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1 Introdu
tionRe
ently, many models have been 
onstru
ted in the spirit of Ben-Porath's(1967) seminal work on human-
apital a

umulation. Examples in
ludeHuggett, Ventura, and Yaron (2006), who use a human-
apital model toexplain the distribution of earnings over the life 
y
le, and Guvenen and Ku-rus
u (2006), who use a model in the same spirit to examine the impli
ationsof skill-biased te
hnologi
al 
hange on the earnings distribution.As is done in these two studies, most models that address age-earningsdynami
s are single-se
tor models where the wage stru
ture 
annot vary sys-temi
ally a
ross �rms. However, e
onometri
 work has established that wagepro�les do indeed vary signi�
antly a
ross �rms: Mi
hela

i and Quadrini(2005) �nd that the tenure premium is higher in small, young, fast-growing�rms and lower in bigger, established, slow-growing ones.1 Also, they do
-ument that starting wages are lower in fast-growing se
tors.2 In line withthis, a large number of e
onometri
 studies has found that larger �rms payhigher wages than smaller ones (CITATION). So it seems that there is sys-temati
 
onne
tion between wage pro�les and �rm attributes; if workers staywith their �rms for at least some time, then agents in some �rms will havesystemati
ally steeper wage pro�les than others.A promising avenue of modelling the wage stru
ture of �rms and age-earnings pro�les jointly is suggested by the model of Chari and Hopenhayn(1991). In their overlapping-generations framework, produ
tion o

urs indi�erent vintages; workers a
quire vintage-spe
i�
 human 
apital in the �rstperiod of their lives and 
an use this experien
e as \managers" (i.e. expe-rien
ed workers) in the se
ond period. It turns out that in equilibrium thewage pro�les of all agents are in
reasing from the �rst to the se
ond period,and that wage growth is systemati
ally higher in younger vintages, just as inthe data analyzed by Mi
hela

i and Quadrini (2005).The model presented in this paper builds on the Chari-Hopenhayn frame-work in adopting the vintage stru
ture. However, it introdu
es a �ner stru
-ture for human 
apital: In ea
h vintage, output is produ
ed using a rangeof labor inputs that are di�erentiated by the level of human 
apital. These1They build a model where �rms are �nan
ially 
onstrained and \borrow" from theirworkers in the form of in
reasing wage pro�les; small 
ompanies that want to grow areseverely 
onstrained and borrow a lot.2The fa
t that fast-growing �rms pay lower wages is independently established in studiesby Hanka (1998) and Bronars, Stephen G. and Famulari, Melissa (2001).2



human-
apital levels 
an be interpreted as positions in a hierar
hy of a �rmthat the workers 
limb re
eiving su

essive promotions. Agents are in�nitely-lived and 
an 
limb the hierar
hy ladder by learning new tasks, whi
h ispenalized by a 
onvex 
ost fun
tional like in Ben-Porath-type models.In equilibrium, agents that enter the vintage at di�erent points of willfa
e di�erent wage prospe
ts over their 
areers, giving rise to heterogeneityin age-earnings pro�les. In equilibrium, agents who enter new te
hnologieshave steeper pro�les and a

umulate human 
apital faster in equilibrium thenworkers who enter the vintage later on. Figure 1 plots the (log-)age-earningspro�le from the model and 
ompares them to a plot of one of Min
er's famousregressions (see �gure 2), here 
arried out by groups de�ned over years ofedu
ation.
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Figure 1: Log wages over 
areer by entry 
ohortThe model generates age-earnings pro�les that are reminis
ent of the onesMin
er observed in the data: Agents that invest a lot of time in human-
apitala

umulation in the beginning of their lives forgo earnings in earlier stagesin order to enjoy high wages in later stages of their 
areers; these agents maybe identi�ed with the individuals having 13 years and more of edu
ationin �gure 2 (Note that in Min
er's plots, the lines of highly-edu
ated agentswould 
ross those of less-edu
ated ones if plotted from an earlier age sin
eearnings during s
hooling years are very low or even negative). Agents thata

umulate less human 
apital have 
atter wage pro�les; these agents maybe identi�ed with the low-edu
ation workers in Min
er's regressions.3



Log annual earnings vs. age, grouped by years of edu
ation. Sour
e: Min
er (1974)Figure 2: Age-earnings pro�les by edu
ation groups (Min
er, 1974)An espe
ially noteworthy feature of the pro�les generated by the modelis that some are downward-sloping in the end. A slight downward slope isre
ognizable in Min
er's data towards the end of the pro�les, but it is notvery 
lear. More importantly, real-wage de
reases were also found in otherdata sets that are less sus
eptible to sample-sele
tion bias versus the endof the work life, e.g. in Baker, Gibbs, and Holmstrom's (1994) study.3 Inthe model presented here, real-wage de
reases o

ur despite the fa
t thathuman 
apital does not depre
iate. The me
hanism at work is a form ofobsoles
en
e: Some agents a
quire skills that are s
ar
e when a te
hnologyis still young. Wages for these individuals are high in the beginning, whi
hlures more workers into this te
hnology who learn the s
ar
e skill. Theseworkers 
reate always larger supply of the on
e s
ar
e skill and drive downits returns as the te
hnologies4Furthermore, the model generates heterogeneity in the slope of age-earnings3Sample-sele
tion might o

ur be
ause of the following reason: If higher-wage workerstend to retire earlier, the sample for very old ages 
ontains more workers with relatively lowprodu
tivity; all workers' wages 
ould be stable and the line in Min
er's graph would bedownward-sloping due to this sele
tion. Baker, Gibbs, and Holmstrom (1994), by 
ontrast,follow workers over their work life at a �rm and still �nd a signi�
ant fra
tion of real-wagede
reases.4This e�e
t 
annot o

ur in standard Ben-Porath-type models sin
e produ
tion is as-sumed to be linear in all levels of human 
apital.4



pro�les between agents that are ex-ante alike. In this way, it introdu
es a ra-tionale why a phenomenon 
alled \overtaking"5, as studied in Hause (1980),for example, should o

ur also between workers of the same skill level andnot only between workers with di�erent learning ability.If vintages are interpreted as se
tors or �rms, the model's predi
tions onthe wage stru
ture inside and a
ross �rms are in line with some key stylizedfa
ts from the empiri
al literature. The youngest and fastest-growing vin-tages pay low entry wages, but o�er high prospe
tive wage growth to entrants.The established vintages (whi
h are bigger in terms of both employment andprodu
tion) pay higher wages on average, but o�er less prospe
tive wagegrowth. In regard to these �rst-order e�e
ts, the model repli
ates the resultsof Chari and Hopenhayn (1991). However, the model 
onstru
ted here alsohas predi
tions for higher-order e�e
ts.The remainder of the paper is organized as follows: Se
tion 2 des
ribesthe model setup, shows equivalen
e of the market equilibrium to the planner'ssolution and derives properties of the equilibrium. Se
tion 3 presents a dis-
rete approximation te
hnique to 
ompute an equilibrium. Se
tion 4 presentsthe results for a representative pair of parameters, explains the main e�e
tsand 
ompares them to the existing literature. Se
tion 5 
on
ludes.2 Model2.1 Te
hnologyTime is 
ontinuous. In every instant s, a new produ
tion te
hnology (orvintage) arrives that is available to the agents in the e
onomy for all t � s.We will either refer to the vintages by their birth date, s, or { espe
ially ina stationary setting { identify them with their age � � t � s. All vintagesprodu
e the same good.As inputs, the produ
tion te
hnology of age � uses labor inputs whi
h arearranged on a hierar
hy and indexed by 0 � x � 1. The di�erent labor inputson this ladder 
an be thought of as tasks that are in
reasing in diÆ
ulty andthat tasks with a higher index require more vintage-spe
i�
 human 
apital.Se
tion 2.2 will spe
ify exa
tly how this form of human 
apital is a

umulated5\Overtaking" des
ribes the fa
t that two wage pro�les that 
an have the same presentvalue di�er in steepness and hen
e have to 
ross ea
h other; it is usually as
ribed todi�erent speeds in on-the-job training, as in Hause's paper.5



by workers.The produ
tion fun
tion is supposed to 
apture the following notions: (i)Newer vintages are more produ
tive when the same inputs are used; (ii) theprodu
tion fun
tion is 
omplementary in its inputs, i.e. it is optimal to �nd agood mix between the di�erent inputs of human 
apital;(iii) tasks that requiremore experien
e in a vintage have higher returns than those that requireless experien
e if the same number of workers is employed in both tasks.Spe
i�
ally, I 
hoose the following 
onstant-elasti
ity-of-substitution (CES)produ
tion fun
tion where total fa
tor produ
tivity (TFP) is exponentiallyin
reasing in the vintages:Y (t; s) = e
s�Z 10 [f(x)n(t; s; x)℄�dx�1=�where 0 � � � 1, n(t; s; x) is the density of workers with experien
e x invintage s at time t, and f(x) is a 
ontinuously di�erentiable, non-de
reasing,weakly 
on
ave fun
tion in x that spe
i�es the returns to experien
e. Notethat this produ
tion fun
tion will indu
e a trade-o�: Newer vintages will bemore produ
tive in terms of TFP, but in older vintages experien
ed laborwill be more abundant, whi
h in
reases produ
tivity.Total output in the e
onomy at t isY (t) = Z t�1 Y (t; s)ds:Firms take the wages for all labor inputs as given in any instant. Sin
ethe produ
tion te
hnology is 
onstant-returns-to-s
ale (CRS), pro�ts will bezero for time t and vintage s in equilibrium, of 
ourse. Workers will be paidtheir marginal produ
t in equilibrium:w(s; t; x) = �Y (t; s)�n(s; t; x) = e
sf(x)� R 10 n(t; s; ~x)d~xn(t; s; x) !1��
2.2 WorkersThere is a 
ontinuum of agents that has mass one. Agents are homogenousin preferen
es: They have linear utility and dis
ount the future at rate �.Ea
h agent 
hooses a work life fs(t); x(t)g0�t<1, whi
h 
onsists of a fun
tions(t) spe
ifying the vintage the agent works in at time t and a fun
tion x(t)6



spe
ifying the task he performs at time t. It is required that the vintagealready exist at time t, i.e. s(t) � t, and that s(t) be a measurable fun
tionin t.As for human-
apital a

umulation x(t), we require that a worker starther work life in position x = 0 when she enters the vintage; mathemati
allywe impose that x(�t) > 0 only if there is an interval [a; b℄ around �t su
h thats(t) = �t for all a < �t < b. Also, the worker looses all experien
e in a vintageon
e he drops out6 Apart from this, the fun
tion x(t) is required to be 
on-tinuous and di�erentiable pie
ewise, i.e. it is allowed to have dis
ontinuitiesbetween smooth intervals. There is no 
ost of swit
hing between vintages.To 
apture the notion that human-
apital a

umulation inside a vintageis 
ostly, we spe
ify the following 
ost fun
tional for a 
areer segment x(t)over the interval [t; t+ r℄ in a vintage s:C([t; t+ r℄) = e
s limn!1X 
2 maxfx(tn+1)� x(tn); 0g�t !2�tThis says the following: When we 
hop up time in a �ne grid, the 
ost of
limbing the 
areer ladder (per unit of time) is quadrati
 in the lo
al slope.When one takes steps down, however, this is 
ostless. Taking the limit forany fun
tion that takes an upward jump shows that the 
ost of this is in�nitefor the agent and hen
e will not be optimal. Downward, however, jumps 
ano

ur. So x(t) will be a di�erentiable fun
tion on its upward-sloping partsand the 
ost will be R t+rt 
 _x(t)=2dt; 
onvexity implies it is optimal to 
limbthe ladder in a steady fashion rather than to make abrupt leaps, sin
e largeslopes are penalized more than proportionally due to the 
onvexity of thequadrati
 fun
tion.Furthermore, note that the 
ost of human-
apital a

umulation is grow-ing at the pa
e of TFP to ensure stationarity of the system; in e
onomi
terms, this means that the 
osts of human-
apital a

umulation relative toprodu
tivity do not 
hange.To start o� the e
onomy, we also need to spe
ify the initial 
onditions foragents. Assume that ea
h agent enters the e
onomy with some experien
elevel x for a vintage of age � � 0, and that there is a density n0(s; x) overthese endowments.6This assumption is imposed for tra
tability and may be relaxed; in equilibrium, work-ers would not want to return to vintages they have on
e left.7



2.3 Stationary equilibriumIn a stationary environment, I require that the density n(t; s; x) depend onlyon the age of the vintage � = t� s but not on time:n(t; s; x) = n(s+ �; s; x) = nstat(�; x)This means that in any area of the vintage-experien
e spa
e, the mass ofagents stays the same when we index the vintages by age � instead of theirbirth date s. Stationarity immediately implies that wages and produ
tiongrow at rate 
. From now on, we will only work with the stationary distri-bution; I thus drop the subs
ript and write simply n(�; x).A stationary equilibrium is a distribution n(�; x) = n0(�; x), a measure� on all possible work lives l(t) = f�(t); x(t)g, a wage fun
tion w(�; x) su
hthat� The measure � yields n(�; x) for all t.� The distribution n(�; x) is the optimal 
hoi
e for ea
h �rm given wagesw(t; t� �; x) = e
tw(�; x)� Ea
h life l(t) is optimal given the wage pro�le.2.4 Properties of equilibriumDe�ne the value fun
tion V (�; x) of an agent positioned in the vintage ofage � at level x as the supremum ofV (�; x) = supl (Z 10 e
��w(�t; xt) + e��tC(xt)dt);where the supremum is taken over all feasible lives l. Note that by station-arity, the value fun
tion at time t is given by e
tV (�; x).The �rst thing to note is the following: that the value fun
tion is weaklyin
reasing in the human-
apital (or hierar
hy) level x inside a vintage:Lemma 2.1 (Value fun
tion weakly in
reasing) The value fun
tion V (�; x)is weakly in
reasing in x for all � .Another insight is that at the beginning of the 
areer, all 
areers pursuedin equilibrium have to provide the same value.8



Lemma 2.2 Value is equal for all 
areer starters We have V (�; 0) = W �max� V (�; 0) for all � , and V (�; x) � 0 for all � and x.The e
onomi
 intuition is of 
ourse that no agent would pursue a 
areer witha lower value than another, sin
e she 
ould swit
h at zero 
ost.Proof It is always an option to start in the 
areer that provides W , so thevalue everywhere must be at least W . Also, no starting point (�; x) 
anprovide more value than W by de�nition. �Another result that allows us to make some headway is that we do nothave to 
onsider the entire spa
e of vintages 0 � � < 1, but 
an restri
tourselves to a �nite interval 0 � � � T :Lemma 2.3 (Finite support of te
hnologies) In a stationary dynami
 equi-librium, there is a bound T on the age of the vintages beyond whi
h no pro-du
tion o

urs, i.e.: Y (�) = 0 for all � > T .The proof uses the argument that workers 
an always se
ure some positivewage in a new vintage without going through training, but that old vintages'produ
tivity goes to zero su
h that in the end they 
annot provide a valuehigher than this small wage:Proof There is a small positive value " in equilibrium that a worker 
anse
ure, for example by working 
ontinuously as an unskilled worker in thenewest vintage: " = f(0)=(
 � �). Now, we will argue that in very oldvintages, this value 
annot be provided to workers sin
e TFP is so low. Tosee this, observe that maximal produ
tivity in a vintage 
annot ex
eed somemaximal produ
tivity �y that is a
hieved when marginal fa
tor produ
tivitiesare equalized a
ross inputs. However, this bound de
reases exponentiallywith � sin
e TFP falls.Now, �x some very old vintage S. Note that in equilibrium, the valueof every 
areer segment (i.e. that somebody spends in a vintage older thanS must ex
eed the value of working for " in the newest vintage. The wagepayments that go into the earnings of workers in vintages older than S haveto be equal to produ
tion in the aggregate. However, note that in all vin-tages above S produ
tivity is below e�
S, whi
h is smaller than " for S largeenough; 
osts of human-
apital a

umulation will even lower the value fur-ther. So it is impossible that all 
areer segments in 
areers in vintages olderthan S provide more value than working for " always. �9



In the following, we will look for a fun
tions n(�; x), w(�; x) and V (�; x)that are at least on
e di�erentiable in both dire
tions. Then lemma 2.1 aboveimplies that �V (�; x)=�x � 0. Denote the slope of a worker's 
areer at t bya(t) = �x(t)=�t and by V (�; x) the value of being at an interior position(�; x). Then the slope has to ful�ll the following Hamilton-Ja
obi-Bellman(HJB) equation:��V (�; x)�� = w(�; x)� (� � 
)V (�; x) + maxa �� 
2a2 + a�V (�; x)�x � (1)The equation says the following: If we know the value fun
tion for a given �for all experien
e levels x, we 
an get the value a tiny bit left of this � doingthe following: Let the agent 
hoose the optimal slope a, whi
h is 
ontingenton the slope of the value fun
tion and the 
ost of learning. Then the 
hangein the value fun
tion for some small h to the left (keeping x �xed) is thegain the agent gets from moving up in the hierar
hy (the term inside themax-operator) and another term whi
h is the di�eren
e between the 
urrentwages and the 
ow value of V (�; x) under the \modi�ed" dis
ount fa
tor� � 
 (note that value in
reases in time sin
e TFP grows).Sin
e a tra
table form was assumed for the 
ost of human-
apital a

u-mulation, we 
an get the optimal poli
y in 
losed form:a�(�; x) = 1
 �V (�; x)�x (2)This says that agents will a

umulate human 
apital faster the greater thevalue di�erential in the hierar
hy. Also, the slope is inversely related to themarginal 
ost in a

umulating human 
apital.Plug this optimal solution ba
k into equation (3) to get the followingnon-linear �rst-order partial di�erential equation (PDE):��V (�; x)�� = w(�; x)� ~�V (�; x) + 12
 ��V (�; x)�x �2 (3)(4)This equation des
ribes the behavior of V (�; x) given a �xed wage pro�lew(�; x). In a partial equilibrium, this equation would give us workers' be-havior given market wages.Now we need rule that tells us how the density n(�; x) {and hen
e wages w(�; x){evolve given the optimal lo
al behavior of agents des
ribed by the HJB.10



Given an entry densitym(�) whi
h spe
i�es the density of people enteringnew 
areers at x = 0 we 
an get the following forward equation governingthe evolution of the density. The following gives the relationship between theentry density, the slope and the density of workers and a forward equationfor interior points:�n(�; x)�� + a(�; x)�n(�; x)�x = ��a(�; x)�x n(�; x) (5)The equation is the usual mass-transport equation for densities of movingparti
les.7 In the appendix it is proven that the equation also holds for pointson the upper bound of the experien
e spa
e (i.e. x = 1) using a(�; 1) = 1 andax(�; 1) = limx!1 ax(�; x).8Equation (5) says the following: On the left-hand side, we see how thedensity 
hanges when we follow the path of the worker on a very small intervalof time: one unit to the right and a(�; x) units upward. The right-hand sidesays that the density falls at a spe
i�
 rate on this line { this rate is given bythe 
hange of 
areer slopes a
ross the x-dimension. Suppose that this slopedid not 
hange and all workers in vintage � moved upward at the same slopea; then the density n would of 
ourse stay the same along ea
h 
areer line.However, if the slopes in
rease with experien
e level x, then agents wouldmove apart from ea
h other, whi
h would result in a thinning of n along the
areer lines.Also, it is sometimes desirable to talk about the density of entry into avintage. De�ne the entry density m(�) su
h that the mass of agents enteringvintages between � and � 0 per unit of time is R � 0� m(t)dt. Then we haven(�; 0) = m(�)a(�; 0)The interpretation is straightforward: the higher the entry density in a vin-tage, the people there are in the starting job. The faster people move upwardfrom the starting position, the less 
rowded this position.7It 
an also be seen as a spe
ial 
ase of the Kolmogorov forward equation for Itopro
esses where the sto
hasti
 
omponent is set to zero. Sin
e there is also an HJB for asto
hasti
 environment, a sto
hasti
 version of the model with Brownian sho
ks to human
apital, for example, would also amenable to analysis by PDEs.8Let subs
ripts denote partial derivatives, for example ax(�; �) = �a(�; �)=�x.11



2.5 Planner's problem and uniquenessWhen looking at the planner's problem for this e
onomy, we 
an get somemore valuable insights into the nature of this model. The �rst issue to resolveis how the planner should optimally 
hoose promotion paths for the agentsgiven that she wants to implement some given stationary allo
ation n(�; x).It turns out that it is optimal that the agents' paths never 
ross { this meansthat one agent that is above another in a given vintage will stay above theother for the entire lifetime of this vintage.Lemma 2.4 Promotion along level lines To implement a given stationarydistribution n(�; x) it is optimal to let the agents follow the level lines of thefun
tion N(�; x) = R 1x n(�; x)dx, the \hierar
h-
df" along the x-dimensionseen from the top of the ladder.The statement is proven in the appendix. The intuition for the proof is thatany other allo
ation makes the paths of some agents 
ross. But this 
annever be optimal, sin
e the agent 
oming from the bottom has to make moreadditional e�ort to 
ross the worker on the top than the the top worker issaving by dropping down.The planner's problem is the following in words: Given an initial allo
a-tion of experien
e, 
hoose the fun
tion n(s; t; x) su
h that the dis
ounted inte-gral over all future output minus all future learning 
osts is maximized; learn-ing 
osts are 
omputed by following taking the level lines of the hierar
hy-
dfin ea
h vintage as promotion paths.Proposition 2.5 Equivalen
e of planner's problem to equilibrium A solu-tion to the planner's problem solves the HJB and the transport equation.The statement is proven in the appendix. The best intuition for the resultis probably the following: Why shouldn't the welfare theorem hold? If weimagine promotions as a te
hnology that produ
es labor inputs in t+1 fromthose in t using a 
ertain amount of resour
es, it is not hard to see thatthis te
hnology and the vintage te
hnologies satisfy the assumptions of thewelfare theorems and everything should go through. The mathemati
al proof,however, is a somewhat tedious appli
ation of a Lagrange-multiplier theorem.Furthermore, the planner's problem has a unique solution. This 
an beestablished as follows: Suppose there were two stationary allo
ations n1(�; x)and n2(�; x) that a
hieve the maximum. Then a 
onvex 
ombination ofthese two is also feasible, sin
e the total-population 
onstraint is linear. In12



terms of human-
apital a

umulation 
ost, the 
ombination must yield thesame total 
ost as the two input distributions, sin
e the 
osts of the twoare just averaged. However, in terms of produ
tion there is a gain, sin
e inevery vintage we have a produ
tion fun
tion with 
onvex level sets. Considerprodu
tion in a vintage � :Y (�) = e�
� Z 10 ��n1(�; x) + (1� �)n2(�; x)��dx!1=�for any 0 < � < 1.Under the integral sign, for 0 < � < 1, we have for every x that��n1(�; x) + (1� �)n2(�; x)�� > �n1(�; x)� + (1� �)n2(�; x)�sin
e g(z) = z� is stri
tly 
onvex for 0 < � < 1. Then, integrating over all xand noting that the transform h(z) = z1=� is an in
reasing transform, we getthe desired result.TO ADD:� ENTRY WAGES INCREASING IN VINTAGE AGE� TOP WAGES DECREASING IN VINTAGE AGE� WAGES INCREASING IN ALL VINTAGES� LEARNING EFFORTDECREASING ALONGALL CAREERS (PROOFOR COUNTEREXAMPLE)� LEARNING EFFORT DECREASING IN POSITION X INSIDE VIN-TAGE (PROOF OR COUNTEREXAMPLE)3 A dis
rete approximation te
hniqueThe following method dis
retizes the model into a �nite number of vintagesand a �nite number of ladder rungs by introdu
ing a random element topromotion. This setting is not only useful to 
ompute an approximation tothe equilibrium, but also get form some intuition about the value fun
tion,agent's paths and other obje
ts of the 
ontinuous version.13



Given an allo
ation with density n(�; x) on the re
tangle (0 � � � T; 0 �x � 1, 
onstru
t a dis
rete grid as follows: Divide the vintages into S sub-intervals and the experien
e levels into X sub-intervals. Denote the size ofthese intervals by �� and by �x.To approximate 
areers of any slope and smooth things out, we makepromotions for the agent sto
hasti
: Take the value of a(�i; xj) at a 
ertaingrid box (�i; xj) to be the value of the fun
tion a in the 
enter of respe
tivebox. Set the probability pij that the agent moves one box up (to xj+1 invintage �i + 1, that is) su
h that the expe
ted slope of his 
areer equalsa(�i; xj), but that it does not ex
eed one:a(�i; xj) = min�pij�x�� ; 1�This means that in order to be able to repli
ate very steep slopes in thisfashion, we need to make the slope �x=�� be
ome su

essively greater ask grows. I will make the following limiting argument: If we have an in�nitesequen
e of dis
rete approximations as des
ribed above, 
hoose the numberof grid points as follows: Sk = kS0 and Xk = k3=2X0 (the reason for this
hoi
e will be
ome 
lear later). Now, sin
e the number of grid points forthe hierar
hy grows faster than the number of grid points for vintages, themaximal possible slope �xk=��k will grow to in�nity, so any slope at anypoint of the grid will be repli
able from some k on.n(� + 1; x) = �1� p(�; x)�n(�; x) + p(�; x� 1)n(�; x� 1)Now, introdu
e the di�eren
e operators �xf(�; x) = f(�; x+1)�f(�; x) and��f(�; x) = f(� + 1; x)� f(�; x). Then we 
an re-write the above as��n(�; x) =��xhn(�; x� 1)p(�; x� 1)i = �n(�; x� 1)�xp(�; x� 1)� p(�; x� 1)�xn(�; x� 1)��xn(�; x� 1)�xp(�; x� 1)Note that the last term in the se
ond line will be
ome very small 
omparedto the others when we make the grid very small. So in the limit, the equationbe
omes equivalent to the mass-transport PDE (5).Now, we want to �nd an equivalent to the value fun
tion. First, 
al
ulateprodu
tion in vintage �i as an approximation to the 
ontinuous 
ase; notethat this variable is 
al
ulated without adjusting for TFP in the vintage, i.e.14



Y (�i) = e�
�i ~Y : ~Y (�i) = hX (f(�j)n(�i; xj))��xi1=�where again the fun
tion f is evaluated in the middle of the 
orrespondingbox (�i; xj). The dis
rete 
ounterpart for wages isw(�i; xj) = exp[�
�i℄f �j  ~Y (�i)n(�i; xj)!1��Note that this gives the wage rate per unit of time. If we want to 
al
ulatethe 
ounterpart to wage payments over the width of the box, we have tomultiply this wage rate by �� . The value fun
tion isV (�i; xj) = w(�i; xj)�� + e�(��
)��V (�i+1; xj)+= maxa � 
2a2�� +�a���x| {z }=p e�(��
)���xV (�i+1; xj)�Solving for the optimal poli
y gives usa�(�i; xj) = e�(��
)��
 �xV (�i+1; xj)�x ;whi
h 
onverges to the optimal poli
y (2) in the 
ontinuous 
ase. Pluggingba
k in, we get the Bellman equationV (�i; xj) = w(�i; xj)�� + e�(��
)��V (�i+1; xj) + e�2(��
)�� 1
 �xV (�i+1; xj)�x !2��When dividing this equation by �� and taking the limit as the boxes getvery small, we get the 
ontinuous HJB (3).I solve the system for a given re
tangle with length T and height 1 as fol-lows by how a real e
onomy might 
onverge to a steady state under adaptiveexpe
tations with some inertia in the agents' a
tions. Given a distributionof agents over all jobs and the promotion 
ows leading to it, we 
an 
al
ulatethe value at all points of the grid. Given the value fun
tion, we 
an �nd theoptimal human-
apital-a

umulation strategy in ea
h 
ell and the value ofentering vintages in the 
ells on the bottom of the 
areer ladder.15



As for the promotion e�orts a, we know mix some of the optimal poli
iesinto the existing ones. As for the entry de
isions, I send more mass into thestarting points with higher value and less mass into those with higher value.Sin
e wages are inversely related to the density, this algorithm drives thesystem towards an equilibrium if the tuning parameters are 
hosen right. Infurther work, one 
ould try to prove that this algorithm is indeed a 
ontra
-tion mapping.4 An example and preliminary resultsFigure 4 shows a summary of the results for the approximation te
hniquedes
ribed in se
tion 3 using the parameter values � = 0:2, 
 = 0:1, 
 = 0:5and f(x) = 0:2 + px. The size of the grid is 
hosen to be X = 7 for thex-axis and S = 30 for the � -axis. T {the optimal age of the oldest vintage{was 
hosen su
h that the valueW of a worker just entering any of the 
areerswas maximized.4.1 Wage pro�les a
ross �rmsAs des
ribed before, wages are in
reasing in human 
apital x within ea
hvintage. The steepness of these wage pro�les de
reases with vintage age.Spe
i�
ally, wages for entrants (x = 0) are de
reasing in vintage age, butwages on the top of the ladder (x = 1) are de
reasing in vintage age. Notethat this is in line with the eviden
e fromMi
hela

i and Quadrini (2005) whoreport that fast-growing �rms pay higher tenure premia than slow-growingones and that entry wages in fast-growing �rms are lower on average.The intuition why this must be the 
ase is the following: Agents whoenter a te
hnology at a very early stage do not have many experien
ed agentsabove them, as 
an be seen in the plot of the density n. Sin
e the produ
tionfun
tion is 
omplementary in the labor inputs, their marginal produ
t is low{ in terms of the motivation of the model, one 
ould say that they are la
kingexperien
ed people above them who tell them what to do.On the other hand, this means that very experien
ed agents are so s
ar
eat the early stages of a te
hnology that they 
ommand very high returns,hen
e the steep wage pro�le in the early stages of the te
hnology. This steepwage pro�le indu
es agents to a

umulate human 
apital very fast, as 
an beseen in the plot of the 
areer lines in the top-left panel of �gure 4. However,16
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note that this is not the only e�e
t at work: There is also a horizon e�e
tas is present in Ben-Porath-type models with �nitely-lived agents. Early inthe 
areer in
entives to a

umulate human 
apital are espe
ially large sin
ethe gains a

rue over a longer time horizon. However, note that in thismodel the horizon e�e
t is not 
aused by �nite-livedness of agents but bythe (endogenous) �nite-livedness of te
hnologies.As vintages age, entering agents' marginal produ
tivity rises sin
e thereare many old hands around who tell them what to do, so entry wages rise. Onthe other hand, more and more people press into the higher e
helons of thehuman-
apital hierar
hy and depress returns there, so the tenure premiumfalls over the lifetime of the vintage. In fa
t, as stated before in theorem (?),this pro
ess 
ontinues until marginal returns are 
ompletely equalized andthe wage pro�le is 
at when the vintage dies.4.2 Firm size and organization 
apitalAnother very robust empiri
al fa
t is that larger �rms pay higher wages [CI-TATION HERE!!!℄. Noti
e that the model also predi
ts that larger �rms payhigher average wages, if we asso
iate a vintage with a �rm or assume that thenumber of �rms per vintage does not 
hange over time. Average wages areidenti
al to average labor produ
tivity in this framework, whi
h is plottedin the lower left 
orner of �gure 4. The e
onomi
 me
hanism behind thisis the trade-o� between experien
e a

umulation and obsoles
en
e. Youngervintages have higher TFP, but experien
ed labor is still very s
ar
e in thesete
hnologies. Under 
omplementarity, this means that marginal produ
tiv-ities a
ross human-
apital inputs have a large spread (as is apparent fromthe steep wage pro�les), whi
h means that these �rms are far away fromthe optimal input stru
ture without experien
e 
onstraints. Later on, thisgap 
loses { marginal produ
tivities 
onverge and average labor produ
tivityin
reases manyfold.In fa
t, in the �nal stages of the pro
ess the gains from further experien
ea

umulation be
ome smaller, and the obsoles
en
e e�e
t takes over. Thevintage looses ground 
ompared to slightly younger vintages, as is apparentfrom the graph for labor produ
tivity.the vintage falls farther behind the frontier te
hnology in terms of TFP,whi
h in the end leads to it being shut down and the workers being allo
atedto newer te
hnologies.Average produ
tivity pro�les as well as the wage pro�les of the early en-18



trants display some similarity to the hump-shaped pro�les that Atkeson andKehoe (2005) measure for rents from organization 
apital. In their model,there is an exogenous hump-shaped produ
tivity pro
ess whi
h is inheritedby the returns to the �rm owner be
ause 
osts of labor and 
apital inputsare time-invariant.The vintage-human-
apital model developed in this paper may be inter-preted as one that endogenizes Atkeson and Kehoe (2005) exogenous pro
essfor learning: In
reases in average labor produ
tivity arise over the lifetime ofa vintage whi
h are brought about by the individual learning of workers andgains due to the su

essively better assignment of tasks inside the vintage.Atkeson and Kehoe (2005) say that \measuring the return to workers fromorganization 
apital is an importan task, but not one that we attempt". Inthe model presented in this paper, things are reversed: All pro
eeds fromorganization 
apital go to workers, but there is no plant/�rm owner whoreaps returns from organization 
apital.9As for the allo
ation of the rents from organization 
apital to workers,the model says that workers entering at di�erent points in the �rm's lifehave the same per-period value from their 
areers, so the pro
eeds are evenlydistributed in this sense. Di�eren
es o

ur only in the time stru
ture of thesepro
eeds over 
areers, whi
h will be dis
ribed in the following subse
tion.4.3 Age-earnings pro�lesFigure 4.3 shows the pro�les of agents over their 
areers; the left panel showsa 
ross se
tion through the e
onomy at t = 0, i.e. the wages are depi
ted ata �xed point in time. The right panel shows the wages following an agentfrom t = 0 onward, i.e. the left-most point in ea
h pro�le shows the wage att = 0 and along the pro�le time progresses.To understand the for
es at work in these pro�les, it is useful to de
om-pose the growth of log-wages into its di�erent 
omponents. Parameterize a
areer by time t, i.e. take two fun
tions x(t) and �(t) (s.t. d�=dt = 1) and
onsider in�nitesimal 
hanges in log-wage along the 
areer { note that this
orresponds to the pro�les plotted in the right panel of �gure 4.3, sin
e time9If one interpreted the �rst entrants into a vintage as the �rm owners, then one wouldobtain a similar pattern of returns for them as Atkeson and Kehoe (2005) do. However,to 
reate a world that is really equivalent to theirs in spirit, one would have to introdu
ea form of vintage 
apital in the model, whi
h has to be established at some 
ost and thenreaps pro
eeds as the vintage ages. 19
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Figure 4: Equilibriumprogresses as the agent ages:d lnwdt ������(t);x(t) = a(�; x)f 0(x)f(x) + (1� �)� ln ~Y (�)�� � (1� �)d lnndt ������(t);x(t) (6)The �rst term a(�; x)f 0(x) 
aptures returns from learning: The higherthe agent's 
areer slope a(�; x), the higher the gains from learning. Also, thelower the agent stands in the hierar
hy, the higher are the gains for a �xede�ort: Sin
e f(x) was assumed to be 
on
ave, the growth rate f 0(x)=f(x) isde
reasing in x. So sin
e e�ort is seen to be de
reasing over all 
areers in theexample in �gure 4, we 
an 
on
lude that wage growth from this 
omponentis always positive but de
reasing in this e
onomy.The se
ond term involving adjusted produ
tion ~Y (�) is in
reasing; itrepresents the gains from 
omplementarity between labor inputs, whi
h growas the vintage ages.Finally, the last term involving the density n (whi
h has to be understoodas going along the spe
i�ed 
areer path x(t)) is key to understanding whythe wage pro�les are de
reasing for some 
areers even when following anagent over his lifetime { in the 
ross se
tion, this would be less surprising20



sin
e older vintages have lower produ
tivity and a term �
 would show upin equation (6).Re
all from equation (5) that the density along a 
areer line de
reases ifand only if the 
areer lines around it are drawing 
loser together (as happensin the example). Although it 
ould not be proven yet, it seems to be truethat the 
areer lines are indeed 
ontra
ting towards the right in the entire(�; x)-spa
e, so that the e�e
t from en
roa
hment on the log wage is alwaysnegative.The e
onomi
 intuition is the following: As a vintage ages and moreagents enter it, human 
apital that was on
e s
ar
e be
omes now more abun-dant { over time, the 
ost of learning the skill e�e
tively be
omes lowerbe
ause it is 
heaper to learn gradually than to learn very qui
kly when ate
hnology is new.An interesting feature of the wage pro�les generated by the model is thatthey have heterogenous slopes and 
urvature. In Ben-Porath-type models,this heterogeneity in shape is usually attained by assuming heterogenouslearning ability, as done in Guvenen and Kurus
u (2006) and Huggett, Ven-tura, and Yaron (2006), for example. In 
ontrast to these models, there is nounderlying heterogeneity in the model presented here { the heterogeneity inthe pro�les is indu
ed by an endogenous pro
ess. Workers are needed in allpositions, but produ
tivities vary widely a
ross vintages and human-
apitallevels. To make workers indi�erent between di�erent 
areers, spells of highand low produ
tivity have to be su
h that agents are indi�erent betweenentering any 
areer in equilibrium and do not have an in
entive to leave a
areer. This also means that the weights on these pro�les, i.e. the mass ofagents 
hoosing ea
h pro�le, is determined through an endogenous me
ha-nism ; in Ben-Porath type models, one usually has to introdu
e an additionalparameter, the skill distribution a
ross agents, to study heterogeneity.Another topi
 from the labor literature, see for example Hause (1981),addressed by the model is \overtaking". Hause (1981) de�nes overtaking asthe fa
t that two wage pro�les with di�erent slope but the same present valuehave to interse
t at a 
ertain point. The model has pre
ise predi
tions onwhen this overtaking point o

urs for di�erent pairs of agents in the e
onomy.As 
an be seen in �gure 1 in the introdu
tion, overtaking takes pla
e ratherearly in the 
areer for the 
hosen parameters. A more 
areful estimationof the model would be ne
essary to make more quali�ed statements on thepoint of overtaking, though. 21



4.4 Careers and human-
apital a

umulationThe upper-left panel in �gure 4 shows that early entrants into te
hnologies
limb the o

upational ladder fastest. Later entrants make less e�ort to 
limbthe ladder fast. Also along the 
areer lines the learning e�ort diminishes forea
h agent as her tenure in
reases. This e�e
t was found for all parametervalues 
onsidered so far in simulations but 
ould not be proven yet. E
onom-i
ally, the 
agging e�ort is due to both the de
rease in the tenure premiumand the horizon e�e
t.If one takes the model at fa
e value, the di�erent rungs in the �rm ladder
an be interpreted as the typi
al stations in a 
areer, say from an exe
utiveover lower management up to the CEO. This would be in the spirit of modelslike the one by Gibbons and Waldman (1999), whose obje
tive is to explainthe joint dynami
s of promotions and wages. The model presented in thispaper is similar to theirs insofar as it models the hierar
hy in the �rm as aone-dimensional job ladder. Gibbons and Waldman (1999) argue that this isin line with the patterns observed in data by Baker, Gibbs, and Holmstrom(1994), who analyze wage and promotion data on management employees inone large U.S. �rm.On the positive side, the model gets the following right: There are somede
reases in real wages, but they are not the norm. Also, there are no demo-tions, whi
h are very rare in the data analyzed by Baker, Gibbs, and Holm-strom (1994). However, there are some serious problems with the promotion-interpretation when looking at the mass of people in the di�erent positions.As the graph for the density n shows in �gure 4, the ratio of high-x to low-xworkers is low for young vintages but then in
reases sharply as the vintageages. To say the least, it is hard to believe that new �rms display a morepyramidal stru
ture than older ones in the data.Another problem with taking the model seriously in terms of 
areer stagesis that there would be more CEOs in the end of a vintage's life than thereare 
ommon exe
utives. In order for this to 
hange, a produ
tion fun
tion
loser to a Leontief-type would be ne
essary.5 Con
lusionsThis paper has presented a 
ontinuous-time model for vintage human 
ap-ital where agents endogenously de
ide on human-
apital a

umulation. In22



equilbrium, the wage pro�les of agents over their 
areers vary in shape butdeliver identi
al present value when the 
osts of human-
apital a

umulationare taken into a

ount. Agents who enter new te
hnology have very steepwage pro�les in the beginning of their 
areers and experien
e real wage de-
reases later on. This happens be
ause more agents press into their positionsand make their on
e s
ar
e skill more 
ommonpla
e. Agents who enter olderte
hnologies have 
atter wage pro�les but higher entry wages. This is be-
ause they are 
omplemented by many experien
ed workers who boost theirmarginal produ
tivity.For the wage stru
ture inside �rms this means that young �rms pay ahigh premium for experien
e, whereas older �rms have a 
omparatively 
atwage stru
ture. This predi
tion is in line with data analyzed by Mi
hela

iand Quadrini (2005) who report that workers in young, fast-growing �rmsare paid lower entran
e salaries and experien
e larger wage in
reases thanworkers in older, slow-growing �rms.In the model, average labor produ
tivity over the life 
y
le has a hump-shaped pattern: It in
reases strongly when a te
hnology is very young butthen 
attens out. This feature is reminis
ent of the 
on
ept of organization
apital10. Indeed, the model presented here may be 
onstrued as a mi
ro-foundation of this 
on
ept. The rise in average labor produ
tivity is drivenboth by the separate learning e�orts of the workers in a vintage and bythe rising gains 
oming from 
omplementarity. The latter o

ur sin
e theproportions of the di�erent labor inputs be
ome more favorable over time.Spe
i�
ally, the shortage of highly quali�ed agents diminishes over time asthe te
hnology ages.An extension that is planned in the near future is the introdu
tion ofexponential death for agents. This would not 
hange the degree of diÆ
ulty ofthe equations dramati
ally so the fundamental results should still go through.More importantly, this feature would allow one to 
alibrate the model to thetypi
al length of a work life and make the assumption of in�nitely-lived agentsmore palatable.Another possible extension that is beyond the rea
h of this paper is tointrodu
e riskiness in human 
apital.11 This addition would add the possi-10as analyzed re
ently by Atkeson and Kehoe (2005), for example11If standard Brownian pro
esses are used, the 
entral equations of the model {themass-transport equation, the HJB and the wage equation{ are still well-understood par-tial di�erential equations. However, se
ond-order derivatives would show up, making theanalysis somewhat more 
umbersome than here.23



bility of demotions to the model and possibly indu
e unlu
ky agents to quittheir 
areer before rea
hing higher levels in the hierar
hy. Also, estimationof the model would be more 
redible with a true element of randomness inthe model.Finally, the model 
ould be used to analyze a range of e
onomi
 questionsthat are beyond the original motivation of the paper. For example, one 
ouldassess the e�e
ts of 
hanges in the demographi
 stru
ture on wage pro�lesand labor produ
tivity. Also, the model has predi
tions on the 
hange ofwage pro�les when long-term TFP growth 
hanges due to a slower arrivalof blueprints. This was arguably the 
ase in the Japanese e
onomy in thetransition from the high-growth de
ades in the 
at
h-up phase after the warto the moderate-growth de
ades re
ently. Interestingly, Min
er and Higu
hi(1988) �nd that wage pro�les were systemati
ally steeper in Japanese �rmsthan in U.S. �rms over the post-war years; they argue that the rapid adoptionof new te
hnologies made it ne
essary for Japanese �rms to 
reate strongin
entives for on-the-job training in this way.

24
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A Proof for forward equation at x = 1Also, we need an equation at the upper limit x = 1. Derive this by the following mass-preservation equation:Z 11�h n(t; x)dx = Z 11�h+a(t;x)h+o(h) n(t+ h; x)dxNow, take in di�erentiability of n(�; �) and a(�; �) as well as the fa
t a(t; 1) = 0 to getZ 11�h n(t; 1)� nx(t; 1)(1� x)dx + o(h)dx =Z 11�h�ax(t;x)h2+o(h2) n(t; 1) + nt(t; 1)h� nx(t; 1)(1� x) + o(h)dxNow, we 
an get rid of the term hn(t; 1) on both sides. Also, the term R1�h nx(t; 1)(1�x)goes on both sides. Sin
e (1� x) � h, the term R 1�ax(t;x)h2 nx(1� x)dx is o(h3) and hen
egoes. Keep only o(h2)-terms to getnt(t; 1) = �ax(t; 1)n(t; 1)whi
h makes perfe
t sense. Note that sin
e a(t; 1) = 0 implies Vx(t; 1) = 0, and we musthave Vxx(t; 1) � 0 (sin
e Vx(t; x) � 0 everywhere), whi
h implies ax(t; 1) � 0. So thedensity on the top must be de
reasing over time, and wages must be de
reasing, evenwhen we leave out TFP: nt(t; 1) � 0; wt(t; 1) � 0B Proof for planner's 
ost-minimizing pro-motion strategyTO BE ADDED HERE!C Derivation of �rst-order 
onditions in theplanner's problemIntrodu
e the following notation:u(s; t; x) = �n(t; s; x)�tN(t; s; x) = Z 1x n(t; s; ~x)d~x27



If the optimal 
areer paths don't 
ross, then agents follow the quantile lines as 
areers.Then the lo
al 
areer slope a(�; x) has to be su
h that the agent's 
areer follows the iso-�N(�;x)�� (�; x)-lines. To express the slope a(�; x) in terms of the fun
tions n and N , take a�rst-order approximation of N following an iso-N line: [PUT GRAPH HERE℄�N(�; x)��| {z }= _N(�;x) h� a(�; x) �N(�; x)�x| {z }=n(�;x) h+ o(h) = 0;where o(h) are terms with the property limh!0 o(h)=h = 0. Taking limits with respe
t toh we get a(�; x) = _N(�; x)n(�; x) :Now, we want to aggregate the 
osts for the planner to move population through the grid.We want the total 
ost over all time to be equal toCPL = Zl Z 10 e��tC�a(t; sl; xl)�dtdM(l);where (sl(t); xl(t)) are the poli
ies for individual l and M(l) is the measure over theseindividuals. Note that de�nitely, we 
an 
hop up the whole thing by time (i.e. 
hange theorder of integration) and then approximate:CPL �Xti e��tiCPL(t)CPL(t) �X�j e
(t��j)Xxk 
2 [a(ti; �j ; xk)℄2n(ti; �j ; xk)n(ti; �j ; xk) = Zl I(l : �j�1 � �l(t) � �j ; xk�1 � xl(t) � xk)dM(l)Note that multiplying the 
ost of human-
apital a

umulation by the lo
al mass of agentsn(�) is ne
essary sin
e we have to a

ount for how many agents have to in
ur the learning
ost in ea
h position (�; x). The above 
onverges toCPL = Z e��t"Z e
s�Z 10 
2 _N(t; s; x)2n(t; s; x) dx�ds#dtwhere the se
ond line invokes our parti
ular spe
i�
ation for the 
ost fun
tion.
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C.0.1 Setting up the LagrangianDenote the initial 
onditions by n(0; s; x) = n0(s; x). Then the planner maximizes thefollowing:maxu(t;s;x) Z 10 e��t[Y (t)� C(t)℄dt =Z 10 e��t "Z T0 Y (t; s)� e
s 
2 Z 10 _N(t; s; x)2n(t; s; x) dx# dts.t. n(t; s; x) = n0(s; x) + Z t0 u(~t; s; x)d~t XC: �(t; s; x)_N(s; t; x) = Z 1x u(t; s; ~x)d~x HCC: �(t; s; x)Z T0 Z 10 n(t; s; x)dxds = 1 TPC: �(t)where XC is for experien
e, HCC is for human 
apital and TPC is for total-population
onstraint. The Lagrange multipliers are given, too. So the Lagrangian is the followinghandy obje
t:L =Z 10 e��t"Z tt�T Y (t; s)� e
s 
2 Z 10 _N(t; s; x)2n(t; s; x) ds#dt�� Zt;s;x e�~�t�(t; s; x)"n(t; s; x)� n0(s; x) � Z t0 u(~t; s; x)d~t#�� Zt;s;x e�~�t�(t; s; x)" _N(t; s; x)� Z 1x u(t; s; ~x)d~x#�� Z 10 e�~�t�(t)" Z tt�T Z 10 n(t; s; x)dxds � 1#dt;where ~� = � � 
 and we s
ale the Lagrange multipliers to obtain a stationary solution.The FOC are then:�L�n(t; s; x) = e��tw(t; s; x) + e~�t" 
2� _N(t; s; x)n(t; s; x) �2 � �(t; s; x)� �# = 0 (7)�L� _N(t; s; x) = e�~�t"� 
 _N(t; s; x)n(t; s; x) � �(t; s; x)# = 0 (8)�L�u(t; s; x) = Z s+Tt e�~�~t�(~t; s; x)d~t + e�~�t Z x0 �(t; s; ~x)d~x = 0 (9)
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At a stationary solution, we require the following:n(t; s; x) = n�(t� s|{z}=� ; x)w(t; s; x) = e
tw(�; x)_N(t; s; x) = _N�(�; x)�(t; s; x) = ��(�; x)�(t; s; x) = ��(�; x)�(t) = ��where the last �ve equations follow from the �rst.We �rst observe from (8) that �(�; x) stands for the marginal 
ost of human-
apitala

umulation for the guys n(�; x) (omit the star-supers
ripts for 
onvenien
e):�(�; x) = �
 _N(�; x)n(�; x) = �
a(�; x) (10)Se
ond, we get from (7) a formula for �(�; x):w(�; x) + 
2� _N(�; x)n(�; x) �2 � � = �(�; x) (11)As for the relationship between �(�; x) and �(�; x), we 
an re-formulate (9):Z T� e�~�(~���)�(~� ; x)d~� = � Z x0 �(�; ~x)d~x (12)When plugging the expressions for the Lagrange multipliers (10) and (11) into (12), weget Z T� e�~�(~���)hw(~� ; x) + 
2a(�; x)2 � �id~� = Z x0 
a(�; x)d~x (13)Dire
tly from this equation, we 
an get the following insights:� When � ! T , the left-hand side and with it the marginal 
ost of edu
ation 
a(�; x)and hen
e edu
ation itself goes to zero. This says that one shouldn't a

umulatehuman 
apital anymore just before the vintage shuts down.� When we let x ! 0, the right-hand side goes to zero and we see that �(�; 0) = 0for all � . This says that at all entry jobs, the value fun
tion must be equalized, seelater.� When we 
ombine the two, we see from equation (7) that w(T; 0) = �. This saysthat w(T; 0) is the referen
e wage of the e
onomy: It doesn't give any valuableexperien
e, so it has to be just as attra
tive per se as any other 
areer.30



Add the value of an agent after dropping out of the 
areer � to the above equation toget something that resembles the HJB in the private e
onomy more:Z T� e�~�(~���)[w(~� ; x) + 
a(~� ; x)2=2℄d~� + Z 1T e�~�t�dt| {z }��(�;x) = � Z x0 �(�; ~x)d~x + �~� (14)First, take the � -derivative of �(�; x) to get something that looks like a Bellman equation:���(�; x)�� = w(�; x) + 
2a(�; x)2 � ~��(�; x) (15)�(T; x) = �=~� = WNote that we still need to substitute in the optimal poli
y a(�; x), whi
h is related to theslope of the value fun
tion. Equation (14) tells us that � is linked to the x-derivative of�(�; x) { di�erentiate (14) with respe
t to x to get��(�; x)�x = ��(�; x)Optimal learning, in turn, is given by equation (10). So we geta(�; x) = ��(�; x)
 = 1
 ��(�; x)�xSo now we plug this ba
k into (15) to get���(�; x)�� = w(�; x) + 12
 ���(�; x)�x �2 + ~��(�; x)So this is equivalen
e to the planner's problem.
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