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Abstract

Forecasting the cost of proposed policies may be difficult when prior experience is

limited. This paper develops a novel forecasting method that combines prediction

market prices with stock returns to estimate the expected cost to firms of the Waxman-

Markey climate policy bill. I find Waxman-Markey would have reduced the value of

listed firms by $150 billion with greater losses for carbon intensive sectors. A regression

discontinuity design finds sectors entitled to free allowances under the bill experienced

larger gains. Lobbying records are used to estimate a political influence function for

listed firms and to partially identify costs for unlisted firms.
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1 Introduction

Policy making relies on forecasts of the magnitude and distribution of costs and benefits as-

sociated with proposed policies. However, forecasting models may have trouble constraining

key parameters when prior experience is limited. This difficulty characterizes current efforts

to forecast the costs of relatively novel climate change policies using computable general

equilibrium models. Given existing levels of uncertainty, Pindyck (2013) recently called for

alternative approaches noting that current methods may not be practical. In particular,

availability of other methods may be beneficial for studying proposed policies in the U.S.

which, despite being the largest cumulative emitting nation, has yet to implement a national

climate policy.

This paper develops a method for forecasting the cost to firms of U.S. climate policy.

In the spirit of Hayek (1945), my approach acknowledges that while climate policy param-

eters may be unknown to the researcher, market participants and firms may reveal “local”

information that can be incorporated into an estimation framework. Specifically, I combine

prediction markets data with stock prices and lobbying expenditures to forecast the firm-level

expected cost of the Waxman-Markey bill, a cap-and-trade policy that passed the House of

Representatives in 2009 but not the Senate and thus was never implemented. I find that

the expected incidence of Waxman-Markey would have reduced the total value of U.S. listed

firms by $150 billion or roughly 1% of total market value.

This paper’s central insight is that the prediction market event study pioneered by Snow-

berg, Wolfers and Zitzewitz (2007) can be extended into a forecasting setting. Snowberg,

Wolfers and Zitzewitz (2011) show that prediction market prices, which approximate market

beliefs over event probabilities, can be used to address bias from event window selection in

traditional event studies. However, an arguably greater benefit of observing market beliefs

is the ability to estimate abnormal returns associated with a probable, but ultimately unre-

alized, event. While Snowberg, Wolfers and Zitzewitz (2012) have noted this potential, to

the best of my knowledge, forecasting using prediction markets has yet to be implemented

in the literature. Thus, the general estimation framework developed in this paper can be

applied to forecasting the cost to firms of other proposed, and perhaps unrealized policies.

Recent examples with available prediction markets include U.S. legislation on immigration,

social security, and health care policy.

A proposed cap-and-trade system should also affect unlisted firms, for whom market

values are not observed but who may respond with political activity. Enlisting this ob-

servation, I use Congressional lobbying records to recover bounds for the cost borne by an

important subset of unlisted firms that lobbied on Waxman-Markey. I first estimate a Becker
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(1983)-type lobbying influence function for listed firms using my estimated firm-level effects

and observed Waxman-Markey lobbying expenditures. The marginal returns to lobbying

is symmetric for firms that gain and lose under Waxman-Markey as predicted by Becker

(1983). I then use this function to bound the cost for unlisted firms that lobbied using a

formal partial identification procedure (Manski, 2003). This procedure allows me to recover

the magnitude but not the sign of cap-and-trade costs for unlisted firms and thus produces

fairly conservative bounds between $70 and $240 billion for the total cost borne by all firms.

The presence of a strong lobbying influence function for listed firms provides my first

validity check. In addition, I conduct several tests to detect whether markets responded to

policy features that are both particular to the Waxman-Markey bill and general to climate

policy incidence. First, Waxman-Markey allocated free allowances to manufacturing sectors

with historical energy intensity greater than 5%. Using this threshold rule as the basis for

a regression discontinuity design, I find that firms expecting an allocation of free allowances

experience a relative gain in value which suggests that markets were aware of the distribu-

tional consequences of the policy. Second, Waxman-Markey allowed limited trading with the

EU-Emissions Trading Scheme (EU-ETS) which would have lowered the price of EU-ETS

allowances beginning in 2012. Indeed, I find that prediction market prices had a negative

effect on 2012 EU-ETS futures prices which is statistically different from the effect on 2011

EU-ETS futures prices. Finally, in a series of heterogeneity analyses examining general cli-

mate policy incidence, I find the strongest effects in sectors with greater carbon intensity

and energy intensity, import penetration, and exposure to U.S. product markets.

The prediction market used in this paper is more thinly traded than those used previously

in the literature. As such, I develop a general empirical framework with explicit identify-

ing assumptions to address estimation concerns such as price volatility, potential market

manipulation, and the selection of benchmark controls. In particular, my identification is

based on a subsample of high volume trading days during which there were major politi-

cal developments that were likely exogenous to Waxman-Markey prospects. I furthermore

conduct a series of indirect tests employing transactions-level data from the cap-and trade

prediction market and show that my main result is robust to concerns about trading volume,

individual large volume traders, and the overall competitiveness of the bidding environment

as captured by a Herfindahl index. Thus, while the available data does not allow me to com-

pletely rule out biases due to thin trading, the combined weight of validity checks already

mentioned and indirect tests for thin trading suggest it is unlikely that any remaining bias

would substantially alter my main result.

This paper’s use of decentralized private information has two important advantages for

climate policy forecasts. First, the induced innovation hypothesis (Hicks, 1932) suggests that
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climate policy could trigger significant technological advances (Jaffe, Newell and Stavins,

2003). While this has been explored theoretically (Goulder and Schneider, 1999; Nordhaus,

2002; Buonanno, Carraro and Galeotti, 2003; Acemoglu et al., 2012), induced technological

change presents modeling difficulties for many computable general equilibrium (CGE) models

of climate policy (Jacoby et al., 2006). By relying on the expectations of market participants,

my approach incorporates their dispersed information on the potential technological frontier.

Second, because climate policy is typically designed to last several political cycles, future

rent-seeking behavior will likely alter the policy’s distributional consequences and thus the

policy itself. Estimates from this paper incorporate such political dynamics to the extent that

they are anticipated by market participants. At the same time, using market expectations

has certain drawbacks. While my estimates capture the expected cost of the implemented

policy, I am unable to confirm that this policy corresponds exactly to the Waxman-Markey

bill. As such, this paper provides an important but fundamentally different estimate from

that offered by CGE models which evaluate costs for a known policy.

My approach recovers the expected cost to firms and not to consumers and thus do

not capture the full welfare effects of the policy. However, estimates of the overall cost

to firms and its heterogeneity across firm characteristics are crucial for understanding the

political economy of climate policy in which firms have historically played a pivotal role in

policy formation (Bovenberg and Goulder, 2001). In particular, the heterogeneity analysis in

this paper can inform future discussions on how free allowances may be allocated to secure

political support during future legislative efforts. Finally, this analysis does not address

issues of policy optimality as I do not consider global climate damages which are included

in integrated assessment models of optimal climate policy (Stern, 2006; Nordhaus, 2008).

To the best of my knowledge, this paper provides the first forecast of the cost to firms

of a proposed cap-and-trade policy outside CGE modeling efforts and as such provides an

important input for future U.S. climate policy deliberations. There is, however, a long

tradition of employing traditional event study methodology to evaluate, ex-post, the costs

of realized regulation which includes recent event studies examining the cost of realized

U.S. (Linn, 2010) and E.U. (Bushnell, Chong and Mansur, 2013) environmental regulations.

Using a similar context, Lemoine (2013) conducts a traditional event study to evaluate the

response of various energy commodity markets to a political event related to the Waxman-

Markey bill. However, Lemoine (2013) does not normalize estimates according to changes

in Waxman-Markey probabilities, which is particularly important for a policy that is never

realized.

In the next section, I provide institutional details on cap-and-trade and the Waxman-

Markey bill. Section 3 develops an empirical framework which details how a potential cap-
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and-trade policy can be forecasted using prediction markets. Section 4 presents the prediction

market event study estimates along with robustness checks for key identifying assumptions

and detection tests for policy features. Section 5 details a partial identification framework

to bound costs for unlisted firms using lobbying expenditures and presents the lower and

upper bound for the aggregate effect on all firms. Section 6 discusses how my approach and

estimates compare with forecasts by prevailing CGE models of climate policy and is followed

by a brief conclusion. The online appendix provides a general theoretical framework, details

on several numerical simulations and empirical procedures, a data description, and further

background on the Waxman-Markey bill and CGE climate policy models.

2 Background: Waxman-Markey

Over the past two decades, emissions trading, known popularly as “cap-and-trade”, has be-

come an increasingly important regulatory instrument for controlling regional and global

pollutants such as greenhouse gases (Stavins, 1998; Aldy et al., 2010). In a typical cap-and-

trade system, a limit on cumulative emissions is set for the lifetime of the policy allowing

the regulator to issue annual emission allowances. Regulated firms are then either given,

or must purchase, allowances to cover their annual emissions. Following the success of the

U.S. SO2 trading system introduced in the Clean Air Act Amendments of 1990, variants

of cap-and-trade have been implemented domestically and internationally. Well-known sys-

tems currently in operation include provisions of the Kyoto Protocol, the European Unions

Emissions Trading System (EU-ETS), the U.S. Regional Greenhouse Gas Initiative (RGGI),

and the California cap-and-trade system. Economically, the compliance flexibility provided

by cap-and-trade has been shown to yield lower costs than traditional command-and-control

policies (Carlson et al., 2000; Ellerman et al., 2000). Politically, and in particular for the

United States, this regulatory tool is considered more palatable than comparable Pigouvian

tax schemes.

This backdrop has made cap-and-trade the centerpiece of U.S. domestic climate policy

efforts over the last decade. After a series of failed Senate cap-and-trade bills in the early

2000s, the Democratic-led 111th House of Representatives introduced the American Clean

Energy and Security Act in the spring of 2009. Known informally as the Waxman-Markey

bill after its primary sponsors, the legislation specified a declining annual limit on emissions

beginning in 2012 which would eventually cover 85% of greenhouse gas emitting sectors (see

Figure A.1).1 Waxman-Markey required that covered emissions decline by 17% in 2020, 42%

1While central to the Waxman-Markey bill, cap-and-trade was not the only component of the legislation.
Alongside emissions trading were supply-side interventions such as a renewable energy portfolio standard as
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in 2030, and 83% in 2050, all relative to 2005 levels.

Waxman-Markey contained two specific features that inform validity tests discussed later

in the paper. First, to further build political support for the policy, policy makers allowed a

large share of annual allowances to be freely distributed in the early years of the regulation.

In particular, manufacturing industries deemed both energy intensive and trade sensitive

were to be granted free allowances for the initial years of the policy.2 Second, Waxman-

Markey included provisions for trading with external cap-and-trade systems such as the

EU-ETS which would alter the supply of available allowances in these other systems.

The Waxman-Markey bill passed the House of Representatives on June 26, 2009, mark-

ing the first time cap-and-trade legislation had passed either Houses of Congress.3 Despite

President Obama’s support for a Senate bill with a similar cap schedule, prospects for cap-

and-trade declined shortly after House passage. With the exception of Republican Sena-

tor Lindsay Graham joining Senate cap-and-trade efforts on Nov 4, 2009, the rest of 2009

and 2010 witnessed the gradual demise of cap-and-trade. Prospects for cap-and-trade were

affected by the failure to reach a new binding international agreement at the UNFCCC

Copenhagen negotiations and further declined following Scott Brown’s Senate victory which

weakened the filibuster-proof supermajority needed by the Democrats. On April 23, 2010,

Senator Lindsay Graham withdrew support for cap-and-trade. Three months later, on July

22, 2010, a little over a year after House passage of Waxman-Markey, the Senate formally

dropped deliberation over a comparable cap-and-trade bill (see Appendix F for a summary

of these events). As prima-facie evidence that these events affected stock prices, Figure

1 plots the cumulative stock returns for several prominent companies during four of these

major events. These companies, which were the seven highest spenders on Waxman-Markey

related lobbying (see Table 5), generally exhibited negative abnormal stock returns on June

26, 2009 and Nov 4, 2009 and positive abnormal returns on Apr 23, 2010 and July 22, 2010.4

This politically turbulent period provides a suitable setting to study the market effects of

cap-and-trade regulation for two reasons. First, as documented above, political developments

well as demand-side interventions such as incentives for electric vehicles. This analysis, therefore, evaluates
the joint effect of cap-and-trade in conjunction with other components of Waxman-Markey.

2Specifically, Waxman-Markey deemed a 3-digit NAICS manufacturing or iron and steel production
related sector as eligible for free allowances if for that sector both 1) energy intensity (measured as cost of
energy inputs over total output) or carbon intensity (measured as 20 times sum of direct and indirect tons of
CO2 emissions over total output) was over 5% and 2) trade intensity (measured as sum of import and export
value over sum of output and import value) was over 15%. The number of free allowances were initially
set based on recent output levels and designed to decline in later years. Altogether, 60% of cumulative
allowances were to be distributed freely over the lifetime of the policy.

3In the bicameral U.S. legislative system, a piece of legislation must pass both Houses of Congress before
being sent to the President. Thus, passage of Waxman-Markey by the House of Representatives needed to
be followed by a similar cap-and-trade bill approved by a Senate filibuster-proof supermajority.

4General Motors returns were excluded because it was not continuously listed during period of interest.
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within this period provided large variation in cap-and-trade prospects from its peak in the

summer of 2009 to its eventual decline one year later. Second, in contrast to earlier periods

in which Congress considered several cap-and-trade bills simultaneously, the 111th Congress

only seriously deliberated over the Waxman-Markey bill and its Senate variant. Without

the potentially confounding effects of other climate and energy-related legislation, estimates

from this period should better reflect direct concerns over Waxman-Markey incidence.

3 Empirical methodology

3.1 Prediction market event studies

The typical prediction market contract is a bet on the realization of an event at a certain

date. When that date is reached, holders of a contract receive $1 if the event is realized

and zero otherwise with contract prices fluctuating within the unit interval prior to the

termination date.5 Under certain assumptions about prediction market participants,6 the

price of the contract can be interpreted as the real-time average market belief over event

realization. When combined with stock returns, prediction markets can be used in an event

study to estimate the abnormal returns attributed to that event.

The prediction market event study has two important advantages over traditional event

studies. In a traditional event study, market beliefs are not observed and so the researcher

must approximate the moment when markets first become aware of the possibility of an event.

This is typically manifested in the selection of an event window in which one assumes that

the probability of policy realization is 0 prior to the window. Any “fuzziness” in the release

of information may violate this assumption resulting in estimates that are sensitive to event

window selection as demonstrated in Snowberg, Wolfers and Zitzewitz (2007) and Snowberg,

Wolfers and Zitzewitz (2011) on the macroeconomic effects of U.S. presidential elections. To

avoid event window selection, Snowberg, Wolfers and Zitzewitz (2007) approximate market

beliefs using prediction market prices such that each trading day with an active prediction

market, known as an “event period”, is used to estimate abnormal returns.

The second and arguably more important advantage is that prediction market prices al-

low researchers to estimate abnormal returns for a probable event even if this event is never

5Actual Intrade contract prices range from $0 - $10. I normalize prices to match probabilities.
6Wolfers and Zitzewitz (2006) show that two assumptions are required in order for prediction market

prices to equal mean beliefs: 1) utility has a log form and 2) trader wealth and beliefs are independent. For
other standard utility functions, the divergence between prediction market prices and mean beliefs is shown
generally to be quite small when 1) traders are risk averse, 2) prices are within the $0.20− $0.80 range, and
3) the distribution of beliefs exhibit relatively low dispersion. In the case where trader wealth and belief are
correlated, the prediction market price reflects the wealth weighted average belief in the trading population.
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realized. As such, the use of prediction markets can transform event studies into a tool for

policy forecasting, a feature that is widely applicable to different policy issues but has thus

far been little explored in the literature (Wolfers and Zitzewitz, 2009; Snowberg, Wolfers and

Zitzewitz, 2012). There are, during any legislative period, a number of important policies

that fail to become law but whose costs remain of interest, perhaps to inform future legisla-

tive efforts. Prediction markets have been offered for recent efforts to reform immigration,

social security, and health care regulation in the U.S.7 The following section formalizes how

prediction markets can be used to forecast the cost to firms of a proposed climate policy.

3.2 Estimation framework

Let i = 1...L index a listed firm and denote the difference in discounted present value of

firm i at time t under Waxman-Markey and business-as-usual as ∆vit = vit(R)− vit(Ro) (see

Appendix A for the full theoretical framework). Unfortunately, neither is directly observed

because the U.S. government has never passed cap-and-trade legislation nor was the proba-

bility of cap-and-trade realization ever zero within the event period. Instead, at each date t I

observe the pair [ṽit, θt], denoting the actual market value of firm i and the prediction market

price. Observed market value lies between my two values of interest, that is ṽit ∈ [vit, v
o
it],

and is a function of the prediction market price.

To show this formally, suppose there are three policy states, p ∈ [w, a, o], indicating the

Waxman-Markey, alternative, and no-policy states respectively. For simplicity, I define the

alternative policy as all possible climate mitigation policies that are not Waxman-Markey and

should include a policy with identical abatement parameters but with a later implementation

date. Define the random variable qpt ∈ [0, 1] as the true average population belief at time t

that potential climate policy p will be realized. Applying the law of total probability for a

risk-neutral representative trader, I write:

ṽit = qwt vit + qat v
a
it + (1− qwt − qat )voit

where vait is firm value under the alternative policy. Thus, the observed market value of firm

i at time t is the expected value given uncertainty about climate policy passage. Defining

the effect of Waxman-Markey as γi =
vit−vo

it

vo
it

and likewise for the alternative policy effect, γai ,

results in:8

ṽit = voit(1 + γiq
w
t + γai q

a
t ) (1)

7A list of all Intrade prediction markets is available here:www.intrade.com/v4/reports/special/
all-intrade-markets/all-intrade-markets.xlsx

8The definition of the policy space implies that γi is time-invariant within the event period.
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Taking logs and first differences of Equation 1 yields an expression for stock returns, rit:

rit = ln(1 + γiq
w
t + γai q

a
t )− ln(1 + γiq

w
t−1 + γai q

a
t−1) + (ln voit − ln voit−1)

Note that for sufficiently small γiq
w
t + γai q

a
t , ln(1 + γiq

w
t + γai q

a
t ) ≈ γiq

w
t + γai q

a
t , and thus:9

rit = γi∆q
w
t + γai ∆qat + ∆ ln voit (2)

To obtain an econometric specification, I enlist the two assumptions. The first assumption

states:

Assumption 1 ∆θt is an unbiased estimate of ∆qwt

Assumption 1 allows for the prediction market price to be used as a proxy for average market

beliefs over Waxman-Markey realization. A second assumption states:

Assumption 2 E[∆θt∆q
a
t |∆ ln voit] = 0, within the event period

That is, changes in average market beliefs on Waxman-Markey prospects are uncorrelated

with beliefs over other plausible climate policy within the event period after controlling for

normal market performance. With Assumption 2, one can replace ∆qat with an error term

εit which together with Assumption 1 yields:

rit = γi∆θt + ∆ ln voit + εit (3)

I now discuss potential concerns with Assumptions 1 and 2 in my empirical setting.

3.3 Concerns about Assumption 1

Assumption 1 states that prediction market prices must be an unbiased proxy for average

market beliefs over Waxman-Markey realization. From May 1, 2009 to Dec 31, 2010,10 the

online trading exchange Intrade hosted a prediction market contract on the prospects of a

U.S. cap-and-trade system. This contract was titled: “A cap and trade system for emissions

trading to be established before midnight ET on 31 Dec 2010.” Intrade further defined this

contract by noting:

9During the event period, the average θt = 0.24 while the average estimated Waxman-Markey effect is
γ = −0.02. Average beliefs and effects for alternative climate policies are likely even lower. Such small
values allow the approximation to be reasonable. Econometrically, this results in attenuation bias.

10Intrade began offering this contract on March 25, 2009. However, trading began only on May 1, 2009,
which marks the start of the event period.
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“A cap and trade system will be considered established once federal legislation

authorizing the creation of such a system becomes law, as reported by three in-

dependent and reliable media sources. Emissions trading under the system does

not need to begin for the contract to be expired.”

Figure 2 plots the price time series for this contract. A price of $0.50 indicates that market

participants believed, on average, that cap-and-trade had a 50% chance of being realized

before the end of 2010. Each solid red line identifies a major political event mentioned

in Section 2 that had direct effects on the prospects of cap-and-trade passage in the U.S.

Senate. Dashed gray lines indicate events with indirect effects. Importantly, Figure 2 shows

that this prediction market was responsive to major cap-and-trade political developments

(see Appendix F for a summary of these events).

Two aspects of this prediction market has the potential to violate Assumption 1. First,

the contract describes a generic cap-and-trade system without explicit mention of Waxman-

Markey, its particular abatement levels, and associated auxiliary policies. However, one

can be reasonably confident that prediction market participants were reacting primarily to

Waxman-Markey. This is in part because President Obama explicitly supported a cap-

and-trade bill with a cap schedule similar to Waxman-Markey during the event period, a

point that was noted on Intrade’s cap-and-trade message board at the time.11 Furthermore,

whereas some details of a legislation can vary across House and Senate versions, important

features such as the abatement schedule are usually unaltered in order for the two bills to

be reconciled without additional floor votes. Thus, Senate efforts were likely constrained by

the abatement levels specified in Waxman-Markey.12

A second, and potentially more troubling concern, is the thinness of this market relative

to other prediction markets used in the literature. During the event period, 11,260 contracts

were traded for a total value of $190,000. An average of 30 contracts were transacted every

2 days. By comparison, the prediction market used in Snowberg, Wolfers and Zitzewitz

(2007) had an average of 129 trades for every 10-minute interval during election night.

Transaction-level data acquired privately from Intrade indicates that there were 143 unique

traders participating in the market.13 It also reveals the presence of two large volume traders.

11Intrade cap-and-trade message board available here: http://bb.intrade.com/intradeForum/posts/
list/4343.page

12Nonetheless, one cannot eliminate the possibility of Intrade participants betting on different cap-and-
trade systems. Indeed, a cursory examination of Intrade’s cap-and-trade message board reveals that some
participants, though perhaps not those involved in betting, thought sectoral-level emissions trading schemes
were more plausible in 2010.

13While Intrade does not provide information on where traders are located, Intrade has said in a public
letter to the U.S. CFTC that “our 82,000 plus membership are predominantly resident in the United States”
and that “78% of traffic to Intrade.com in the period 1 January to 30 June [2008] was from the U.S.” Available
here: http://www.intrade.com/news/misc/CFTC_Intrade_Comment_Reg_Treatment_Event_Mkts.pdf
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Figures A.3 and A.4 plot the buying and selling volumes of Large Traders 1 and 2 relative to

the total traded volume for the event period. Large Trader 1, a major buyer, was responsible

for 38% of all contracts sold before the contract expired. Conversely, Large Trader 2 was

responsible for 22% of all contracts purchased.

I address concerns over thin trading through specific estimation choices and tests. First,

my main point estimate uses only trading days with major political developments during

which trading volume was more than double the full sample mean (see Table 1). Second, all

my variables are differenced over 2-day intervals which allows for the dissipation of short-

term market overreactions and other transitory distortions. The use of longer time intervals

also account for Intrade prediction markets having later closing hours than the primary U.S.

stock exchanges as well as the occurrence of after-hours stock trading.14 In addition to

these estimation choices, I furthermore conduct a series of increasingly demanding statistical

tests that fail to detect the effects of price manipulation. Specifically, I show that my main

estimate is robust to interactions with trading volume, the presence of either large traders,

and the overall competitive bidding environment as captured by a Herfindahl index.

This confirms several lines of graphical evidence shown in Figures A.3 and A.4. First,

the direction of Intrade price fluctuations shown in Figure 2 for major event days intuitively

match the cap-and-trade implications of those political developments. In particular, Large

Trader 1’s buying activity could not prevent the fall in prediction market prices following

Senator Graham’s exit. Second, the buying and selling patterns of Large Traders 1 and 2

respectively do not appear to be consistent with active price manipulation. That is, one

would expect the buying volume of Large Trader 1 to be largest on the major event days, as

indicated by vertical dashed lines in Figures A.3 and A.4, and similarly for the selling activity

of Large Trader 2. With the exception of Senator Graham’s exit, the observed pattern of

transactions appears to suggest noise trading rather than price manipulation.

This stability of prediction market prices to the activity of individual traders is consis-

tent with several prior empirical findings. Camerer (1998) places temporary bets designed

to manipulate racetrack markets and concludes that successful long-term manipulation was

unlikely even when considering efforts to distort relatively thinly traded markets. A similar

conclusion is reached for both historical presidential betting markets (Rhode and Strumpf,

2004) and recent presidential prediction markets (Rhode and Strumpf, 2008). In particular,

Rhode and Strumpf (2008) find that experimental efforts to manipulate the 2000 Iowa Elec-

tronic Market during thinly traded moments and observed efforts to manipulate the 2004

14Intrade closing prices are observed 2am on weekdays and 3am on weekends. If after-hours stock trading
were to occur, the effect of information released after 4pm ET on trading days or over weekends would not
be picked up using observed daily returns.
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Tradesport market had effects that dissipated hours afterwards. Similarly, recent experimen-

tal work shows that price manipulators in prediction markets were unable to distort price

accuracy (Robin, Oprea and Porter, 2006) nor influence the beliefs of third party observers

(Hanson et al., 2011). A notable exception is Rothschild and Sethi (2013) who find evidence

of possible manipulation in the 2012 Intrade presidential prediction market.

A number of additional issues related to Assumption 1 are worth noting. Wolfers and

Zitzewitz (2006) show that with certain utility functions, a favorite-longshot bias and reverse

favorite-longshot bias can occur for prediction market prices below $0.20 and exceeding $0.80

respectively. To address this concern, my estimation sample uses only trading days when

prediction prices lie between $0.20-$0.80. Assumption 1 would also be violated if prediction

market prices reflect some degree of concern over contract expiration prior to the expected

realization of the event. In Section 4.2, I discuss an adjustment procedure using a similar

2009-expiring Intrade market to correct for impending contract expiration.

3.4 Concerns about Assumption 2

Assumption 2 requires that prediction market prices are uncorrelated with alternative climate

policies after controlling for normal market performance. However, there is trade-off between

identification and precision in finding suitable proxies for normal market performance when

prediction markets are thinly traded. To see this, suppose I write ∆ ln voit = αi + βiηt. The

most natural procedure for estimating the aggregate effect is to run the following value-

weighted time series regression on aggregate market returns:

mktt = α̃ + β̃ηt + γ̃∆θt + εt (4)

where mktt =
∑

i
vo

iP
i v

o
i

rit, and β̃ =
∑

i
vo

iP
i v

o
i i

βi and voi is average firm value under the no-

policy scenario. The aggregate coefficient of interest is γ̃ =
∑

i
vo

iP
i v

o
i

γi, which is the aggregate

value-weighted effect of Waxman-Markey across all firms. However, as Roll (1977) has noted,

ηt is not directly observed. Instead, one can run the following feasible bivariate time series

regression:

mktt = α̇ + γ̇∆θt + ε̇t (5)

Observe that because normal market performance is excluded in Equation 5, estimates of γ̇

will typically suffer from omitted variable bias unless one has cause to believe cov(ηt,∆θt) =

0. This assumption may be plausible during the night of a presidential election which allows

Snowberg, Wolfers and Zitzewitz (2007) to run bivariate regressions similar to Equation 5

at 10-minute intervals. Thin trading in the cap-and-trade prediction market prevents me

from using high-frequency returns during major event periods. Instead, I estimate Equation
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5 using 2-day returns for the five days with major political developments directly affecting

Waxman-Markey prospects as discussed in Section 2 and shown in Figure 2. Table 1 provides

summary statistics for various indicators of cap-and-trade interest for both the full event

period and the subset of major event days. The average absolute 2-day change in Intrade

price during these five days is three times larger than changes across the full sample. When

examining changes in media and internet interest, Google news headlines and Google search

volume indicating “cap-and-trade” jump by over 9% and 1% in weeks when major events

occurred compared to the full sample average of 3% and -0.002% respectively.

While point estimates from Equation 5 may be unbiased during these major events,

precision of my estimates is low given the small sample size. To increase precision of my

estimates, I also perform firm-level regressions for the entire event period with benchmarks

for normal market performance to mitigate concerns about omitted variable bias in the full

sample. A firm-level approach would also allow me to explore heterogeneity of Waxman-

Markey effects across firms. My general firm-level specification is:

rit = γi∆θt + Ftβi + εit (6)

where Ft is a vector of controls for normal market performance discussed below. I estimate

Equation 6 for all firms continuously listed on NYSE, AMEX, and NASDAQ during the

policy period.15 However, with over 5,000 listed firms, panel regression of Equation 6 requires

joint estimation of between 10,000 - 20,000 parameters depending on the controls for normal

market performance which is computationally demanding. Instead, I estimate Equation 6

firm-by-firm using a seemingly unrelated regression (SUR) model and report both the equally

and value-weighted average effect for all listed firms.16 In the standard SUR framework,

errors are correlated across firms but are iid over time and block homoscedastic.17 Thus,

the resulting standard errors are not robust to serial correlation and heteroscedasticity. To

address this concern, I also perform panel regressions for a random subsample of firms

imposing both heteroscedastic-robust and sector-level clustered standard errors to examine

whether the SUR error structure is too restrictive.

I use several benchmarks for normal market performance because none is ideal on its

own. The finance literature provides two standard benchmark models. The CAPM model

includes a firm fixed effect and an aggregate market return index. The seminal work of

Fama and French (1993) advises the use of returns from a value-based portfolio and a size-

15I exclude firms that are not continuously listed during this period because firm entry and exit in response
to cap-and-trade regulation is not explicitly modeled.

16In a system of equations, if regressors are identical, firm-by-firm SUR is identical to systems GLS and
achieves any efficiency gains provided by GLS (see (Greene, 2003, p. 341-344))

17Specifically, denoting Σ as the NTxNT variance-covariance error matrix from Equation 6, the element
σit,js = E[εiε′j |Ft] ∀ t = s and 0 otherwise.
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based portfolio as additional controls in a 3-factor model to account for common risk factors

associated with book-to-market ratio and firm size. These two standard models, however,

have one major drawback in this context. An implicit assumption in event studies is that

benchmark controls are not affected by the treatment of interest. While this may be likely

for firm or sector specific treatments, cap-and-trade is expected to affect the entire economy.

It is therefore possible that changes in Waxman-Markey prospects directly affect bench-

mark indices in the CAPM and 3-factor Fama-French models in the same direction as most

firms which would bias my estimates towards zero. To address this concern over treatment

spillover, I employ separate benchmarks using the value-weighted returns of listed firms with

low carbon intensity. Specifically, I construct value-weighted indices for all firms in 6-digit

NAICS sectors in which 2006 carbon intensity from own operations and inputs was below

0.05, 0.10, and 0.15 mton CO2 per billion dollar output.18 Controlling for the performance

of low carbon intensive firms would also provide a cleaner control for the no-policy scenario

if one believes that the prospects of alternative climate policies are priced into aggregate

benchmarks used by the CAPM and 3-factor Fama-French models. However, low carbon

intensive benchmarks may also be problematic. First, abnormal returns relative to the per-

formance of low carbon intensive firms would not eliminate all treatment spillover if low

carbon intensive firms experience any pecuniary effects of cap-and-trade through changes in

input and output prices. Furthermore, low carbon intensity benchmarks constructed from a

specific subset of firms may not fully capture common risk factors that are correlated with

cap-and-trade prospects leading to omitted variable bias.

In light of these empirical limitations, I rely on multiple lines of evidence to obtain

identified and precise estimates. My aggregate time series approach following Equation

5 using major event days provides arguably unbiased point estimates but at the cost of

low precision. On the other hand, my full sample, firm-level SUR approach using various

benchmarks for normal market performance provides potentially precise estimates that may

be biased due to treatment spillover and omitted variables. If, however, point estimates from

both approaches are similar, it is possible that my second approach provides estimates that

are both identified and precise.

4 Listed firms: prediction market event study

This section presents event study results for listed firms (see Appendix E for a data sum-

mary). First, I show estimates from the aggregate time series regression on major events and

18There are 5, 23, and 82 6-digit NAICS sectors that are below 0.05, 0.10, and 0.15 carbon intensity in
2006.
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firm-level SUR regressions for the full event period. Next, I provide a series of robustness

results testing the validity of Assumptions 1 and 2. Finally, as further validation checks

checks, I present a series of tests designed to detect market behavior in response to specific

features of the Waxman-Markey bill and to climate policy incidence in general.

4.1 Main result

Table 2 shows the equally-weighted average effect, value-weighted average effect, and total

aggregate cost of the Waxman-Markey bill for all continuously listed firms on NYSE, AMEX,

and NASDAQ from May 01, 2009 to December 31, 2010. All variables are in 2-day intervals

to address possible concerns about price volatility, investor overreaction, price manipulation,

and the different closing hours for stock and Intrade markets. To avoid favorite-longshot

bias and reverse favorite-longshot bias in the prediction market prices, I only include trading

days for which θt ∈ [0.2, 0.8].

In Panel (a), I estimate a time series regression of aggregate market returns on the

difference in prediction market price following Equation 5. The sample includes only the five

major events with political developments that directly affected Waxman-Markey prospects

and are plausibly uncorrelated with macroeconomic shocks.19 My point estimate shows that

had Waxman-Markey been implemented, listed firms would have lost a total of $160 billion.

However, because the time series is conduct over a small sample, precision of these estimates

are low.

To obtain more precise estimates, I estimate firm-level SUR regressions using Equation

6 in Panel (b) of Table 2 with different benchmarks for normal market performance. In

Rows (2) and (3), I use the standard CAPM and 3-factor Fama-French models. To address

concerns about treatment spillover, in Rows (4)-(6) I use benchmarks constructed from the

value-weighted returns of listed firms with carbon intensity below 0.05, 0.10, and 0.15 mton

CO2 per billion dollar output.

All models in Panels (b) show negative and statistically significant effects. Across the

five models, the equally-weighted average effect for listed firms range from -1.4% to -2.2%

while the value-weighted effect range from -0.66% to -0.1%. This translates to a total cost

ranging from -$120 to -$190 billion with a mean of -$150 billion. A few points are worth

noting. The CAPM model yields slightly greater losses than the 3-factor Fama-French model

19These special events, corresponding to the red vertical lines in Figure 2, were 11/4/2009, 12/20/2009,
1/27/2010, 4/23/2010, and 7/22/2010. I exclude the day of Waxman-Markey passage, 6/26/2009, because
prediction price activity in response to that event occurred entirely over the weekend during which stock
markets were closed. The events marked with dotted gray lines in Figure 2 likely affected the prospects of
other policies in addition to cap-and-trade and thus are excluded. See Appendix F for a summary of these
events.
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but do not fall outside the latter’s 95% confidence interval. This suggests that cap-and-

trade prospects may be positively correlated with the profitability of small market cap and

high book-to-market firms. As discussed in Section 3.2, treatment spillover using standard

models of normal market performance may lead to estimates that are biased towards zero.

Benchmarks based on the performance of low-carbon intensive firms help partially alleviate

concerns over treatment spillover but possibly at the cost of introducing omitted variable

bias. Indeed, estimates in Rows (4)-(6) using low-carbon intensity benchmarks exhibit larger

losses than those shown in Rows (1) and (2) thought this difference is small with estimates

in Rows (4) and (5) being within the confidence interval of the estimate from the 3-factor

Fama-French model.

The critical comparison is between the point estimates in Panels (a) and (b). The simi-

larity in point estimates between the aggregate approach for major events and the firm-level

approach for the full sample suggests that the aforementioned tradeoff between identifica-

tion and precision is addressed by the joint presentation of these two estimation approaches.

Finally, Figure A.2 presents the 3-factor Fama-French model result in a scatterplot of abnor-

mal returns averaged across all firms against the change in prediction market price. It shows

that abnormal returns are roughly linear in prediction market changes within the support

of observed prediction price changes.

I now turn to a few important points regarding the standard errors shown in Table 2.

While the point estimates are similar across the two approaches, standard errors are much

lower for the firm-level regressions in Panel (b). There are three possible reasons for this

difference in estimation precision. First, models in Panel (b) have a larger sample size.

Second, the firm-level SUR estimation procedure in Panel (b) explicitly models the variance-

covariance error structure across firms. Garrett (2003) and Veredas and Petkovic (2010) have

shown that the firm-level regressions can result in different standard errors from aggregate-

level regressions in the presence of non-zero covariance in the error structure across firms.

In particular, if the sum of the covariance terms are positive as is the case with each SUR

model in Panel (b), estimates from firm-level regressions would have greater precision than

those from aggregate regressions. Finally, models in Panel (b) include controls for normal

market performance which also increases estimation precision. In Appendix C, I detail a

numerical simulation procedure to determine the relative contribution made by each of these

three statistical properties and find that 85% of the difference in the uncertainty between

the two methods can be attributed to increased sample size from 5 to 111 days.

Within Panel (b), it is apparent that standard errors from the equally-weighted average

effect is much larger than standard errors from the value-weighted affected, or identically from

the estimated total cost which is the product of the value-weighted effect and market value.
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Figure A.5 plots the estimated mean squared error for each firm against its market value

showing that larger firms tend to have less volatile residual stock returns as is expected given

that large cap firms tend to be more heavily traded. This implies that the equally-weighted

average effect, which does not scale estimates by firm size, would overstate the aggregate

uncertainty. Finally, Section 3.2 noted concerns about block heteroscedasticity and serial

correlation in SUR standard errors. In Table A.1, I conduct a joint panel regression for a

2% random sample of firms allowing for heteroscedastic- and cluster-robust standard errors

at the 3-digit NAICS level. The latter allows arbitrary forms of cross-sectional and serial

correlation within the same 3-digit NAICS sector. I find that concerns over a restrictive

SUR error structure are not warranted as the alternative standard errors displayed in Table

A.1 are similar to SUR standard errors in Table 2. Furthermore, it appears that 3-digit

NAICS clustered standard errors yield more precise estimates possibly due to the presence

of negative cross sectional and serial correlation within a 3-digit NAICS sector.

4.2 Testing Assumption 1

In this section, I present the equally-weighted average Waxman-Markey effect for all listed

firms. My robustness results will be compared against the SUR regression using the 3-

factor Fama-French benchmark model as shown in Row (3) of Table 2. The sample is again

restricted to just trading days in which θt ∈ [0.2, 0.8].

Assumption 1 fails when prediction market prices are a biased estimate of the average

market belief over Waxman-Markey realization. Table 3 presents a sequence of tests designed

to explore whether thin trading and price manipulation might generate bias. Column (1)

replicates the main result. To examine whether thin trading affects my estimates, I restrict

the sample in Column (2) to days in which trading volume exceeded the sample mean and

find that the point estimate is little affected. In Column (3), I conduct a less arbitrary test

by interacting the daily trading volume with the prediction market variable. The interacted

coefficient is small and statistically insignificant while the uninteracted coefficient becomes

slightly smaller in magnitude.

As an initial test of price manipulation, I restrict in Column (4) the sample to just trading

days in which neither Large Traders 1 nor 2 were participating in the prediction market.

While the sample size drops by one-third, the Waxman-Markey effect falls within the 95%

confidence interval of my main result. Simply examining days without the involvement of

Large Traders 1 and 2, however, does not preclude other trading days in which the market

was dominated by relatively few traders. Using transaction-level data with unique trader

16



identifiers, I construct a daily buyer-based normalized Herfindahl-Hirshman Index (HHI).20

This index captures the relative competitiveness of the prediction market for any given

day. In Column (5), I restrict the sample to just days with HHI<0.25. The standard error

for Column (5) is large as the sample is reduced to only 9 days but the point estimate is

similar to my main result in Column (1). The HHI cutoff used in Column (5) is nonetheless

arbitrary. My final and most stringent test interacts the prediction market variable with the

daily HHI. The uninteracted prediction market term in Column (6) can be interpreted as the

average effect of Waxman-Markey after removing the influence of prediction market bidding

competitiveness. The Waxman-Markey effect in Column (6) is larger, but still within the

95% confidence interval of my main result in Column (1). However, because the interacted

coefficient is not statistically significant, one cannot rely on the functional form modeled

used in Column (6).

Another possible violation of Assumption 1 concerns Intrade contract expiration. The

cap-and-trade prediction market used for this analysis expired on December 31, 2010, regard-

less of whether cap-and-trade regulation were to eventually pass Congress. Thus, while the

prospects of cap-and-trade realization might indeed be declining in 2010, a component of the

price movements shown in Figure 2 might also reflect expectations that policy realization

is unlikely to occur before the end of 2010. In practice this was unlikely, as any legisla-

tion, having failed in the current Congress, is rarely reintroduced with identical features

in a subsequent Congress. However, it is difficult to ascertain whether markets expected

Waxman-Markey prospects to exist following the end of the 111th Congress. If so, a bias is

introduced between the prediction market price and average market beliefs which increases

as the expiration date nears. In Appendix B, I detail an adjustment procedure to separate

average market beliefs, the true variable of interest, from concerns over contract expiration.

This procedure uses information from a similar Intrade prediction market with an earlier

expiration date at the end of 2009 (see Figure A.6). Under certain assumptions, I can use

the period of overlap between the 2009 and 2010 expiring contracts to separate the effects

of concerns over contract expiration with the true market belief in cap-and-trade prospects.

In Table A.2, I find that adjusting for contract expiration yields a coefficient similar to

my main result. While using the adjusted prediction market price in general yield smaller

effects, they fall well within the uncertainty of my main results shown in Table 2. This

is because whereas the adjustment procedure illustrated in Figure A.8 inflates prediction

market price levels to account for concerns of impending contract expiration, much of this

20Formally, for trading day t, there are j = 1...Jt traders each purchasing sjt share of all contracts
transacted that day. The normalized Herfindahl-Hirshman Index is H∗t = Ht−1/Jt

1−1/Jt
where H is the Herfindahl-

Hirshman Index, Ht =
∑
j s

2
jt.
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adjustment is already removed from the unadjusted prediction market price after the data

was first-differenced.

4.3 Testing Assumption 2

Assumption 2 requires that Waxman-markey beliefs, as approximated by prediction market

prices, are uncorrelated with alternative climate policies after controlling for normal market

performance. As discussed in Section 2, cap-and-trade dominated climate policy debates in

the United States during the event period. Figure A.9 plots the number of U.S. news article

compiled by Google that contained the term “cap-and-trade” and terms capturing several

alternative climate policies during the event period.21 Observe that the U.S. media cited cap-

and-trade far more than alternative climate policies during the event period. However, it

also appears that media interest in cap-and-trade declined in 2010 as coverage of alternative

policies intensified.

To see whether this poses a violation of Assumption 2, I augment the controls for normal

market performance to include indices that possibly capture the contemporaneous prospects

of alternative climate policies in Table 4. Column (1) replicates my main result. Column

(2) shows that the estimated Waxman-Markey effect is unperturbed by the inclusion of

a linear trend, suggesting that first-differencing effectively removes common trends in the

data. 2009-2010 was a particularly volatile period for oil prices, witnessing both a historic

high and decline in global prices. Given the tight coupling between oil prices and carbon

emissions, one might be concerned that prediction market prices were driven by daily oil

price movements. In Column (3), I include oil price returns as a control which has little

effect on the coefficient of interest. In Column (4), I control for beliefs over alternative

climate policies by including changes in the frequency of alternative climate policy headlines

from Google News as shown in Figure A.9. These controls have little effect on the coefficient

of interest. Finally, in Column (5) a kitchen sink regression is performed using a vector of

monthly macroeconomic indicators commonly used in the finance literature to predict the

aggregate market risk premium (see Welch and Goyal (2008)).22 Unsurprisingly, given the

known low predictive power of these variables, the estimated effect differs little from Column

(1).

21Google News tabulates any news articles containing a particular term of interest. Thus, it is possible
that an article about “cap-and-trade” would also include mention of “energy policy”.

22Due to computational limits, I am unable to control for the entire set of Welsh-Goyal variables, instead
only choosing those with predictive power (Welch and Goyal, 2008). These controls include the variance
of returns on the S&P 500 (svar), the book-to-market value of the DJIA (bm), the long-term yield (lty)
and rate of return (ltr) on U.S. government bonds, a 12-month moving sum of net NYSE issues over total
capitalization (ntis), and inflation from the CPI (infl).
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Previous prediction market event studies noted concerns about reverse causality with

time series analyses (Snowberg, Wolfers and Zitzewitz, 2011). My panel approach partly

addresses this concern by removing common risk factors. Table A.3 explores this further by

adding lead and lag terms to my 3-factor Fama-French specification. Across all models, my

main result attenuates slightly but remain statistically significant at the 5% level. Column

(1) replicates my main result while for Column (2) a 1-period lagged return is included and

is not statistically significant. This result also mitigates concerns about serial correlation in

the residuals. Column (3) includes a lagged prediction market term which is not statistically

significant suggesting that markets incorporate information on policy prospects within a 2-

day window, obviating the need for longer return intervals. In Column (4), a lead prediction

market term is not statistically significant implying there is no evidence of stock markets

anticipating future prediction market activity.

Finally, in Table A.4, I consider different trading day subsamples. Figure A.9 and In-

trade’s message board suggest that media and investor beliefs over alternatives climate policy

prospects were increasing at the start of 2010 as Waxman-Markey beliefs were declining, pos-

sibly violating Assumption 2. In Columns (2) and (3), I estimate my model for trading days

in 2009 and 2010 showing that the coefficient is relatively stable across the two years. In

Columns (4) and (5), I test whether market participants responded asymmetrically to the

direction of prediction market changes by restricting the sample to trading days in which

∆θt ≥ 0 and ∆θt < 0 respectively. I find no evidence of asymmetric effects and is consistent

with the linear response shown in Figure A.2.

4.4 Additional validity tests

This section presents a series of validity checks for my prediction market approach. In

particular, I combine my firm-level prediction market estimates of Waxman-Markey costs

with additional data to detect patterns of behavioral response that are consistent with climate

policy incidence in general and with specific features of the Waxman-Markey bill.

Expenditures on Waxman-Markey lobbying

The magnitude, scope, and distributional consequences of U.S. climate policy has led some

observers to call the associated rent-seeking activity as the “sum of all lobbies.”23 Follow-

ing Becker (1983)’s political competition framework, there may exist an influence function

relating political lobbying and the equilibrium level of subsidy or tax a firm receives from a

23For example: http://e360.yale.edu/feature/an_army_of_lobbyists_readies_for_battle_on_
the_climate_bill/2131/
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redistributive policy such as cap-and-trade. Moreover, the marginal effect of lobbying may

be symmetric - that is, in equilibrium, an increase in subsidies from additional lobbying by

a policy winner should equal the decrease in taxes resulting from additional lobbying by a

policy loser.

To test this framework, I identify all firms that have explicitly lobbied on Waxman-

Markey and related climate bills during the 111th Congress as indicated in lobbying records

collected by the Senate Office of Public Records.24 Special care was taken to drop lobbying

firms, trade organizations, and advocacy organizations that lobbied on Waxman-Markey but

represent industry-level interests and not that of individual firms.25 These records reveal

that 459 separate firms lobbied on Waxman-Markey of which 234 were listed firms. Overall,

$1.5 billion worth of lobbying records indicated Waxman-Markey lobbying.26 Table 5 lists

the firms with the highest lobbying expenditure which as expected is dominated by energy

intensive firms. I then estimate the following regression in Table 6:

log
∣∣∣γ̂iv̂oi ∣∣∣ = α + η logLobbyExpensei + cs + µis (7)

where γ̂i is the estimated effect of Waxman-Markey from Section 4 and v̂oi is the predicted

market value under business-as-usual.27 An absolute value operator was applied to en-

sure that an elasticity can be computed for firms that lose value under Waxman-Markey.

LobbyExpense is the total amount spend lobbying on Waxman-Markey and cs are 3-digit

NAICS sector fixed effects. Column (1) of Table 6 estimates the marginal returns to lobby-

ing for firms estimated to gained value under Waxman-Markey while Column (2) presents

the estimate for firms that lose value under the policy. Interpreting the cross-sectional elas-

ticities, a 1% increase in lobbying expenditures is associated with a 0.36% increase in the

cap-and-trade subsidy for positively affected firms. Conversely, a 1% increase in lobbying

24Each lobbying form indicates the lobbying institution (a private company if internal lobbying or lobbying
firm if external lobbying), the client served, names of lobbyists employed, a list of lobbying issues, and the
total amount paid by the client to the lobbying institution (see Appendix E for further details). To isolate
cap-and-trade related lobbying, I extract the names of clients from lobbying records that indicate either
H.R. 2454, H.R. 587, H.R. 2998, S.1733, or S.1462 in the “specific lobbying issues” entry on the lobbying
form. If multiple issues are noted on a lobbying form, total lobbying expense will include all issues. This
would mean that not all amount indicated was spent on cap-and-trade lobbying. However, a spot check of
lobbying records showed that most forms noting cap-and-trade lobbying largely included issues that were
closely related.

25In general, it is difficult to identify which firms are associated with certain trade or advocacy or-
ganizations. Fortunately, expenditures by trade and advocacy organizations constitute only 5% of total
Waxman-Markey lobbying expenditures.

26Because of the structure of the lobbying records, it is unclear if $1.5 billion was spent only lobbying on
Waxman-Markey. For the purposes of this analysis, what matters is the order of lobbying expenses for firms
and not its actual value.

27Obtained by rearranging Equation 1 so that v̂oi = eVi

θγ̂i+1
, where the bar denotes the average over the

event period.
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expenditures is correlated with a 0.45% decrease in the cap-and-trade tax for negatively

affected firms. Consistent with Becker (1983), the marginal returns to lobbying is not sta-

tistically different for winners and losers. Column (3) presents the pooled estimate for all

listed firms that lobbied. Figure 3 plots the pooled relationship for all listed firms.

Regression Discontinuity at 5% energy intensity

As discussed in Section 2, Waxman-Markey granted free allowances to manufacturing sec-

tors with historical energy intensity greater than 5%. Using 6-digit NAICS energy intensity

data from the NBER-CES database, I examine whether there is a discontinuity in estimated

Waxman-Markey effects at 5% energy intensity. Figure 4 provides graphical evidence by

plotting my estimated Waxman-Markey effects as local polynomial functions of energy in-

tensity on both sides of the 5% cutoff suggesting that a discontinuity exists. Sectors with

energy intensity slightly higher than 5% experience greater abnormal returns from the ex-

pected allocation of free allowances than sectors with energy intensity immediately less than

5%. A density continuity test using the McCrary (2008) procedure do not find a discontinu-

ity in the distribution of firms at the 5% cutoff (not shown) suggesting that markets did not

expect firms to sort around the discontinuity. Turning to regression results, Table 7 shows

estimates from the following local linear model for manufacturing firm i in sector s within

various bandwidths around the cutoff value:

γ̂is = α1+α21[EnIntis > .05]+α3(EnIntis−.05)+α41[EnIntis > .05](EnIntis−.05)+cs+µis

(8)

where EnIntis is the 6-digit NAICS energy intensity matched to the firm, and cs are 3-

digit NAICS fixed effects. Standard errors are clustered at the 6-digit NAICS level. The

discontinuity of interest is captured by α2 and is displayed in Table 7. In Column (1),

I estimate a discontinuity of 6% regardless using the optimal bandwidth selected by the

Imbens and Kalyanaraman (2012) procedure. In Columns (2)-(5) I estimate Equation 8

for a range of bandwidths and find coefficients that do not differ statistically from Column

(1).28 Furthermore, placebo tests shown in Figure A.11 indicates that discontinuities are

not present at other energy intensity cutoffs. Remarkably, detection of this discontinuity in

my firm-level estimates suggests that market participants were anticipating the benefits of

free allowance distribution in their valuation of Waxman-Markey effects. This result is also

consistent with Bovenberg and Goulder (2001) who modeled that firm profit neutrality can

28The standard errors presented in Table 7 do not explicitly use the uncertainty associated with my
estimated Waxman-Markey effects. Regressions using a parametric bootstrap procedure drawing from the
estimated variance-covariance matrix of Waxman-Markey effects were also conducted. Resulting standard
errors are nearly identical to those shown in Table 7.
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be preserved in a cap-and-trade system by freely allocating only 15% of historical emissions

for the oil and gas industry and only 4.3% for the coal industry.

Other dimensions of heterogeneity

I now consider other heterogeneous effects that are anticipated for climate policies in general.

To motivate my analyses, consider the following static profit function at the optimal emissions

level e∗i :

v∗i = pqi(e
∗
i )− Ci(qi(e∗i ), w) + τ(Afi − e∗i ) (9)

where Ci() is a cost function separable in output qi and input prices wi with ∂Ci

∂qi
> 0 and

∂Ci

∂wi
> 0. The marginal impact of cap-and-trade on profits can be obtained via the envelope

theorem:

dv∗i
dτ

= − ∂Ci
∂w

dw

dτ︸ ︷︷ ︸
input costs

+ qi(e
∗
i )
dp

dτ︸ ︷︷ ︸
pass-through

+ Afi︸︷︷︸
allowances

− e∗i (10)

Cap-and-trade affects profit through changes in input and output prices. The first term,

which is negative, suggests that firms with carbon and energy intensive inputs would exhibit

greater losses. The second term summarizes the pass-through effect. Firms that can pass-

through a greater portion of regulatory costs onto output markets should experience lower

losses. High pass-through is captured directly by a low elasticity of demand or indirectly

by low rates of import penetration. The third term captures the positive effect from the

distribution of free allowances already explored above. Equation 10, however, does not

capture the regulatory exposure of a firm with both domestic and international revenue.

Intuitively, all else equal, firms with a greater share of exposure to U.S. output markets

would experience greater losses than firms with higher international market exposure.

I first explore aggregate sectoral heterogeneity before examining whether specific patterns

conform to the predictions in Equation 10. Table A.5 displays the equally-weighted and

value-weighted Waxman-Markey effect for each 2-digit NAICS sector. As expected, large

negative, though not statistically significant effects, are observed for the mining, utilities, and

construction sectors. Statistically significant and large negative effects are experienced by

the information, finance, real estate, management, waste remediation, and accommodation

sectors. However, the average effect for the manufacturing sector is small possibly due to

the allocation of free permits already discussed.

Carbon and energy intensive sectors have cap-and-trade sensitive input costs and should

experience higher relative losses. Unfortunately, carbon intensity cannot be easily compared

22



across 2-digit NAICS sectors.29 For more valid comparisons, I examine 3-digit NAICS manu-

facturing sub-sectors for which I observe both average carbon and energy intensity. Figure 5

plots coefficients estimated separately for each 3-digit NAICS manufacturing sector against

average carbon intensity, defined as mton of CO2 per billion output, obtained from the U.S.

Department of Commerce for 2006. A clear negative relationship is shown. A similar rela-

tionship is shown in Figure A.10 using average energy intensity, which is defined as cost of

energy inputs over value of total output and is provided by the NBER-CES Manufacturing

Industry Database for 2005. Table 8 supports this evidence showing analogous firm-level

regression results. Coefficients are unaffected by the inclusion of 2-digit fixed effects in

Columns (2) and (4). Interpreting these coefficients, a one unit increase in CO2 per billion

output increases the estimated Waxman-Markey effect by 3%. Similarly, a one percentage

increase in energy input share increases the estimated Waxman-Markey effect by about 30%.

It is likely that this relationship has been muted by distribution of free allowances for some

energy intensive sectors as already discussed.

Equation 10 indicates that cap-and-trade effects are lower for firms that pass-through a

greater share of regulatory costs onto output markets. One proxy for pass-through is the

import share for a firm’s output market. All things equal, higher import shares imply lower

pass-through rates as households can more readily substitute regulated domestic goods with

unregulated international goods. In Table A.6, I estimate the average Waxman-Markey effect

separately for firms with different 4-digit NAICS import shares. All estimated firm effects

are first demeaned at the 3-digit NAICS level. While the standard errors are large given the

reduced sample size, point estimates in Table A.6 for each 10% import share bin display a

generally negative relationship. That is, sectors with higher import shares experience greater

losses from Waxman-Markey incidence.

A U.S. climate policy should have different effects for firms operating primarily in the U.S.

than firms with more internationally oriented portfolios. The absence of equally stringent

climate regulation in other major emitting countries, cap-and-trade regulation in the U.S.

will have either zero or even slightly positive effects for firms with greater non-U.S. market

exposure in the presence of regulatory leakage. Table A.7 estimates the average effects for

firms within different bins of average U.S. revenue share in 2009-2010 after removing 3-

digit NAICS means.30 Columns (1)-(4) show estimates for bins widths of 0.25. Column (5)

includes firms with only US-based revenue. Point estimates generally decrease with increased

U.S. market exposure though coefficients are not significant due to the reduced sample size.

29In most standard carbon accounting frameworks, emissions associated with the utilities sector are
considered indirect emissions and thus not comparable to direct emissions generated by other sectors.

30I use firm-level geographic business segment data which subdivide firms into country and region-specific
segments allowing construction of a U.S. market exposure index.
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Interestingly, firms with low U.S. product market exposure in Column (1) yield small positive

effects hinting at potential gains due to international leakage of a U.S. cap-and-trade policy.

Differential effects on EU-ETS futures

My final validity check aims to detect the effects of prediction market prices on interna-

tional carbon allowance prices. Waxman-Markey permitted limited external trading with

the EU-ETS at the start of the policy in 2012. Because the EU has both a more stringent

abatement schedule than Waxman-Markey and greater price distortions due to conflicting

energy policies, it was believed that the EU-ETS would be a net buyer of U.S. allowances

starting in 2012 if Waxman-Markey was implemented (EPA, 2009). Thus, one may expect

U.S. cap-and-trade prediction market prices to have a negative effect on EU-ETS futures

delivered on and after 2012 and not on 2011 futures.31

In Table 9, I test whether changes in the prediction market price has differential effects

on EU-ETS futures with different vintages. Specifically, I regress the percent change in the

spread between EU-ETS spot and futures on the change in prediction market price for fu-

tures to be delivered at the end of 2011, 2012, 2013, and 2014. Following the reasoning in

Section 3.4, I only use the subsample of major event days for which unbiased estimation is

more plausible. I do not find that changes in prediction market price has an effect on 2011

EU-ETS futures relative to the spot price in Column (1). In Column (2), I find that changes

in prediction market price has the anticipated negative effect on 2012 EU-ETS futures rela-

tive to the spot price. While this coefficient itself is not statistically significant due to the

small sample size, a seemingly unrelated regression comparison across models shows that the

coefficient in Column (2) is statistically different from that of Column (1). The coefficient for

EU-ETS futures for 2013 and 2014 are similar to that for 2012 futures. This differential re-

sponse to prediction market prices between pre-2012 and post-2012 EU-ETS futures provides

further evidence that the Intrade prediction market had relevant informational content.

5 Unlisted firms: bounding analysis

It is unlikely that cap-and-trade would only affect publicly listed firms. Cap-and-trade should

alter the profitability of firms regardless of ownership structure. The challenge, however, is

that the market value of unlisted firms is typically not observed.

31In practice, the EU-ETS allows borrowing of future allowances to meet current compliance obligations
implying that any post-2012 supply shocks should also affect pre-2012 futures. However, the amount of
borrowing permitted is limited across periods.
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My particular solution employs the Congressional lobbying expenditures already detailed

in Section 4.4 which revealed the Waxman-Markey lobbying expenses of 225 unlisted firms.

Having already estimated the lobbying influence function for listed firms, my procedure

amounts to projecting that relationship onto unlisted firms for whom I observe lobbying

expenditure but not cap-and-trade effects. However, whereas for listed firms I can separate

between policy winners and losers, I am unable to do so for unlisted firms. This implies that

lobbying expenditure may reveal the magnitude of cap-and-trade costs borne by unlisted

firms but it does not indicate the effect sign. Without knowing the distribution of positive

or negative effects borne by unlisted firms, the conservative approach is to assign costs to be

either positive or negative for all unlisted firms.

5.1 Partial identification framework

I formalize this exercise by adopting the partial identification framework with non-random

missing outcomes introduced by Manski (2003). Continuing with prior notation, I describe

L listed and U unlisted firms, with N = L+ U , by the random variables (∆v, Z,X), where

∆v is the cost of Waxman-Markey, Z is a binary variable equaling unity if a firm is listed

and X is a scalar denoting lobbying expenditures on Waxman-Markey in a space Ω ⊂ R≥0.

∆v is only observable when Z = 1. The total cost of the policy is:

N · E[∆v] = E[∆v|Z = 1] · L+ E[∆v|Z = 0] · U (11)

E[∆v|Z = 0] is not observed. Importantly, in this context and others, it would be unreason-

able to assume that E[∆v|Z = 0] = E[∆v|Z = 1]. That is, the distribution of cap-and-trade

costs differs for listed and unlisted firms. One could bound E[∆v|Z = 0] using the empiri-

cally observed lower bound, ∆v = minZ=1 ∆v, and upper bound, ∆v = maxZ=1 ∆v, for listed

firms such that ∆v ≤ E[∆v|z = 0] ≤ ∆v. However, as Lee (2009) has argued, in applications

where the range of observed costs are large, this “worst-case” scenario procedure generates

bounds that may be too wide to be informative. In my context, it would be unreasonable

to assign unlisted firms with bounds equalling the lowest and highest cost estimated for a

listed firm.

I make two assumptions in order to perform the bounding analysis. First, I assume that

unlisted firms that do not lobby are on average unaffected by Waxman-Markey. Second, the

absolute cost of Waxman-Markey for an listed firm weakly bounds that of a unlisted firm

conditional on positive lobbying expenditure. The first assumption can be written:

Assumption 3 Revealed preference: E[|∆v| |Z = 0, X = 0] = 0

In words, Assumption 3 states that unlisted firms that did not lobby on average will not

experience cap-and-trade costs. While this assumption might appear strong, it is fairly
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innocuous as the bounds I estimate for unlisted firms that lobbied are relatively wide given

the overall value of unlisted firms in the U.S. economy. My second assumption states:

Assumption 4 Bounding: E[|∆v| |Z = 0, X = x,X > 0] ≤ E[|∆v| |Z = 1, X = x,X >

0] ∀ x ∈ Ω

Assumption 4 states that conditional on positive lobbying expenditures, the absolute costs

of Waxman-Markey for a listed firm weakly bounds the costs absolute costs borne by an

unlisted firm. Because both assumptions are based on the costs borne by unlisted firms

which is unobserved, they are fundamentally non-refutable. For Assumption 3, concerns

about free-riding in the lobbying market are partly assuage by the fact that one quarter

of firms lobbying on Waxman-Markey spend between $6,000 - $125,000 suggesting that the

lobbying cost of entry is fairly low. In Figure A.12 and Table A.8, I provide suggestive

evidence that Assumption 4 is reasonably valid. Figure A.12 shows that lobbyists hired

exclusively by listed firms to lobby on Waxman-Markey have higher average total lobbying

revenue (across all lobbying activity) than lobbyists hired exclusively by unlisted firms. Table

A.8 shows that this is largely true even conditional on the sector of the hiring firm.32 I can

now rewrite the second term in Equation 11:

E[∆v|Z = 0] · U ≤ E[|∆v| |Z = 0] · U

=
∑
x∈Ω

E[|∆v| |Z = 0, X = x] · Ux

=
∑

x∈Ω,x>0

E[|∆v| |Z = 0, X = x,X > 0] · Ux

≤
∑

x∈Ω,x>0

E[|∆v| |Z = 1, X = x,X > 0] · Ux (12)

where Ux is the number of unlisted firms spending x amount on lobbying. The first line

applies the property of the absolute value, the second line uses the law of total probability,

the third line employs Assumption 3, and the final line uses Assumption 4. The expression

above illustrates why Assumption 3 is needed. While the overall value of unlisted firms in the

U.S. economy is only 9%, they make up 97% of all incorporated firms according to the Bureau

Van Dijk Orbis database. This implies a large value for U0 and thus large uninformative

bounds in the absence of Assumption 3. Observe that implicit in Assumption 4 is the notion

that absolute Waxman-Markey costs can be predicted by lobbying expenditures. This has

already been empirically shown in the lobbying influence function presented in Table 6 and

Figure 3. Applying the property of the absolute value, I can now recover an identification

region for the total cost of cap-and-trade:

32Unfortunately, because I only observe total lobbying revenue and not lobbying wages, I cannot infer
units of lobbying effort purchased by each firm.
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H{N · E[∆v]} =[E[∆v|Z = 1] · L−
∑

x∈Ω,x>0

E[|∆v| |Z = 1, X = x,X > 0] · Ux,

E[∆v|Z = 1] · L+
∑

x∈Ω,x>0

E[|∆v| |Z = 1, X = x,X > 0] · Ux]

=[
L∑
i=1

γ̂iv̂oi −
U∑
u=1

|∆̂vu|,
L∑
i=1

γ̂iv̂oi +
U∑
u=1

|∆̂vu|] (13)

To summarize, the bounding analysis is performed in three steps. First, I estimate the

relationship between absolute cap-and-trade costs and lobbying for listed firms that appear in

the lobbying records using Equation 7. In a second step, I predict out-of-sample absolute cap-

and-trade costs for unlisted firms lobbying on Waxman-Markey. Finally, I assign predicted

costs to be either negative or positive for all unlisted firms. As an illustration of these

generated bounds, Figures A.13 and A.14 plot the distribution of firm-level costs estimated

for all listed firms in the lobbying record (red) along with the predicted negative and positive

costs for matched unlisted firms (gray).

5.2 Aggregate costs

Panel (a) of Table 10 displays the total change in firm value according to the various bench-

mark models shown in Panel (b) of Table 2. Averaging across the five benchmark models,

Waxman-Markey is expected to lower the value of listed firms by $150 billion. Using Equa-

tion 13 to bound costs for unlisted firms, total losses due to Waxman-Markey have a lower

bound of $70 billion and an upper bound of $240 billion. The large width of these bounds

is due to the difficulty of determining the sign of predicted costs for unlisted firms. They

are also sufficiently wide such that Assumption 3 seems reasonable. My conservative upper

bound estimate attributes 35% of the upper bound total Waxman-Markey cost to unlisted

firms that lobbied. This value is large relative to the 9% share of annual U.S. corporate

profits attributed to unlisted firms and suggests that my bounds may be wide enough to

include all unlisted firms and not just those that lobbied.

To conduct statistical inference on the lower and upper bounds of the identification region,

I follow the principle developed by Imbens and Manski (2004) for a confidence interval that

asymptotically covers the true parameter with fixed probability. This is implemented using

a parametric bootstrap procedure which draws from the estimated listed firm effects and

associated variance-covariance matrix (see Appendix D for further details). Figure A.15

plots the two layers of uncertainty associated with the estimates shown in Table 10. For

each model, I plot the estimated loss for all listed firms along with a 90% confidence interval
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in thick black lines corresponding to Panel (b) of Table 2. The interval shown by thin brown

lines indicates the identification region for the effect on all listed and unlisted firms with

dashed gray lines showing the 90% confidence interval for the lower and upper bounds of the

identification region.

6 Comparing with CGE models

Unfortunately, direct benchmarks for my estimates are not available because Waxman-

Markey was never implemented. To date, multi-sector computational general equilibrium

(CGE) models are the prevailing technique for evaluating the cost of cap-and-trade policy

(see Appendix G for a summary) and thus serve as a potential benchmark for my estimates.

Such comparisons, however, require a degree of caution. In particular, CGE estimates may

differ from this paper for reasons relating to the structural assumptions of CGE models as

well as the scope of their analyses.

CGE forecasts are based on structural representations of the economy with parameters

that capture, among other features, expected future prices, demand elasticities, and techno-

logical change. Parameters assumed for CGE models may differ from market expectations.

In particular, while demand elasticities may be well-approximated using available empirical

evidence, expectations over prospects of low-carbon technologies may diverge widely if there

is disperse information regarding the technological frontier.

The scope of analysis also differs across these two methods. CGE models typically ana-

lyze the total costs of a specific, stand-alone cap-and-trade policy at the domestic sectoral

level. This differs from my approach which excludes the household sector but includes the

entire suite of policies under Waxman-Markey in addition to the cap-and-trade component.

Because I use firms as my unit of analysis, I also cannot exclude non-U.S. effects on firms

with international operations nor can I capture the dynamics of future firm entry within

a sector.33 Second, while my analysis focuses on the cost to firms of climate policy, I am

unable to exclude the possibility that markets also anticipated benefits from climate policy

that may result from implementation of the Waxman-Markey bill. Expecting markets to

anticipate benefits from climate policy, however, requires strong assumptions on investor

foresight. In particular, while the U.S. is one of the world’s largest emitters, reductions from

the U.S. alone is unlikely to have a significant impact on global atmospheric greenhouse gas

concentrations. Market participants responding to benefits from the policy must therefore

forecast not just U.S. emissions reductions but also the likelihood that U.S policy triggers

33Ryan (2011) shows that the latter is particularly relevant for estimating the cost of the 1990 Clean Air
Act Amendments on the US cement industry.
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carbon mitigation elsewhere.

Finally, insofar as market participants expected political activity to alter final policy

details before implementation, my estimates may correspond to a slightly different policy

than that examined by CGE models which do not endogenize political dynamics. This

final point should draw the most pause when considering any comparison exercise. The

estimates from this paper correspond to the cost of a policy that markets expected to be

implemented. While the validity checks in Section 4.4 gives confidence that this policy

resembles the Waxman-Markey bill, I am unable to confirm that markets expected the

eventual policy to follow Waxman-Markey line for line.

For these reasons, the following comparison exercise should be interpreted with caution.

In Table 10 Panel (b), I display comparable estimates from the IGEM and EPPA models,

the two most prominent academic CGE climate policy models. The statistic provided is

the CGE forecasted change in net-present discounted capital income which is the closest

proxy for firm profits within the CGE environment.34 Unfortunately, capital income reflects

accounting and not economic profits.35 To produce a more valid comparison across the two

methods, I consider a scenario whereby capital investments within the CGE environment

are adjusted for the market cost of capital.36

Using this measure for comparison, my lower and upper bound estimates are 16% - 54% of

the average CGE estimate for the IGEM and EPPA models as shown in Figure 6. Though it

is difficult to isolate which of the reasons noted above may explain the difference in estimates

between these two methods, it is illustrative to explore why actual costs of environmental

policies may have diverged from ex-ante structural forecasts in the past. In the case of the

Montreal Protocol, overestimates were attributed to a failure in forecasting the development

of CFC substitutes (Cook, 1996). For the U.S. SO2 cap-and-trade system, models did not

foresee the lowering of transport costs for low-sulfur coal following railroad deregulation

(Carlson et al., 2000; Ellerman et al., 2000). The blue bars in Figure 6 indicate the ratio

of actual costs to ex-ante structural forecasts for the Montreal Protocol, U.S. SO2 cap-and-

trade system, and the E.U. Emissions Trading System (EU-ETS). An evaluation of structural

forecasts for these past major environmental policies suggests that actual costs were between

30% - 75% of ex-ante forecasts.37 In this light, CGE modeling choices regarding future input

34I am grateful to Larry Goulder for this suggestion.
35Constant returns to scale and perfect competition in most CGE models implies a zero-profit condition.
36Discounting within a CGE model is conducted using the risk-free interest rate. The discount rate for

stock prices, on the other hand, is the sum of the risk-free interest rate and a risk premium associated with
holding the risky asset. IGEM uses an endogenous risk-free interest rate of 2.63%. EPPA has an exogenous
risk-free interest rate of 4%. I increase the discount rate used for net present value calculations for CGE
outputs to the sum of the risk-free interest rate inherent in each model and 3.3% equity risk premium
obtained from Robert Shiller’s data (data available: http://www.econ.yale.edu/~shiller/data.htm).

37Not all prior structural forecasts of environmental regulations were performed using CGE models. See
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prices and technological change may explain some of the difference between Waxman-Markey

estimates from this paper and CGE models. Future research aims to better understand which

of these features are driving the divergence in estimates produced by these two methods.

7 Conclusion

This paper develops a novel method for forecasting the cost to firms of proposed climate

policy. Through an event study using prediction markets, I estimate the expected cost to

firms of the Waxman-Markey cap-and-trade bill, had it been implemented. Validity checks

confirm that markets responded to features that are both particular to the Waxman-Markey

bill and general to climate policy incidence. Lobbying records are used to estimate a political

influence function for listed firms and to bound costs for unlisted firms.

To the best of my knowledge, this paper provides the first forecast of the cost of climate

policy to firms outside CGE modeling efforts. Results from my heterogeneity analyses could

inform the design of redistributive schemes needed to secure political support for future

climate policy proposals. More generally, the method developed in this paper can serve as a

framework for using prediction markets as a forecasting tool for other polices.

Estimates from this paper and CGE models may not be directly comparable. The main

advantage of this method is that it exploits the diffuse information revealed by market

participants and firm behavior. However, while this method recovers the expected cost of

the implemented policy, I am unable to confirm that this policy corresponds exactly to the

Waxman-Markey bill, which limits my method from informing debates on alternative policy

options. CGE models, on the other hand, structurally evaluate cap-and-trade policies for a

known policy and can conduct counterfactual policy evaluations. It is likely therefore that

these two methods will serve complementary roles during future climate policy debates.

Appendix G for more details on prior forecasts.
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Figures
Figure 1: Stock returns for prominent firms during major events
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Notes: Each plot shows cumulative returns before and after a major event for the aggregate value-weighted
market index and stock returns of firms with the highest Waxman-Markey lobbying spending.

Figure 2: Cap-and-trade Intrade market prices
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Notes: Red solid (gray dashed) lines mark days with events directly (indirectly) related to cap-and-trade
prospects. (1) 6/26/2009: House passes Waxman-Markey. (2) 11/4/2009: Graham joins Senate effort. (3)
12/20/2009: Copenhagen negotiations concluded. (4) 1/19/2010: Scott Brown wins Mass. Senate seat.
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(9) 7/22/2010: Senate drops cap-and-trade legislation. See Appendix F for further detail.
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Figure 3: Firm-level cost of cap-and-trade versus lobbying expenditure

1
2

1
8

2
4

lo
g

 a
b

s
o

lu
te

 W
-M

 c
o

s
t

log lobbying expenditure

8 10 12 14 16 18

0
6

0
4

0
2

0fr
e

q

Listed

Not Listed

1
5

2
1

log lobbying expenditure

Notes: Log absolute cost of cap-and-trade estimated from Equation 6 against log lobbying expenditure for
listed firms that have lobbied on W-M. Linear model with 90% CI shown in gray. Stacked histogram showing
total spending on Waxman-Markey lobbying by listed and unlisted firms.

Figure 4: Regression discontinuity of Waxman-Markey effects at 5% energy intensity
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Figure 5: Manufacturing subsector effects vs. carbon intensity
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Figure 6: Comparing with past structural forecasts
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Tables

Table 1: Cap-and-trade related activity for full sample and major event days

Full sample Major events
Number of obs 111 5

2-day interval

Absolute change in Intrade price (|∆θ|) 0.024 0.078
[.032] [.033]

Intrade volume 30 69
[89] [100]

Weekly interval

Google News Headlines: 0.031 0.094
“cap and trade” (% change) [0.70] [0.51]

Google search volume: -0.0016 0.011
“cap and trade” (% change) [0.12] [0.0073]

Standard deviation in brackets.

Table 2: Prediction market event study: main result

Model Controls Days equal-wt. avg. eff. value-wt avg. eff. total cost
1
L

∑
` γ̂`

∑
`

vo
`P

` v
o
`
γ̂`

∑
` v

o
` γ̂`

Panel (a): Dep. var. is 2-day value-weighted market returns

(1) Aggregate 5 -0.011 -163.77
[0.18] [2741.73]

Panel (b): Dep. var. is 2-day firm-level returns

(2) Firm-level CAPM 111 -0.020* -0.0080*** -146.74***
[0.011] [0.0024] [43.40]

(3) Firm-level 3-factor FF 111 -0.014** -0.0066*** -120.54***
[0.0067] [0.0022] [40.42]

(4) Firm-level < 0.05 CI 111 -0.020* -0.0086** -157.12**
[0.012] [0.0041] [75.30]

(5) Firm-level < 0.10 CI 111 -0.020* -0.0085** -154.47**
[0.012] [0.0043] [77.90]

(6) Firm-level < 0.15 CI 111 -0.022* -0.010** -190.99**
[0.012] [0.0046] [84.21]

Panel (a) from bivariate regression of aggregate value-weighted market returns on change in
prediction market price for 5 major event days (see Eq. 5). Panel (b) from firm-level SUR
regressions of 5,342 firm-level returns on change in prediction market price with CAPM, 3-
factor Fama-French model, and value-weighted returns of low carbon intensive firms (< 0.05,
0.10 and 0.15 mton CO2/billion output) as benchmark control (see Eq. 6) . Only days with
θt ∈ [.2, .8]. SUR standard errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Prediction market event study: thin trading and price manipulation

Dep var is 2-day stock return

(1) (2) (3) (4) (5) (6)

high volume without high HHI
main volume interaction big trader concentration interaction

∆θt -0.014** -0.018* -0.011 -0.022** -0.017 -0.027*
[0.0067] [0.0097] [0.0082] [0.011] [0.027] [0.016]

∆θt x volume -0.000072
[0.00014]

∆θt x HHI 0.019
[0.021]

Number of days 111 21 111 37 9 111

Equally weighted average effect shown for 5,342 firms. Only days with θt ∈ [.2, .8]. Column
(1) replicates 3-factor Fama-French result. Column (2) includes only high volume trading
days (> sample mean volume of 30 trades). Column (3) adds an interaction of prediction
market price with trading volume. Column (4) includes only trading days without top 2
influential traders. Column (5) includes only days with HHI<0.25. Column (6) adds an
interaction of prediction market price with daily HHI index. SUR standard errors with
correlation across firms. *** p<0.01, ** p<0.05, * p<0.1

Table 4: Prediction market event study: additional controls

Dep var is 2-day stock return

(1) (2) (3) (4) (5)

main trend oil price Google News Welsh-Goyal

∆θt -0.014** -0.013* -0.015** -0.014** -0.017**
[0.0067 ] [0.0067] [0.0066] [0.0069] [0.0072]

Number of days 111 111 111 111 111

Equally weighted average effect shown for 5,342 firms. Only days with
θt ∈ [.2, .8]. Column (1) replicates 3-factor Fama-French result. Column (2) in-
cludes a linear trend. Column (3) includes change in crude oil price. Column
(4) includes Google News volume for “climate change”, “carbon tax”, “en-
ergy policy”, and “nuclear policy”. Column (5) includes monthly Welsh-Goyal
controls. SUR standard errors with correlation across firms. *** p<0.01, **
p<0.05, * p<0.1
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Table 5: Top 40 firms lobbying on Waxman-Markey by expenditure

Lobby expenses ($) Listed

GEN ELECTRIC 89,650,000 1
PG&E 55,140,000 1
FEDEX 50,037,074 1
EXXON MOBIL 49,580,000 1
CHEVRON 41,729,000 1
SOUTHERN 36,940,000 1
GEN MOTORS 36,351,000 1
FORD MOTOR DEL 34,769,000 1
KOCH IND 34,613,000 0
BOEING 31,286,000 1
MARATHON OIL 29,830,000 1
AMERICAN ELECTRIC POWER 28,152,466 1
BP 25,560,000 1
UNITED TECH 24,963,415 1
NORFOLK SOUTHERN 22,545,177 1
PEABODY ENERGY 21,266,000 1
JP MORGAN CHASE 20,800,000 1
LOCKHEED MARTIN 19,710,000 1
ROYAL DUTCH SHELL 19,390,582 1
UNITED PARCEL SERVICE 19,220,828 1
DUKE ENERGY 18,987,464 1
CONOCOPHILLIPS 18,372,210 1
WAL MART STORES 17,890,000 1
TOYOTA MOTOR 17,729,578 1
MONSANTO 16,800,000 1
ALTRIA 16,390,000 1
DELTA AIR LINES 16,105,879 1
UNION PACIFIC 16,039,854 1
JOHNSON & JOHNSON 16,015,000 1
DOW CHEM 16,007,000 1
DU PONT EI DE NEMOURS 15,793,514 1
EXELON 15,106,248 1
BERKSHIRE HATHAWAY 15,027,438 1
HEWLETT PACKARD 15,015,720 1
PRUDENTIAL FINANCIAL 14,430,000 1
ENERGY FUTURE HLDGS 12,591,447 0
HONEYWELL INT 12,492,000 1
CSX 11,512,078 1
PROCTER & GAMBLE 10,375,530 1
PUBLIC SERVICE ENTERPRISE 10,010,000 1
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Table 6: Estimates of the lobbying influence function

Dep var is log abs. cap-and-trade cost

(1) (2) (3)
Winners Losers All

log W-M lobbying expense 0.36** 0.43*** 0.44***
[0.17] [0.11] [0.088]

Number of firms 117 117 234

Includes 3-digit NAICS fixed effects and standard error
clustering. *** p<0.01, ** p<0.05, * p<0.1

Table 7: Prediction market event study: regression discontinuity at 5% energy intensity

(1) (2) (3) (4) (5)

Discontinuity at 5% energy intensity 0.058* 0.064 0.078** 0.071** 0.057*
[0.030] [0.045] [0.038] [0.032] [0.029]

Bandwidth 0.044 ± 0.02 0.03 0.04 0.05
Number of firms 1,647 203 411 1,122 1,678

Regression discontinuity of estimated firm-level Waxman-Markey effects at 5% energy
intensity in 2005. Local linear model with triangular kernel and 3-digit NAICS sector
fixed effects. ± in Column (1) indicates bandwidth using Imbens and Kalyanaraman
(2012) optimal bandwidth selection procedure. Columns (2)-(5) show discontinuity at
different bandwidths. 13σ outlier firm dropped (PERMNO=88729). Standard errors
clustered at 6-digit NAICS level. *** p<0.01, ** p<0.05, * p<0.1

Table 8: Prediction market event study: carbon intensity and energy input share
Dep var is 3-digit manufacturing coefficient

(1) (2) (3) (4)

carbon intensity -0.0364*** -0.033***
[0.0112] [0.0096]

energy input share -0.31*** -0.24*
[0.11] [0.12]

Number of firms 1,663 1,663 1,663 1,663
2-digit NAICS fixed effect NO YES NO YES

Regressions of estimated firm-level cap-and-trade effects on 2005 sectoral car-
bon intensity (CO2/billion output) and energy input share (% of output) at
the 3-digit NAICS manufacturing level. Only includes manufacturing firms.
Columns (2) and (4) include 2-digit NAICS2 fixed effects. Standard errors
clustered at 4-digit NAICS level in brackets. *** p<0.01, ** p<0.05, * p<0.1
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Table 9: EU-ETS futures response to Intrade price

Dep. var is EU-ETS spot-futures spread

(1) (2) (3) (4)
2011 2012 2013 2014

Futures Futures Futures Futures

∆θt 0.17 -0.27 -0.25 -0.21
[0.26] [0.14] [0.13] [0.17]

Number of days 5 5 5 5
Testing difference from Col 1 (p-value) 0.0271 0.1075 0.1804

Bivariate regressions of percent change in EU-ETS allowance spot-futures price
spread change in Intrade price. Column (1)-(4) uses the spread between spot
and EU-ETS allowance futures to be delivered at the end of 2011, 2012, 2013,
and 2014 respectiively. P-values from a SUR procedure for the difference between
coefficients in Columns (2)-(4) relative to Column (1) shown. Heteroscedasticity-
robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1

Table 10: Estimated change in profits for listed and unlisted firms

Panel (a) Event study aggregate cost estimates

(1) (2) (3) (4) (5) (6)
CAPM 3FF <0.05 CI <0.10 CI <0.15 CI Avg.

Listed firms -146.74 -120.54 -157.12 -154.47 -190.99 -153.97
Unlisted firms (absolute cost) 82.04 78.52 86.21 87.87 81.87 83.30

Listed & unlisted firms (lower bnd) -64.7 -42.02 -70.91 -66.59 -109.12 -70.67
Listed & unlisted firms (upper bnd) -228.78 -199.06 -243.33 -242.35 -272.86 -237.28

Panel (b) CGE model estimates
CGE model
MIT EPPA -410

Harvard IGEM -460

All values in billion 2009 dollars. Listed firm estimates based on Panel (b) of Table 2. Each
column in Panel (a) uses a different benchmark model. Unlisted firm bounds based on estimated
relationship shown in Table 6. For CGE models in Panel (b), change in risk-adjusted NPV capital
income is shown obtained from private communication with IGEM and EPPA modeling teams.
See Section 6 on construction of risk-adjusted NPV capital income.
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Appendix A Theoretical framework for cap-and-trade

This section presents a theoretical framework which maps market values onto the marginal

abatement cost under a cap-and-trade system. Following the modeling framework of Mont-

gomery (1972) and Rubin (1996), I first explore the joint cost minimization problem for

firms and households which solves for an aggregate marginal abatement cost. In practice,

however, the regulator can never implement the joint cost problem, but can instead set up a

cap-and-trade system. To that end, I analyze the cost minimization problem under emissions

trading in which the equilibrium allowance price equals the aggregate marginal abatement

cost. An extension of this equivalence result yields an expression approximating the aggre-

gate marginal abatement cost for the policy. Because I do not observe the impact of the

policy on households, I can only recover the portion of the aggregate marginal abatement

cost attributed to firms. Throughout, I use a general objective function to avoid specifying

market structure and production technology.

Joint-cost minimization

Banking and borrowing provisions in most cap-and-trade legislations allow aggregate

annual emissions caps to be ostensibly treated as a cumulative stock.38 This insight allows

one to translate the dynamic setting of a cap-and-trade policy into the canonical Hotelling

model of optimal extraction for a known stock of nonrenewable resource (Hotelling, 1931).

This was explored in Rubin (1996)’s dynamic model of emissions trading which extended

the canonical static model of Montgomery (1972) first establishing the cost effectiveness of

emissions trading. Following this framework, I explore a joint cost minimization problem in

which N − 1 firms and a representative household choose annual emissions eit to optimally

deplete a fixed known stock of R emissions over t ∈ [0, T ], the lifetime of the policy.39

For simplicity, firms and the representative household are treated identically within this

framework, a point I return to later.

I define a concave, twice-differentiable, general profit function with emissions eit. The

38Waxman-Markey permits unlimited banking and limited borrowing of future allowances. Specifically,
borrowing of allowances vintage 2 to 5 years into the future are subject to a 15% interest. Such constraints
result in allowance price increases below the rate of interest (Rubin, 1996; Schennach, 2000). Because I am
primarily interested in estimating the allowance price during the first year of the policy, for simplicity, this
model sets allowance prices to follow Hotelling’s rule.

39This setup differs from the Montgomery (1972) model along three dimensions. First, I introduce a
household production sector in which the representative agent maximizes “profit” from the household pro-
duction of a utility good. Second, the objective function is written in terms of firm profits and not the
difference between unconstrained and constrained profits. Lastly, I deviate from Rubin (1996)’s setup by
writing an equation of motion in terms of depletion rather than accumulation. These choices were made for
expository simplicity but are mathematically immaterial.
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optimal control problem with choice variable eit and state variable st is written as:

V = max
eit

∫ T

0

e−δt
N∑
i=1

πi(eit)dt

s.t. ṡt = −
N∑
i=1

eit

s0 = R, sT ≥ 0, eit ≥ 0 ∀i

where δ is the exogenously determined rate of interest.40 Solving the current value Hamilto-

nian yields the following first order conditions:

π′i(eit) = Λt ∀i (A.1)

Λ̇t − δΛt = 0 (A.2)

ΛT sT e
−δT = 0 (A.3)

where Λt is the positive current value shadow price at year t and can be naturally interpreted

as the marginal abatement cost as it corresponds to the marginal profit associated with

an extra unit of allowed emissions. Equations A.2-A.3 summarizes two well-established

features of the Hotelling problem. First, a simple rearrangement of Equation A.2 yields

Hotelling’s rule, Λt = Λ0e
δt, which states that the marginal abatement cost rises at the rate

of interest. Second, observe that Hotelling’s rule together with the transversality condition

in Equation A.3 yield
∫ T

0

∑N
i=1 eitdt = R. That is, total emissions must equal R by the

end of the policy period. Define the optimal allocation of emissions for the joint problem

E∗∗t = (e∗∗1t ...e
∗∗
Nt). The value function at the optimum can be written as a single-valued

function of the cumulative cap, such that V (R) =
∫ T

0
e−δt

∑N
i=1 πi(e

∗∗
it )dt. An envelope

theorem-type argument implies:41

Λ0(R) = V ′(R) (A.4)

Furthermore, a concave, nondecreasing, and nonnegative value function, together with a

positive shadow price, yields Λ0 ≥ 0 and dΛ0(R)
dR

< 0. That is, the marginal abatement cost

rises as the cumulative cap under the policy tightens. Now consider a linear approximation

for Λ0 between the optimum value for a no-policy, business-as-usual scenario with cumulative

emissions Ro, and the optimum value under a policy with cumulative emissions constrained

at R:

40I assume that cap-and-trade regulation ends in 2050 as written in Waxman-Markey to avoid explicit
assumptions about both business-as-usual emissions and cap-and-trade regulation beyond 2050.

41See (Weitzman, 2003, p. 159)
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Λ0(R) ≈ V (R)− V (Ro)

R−Ro
(A.5)

Observe that given the concavity of V (R) and since R < Ro, a linear approximation under-

states Λ0(R) to a degree that depends on the concavity of V (R).

Cap-and-trade
In practice, however, the regulator never solves the joint cost problem, but can introduce

a cap-and-trade system. Here, the regulator’s role is to create R cumulative allowances

such that in each period Afit is given freely to firm or household i and Aat is auctioned off.42

Denote yit as the number of allowances sold (>0) or purchased (<0). The firm or household’s

dynamic problem is to choose eit and yit with allowance banking:

vi = max
yit,eit

∫ T

0

e−δt [πi(eit) + τtyit] dt

s.t. ṡit = Afit − eit − yit
si0 = 0, siT ≥ 0, eit ≥ 0 ∀i

where τt is the allowance price. First order conditions for the current value Hamiltonian are:

π′i(eit) = λit (A.6)

τt = −λit (A.7)

λ̇it − δλit = 0 (A.8)

λiT sT e
−δT = 0 (A.9)

where λit is the positive current value shadow price. Defining the market equilibrium as

E∗t = (e∗1t...e
∗
Nt), Y

∗
t = (y∗1t...y

∗
Nt), and τ ∗t , I further impose market clearing and terminal

conditions: ∑N
i=1 y

∗
it + Aat = 0 ∀t (A.10)

τ ∗T

[∫ T
0

∑N
i=1(Afit − e∗it − y∗it)dt

]
= 0 (A.11)

Rubin (1996) shows that the market equilibrium satisfying Equations A.6 - A.11 achieves

E∗∗t = E∗t and −Λt = τ ∗t . That is, the decentralized emissions trading solution yields the

same efficient emissions allocation as the joint cost problem and the marginal abatement cost

obtained from the joint cost problem equals the equilibrium allowance price. Now, suppose

42Observe that Montgomery (1972) and Rubin (1996) assume that all allowances are distributed freely,
that is Aat = 0 ∀t. This is inconsistent with Waxman-Markey.
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one could observe the aggregate difference in optimal firm and household values under a cap-

and-trade policy and business-as-usual scenario,
∑N

i=1 ∆vi =
∑N

i=1(vi(R)−vi(Ro)). This can

be written:
N∑
i=1

∆vi =

∫ T

0

e−δt
N∑
i=1

[πi(e
∗
it) + τ ∗t y

∗
it − πi(eoit)] dt (A.12)

=

∫ T

0

e−δt
N∑
i=1

[πi(e
∗∗
it )− πi(eoit)] dt−

∫ T

0

e−δtΛt

N∑
i=1

y∗itdt (A.13)

= V (R)− V (Ro) + ΛoA
a (A.14)

where the second line uses Rubin (1996)’s equivalence result. The third line employs the

definition for the current value shadow price, uses Equation A.10, sets Aa =
∫ T
o
Aat dt, and

substitutes the optimal value from the joint cost problem. Dividing Equation A.14 by the

cumulative abatement under Waxman-Markey, R − Ro, applying Equation A.5, and after

some rearranging, yield:

Λo(R) ≈
∑N

i=1 ∆vi
R−Ro + Aa

(A.15)

Equation A.15 states that the marginal abatement cost can be recovered by estimating

the differences in firm and household values under business-as-usual and Waxman-Markey

scenarios. Furthermore, it requires no further assumptions on the function πi(eit). The

numerator can be interpreted as the total level of abatement adjusted for the number of auc-

tioned allowances. Observe that the Coase independence property, whereby the equilibrium

allowance prices are unaffected by the initial distribution of allowances, holds throughout

this framework (Coase, 1960; Montgomery, 1972; Hahn and Stavins, 2010). However, recov-

ering the policy’s underlying marginal abatement price using potentially observable market

values requires specifying the cumulative number of auctioned allowances. This is because,

as evident from the objective function, changes in market values depend on the share of

total allowances that are freely distributed.43 Because ∆vi and R−Ro are both negative, a

greater share of free allowances Aa would lower losses due to the policy which increases the

numerator in Equation A.15. Thus, neglecting allowance auctioning would understate the

true marginal abatement cost.

Thus far, I have treated firms and the representative household alike. However, notice

that I cannot recover the aggregate marginal abatement cost because I do not observe cap-

and-trade effects on households. Instead, I can only recover the total cost to firms, which is

simply denoted as
∑N−1

i=1 ∆vi.

43I thank Michael Greenstone for raising this point.
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Appendix B Adjusting for contract expiration

Intrade prediction markets are traded up to a certain date upon which contract holders are

paid $1 if the event is realized for each contract held. For the cap-and-trade prediction

market, that expiration date was December 31, 2010, coinciding with the end of the 111th

Congress. Because it is rare that a piece of legislation, having failed passage in the current

Congress, is reintroduced with identical features in a subsequent Congress, this expiration

date should coincide with the expected final possible date of Waxman-Markey approval.

However, it is difficult to ascertain whether markets expected Waxman-Markey prospects

to exist following the end of the 111th Congress. If so, this introduces a bias between the

prediction market price and average market beliefs which would increase as the expiration

date nears. One solution to this problem is to estimate Equation 6 in first-differences, which

removes a linear time trend from the price time series. However, one might still be concerned

about nonlinearities in this bias as a function of remaining trading days not fully captured

by a linear trend. To remove this bias, one would like to weight prediction price levels using

a kernel that varies with the number of remaining trading days.

Formally, the true variable of interest is qt(T ) where T = 12/31/2011, the date in which

the cap-and-trade system begins under the policy. I do not observe qt(T ). Instead, I observe

a prediction market price for a contract expiring on date T 1 = 12/31/2010 < T . I now

define this as θt(d, T
1), where d = T 1 − t, the number of remaining days until expiration.

Specifically, it has the following piece-wise form:

θt(d, T
1) =

k(d)qt(T ), if d < D̂

qt(T ), otherwise
(B.1)

where k(d) is a weighting kernel which is a function of d and exists only when the remaining

number of days is less than some threshold D̂. In other words, k(d) captures any concerns

about an impending contract expiration. Importantly for this exercise, I assume k(d) to

be discontinuous such that prediction market participants only become concerned about

contract expiration after a certain point when there are fewer than D̂ days remaining.

The problem lies in estimating k(d). Fortunately, the availability of additional Intrade

data allows for an empirical estimate of k(d). The prediction market contract shown in

Figure 2 was not the first cap-and-trade contract offered by Intrade. Around the same time

that the 2010-expiring contract begin trading, InTrade offered an identical contract with

an earlier expiration date set for T 2 = 12/31/2009 < T 1 < T . This contract, with prices

denoted as θt(d, T
2), lasted only eight months and is shown as a dashed line in Figure A.6.

Estimating k(d) requires the following assumption: for all trading days in which both
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contracts exist, d ≥ D̂ for θt(d, T
1) and d < D̂ for θt(d, T

2). That is during 5/1/2009-

12/31/2009, prices from the 2010-expiring contract were unadulterated by concerns over

contract expiration while prices from the 2009-expiring contract incorporated such concerns.

Thus:

k(d) =
θt(d, T

2)

θt(d, T 1)
∀t ∈ [5/1/2009, 12/31/2009] (B.2)

The solid line in Figure A.7 plots k(d) and appears trend stationary. To remove noise in

k(d), the following linear regression is performed:

k(d) = α0 + α1d+ εd (B.3)

where εd is a mean zero disturbance. The predicted kernel, k̂(d), is shown as the dashed line

in Figure A.7. The threshold D̂ is defined as the point at which k̂(d) = 1. To recover qt, I

simply rewrite Equation B.1 to obtain:

qt(T ) = adjusted θt(d, T
1) =


θt(d,T 1)dk(d)

, if d < D̂

θt(d, T
1), otherwise

(B.4)

Figure A.8 plots the original θt(d, T
1) against the adjusted θt(d, T

1) using the predicted

kernel from Equation B.3. Observe that the two time series begin diverging at the beginning

of 2010 when d < D̂. This divergence, which increases until the end of the 2010, inflates

the original price series to remove any concerns about contract expiration. Thus, while the

prospects for cap-and-trade indeed collapsed when the Senate formally withdrew cap-and-

trade legislation on July 23, 2010, market beliefs over cap-and-trade prospects were actually

higher than what the original prediction market indicated.

Table A.2 replicates Panel (a) of Table 2 using the adjusted Intrade prices. These esti-

mates are slightly smaller but are not statistically different than those presented in Table

2.
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Appendix C Standard error simulations
The two estimation procedures presented in Section 4 yield similar point estimates but

different uncertainty. The procedures differ in sample size, unit of analysis, and inclusion of

controls. In this section, I use a numerical simulation to explore the relative contribution

of these three properties in explaining the difference in estimated uncertainty. To start, I

assume that the true data generating process follows the CAPM model:

DGP : rit = αoi + γoi ∆θt + βoimktt + εit

To mimic actual stock returns I assume the parameters estimated in my firm-level CAPM

model (Row (2) in Table 2) are the true parameters so that αoi = α̂i, γ
o
i = γ̂i, β

o
i = β̂i,

and εit ∼ N(0, Σ̂). Predictors are drawn to match empirical distributions such that ∆θt ∼
N(0.0028, 0.0016) and mktt ∼ N(0.0028, 0.00029). The exercise includes four statistical

models designed to incrementally examine each of the three properties that differ across the

two approaches. Model 1 is identical to the aggregate time series model for major event

days shown in Row (1) of Table 2. Model 2 examines the implication of larger sample

size by estimating Model 1 for 111 days. Model 3 estimates a firm-level SUR regression to

examine the implications of covariance in residuals (Garrett, 2003; Veredas and Petkovic,

2010). Model 4 includes a control for normal market performance which matches the true

DGP and corresponds to results shown in Row (2) in Table 2. Specifically, for each iteration

b = 1...500, the procedure is:

i) Draw: ε
(b)
it ∼ N(0, Σ̂)

ii) Apply DGP: r
(b)
it = α̂oi + γ̂oi∆θt + β̂oimktt + εit

iii) Calculate aggregate returns: r̃
(b)
t =

∑
i

vo
iP
i v

o
i

r
(b)
it

iv) Est. γ̂1
(b) from Model 1: r̃

(b)
t = α

(b)
1 + γ

(b)
1 ∆θt + ε1t for random draw of T=5.

v) Est. γ̂2
(b) from Model 2: r̃

(b)
t = α

(b)
2 + γ

(b)
2 ∆θt + ε2t for T=111.

vi) Est. γ̂3
(b) =

∑
i

vo
iP
i v

o
i

γ̂3i from Model 3: r
(b)
it = α

(b)
3i + γ

(b)
i3 ∆θt + ε3it for T=111.

vii) Est. γ̂4
(b) =

∑
i

vo
iP
i v

o
i

γ̂4i from Model 4: r
(b)
it = α

(b)
4i +γ

(b)
4i ∆θt+β4imktt+ε4it for T=111.

Table A.9 shows the mean and standard deviation for the value-weighted Waxman-Markey

effect for the four models. Both the mean and standard devision for Models (1) and (4) closely

match estimates in Rows (1) and (2) of Table 2 suggesting that parameters for the simulation

are well calibrated. When the sample size increases to 111 in Model (2), uncertainty decreases

dramatically, accounting for 85%44 of the difference in uncertainty between Models (1) and

(4). The firm-level analysis in Model (3) explicitly estimates the covariance in error terms

across firms which further decreases the difference in uncertainty between Models (1) and

440.85=(0.11-0.018)/(0.11-0.0022)
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(4) by 5%. Finally, inclusion of a control for normal market performance in Model (4) covers

the remaining 10% difference in uncertainty between Models (1) and (4). Thus, simulations

suggest that most of the precision gain in the firm-level, full sample analysis comes from the

increased number of trading days.

Appendix D Aggregate cost uncertainty

This section estimates of uncertainty in the bounding analysis. In Section 5, I constructed

the following identification region using i = 1...L listed and u = 1...U unlisted firms:

H{N · E[∆v]} =[
L∑
i=1

γ̂iv̂oi −
U∑
u=1

|∆̂vu|,
L∑
i=1

γ̂iv̂oi +
U∑
u=1

|∆̂vu|]

=[L̂B, ÛB] (D.1)

Because L̂B and ÛB are estimated, one can conduct statistical inference on the identification

region. I follow the principle developed by Imbens and Manski (2004) and extended by Stoye

(2009) which provide a confidence interval for a general partial identification framework that

asymptotically covers the true parameter of interest with fixed probability. Specifically, a

(1− α) confidence interval has the general form:

CIα = [L̂B − cLB · se(L̂B), ÛB + cUB · se(ÛB)] (D.2)

where se(L̂B) and cLB are the standard errors and critical values for the estimated lower

bound and analogously for the estimated upper bound. Unfortunately, I am unable to use the

critical values suggested by Stoye (2009) because the bounds for unlisted firms are estimated

using the particular functional form shown in Equation 7 and generates covariance terms

between listed and unlisted firms that are not analytically tractable. Instead, I perform

a parametric bootstrap procedure. In Section 4, I used a seemingly unrelated regression

procedure to estimate γ̂, the vector of Waxman-Markey effects for all listed firms, and an

associated L x L variance-covariance matrix Ω̂. The parametric bootstrap procedure begins

by drawing from this L x L multinominal normal distribution and follows the steps described

in the bounding analysis of Section 5. Specifically, for each iteration b = 1...250:

i) Draw: γ̂(b) from N(γ̂, Ω̂)

ii) Calculate: v̂
o(b)
i =

eVi

θγ̂
(b)
i +1

and ∆v
(b)
i = γ̂

(b)
i v̂

o(b)
i

iii) Regress: log|∆v(b)
i | = α + η logLobbyExpensei + µi for listed firms that lobbied.

iv) Predict: |∆v̂(b)
u | = eα̂+η̂ logLobbyExpenseu for unlisted firms.

v) Calculate: L̂B
(b)

=
∑L

i=1 γ̂
(b)
i v̂

o(b)
i −

∑U
u=1 |∆̂vu

(b)
|, ÛB

(b)
=
∑L

i=1 γ̂
(b)
i v̂

o(b)
i +

∑U
u=1 |∆̂vu

(b)
|

This procedure produces an empirical distribution for both the lower and upper bounds of

the identification region. The (1− α) confidence interval can now be written as:

ĈIα = [L̂B
(α/2)

, ÛB
(1−α/2)

] (D.3)
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Appendix E Data summary

Prediction market event study
Individual daily stock returns obtained from the Center for Research in Security Prices
(CRSP). Intrade provides daily closing prices and trading volume for the 2010-expiring and
2009-expiring cap-and-trade contract. Transaction-level data for the 2010-expiring contract
acquired privately from Intrade. Fama-French factors and monthly Welsh-Goyal variables
were downloaded from Kenneth French’s45 and Amit Goyal’s46 websites respectively. Daily
crude oil prices come from the U.S. DOE Energy Information Agency.47 EU-ETS futures
prices obtained from the Intercontinental Exchange.48 The 3-digit manufacturing NAICS
energy intensity was constructed from the NBER-CES Manufacturing Industry Database.49

Recent sectoral level carbon intensity was provided by the U.S. DOC Economics and Statis-
tic Administration.50 4-digit NAICS trade import data obtained from U.S. Census Bureau’s
Foreign Trade Division51 with related output from U.S. DOC’s Bureau of Economic Analy-
sis.52 Geographic business segment level revenue data constructed from the merged CRSP-
Compustat database. Business-as-usual emissions obtained from the U.S. Department of
Energy Information Agency’s Annual Energy Outlook 2009.

Lobbying expenditure bounding analysis
Since the Lobbying and Disclosure Act of 1995, all individuals engaged in lobbying members
of the federal government are required to register with the Clerk of the House of Represen-
tatives and the Senate Office of Public Records (SOPR).53 Each lobbying record indicates
lobbyist name (or names in the case of a team of lobbyists), name of the firm hiring lob-
bying services, amount spent, and in some cases the specific issue or legislation targeted by
lobbying efforts (see Blanes i Vidal, Draca and Fons-Rosen (2012) for further background
on reports). A copy of these publicly available records are maintained and organized by
the Center for Responsible Politics which has examined the records allowing the data to be
collapsed to the lobbying firm level.54 To standardize company names for matching with
CRSP data, I use Bronwyn Hall’s name standardization code developed originally for patent
data. Spot checks were subsequently employed to check that listed firms match CRSP data.

45Available: www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
46Available: www.hec.unil.ch/agoyal/
47Available: www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
48Available: http://data.theice.com/
49Available: www.nber.org/data/nbprod2005.html
50Available: www.esa.doc.gov/Reports/u.s.-carbon-dioxide
51Available: http://data.usatradeonline.gov/usatrade/Browse/browsetables.aspx
52Available:http://www.bea.gov/iTable/index_industry.cfm
53The Lobbying and Disclosure Act defines a lobbyist “any individual who is employed or retained by a

client for financial or other compensation for services that include more than one lobbying contact, other than
an individual whose lobbying activities constitute less than 20 percent of the time engaged in the services
provided by such individual to that client over a six month period.” Lobbyists were required to file reports
on a semi-annual basis from 1998-2006 and on a quarterly basis since 2007.

54The SOPR does not require lobbying firms to provide standard company identifiers used in other
databases. There is thus a problem of whether firms filing lobbying reports are truly separate entities. For
example in 2009, General Electric, General Electric Transportation, and General Electric Healthcare all filed
lobbying records. CRP manually identifies the subsidiaries of a parent company so that aggregation can be
performed at the parent company level.
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Appendix F Specific cap-and-trade related events

The period between the passage of Waxman-Markey on June 26, 2009 and the withdrawal of
cap-and-trade from the Senate on July 23, 2010 marked the peak and decline of cap-and-trade
prospects in the US. A number of important events during this period were instrumental in
defeating cap-and-trade. This section provides a short summary of each event along with a
news link. Some important events probably affected stock returns for other reasons besides
Waxman-Markey prospects. For example, Scott Brown’s election affected the likelihood of
various policies. An asterisk (*) notes that this event is likely to have only affected cap-
and-trade policy prospects and hence was examined separately in this paper. As shown by
the vertical lines in Figure 2, these events were well captured by prediction market price
movements.

June 26, 2009: House passes Waxman-Markey55

Initial hearings on draft legislation were held on the week of April 20, 2009 with the full
bill introduced into the House shortly thereafter on May 15, 2009. The bill was approved
on June 26, 2009 by a vote of 219-212 with 8 supporting Republicans and 44 Democrats
opposed.56

November 4, 2009: Lindsay Graham joins Senate climate effort (∆θt = 0.05)*
After passage of Waxman-Markey, efforts to pass legislation in the Senate were lead by Sen-
ators Lieberman, an independent, and Kerry, a Democrat. The arrival of Lindsay Graham,
a Republican Senator from South Carolina buoyed cap-and-trade prospects.57

December 20, 2009: UNFCCC Copenhagen negotiations concluded (∆θt = −0.07)*
With the Kyoto Protocol expiring in 2012, countries were expected to negotiate a new inter-
national climate treaty at Copenhagen. While a general agreement was reached in the final
hour, the agreement was non-binding and was generally regarded as not substantial enough
to succeed the Kyoto Protocol.58

January, 19, 2010: Scott Brown wins Mass Senate seat
The Democrat’s tenuous supermajority in the Senate was lost when Scott Brown won Edward
Kennedy’s Massachusetts Senate seat in a special election.59

January 27, 2010: Graham, Kerry, Lieberman seek cap-and-trade alternatives
(∆θt = −0.073)*
With cap-and-trade looking unlikely, Senate sponsors look for alternative policy ideas.60

55No prediction market price movement recorded because all related fluctuations occurred during the
weekend when stock markets were closed.

56Article:www.nytimes.com/2009/06/27/us/politics/27climate.html
57Article:abcnews.go.com/blogs/politics/2009/11/graham-joins-dems-wh-to-write-new-climate-change-bill/
58Article:nytimes.com/cwire/2009/12/21/21climatewire-obama-negotiates-copenhagen-accord-with-senat-6121.

html
59Article:www.denverpost.com/latin/ci_14337907
60Article:nytimes.com/cwire/2010/01/27/27climatewire-got-ideas-about-a-climate-bill-kerry-graham-64375.

html
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March 31, 2010: Obama supports offshore drilling
After months of political pressure, President Obama agrees to expand domestic oil produc-
tion.61

April 20, 2010: BP Deepwater Horizon spill begins
An explosion on the Deepwater Horizon oil platform spills up to 4.9 million barrels of oil.
Senator Graham had pushed for offshore drilling as part of the Senate climate bill to engage
Senate Republicans.

April 23, 2010: Lindsay Graham drops support of Senate bill (∆θt = −0.06)*
After political pressure from his constituents and party, Senator Graham criticizes Senate
Democratic Leadership over disagreements regarding immigration reform on April 23, 2010.
Graham formally withdrew from Senate climate efforts on April 24, 2010.62

June 15, 2010: Obama oval office speech
President Obama focuses on energy issues in his first oval office speech.63

July 22, 2010: Senate drops cap-and-trade legislation (∆θt = −0.14)*
Without a filibuster-proof supermajority, Senate democrats drop consideration of cap-and-
trade bill.64

Appendix G Models of environmental policy

CGE models for cap-and-trade regulations

During deliberations for Waxman-Markey, several CGE modeling groups were contracted by
organizations and government agencies. The Environmental Protection Agency hired RTI
and Dale W. Jorgenson Associates to run the ADAGE and IGEM models respectively.65

Kolstad et al. (2010) provide a detailed peer review of ADAGE and IGEM commissioned
by the EPA. With the exception of IGEM which estimates parameters econometrically, pa-
rameters within CGE models are calibrated to match observed macroeconomic activity. The
offset usage assumptions adopted in this paper were based on EPA analysis (EPA, 2009).
The EPPA model is run by the Joint Program on the Science and Policy of Climate Change
at MIT. 66 Model runs were also commissioned by several advocacy organizations. The
American Council for Capital Formation (ACCF) and National Association for Manufactur-
ers (NAM) hired SAIC to run the U.S. EIA’s National Energy Modeling System (NEMS).67

61Article:nytimes.com/gwire/2010/03/31/31greenwire-obama-proposes-opening-vast-offshore-areas-to-74696.
html

62Article: nytimes.com/2010/04/25/us/politics/25graham.html
63Article: nytimes.com/2010/06/16/us/politics/16obama.html
64Article: www.nytimes.com/2010/07/23/us/politics/23cong.html
65Available: www.epa.gov/climatechange/economics/economicanalyses.html
66Available: globalchange.mit.edu/files/document/MITJPSPGC_Rpt173_AppendixC.pdf
67Available: www.accf.org/news/publication/accfnam-study-on-waxman-markey-bill
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The National Black Chamber of Commerce hired CRA international to run the MRN-NEEM
model.68 The Heritage foundation hired Global Insight to run its IHS model.69

These models differ along many dimensions (see Fawcett, Calvin and de la Chesnaye
(2009) for a recent review). One important distinction pertinent for this analysis is whether
agents in the models are myopic or exhibit perfect foresight. Myopic CGE models are solved
iteratively at each time step while in models with perfect foresight agents optimize simul-
taneously over the entire policy time-horizon. The Hotelling model introduced in Section
Appendix A exhibits perfect foresight. Of the CGE models analyzing Waxman-Markey,
IGEM, ADAGE, and MRN-NEEM have perfect foresight whereas EPPA, NEMS, and IHS
are myopic.

Another important area of distinction is whether the CGE models incorporated non-
cap-and-trade components of the Waxman-Markey bill. ADAGE, NEMS, and MRN-NEEM
models include many non-cap-and-trade provisions. IGEM and EPPA do not model those
provisions. It is not clear from available IHS documentation whether non-cap-and-trade
provisions are modeled.

Models for previous environmental regulations

Most of the EU-ETS modeling forecasts summarized in Convery et al. (2010) are similar to
the models used for evaluating the Waxman-Markey policy described above. Structural mod-
els for earlier environmental regulations were primarily partial equilibrium linear dynamic
optimization models and thus not directly comparable to modern CGE models. For many
of the ex-ante Title IV SO2 forecasts under the 1990 Clear Air Act Amendments, the EPA
hired ICF consulting to run the Integrated Planning Model (IPM).70 A similar methodology
was used by the EPA for forecasting costs under the Montreal Protocol. Cook (1996) notes
that ex-ante EPA estimates for a 50% phase-out of CFCs by 1998 was $3.55 per kg while
ex-post estimates for a 100% phase-out of CFCs by 2000 was $2.20 per km. To make ex-ante
and ex-post estimates comparable, I conservatively assume that abatement costs are linear
implying an ex-ante forecast cost of $7.1 per kg for a 100% phase-out by 1998.

68Available: www.nationalbcc.org/images/stories/documents/CRA_Waxman-Markey_Aug2008_
Update_Final.pdf

69Available: www.heritage.org/research/reports/2009/08/the-economic-consequences-of-waxman-markey-an-analysis-of-the-american-clean-energy-and-security-act-of-2009
70A summary of IPM available: http://pdf.usaid.gov/pdf_docs/PNACE423.pdf
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Appendix Figures

Figure A.1: Waxman-Markey annual cap versus AEO2009 business-as-usual
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Notes: Dark solid line shows annual cap under Waxman-Markey for covered sectors. Gray solid line shows
Waxman-Markey cap with offsets set at 1,400 mton per year. Coverage of emissions cap is 68.2% in 2012,
75.7% in 2014 and 84.5% in 2016. Dotted line shows business as usual under U.S. DOE Annual Energy
Outlook 2009 projection.

Figure A.2: Average abnormal return vs 2-day Intrade price difference
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Notes: Average 2-day abnormal returns with 3-factor Fama-French normal returns removed plotted against
change in cap-and-trade prediction market price. Only trading days with θt ∈ [0.2, 0.8]. Linear model (solid)
with 90% confidence interval shown along with local linear model (dashed).
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Figure A.3: Large Trader 1 versus total market trading volume
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Notes: Time series of trading volume for entire cap-and-trade prediction market (red), shares bought by
Large Trader 1 (dark blue), and shares sold by Large Trader 1 (light blue).

Figure A.4: Large Trader 2 versus total market trading volume
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Notes: Time series of trading volume for entire cap-and-trade prediction market (red), shares bought by
Large Trader 2 (dark blue), and shares sold by Large Trader 2 (light blue).
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Figure A.5: Estimated mean square error vs. firm value
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Notes: Estimated using 3-factor Fama-French model shown in Row (3) of Table 2

Figure A.6: Price for Intrade 2009-expiring and 2010-expiring cap-and-trade contracts
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring at end of 2009 (dashed) and
2010 (solid). Red vertical line marks start of 2010.

58



Figure A.7: Empirical and estimated weighting kernel for expiring cap-and-trade contracts
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Notes: Time series of empirical (solid, blue) and predicted (dashed, red) weighting kernel, k̂(D) as a function
of D days remaining until contract expiration.

Figure A.8: Price for Intrade 2010-expiring contract with termination date adjustment
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring in 2010 (solid) and with
adjustment for termination date using predicted weighting kernel in Figure A.7.
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Figure A.9: Google News volume for climate policy terms
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Notes: U.S. Google News volume for climate policy related terms from May 1, 2009 - July 31, 2010. Values
normalized by “cap-and-trade” volume.

Figure A.10: Manufacturing subsector effects vs. energy input share
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Notes: Average cap-and-trade effects for firms within a 3-digit NAICS manufacturing subsector plotted
against energy intensity (% per output) in 2005. See Figure 5 for sector codes.
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Figure A.11: Placebo discontinuity tests at different energy intensity levels
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Notes: Estimated effects at different placebo discontinuities using a local linear model with 0.03 wide bins.
90% confidence intervals shown.

Figure A.12: Distribution of lobbying revenue for lobbyists hired by listed and unlisted firms
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Notes: Kernel density shows distribution of total lobbying revenue for lobbyists hired by unlisted and listed
firms to lobby on Waxman-Markey.
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Figure A.13: Distribution of cap-and-trade costs with negative bounds for unlisted firms
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Notes: Stacked histogram of estimated firm-level cap-and-trade costs for listed firms and negative bound
costs for unlisted firms that lobbied on Waxman-Markey. Distribution truncated at ± $2 billion.

Figure A.14: Distribution of cap-and-trade costs with positive bounds for unlisted firms
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Notes: Stacked histogram of estimated firm-level cap-and-trade costs for listed firms and positive bound
costs for unlisted firms that lobbied on Waxman-Markey. Distribution truncated at ± $2 billion.
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Figure A.15: Aggregate cost uncertainty
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Notes: Blue dot shows mean change in profit from Waxman-Markey for all listed firms with associated 90%
confidence interval shown as solid thick black lines. Solid thin brown lines indicate identification region for
total change in profit for listed and unlisted firms with thin dashed gray lines representing the associated
90% confidence interval for the identification region (from 250 bootstrap draws).
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Appendix Tables

Table A.1: Prediction market event study: standard errors

Dep var is 2-day stock return

(1) (2)
mkt 3 FF

∆θt -0.029 -0.026

Std. Errors
SUR [0.015]* [0.013]*
OLS [0.013]** [0.013]**
ROBUST [0.013] ** [0.014]**
NAICS3 CLUSTER [0.0091]*** [0.0093]***

Number of firms 104 104
Number of days 111 111

Comparison of firm-by-firm SUR standard errors and panel re-
gression standard errors using a 2% random sample of firms.
Only days with θt ∈ [.2, .8]. Uncertainty shown using firm-by-
firm SUR, panel OLS, panel OLS with heteroscedasticity-robust
standard errors, and panel OLS with 3-digit NAICS clustered
standard errors. Column (1) uses the CAPM model with an
aggregate value-weighted market index. Column (2) uses a 3
factor Fama-French model. *** p<0.01, ** p<0.05, * p<0.1
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Table A.2: Prediction market event study: using expiration adjusted prices

Model Controls Days equal-weighted avg. eff. value-weighted avg. eff. total cost
1
L

∑
` γ̂`

∑
`

vo
`P

` v
o
`
γ̂`

∑
` v

o
` γ̂`

(1) Panel CAPM 111 -0.016 -0.0063*** -114.81***
[0.0096] [0.0020] [36.62]

(2) Panel 3-factor FF 111 -0.011* -0.0051*** -92.5.54***
[0.0057] [0.0018] [34.15]

(3) Panel < 0.05 CI 111 -0.016 -0.0066* -120.87*
[0.099] [0.0035] [63.32]

(4) Panel < 0.10 CI 111 -0.016 -0.0064* -118.29*
[0.0098] [0.0036] [65.50]

(5) Panel < 0.15 CI 111 -0.018* -0.008** -153.73**
[0.0098] [0.0039] [70.73]

Specification using expiration adjusted prediction market prices (see Appendix B). Each row
from panel regressions (see Equation 6) of 5,342 firm-level returns on change in prediction
market price with CAPM, 3-factor Fama-French, and value-weighted returns constructed from
firms with carbon intensity below 0.05, 0.10 and 0.15 mton CO2 per billion output as benchmark
controls. Only days with θt ∈ [.2, .8]. SUR standard errors with correlation across firms. ***
p<0.01, ** p<0.05, * p<0.1
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Table A.3: Prediction market event study: leads and lags

Dep var is 2-day stock return

(1) (2) (3) (4)

lagged lagged lead
main returns prediction prediction

∆θt -0.014** -0.013** -0.013** -0.013**
[0.0067] [0.0064] [0.0064] [0.0066]

ri,t−1 -0.0027
[0.0096]

∆θt−1 0.0021
[0.0064]

∆θt+1 0.0068
[0.0066]

Number of days 111 110 110 110

Equally weighted average effect shown for 5,342 firms. Only
days with θt ∈ [.2, .8]. Column (1) replicates 3-factor Fama-
French result. Column (2) includes lagged stock returns. Col-
umn (3) includes lagged prediction price. Column (4) includes
lead prediction price. SUR standard errors with correlation
across firms. *** p<0.01, ** p<0.05, * p<0.1

Table A.4: Prediction market event study: other trading day samples

Dep var is 2-day stock return

(1) (2) (3) (4) (5)

main 2009 2010 ∆θt ≥ 0 ∆θt < 0

∆θt -0.014** -0.017* -0.010 -0.014 -0.013
[0.0067] [0.0091] [0.010] [0.011] [0.016]

Number of days 111 84 27 81 30

Equally weighted average effect shown for 5,342 firms. Only days with
θt ∈ [.2, .8]. Column (1) replicates 3-factor Fama-French main result.
Column (2) includes only 2009 trading days. Column (3) includes
only 2010 trading days. Column (4) includes only days with ∆θt ≥ 0.
Column (5) includes only days with ∆θt < 0. SUR standard errors
with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Prediction market event study: sectoral effects

2-digit NAICS sector equal-wt value-wt Number
avg. eff. avg. eff of firms

Agriculture (11) 0.024 0.0045 11
[0.041] [0.16]

Mining (21) -0.012 -0.0085 307
[0.033] [0.032]

Utilities (22) -0.017 -0.021 123
[0.016] [0.020]

Construction (23) -0.018 -0.018 47
[0.025] [0.026]

Manufacturing (31-33) -0.0028 0.0060 1,663
[0.0094] [0.0048]

Wholesale trade (42) -0.0038 0.0022 76
[0.015] [0.018]

Retail trade (44-45) 0.0058 0.015 210
[0.018] [0.019]

Transportation & Warehousing (48-49) -0.0034 0.012 161
[0.018] [0.017]

Information (51) -0.027** -0.011 403
[0.012] [0.011]

Finance and Insurance (52) -0.023*** -0.011 1,399
[0.0087] [0.018]

Real Estate (53) -0.049* -0.038 147
[0.026] [0.035]

Professional, Scientific, & Technical Services (54) -0.0093 -0.021* 279
[0.013] [0.011]

Company management (55) -0.048** -0.038 124
[0.02322] [0.035]

Administrative, Waste Mgmt & Remediation Services (56) -0.035** -0.027* 76
[0.016] [0.015]

Education Services (61) 0.016 0.033 24
[0.037] [0.053]

Health Care and Social Assistance (62) -0.0011 -0.014 75
[0.022] [0.029]

Arts, Entertainment, & Recreation (71) -0.011 -0.048 37
[0.025] [0.034]

Accommodation & Food Services (72) -0.052** -0.034 72
[0.026] [0.025]

3-factor Fama-French model using 2-day returns. Only days with θt ∈ [.2, .8]. Each row shows
a separate seemingly unrelated regression for firms within a 2-digit NAICS sector. Includes
only firms continuously listed within the same NAICS category during event period. SUR
standard errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Prediction market event study: import share heterogeneity

Dep var is 2-day stock return

(1) (2) (3) (4) (5)

imp share imp share imp share imp share imp share
∈ [0, .1) ∈ [.1, .2) ∈ [.2, .3) ∈ [.3, 4) >=.4

∆θt 0.0050 0.013 0.0022 0.00081 -0.0032
[0.013] [0.012] [0.010] [0.016] [0.012]

Number of firms 468 239 410 567 268
Number of days 111 111 111 111 111

Equally weighted average effect shown. 3-factor Fama-French model.
Only days with θt ∈ [.2, .8]. All regressions with 3-digit NAICS aver-
age removed. Import share variation at 4-digit NAICS level. Column (1)
just firms with import share ∈ [0, .1). Column (2) just firms with import
share ∈ [.1, .2). Column (3) just firms with import share ∈ [.2, .3). Col-
umn (4) just firms with import share ∈ [.3, .4). Column (5) just firms
with import share ≥ .4. SUR standard errors with correlation across
firms. *** p<0.01, ** p<0.05, * p<0.1

Table A.7: Prediction market event study: US revenue share

Dep var is 2-day stock return

(1) (2) (3) (4) (5)

US share US share US share US share US share
∈ [0, .25) ∈ [.25, .5) ∈ [.5, .75) ∈ [.75, 1) =1

∆θt 0.020 0.0018 0.0070 -0.0027 -0.0048
[0.016] [0.0089] [0.0081] [0.0072] [0.0091]

Number of firms 238 361 457 556 1203
Number of days 111 111 111 111 111

Equally weighted average effect shown. 3-factor Fama-French model.
Only days with θt ∈ [.2, .8]. All regressions with 3-digit NAICS aver-
age removed. US revenue share variation at 4-digit NAICS level. Column
(1) just firms with US revenue ∈ [0, .25). Column (2) just firms with US
revenue ∈ [.25, .5). Column (3) just firms with US revenue ∈ [.5, .75).
Column (4) just firms with US revenue ∈ [.75, .1). Column (5) just firms
with US revenue=1. SUR standard errors with correlation across firms.
*** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Lobbying revenue for lobbyists hired by listed and unlisted firms by sector

Listed Unlisted Difference

All sectors 456,101 353,290 -102,810***
N=952 N=461 [28517]

Agribusiness 483,269 220,956 -262,313***
N=54 N=42 [57998]

Comm/Elec 302,308 222,183 -80,125
N=97 N=15 [49476]

Construction 326,005 355,777 29,772
N=34 N=23 [82877]

Energy 551,979 342,697 -209,282***
N=310 N=180 [63040.24]

Finance 516,820 392,577 -124,243**
N=83 N=95 [38,444]

Health 496,607 351,135 -145,472
N=14 N=12 [71106]

Trans 478,796 373,606 -105,120
N=132 N=26 [58373]

Misc 366,404 428,873 62,469
N=228 N=68 [65130]

Each row conducts a t-test for differences in means
allowing unequal variance. Standard errors in
brackets, *** p<0.01, ** p<0.05, * p<0.1

Table A.9: Simulations for comparing uncertainty across models

Model Obs Parameter Mean Std. Dev.

(1) Aggregate time series 5 γ̂1
(b) -0.012 0.11

(2) Aggregate time series 111 γ̂2
(b) -0.0075 0.018

(3) Firm-level SUR w/out control 111 γ̂3
(b) -0.0087 0.013

(4) Firm-level SUR w/ control 111 γ̂4
(b) -0.0079 .0022

Simulations described in Section Appendix C. 500 draws.
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