupation Edu. Soc. Sci. Other Bus. STEM

Chief executives and public administrators X X X

Financial managers X X X

Human resources and labor relations managers X

Managers and specialists in marketing, advertising, and public relations X X X X

Managers in education and related fields X

Managers of medicine and health occupations X

Managers of food-serving and lodging establishments X

Managers of service organizations, n.e.c. X X

Managers and administrators, n.e.c. X X X X X

Accountants and auditors X X X

Other financial specialists X X X X

Management analysts X X X X

Personnel, HR, training, and labor relations specialists X X X

Inspectors and compliance officers, outside construction X X

Architects X

Aerospace engineer X

Chemical engineers X

Civil engineers X X

Electrical engineer X

Industrial engineers X

Mechanical engineers X

Not-elsewhere-classified engineers X

Computer systems analysts and computer scientists X X X X

Actuaries X

Chemists X

Atmospheric and space scientists X

Geologists X

Physical scientists, n.e.c. X

Biological scientists X

Foresters and conservation scientists X

Registered nurses X X X

Pharmacists X

Dietitians and nutritionists X

Respiratory therapists X

Occupational therapists X

Physical therapists X

Therapists, n.e.c. X

Kindergarten and earlier school teachers X X

Primary school teachers X X X X

Secondary school teachers X X X

Special education teachers X

Teachers , n.e.c. X X X

Vocational and educational counselors X

Economists, market researchers, and survey researchers X X

Social workers X X

Recreation workers X

Clergy and religious workers X

Writers and authors X

Designers X

Musician or composer X

Actors, directors, producers X

Art makers: painters, sculptors, craft-artists, and print-makers X

Photographers X

Editors and reporters X

Athletes, sports instructors, and officials X

Clinical laboratory technologies and technicians X

Dental hygenists X

Radiologic tech specialists X

Health technologists and technicians, n.e.c. X X

Engineering technicians, n.e.c. X

Drafters X

Chemical technicians X

Airplane pilots and navigators X

Air traffic controllers X

Computer software developers X X

Legal assistants, paralegals, legal support, etc X X

Supervisors and proprietors of sales jobs X X X X X

Insurance sales occupations X

Financial services sales occupations X

Salespersons, n.e.c. X X X X X

Retail sales clerks X X X X

Office supervisors X X X

Secretaries X X X

Transportation ticket and reservation agents X

Customer service reps, investigators and adjusters, except insurance X X X

Administrative support jobs, n.e.c. X

Fire fighting, prevention, and inspection X X

Police, detectives, and private investigators X X X

Other law enforcement: sheriffs, bailiffs, correctional institution officers X

Guards, watchmen, doorkeepers X

Waiter/waitress X

Cooks, variously defined X

Welfare service aides X X

Child care workers X

Farmers (owners and tenants) X

Farm workers X

Supervisors of agricultural occupations X

Gardeners and groundskeepers X

Supervisors of construction work X

Production supervisors or foremen X

Military X X X

Note: Occupations not related to any college major are excluded from this table.
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Table A4: Predictive performance of various algorithms

Classification algorithm
Performance Criterion Logit Bin Tree

Training set performance:
Accuracy 35.34% 35.16% 34.72%
Kappa 33.95% 33.76% 33.25%

Test set performance:
Accuracy 35.22% 34.51% 33.91%
Kappa 33.82% 33.09% 32.42%

Note: “Logit” refers to a multinomial logit; “Bin” refers to a simple
bin estimator; “Tree” refers to the conditional inference tree classifi-
cation algorithm detailed in Section 5.1.2. I estimate each algorithm
on a subset of the 2010-2014 ACS sample included in this paper and
compute predictive performance out-of-sample using a holdout sam-
ple. To measure predictive performance, I compute the predicted al-
ternative, defined as the alternative with the largest predicted prob-
ability. Predictive performance is measured via a multi-dimensional
confusion matrix using two related but separate metrics: Accuracy
and Kappa.

Accuracy =
number of correctly classified predictions

number of predictions .

Kappa =
Accuracy−Expected Accuracy

1−Expected Accuracy .

Expected Accuracy is defined as Expected Accuracy =

∑J
j=1

��∑
i di j

� �∑
i pi j

��
/N J , where di j represents the observed class

for observation i in the data, pi j represents the predicted class for
observation i, and N represents the total number of observations.
The Kappa statistic is meant to capture predictive performance net
of guessing. For example, the Kappa statistic penalizes strategies
that would predict that all observations belong to one class.
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Table A5: Return to STEM majors in unrelated occupation, by state (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms State STEM Return STEM Return for Difference Correction Terms

Alabama 0.221 0.218 0.070 19.223 Montana 0.070 0.090 0.576 4430.798
(0.036) (0.046) [0.791] [0.000] (0.057) (0.039) [0.448] [0.000]

Alaska 0.094 -0.097 5.854 74.969 Nebraska 0.128 0.121 0.222 148.770
(0.126) (0.053) [0.016] [0.000] (0.042) (0.048) [0.638] [0.000]

Arizona 0.154 0.151 0.151 10.662 Nevada 0.143 0.125 2.110 2440.229
(0.038) (0.049) [0.697] [0.000] (0.070) (0.088) [0.146] [0.000]

Arkansas 0.084 0.117 0.827 34.807 New Hampshire 0.303 0.281 3.436 2123.841
(0.048) (0.049) [0.363] [0.000] (0.059) (0.081) [0.064] [0.000]

California 0.136 0.165 2.599 5.049 New Jersey 0.190 0.179 0.184 7.013
(0.023) (0.044) [0.107] [0.000] (0.031) (0.050) [0.668] [0.000]

Colorado 0.160 0.146 0.249 7.161 New Mexico 0.205 0.176 2.274 23.519
(0.037) (0.035) [0.618] [0.000] (0.086) (0.088) [0.132] [0.000]

Connecticut 0.133 0.111 0.826 38.673 New York 0.209 0.185 0.649 14.986
(0.045) (0.049) [0.364] [0.000] (0.025) (0.044) [0.421] [0.000]

Delaware 0.138 0.153 0.204 4332.845 North Carolina 0.192 0.228 2.524 15.461
(0.085) (0.114) [0.652] [0.000] (0.026) (0.026) [0.112] [0.000]

District of Columbia 0.237 0.219 0.302 29.314 North Dakota 0.075 0.160 0.938 61344.370
(0.115) (0.064) [0.582] [0.000] (0.064) (0.094) [0.333] [0.000]

Florida 0.137 0.170 5.606 5.956 Ohio 0.232 0.251 0.987 8.114
(0.023) (0.026) [0.018] [0.000] (0.022) (0.014) [0.321] [0.000]

Georgia 0.194 0.219 1.587 15.943 Oklahoma 0.138 0.101 1.463 13.301
(0.029) (0.032) [0.208] [0.000] (0.038) (0.080) [0.226] [0.000]

Hawaii 0.277 0.280 0.012 47.869 Oregon 0.092 0.100 0.425 24.295
(0.075) (0.067) [0.911] [0.000] (0.047) (0.036) [0.515] [0.000]

Idaho 0.218 0.197 0.599 1522.202 Pennsylvania 0.277 0.259 4.566 7.785
(0.069) (0.091) [0.439] [0.000] (0.020) (0.025) [0.033] [0.000]

Illinois 0.177 0.158 1.947 6.298 Rhode Island 0.170 0.136 4.018 35973.400
(0.022) (0.020) [0.163] [0.000] (0.082) (0.060) [0.045] [0.000]

Indiana 0.135 0.181 8.641 86.113 South Carolina 0.204 0.208 0.132 44.641
(0.029) (0.029) [0.003] [0.000] (0.036) (0.043) [0.716] [0.000]

Iowa 0.198 0.175 2.060 1099.694 South Dakota 0.165 0.206 0.423 379.184
(0.034) (0.044) [0.151] [0.000] (0.069) (0.108) [0.515] [0.000]

Kansas 0.170 0.202 0.353 2188.396 Tennessee 0.229 0.236 1.207 29.565
(0.039) (0.050) [0.552] [0.000] (0.032) (0.036) [0.272] [0.000]

Kentucky 0.222 0.132 10.895 32.843 Texas 0.186 0.198 0.154 5.095
(0.040) (0.046) [0.001] [0.000] (0.019) (0.033) [0.695] [0.000]

Louisiana 0.221 0.194 1.554 44.647 Utah 0.200 0.261 1.790 33.019
(0.043) (0.039) [0.213] [0.000] (0.051) (0.055) [0.181] [0.000]

Maine 0.194 0.174 32.191 8871.024 Vermont 0.213 0.232 2.128 168.104
(0.070) (0.010) [0.000] [0.000] (0.077) (0.154) [0.145] [0.000]

Maryland 0.153 0.169 1.796 8.368 Virginia 0.221 0.243 0.771 9.822
(0.037) (0.045) [0.180] [0.000] (0.029) (0.040) [0.380] [0.000]

Massachusetts 0.239 0.218 0.660 12.339 Washington 0.187 0.185 0.034 7.577
(0.032) (0.034) [0.416] [0.000] (0.037) (0.036) [0.854] [0.000]

Michigan 0.182 0.149 3.388 16.788 West Virginia 0.122 0.063 0.509 2715.274
(0.026) (0.014) [0.066] [0.000] (0.061) (0.081) [0.475] [0.000]

Minnesota 0.287 0.309 0.824 16.720 Wisconsin 0.193 0.189 0.147 41.088
(0.029) (0.035) [0.364] [0.000] (0.029) (0.035) [0.702] [0.000]

Mississippi 0.167 0.130 0.655 587.065 Wyoming 0.283 0.303 0.402 14381.270
(0.045) (0.051) [0.418] [0.000] (0.088) (0.038) [0.526] [0.000]

Missouri 0.191 0.203 1.895 20.119
(0.031) (0.033) [0.169] [0.000]
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Table A6: Return to STEM majors in related occupation, by state (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for Uncorrected Corrected χ2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms State STEM Return STEM Return for Difference Correction Terms

Alabama 0.429 0.373 0.229 19.223 Montana 0.256 0.290 1.363 4430.798
(0.036) (0.127) [0.632] [0.000] (0.055) (0.039) [0.243] [0.000]

Alaska 0.248 0.028 6.147 74.969 Nebraska 0.281 -0.045 9.854 148.770
(0.124) (0.096) [0.013] [0.000] (0.040) (0.122) [0.002] [0.000]

Arizona 0.367 0.385 0.293 10.662 Nevada 0.382 0.404 0.015 2440.229
(0.037) (0.048) [0.588] [0.000] (0.069) (0.194) [0.904] [0.000]

Arkansas 0.234 0.206 0.165 34.807 New Hampshire 0.450 0.456 0.001 2123.841
(0.046) (0.071) [0.685] [0.000] (0.057) (0.212) [0.971] [0.000]

California 0.362 0.432 0.839 5.049 New Jersey 0.326 0.316 0.007 7.013
(0.022) (0.088) [0.360] [0.000] (0.030) (0.121) [0.934] [0.000]

Colorado 0.347 0.320 0.079 7.161 New Mexico 0.471 0.468 0.002 23.519
(0.036) (0.111) [0.778] [0.000] (0.083) (0.111) [0.967] [0.000]

Connecticut 0.311 0.390 0.489 38.673 New York 0.404 0.434 0.067 14.986
(0.044) (0.130) [0.485] [0.000] (0.024) (0.107) [0.796] [0.000]

Delaware 0.263 0.616 3.939 4332.845 North Carolina 0.319 0.283 0.224 15.461
(0.081) (0.179) [0.047] [0.000] (0.025) (0.091) [0.636] [0.000]

District of Columbia 0.191 0.249 0.342 29.314 North Dakota 0.257 0.606 15.174 61344.370
(0.115) (0.134) [0.559] [0.000] (0.058) (0.103) [0.000] [0.000]

Florida 0.332 0.452 1.096 5.956 Ohio 0.383 0.493 0.591 8.114
(0.022) (0.106) [0.295] [0.000] (0.022) (0.155) [0.442] [0.000]

Georgia 0.324 0.368 0.327 15.943 Oklahoma 0.333 0.471 1.785 13.301
(0.028) (0.083) [0.568] [0.000] (0.037) (0.145) [0.181] [0.000]

Hawaii 0.462 0.542 0.672 47.869 Oregon 0.330 0.078 1.995 24.295
(0.075) (0.140) [0.412] [0.000] (0.045) (0.212) [0.158] [0.000]

Idaho 0.479 0.417 0.875 1522.202 Pennsylvania 0.420 0.544 1.179 7.785
(0.067) (0.092) [0.350] [0.000] (0.019) (0.117) [0.278] [0.000]

Illinois 0.299 0.407 1.298 6.298 Rhode Island 0.279 0.297 0.178 35973.400
(0.021) (0.103) [0.254] [0.000] (0.079) (0.063) [0.673] [0.000]

Indiana 0.327 0.437 0.572 86.113 South Carolina 0.384 0.255 1.614 44.641
(0.028) (0.145) [0.450] [0.000] (0.035) (0.128) [0.204] [0.000]

Iowa 0.370 0.137 1.365 1099.694 South Dakota 0.259 0.266 0.007 379.184
(0.033) (0.195) [0.243] [0.000] (0.067) (0.081) [0.933] [0.000]

Kansas 0.347 0.482 2.093 2188.396 Tennessee 0.352 0.233 2.002 29.565
(0.038) (0.102) [0.148] [0.000] (0.031) (0.097) [0.157] [0.000]

Kentucky 0.361 0.356 0.001 32.843 Texas 0.297 0.382 1.486 5.095
(0.039) (0.213) [0.982] [0.000] (0.018) (0.074) [0.223] [0.000]

Louisiana 0.289 0.139 1.480 44.647 Utah 0.358 0.456 0.652 33.019
(0.042) (0.132) [0.224] [0.000] (0.050) (0.111) [0.420] [0.000]

Maine 0.340 0.558 3.225 8871.024 Vermont 0.330 0.107 1.127 168.104
(0.067) (0.125) [0.073] [0.000] (0.074) (0.220) [0.288] [0.000]

Maryland 0.336 0.333 0.001 8.368 Virginia 0.359 0.537 6.016 9.822
(0.036) (0.099) [0.971] [0.000] (0.028) (0.091) [0.014] [0.000]

Massachusetts 0.386 0.369 0.030 12.339 Washington 0.405 0.421 0.063 7.577
(0.031) (0.109) [0.864] [0.000] (0.036) (0.073) [0.803] [0.000]

Michigan 0.342 0.466 0.732 16.788 West Virginia 0.357 0.587 0.975 2715.274
(0.025) (0.160) [0.392] [0.000] (0.059) (0.250) [0.323] [0.000]

Minnesota 0.472 0.576 1.349 16.720 Wisconsin 0.412 0.363 0.217 41.088
(0.027) (0.100) [0.245] [0.000] (0.028) (0.108) [0.642] [0.000]

Mississippi 0.373 0.105 3.595 587.065 Wyoming 0.423 0.677 7.204 14381.270
(0.044) (0.151) [0.058] [0.000] (0.088) (0.086) [0.007] [0.000]

Missouri 0.384 0.409 0.047 20.119
(0.031) (0.118) [0.828] [0.000]
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Table A7: Return to Business majors in unrelated occupation, by state (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms State Business Return Business Return for Difference Correction Terms

Alabama 0.167 0.185 3.261 19.223 Montana 0.083 0.078 0.017 4430.798
(0.039) (0.056) [0.071] [0.000] (0.060) (0.039) [0.898] [0.000]

Alaska 0.134 -0.050 8.310 74.969 Nebraska 0.157 0.151 0.207 148.770
(0.123) (0.070) [0.004] [0.000] (0.043) (0.059) [0.649] [0.000]

Arizona 0.144 0.140 0.057 10.662 Nevada 0.167 0.145 2.234 2440.229
(0.038) (0.051) [0.811] [0.000] (0.069) (0.093) [0.135] [0.000]

Arkansas 0.058 0.090 0.682 34.807 New Hampshire 0.257 0.261 0.607 2123.841
(0.051) (0.041) [0.409] [0.000] (0.059) (0.066) [0.436] [0.000]

California 0.142 0.169 3.192 5.049 New Jersey 0.190 0.169 0.230 7.013
(0.022) (0.047) [0.074] [0.000] (0.031) (0.054) [0.631] [0.000]

Colorado 0.126 0.104 0.926 7.161 New Mexico 0.190 0.170 0.624 23.519
(0.037) (0.038) [0.336] [0.000] (0.087) (0.078) [0.430] [0.000]

Connecticut 0.126 0.115 0.177 38.673 New York 0.222 0.206 0.256 14.986
(0.045) (0.058) [0.674] [0.000] (0.024) (0.029) [0.613] [0.000]

Delaware 0.062 0.072 0.084 4332.845 North Carolina 0.120 0.153 4.507 15.461
(0.084) (0.075) [0.772] [0.000] (0.026) (0.037) [0.034] [0.000]

District of Columbia 0.152 0.126 0.467 29.314 North Dakota 0.138 0.234 1.552 61344.370
(0.113) (0.085) [0.494] [0.000] (0.065) (0.089) [0.213] [0.000]

Florida 0.147 0.185 7.753 5.956 Ohio 0.217 0.232 0.932 8.114
(0.023) (0.025) [0.005] [0.000] (0.023) (0.027) [0.334] [0.000]

Georgia 0.108 0.137 2.025 15.943 Oklahoma 0.085 0.055 1.004 13.301
(0.030) (0.042) [0.155] [0.000] (0.040) (0.077) [0.316] [0.000]

Hawaii 0.151 0.166 0.315 47.869 Oregon 0.067 0.075 0.352 24.295
(0.076) (0.059) [0.574] [0.000] (0.046) (0.056) [0.553] [0.000]

Idaho 0.279 0.232 1.571 1522.202 Pennsylvania 0.208 0.195 2.087 7.785
(0.070) (0.094) [0.210] [0.000] (0.020) (0.027) [0.149] [0.000]

Illinois 0.165 0.141 3.588 6.298 Rhode Island 0.056 0.050 0.089 35973.400
(0.022) (0.033) [0.058] [0.000] (0.080) (0.060) [0.765] [0.000]

Indiana 0.111 0.161 3.177 86.113 South Carolina 0.112 0.124 0.983 44.641
(0.029) (0.031) [0.075] [0.000] (0.037) (0.071) [0.321] [0.000]

Iowa 0.181 0.163 1.133 1099.694 South Dakota 0.137 0.191 0.351 379.184
(0.036) (0.057) [0.287] [0.000] (0.073) (0.065) [0.554] [0.000]

Kansas 0.185 0.223 0.413 2188.396 Tennessee 0.149 0.161 0.572 29.565
(0.040) (0.074) [0.520] [0.000] (0.033) (0.039) [0.449] [0.000]

Kentucky 0.163 0.082 9.861 32.843 Texas 0.114 0.128 0.234 5.095
(0.041) (0.039) [0.002] [0.000] (0.019) (0.036) [0.628] [0.000]

Louisiana 0.068 0.050 0.744 44.647 Utah 0.177 0.237 1.605 33.019
(0.043) (0.046) [0.388] [0.000] (0.051) (0.050) [0.205] [0.000]

Maine 0.148 0.166 4.562 8871.024 Vermont 0.073 0.010 3.908 168.104
(0.068) (0.011) [0.033] [0.000] (0.074) (0.112) [0.048] [0.000]

Maryland 0.131 0.155 3.740 8.368 Virginia 0.200 0.232 1.335 9.822
(0.037) (0.044) [0.053] [0.000] (0.029) (0.046) [0.248] [0.000]

Massachusetts 0.201 0.190 0.241 12.339 Washington 0.158 0.156 0.010 7.577
(0.031) (0.032) [0.623] [0.000] (0.036) (0.037) [0.919] [0.000]

Michigan 0.165 0.146 2.997 16.788 West Virginia 0.148 0.066 1.333 2715.274
(0.027) (0.018) [0.083] [0.000] (0.063) (0.070) [0.248] [0.000]

Minnesota 0.252 0.264 0.538 16.720 Wisconsin 0.234 0.230 0.066 41.088
(0.029) (0.027) [0.463] [0.000] (0.030) (0.039) [0.797] [0.000]

Mississippi 0.136 0.085 0.954 587.065 Wyoming 0.130 0.202 2.013 14381.270
(0.049) (0.071) [0.329] [0.000] (0.086) (0.071) [0.156] [0.000]

Missouri 0.190 0.204 2.725 20.119
(0.032) (0.039) [0.099] [0.000]
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Table A8: Return to Business majors in related occupation, by state (uncorrected and corrected)

Uncorrected Corrected χ2 Test Wald Test for Uncorrected Corrected χ2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms State Business Return Business Return for Difference Correction Terms

Alabama 0.382 0.330 0.199 19.223 Montana 0.336 0.410 4.986 4430.798
(0.039) (0.122) [0.655] [0.000] (0.063) (0.036) [0.026] [0.000]

Alaska 0.368 0.171 3.535 74.969 Nebraska 0.291 -0.032 9.595 148.770
(0.127) (0.098) [0.060] [0.000] (0.043) (0.120) [0.002] [0.000]

Arizona 0.361 0.380 0.367 10.662 Nevada 0.452 0.473 0.012 2440.229
(0.038) (0.049) [0.545] [0.000] (0.070) (0.201) [0.912] [0.000]

Arkansas 0.285 0.255 0.202 34.807 New Hampshire 0.477 0.492 0.008 2123.841
(0.051) (0.079) [0.653] [0.000] (0.061) (0.217) [0.928] [0.000]

California 0.353 0.426 0.891 5.049 New Jersey 0.431 0.422 0.006 7.013
(0.022) (0.088) [0.345] [0.000] (0.030) (0.120) [0.937] [0.000]

Colorado 0.332 0.309 0.062 7.161 New Mexico 0.296 0.318 0.080 23.519
(0.037) (0.105) [0.804] [0.000] (0.086) (0.117) [0.777] [0.000]

Connecticut 0.361 0.445 0.565 38.673 New York 0.478 0.514 0.097 14.986
(0.045) (0.134) [0.452] [0.000] (0.024) (0.107) [0.756] [0.000]

Delaware 0.263 0.616 3.776 4332.845 North Carolina 0.355 0.316 0.253 15.461
(0.086) (0.187) [0.052] [0.000] (0.026) (0.093) [0.615] [0.000]

District of Columbia 0.229 0.303 0.490 29.314 North Dakota 0.265 0.612 15.561 61344.370
(0.113) (0.136) [0.484] [0.000] (0.066) (0.122) [0.000] [0.000]

Florida 0.361 0.485 1.107 5.956 Ohio 0.402 0.512 0.582 8.114
(0.023) (0.111) [0.293] [0.000] (0.023) (0.144) [0.446] [0.000]

Georgia 0.348 0.398 0.422 15.943 Oklahoma 0.313 0.455 1.771 13.301
(0.030) (0.079) [0.516] [0.000] (0.041) (0.133) [0.183] [0.000]

Hawaii 0.415 0.502 0.779 47.869 Oregon 0.271 0.019 1.980 24.295
(0.078) (0.115) [0.378] [0.000] (0.046) (0.214) [0.159] [0.000]

Idaho 0.347 0.270 1.242 1522.202 Pennsylvania 0.446 0.565 1.069 7.785
(0.072) (0.091) [0.265] [0.000] (0.020) (0.120) [0.301] [0.000]

Illinois 0.375 0.481 1.249 6.298 Rhode Island 0.379 0.406 0.340 35973.400
(0.022) (0.100) [0.264] [0.000] (0.081) (0.060) [0.560] [0.000]

Indiana 0.322 0.427 0.527 86.113 South Carolina 0.334 0.208 1.592 44.641
(0.029) (0.150) [0.468] [0.000] (0.037) (0.130) [0.207] [0.000]

Iowa 0.375 0.147 1.302 1099.694 South Dakota 0.229 0.257 0.100 379.184
(0.037) (0.193) [0.254] [0.000] (0.074) (0.089) [0.752] [0.000]

Kansas 0.341 0.482 2.255 2188.396 Tennessee 0.403 0.297 1.607 29.565
(0.041) (0.097) [0.133] [0.000] (0.033) (0.096) [0.205] [0.000]

Kentucky 0.401 0.399 0.000 32.843 Texas 0.345 0.432 1.553 5.095
(0.041) (0.210) [0.992] [0.000] (0.019) (0.070) [0.213] [0.000]

Louisiana 0.203 0.053 1.503 44.647 Utah 0.409 0.510 0.681 33.019
(0.044) (0.129) [0.220] [0.000] (0.051) (0.115) [0.409] [0.000]

Maine 0.358 0.604 4.042 8871.024 Vermont 0.247 0.010 1.589 168.104
(0.071) (0.146) [0.044] [0.000] (0.077) (0.238) [0.208] [0.000]

Maryland 0.340 0.343 0.002 8.368 Virginia 0.404 0.582 5.956 9.822
(0.037) (0.098) [0.965] [0.000] (0.029) (0.092) [0.015] [0.000]

Massachusetts 0.405 0.398 0.005 12.339 Washington 0.412 0.436 0.136 7.577
(0.031) (0.108) [0.944] [0.000] (0.036) (0.072) [0.712] [0.000]

Michigan 0.340 0.461 0.700 16.788 West Virginia 0.350 0.571 0.914 2715.274
(0.027) (0.150) [0.403] [0.000] (0.064) (0.244) [0.339] [0.000]

Minnesota 0.483 0.589 1.353 16.720 Wisconsin 0.421 0.369 0.243 41.088
(0.028) (0.098) [0.245] [0.000] (0.030) (0.105) [0.622] [0.000]

Mississippi 0.337 0.068 3.545 587.065 Wyoming 0.308 0.533 5.816 14381.270
(0.049) (0.143) [0.060] [0.000] (0.093) (0.075) [0.016] [0.000]

Missouri 0.407 0.434 0.054 20.119
(0.032) (0.108) [0.816] [0.000]
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