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Abstract

A simple dynamic general equilibrium model is set up in which �rms face
idiosyncratic productivity shocks. Firms whose productivity has fallen too
low exit, and entrants try to imitate the best practice of existing �rms, so
that the expected productivity of entering �rms is a function of current av-
erage productivity. Because of the resulting selection and imitation process,
aggregate productivity grows endogenously. When calibrated to U.S. data,
the model suggests that around one-�fth of productivity growth is due to
such a selection and imitation e�ect.

1 Introduction

The competitive struggle among heterogeneous �rms is among the de�ning features
of a market economy. Not only does this struggle drive the price of goods down to
their marginal cost of production; it also ensures that those goods are produced
e�ciently. Firms which are unable to do that must eventually exit the market, and
are replaced by new, more e�cient �rms. One way to interpret this mechanism
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is that competition allows for the selection of good ideas. Productivity growth is
driven by the trial of successive ideas and the weeding out of bad ones. Successful
ideas will be copied by entering �rms, causing productivity to grow endogenously
through a continuous process of selection and imitation.
The idea that there can be economic growth through selection dates back at

least to the seminal work of Nelson and Winter (1982) on evolutionary economics.
The strand of literature that has followed it considers the process of growth in
analogy to the process of natural selection, in which only the �ttest survive, and
where `e�cient' behaviour is transmitted to future generations in the form of
genes. However, this literature generally focuses on how behavioural rules evolve
in a world of bounded rationality. Nevertheless, as this paper shows, there is
no inherent contradiction between a mechanism of growth through selection and
rational expectations.
One of the few to explicitly model the outcome of selection in terms of growth

is Conlisk (1989). He sets up a simple model in which the productivity of new
plants is a random draw whose mean depends on current average productivity;
labour is then moved from the least productive old plants towards entering plants,
causing the former to shut down. As a result, the economy grows at an endogenous
rate, which crucially depends on the variance of the random draw of new plants.
One of the drawbacks of the model is that only the entry process is stochastic,
which is strongly rejected by the data. Furthermore, as is common in the evolu-
tionary economics literature, �rms operate in a setting of bounded rationality; in
practice, this generally means that the number of entering and exiting �rms is set
exogenously, which precludes any meaningful statements about the quantitative
implications of such models.
The present paper proposes to �ll that gap by trying to quantitatively link the

selection process going on at the �rm level to the rate of growth of the aggregate
economy. This is done by setting up a dynamic general equilibrium, rational ex-
pectations model with mean-preserving idiosyncratic productivity shocks to �rms;
in other terms, the expected growth rate of �rm-speci�c productivity is zero. One
way to interpret those shocks is to imagine that each �rm represents an idea, or
variation of an idea, and that �rms try to improve the execution of this idea by
progressively making small changes to the production process. The outcome of
those changes might be uncertain, although their expected impact on productivity
will probably be positive. Also, other existing �rms might �nd it di�cult to emu-
late at least some of these changes, leading to heterogeneity in productivity levels
across �rms. Entering �rms will then try to implement as a whole the production
processes of those �rms which they think perform best, and after that will focus
on making small changes to these processes; some of these changes will be inspired
by what other �rms in the economy do.
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This means that there are two channels through which more e�cient produc-
tion processes spread across the economy. The �rst is through spillovers between
existing �rms, and concerns ideas which are relatively easily transferred from one
�rm to another; the extreme case in which all �rms can implement such ideas
costlessly is sometimes referred to as neutral technological progress. The second is
through spillovers from existing towards entering �rms, and concerns ideas whose
implementation require for example very di�erent organisational structures, and
which entering �rms might �nd much easier to implement; this is sometimes called
disruptive (or non-neutral) technological progress, and should be seen in analogy
to the concept of capital-embodied technical change, which stresses that certain
technologies can only be implemented by setting up new plants. We focus on this
second channel of growth through selection and imitation.
However, a crucial di�erence between models of embodied technological change

in the line of Greenwood, Hercowitz, and Krusell (1997) and our model is that in
the former, the economy grows through an expansion in the number of capital
goods any given �rm can produce. In models of growth through selection such as
ours, productivity growth does not happen through an expansion in the frontier
of production possibilities; in principle, �rms of any productivity may coexist at
any point in time. However, the `best practice' of highly productive �rms does
not spread instantly to other �rms in the economy, but is passed over gradually to
new �rms. The relevant knowledge frontier is then the technology which is used
to make new �rms.
As in learning-by-doing models (see for example Romer, 1996), in which the

amount of innovation depends on the economy-wide output, technological progress
is a costless externality. However, in this model, the spread of `best practices'
happens through technology spillovers from existing to new �rms; this is modeled
by assuming that entering �rms start with a productivity level which depends on
the current average level in the economy, and that the evolution of productivity
at a given �rm then follows an autoregressive process.
The concept of growth through selection has much in common with the idea

of Schumpeterian creative destruction. In the interpretation of creative destruc-
tion by Aghion and Howitt (1992), growth is generated by a random sequence
of quality-improving, sector-speci�c innovations; better products or technologies
render previous ones obsolete, and this occurs through the replacement of the in-
cumbent sectoral monopolist by a new �rm. An analogous mechanism is at work
in models of growth through selection, except that it is not the �rm of a given
sector, but the marginal �rm (i.e., the least pro�table of all �rms) that is rendered
obsolete.
We assume that the capital stock of a �rm is �xed at entry, and exiting �rms

recover part of their invested capital, which can then be re-used by new �rms.
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Hence, and unlike most vintage capital models, the technology for producing cap-
ital goods in our model is not putty-clay, since existing capital can be scrapped
and re-used (at a cost).
Although the idea of selection has its origin in the evolutionary economics

literature, this paper, at least from a modelling standpoint, has more in common
with models of industrial evolution, which notably includes papers by Jovanovic
(1982) and Hopenhayn (1992). While both papers model idiosyncratic shocks
hitting �rms each period, the former considers a setup of imperfect information:
�rms do not directly observe their own productivity level, which leads ine�cient
plants to delay exit until they have su�cient information. The latter sets up a
model with endogenous �rm size in order to replicate cross-sectional properties -
across size and age cohorts - in the data. However, since the technology of entering
�rms improves at an exogenous rate, neither of the two models is able to estimate
the e�ect of selection on growth. Melitz (2003) sets up a model with heterogeneous
�rms in which the exposure to trade results in an endogenous one-o� productivity
increase through the entry into the export market of the most productive �rms,
and the closure of the least productive ones.
A number of recent papers dealing with �rm entry and exit, among them Comin

and Mulani (2005) and Luttmer (2005), model �rm-level heterogeneity by assum-
ing monopolistic competition. From a quantitative point of view, this approach
has the disadvantage of greatly increasing the number of required parameters. In
order to keep the complexity of the model to a minimum, we choose to limit our-
selves to the case of perfect competition, which greatly facilitates the task of taking
the model to the data.
This paper is also closely related to Campbell (1998), who looks at the business

cycle implications of entry and exit. His model is similar to ours except for the
fact that he abstracts from imitation, assuming instead that the productivity of
entering �rms grows at an exogenous rate.
The purpose of this paper is then to set up a simple model of selection and

imitation, and to examine its quantitative implications, especially as to how much
of economic growth can be attributed to a selection e�ect, and how much to neutral
technological progress.
The remainder of the paper is organised as follows: section 2 describes the

model; section 3 deals with its calibration; section 4 looks at the results, and
section 5 concludes.
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2 The Model

2.1 Technology

The economy consists of a continuum of �rms producing all the same homogeneous
good but di�ering in their productivity levels. The output Yi of any given �rm i
depends on its capital and labour inputs Ki and Li, its �rm-speci�c productivity
Zi, and on �rm-neutral productivity A:

Yi;t = (AtZi;tKi;t)
� L1��i;t : (1)

While labour can be adjusted at any point in time, a �rm's capital stock is
chosen at entry, and cannot be changed anymore afterwards. Since the production
function displays constant returns to scale in Ki and Li, the size of �rms is a priori
undetermined. Nevertheless, for notational convenience, we will de�ne a �rm as
consisting of one unit of capital, as in Campbell (1998).
The natural logarithm of the �rm-speci�c productivity level Zi;t for any given

�rm i follows a random walk:

ln (Zi;t+1) = ln (Zi;t) + "i;t; (2)

"i;t s N
�
Z0; �

2
�
;

where Z0 is set such that the expected growth rate of �rm-speci�c productivity
within any given �rm is zero. "i;t is independently and identically distributed
across �rms. The cumulative distribution of �rms across productivity levels and
the corresponding density function are denoted by �t (Z) and �t (Z), respectively.
Average �rm-speci�c productivity is de�ned as

�Zt =

Z 1

0

Zd�t (Z) .

The (gross) growth rate of �Z is endogenous and we denote it by 
z. We assume
that �rms observe their productivity after having made decisions about whether to
enter or exit, but before deciding on their labour input. Firm-neutral technology
At grows at a constant (gross) exogenous rate 
a, where 
a > 1.

At+1 = 
aAt: (3)

Given that capital is a �xed input and since their relative productivity may
decline over time, �rms have the option of costlessly and de�nitively ceasing pro-
duction at any point in time. In this case the �rm is scrapped, and its capital can
be transformed into new capital at a rate � < 1.
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The time-to-build for new �rms is one period. Each entering �rm i draws its
productivity Zi;t from a log-normal distribution with mean �e;t and standard er-
ror �e. The probability density function for the productivity of an entering �rm is
denoted by 'e;t (Z). Finally, �e;t is set such that the average (�rm-speci�c) produc-
tivity of entering �rms, �Ze;t, is a constant fraction  e of the average productivity
of existing �rms, �Zt:

�Ze;t =  e �Zt. (4)

Equation (4) is a simple way of formalising imitation. It states that entering �rms'
expected productivity depends linearly on the average productivity of existing
�rms.
Total output is given by

Yt =

Z
i

Yi;tdi =

Z 1

0

Yt (Z) d�t (Z) ; (5)

where Yt (Z) is the output of a �rm with productivity Z. Labour inputs satisfyR1
0
Lt (Z) d�t (Z) = 1, where Lt (Z) is the amount of labour employed at a �rm of

type Z. Output has to be allocated between consumption Ct and investment It:

Yt = Ct + It; (6)

The total amount of scrap recovered from exiting �rms is equal to �Xt, whereXt

is the number of �rms choosing to exit after having produced in period t. Capital
depreciates at a rate �; we assume that �rms always replace depreciated capital.
New �rms in t + 1 are created using net investment and recovered scrap from
period t, so that the number of �rms one period ahead is:

Kt+1 = Kt �Xt + It � �Kt + �Xt| {z }
entering �rms

, (7)

where Kt =
R1
0
d�t (Z) is the total number of �rms.

To map one period's productivity distribution �t (Z) into next period's, one has
to take into account (i) idiosyncratic shocks hitting �rms, (ii) the disappearance
of those �rms which choose to shut down, and (iii) entrance of new �rms. Since
there is a continuum of �rms in the economy, the evolution of the distribution of
�rms across productivity levels is deterministic even though each particular �rm
experiences random shocks. The transition function for the distribution of �rms
across productivity levels is

Kt+1�t+1 (Z) = Kt

Z 1

0

't (Z=Z
0) d�t (Z

0)| {z }
existing �rms

+ (It � �Kt + �Xt)'e;t (Z)| {z }
entering �rms

� Xt (Z)| {z }
exiting �rms

,

(8)
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where Xt (Z) is the number of �rms at productivity level Z which choose to exit
after having produced in period t, and �t (Z) is the probability denstiy function
of e"i;t .

2.2 Firm Entry and Exit

Preferences are represented by

U =
1X
t=0

�t ln (Ct) ; (9)

where Ct denotes consumption, and the discount factor is �, with � 2 (0; 1). The
representative household maximises its life-time utility (9) subject to a standard
budget constraint. Given that �rms are atomistic, and all shocks are independently
and identically distributed across �rms, households may diversify any individual
risk by owning a positive measure of �rms. The �rst order condition for consump-
tion yields the usual Euler equation:

Ct+1
Ct

= � (1 + rt) : (10)

Let Vt (Z) be the time t value of a �rm with productivity Z. If the �rm chooses
to exit, its value is equal to the scrap value of its capital, which is �. If it chooses to
stay, its value is equal to its current pro�ts plus its expected discounted value in the
next period. The optimal policy then involves choosing a 'reservation' productivity
level Z�t at which �rms are indi�erent between staying and exiting:Z 1

0

�
�t (Z

0) +
1

1 + rt
Vt+1 (Z

0)

�
't (Z

0=Z�t ) dZ
0 = �: (11)

The value function is then given by

Vt (Z) =

( R1
0

h
�t (Z

0) + 1
1+rt

Vt+1 (Z
0)
i
't (Z

0=Z) dZ 0 if Z � Z�t ;

� Z � Z�t ;
(12)

where �t (Z) is current pro�ts. For a �rm with productivity level Z, pro�ts at
time t are given by

�t (Z) = (AtZ)
� Lt (Z)

1�� �WtLt (Z)� �. (13)
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Optimal employment at any given �rm is determined by the �rst order condi-
tion for Lt (Z):

WtLt (Z) = (1� �)Yt (Z) ; (14)

Integrating both sides of equation (14) with respect to �t (Z) yields the following
expression for the wage rate, which implies that the labour income share is 1� �:

Wt = (1� �)Yt: (15)

Under free entry, expected pro�ts from entering are driven to zero:Z 1

0

'e;t (Z)Vt+1 (Z) dZ = 1 + rt. (16)

2.3 Embodied Technological Progress

In this section, we show that the above setup can be written as a neoclassical
growth model with capital-embodied technological change in which the relative
price of (productivity-adjusted) capital and the depreciation rate is endogenous.
To compute the aggregate technology, we follow Solow (1957) in de�ning the

\e�ective" (i.e., productivity-adjusted) aggregate capital stock as

K̂t = Kt

Z 1

0

Zd�t (Z) .

Notice that this implies that average productivity �Zt is equal to K̂t=Kt. From (1)
and (14), after substituting W for (15), �rms of type Z produce

Yt (Z) = AtZY
��1
�

t . (17)

Then, from (5),

Yt =
�
AtK̂t

��
: (18)

Combining the equations above with (13), it can be shown that the share of total
pro�ts accruing to �rms with productivity level Z is equal to their share of total
e�ective capital:

�t (Z) = �
Z

K̂t

Yt � �. (19)

Notice that, abstracting from entry and exit, �rm-speci�c productivity shocks
as de�ned in equation (2) do not a�ect the stock of productivity-adjusted capital
K̂t, given that these shocks are mean-preserving in Z. The change in productivity-
adjusted capital from one period to the next is then given by di�erence between
(productivity-adjusted) capital added by entering �rms, and that destroyed by
exiting �rms:
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K̂t+1 = K̂t +  e �Zt (It + �Xt � �Kt)| {z }
entry

�  x;t �ZtXt| {z }
exit

(20)

where  x;t is the average productivity of exiting �rms relative to existing ones.
Re-arranging terms, we get

K̂t+1 =
�
1� �̂t

�
K̂t + Ît, (21)

where �̂t = � +
�
 x;t �  e�

�
Xt
Kt
is the endogenously-determined depreciation rate

for productivity-adjusted capital, and Ît =  e �ZtIt is productivity-adjusted invest-
ment.
If the average �rm-speci�c productivity �Z grows over time, then this implies

that each cohort of entering �rms has a higher productivity than the previous one.
As a result, the productivity-adjusted capital stock grows faster than output.  e �Zt
can also be interpreted as the inverse of the price of (productivity-adjusted) capital
in terms of consumption goods, so that part of productivity growth is speci�c to
the investment sector, as in Greenwood, Hercowitz, and Krusell (1997).
In order for �Z to grow at a positive rate, it is merely necessary that enter-

ing �rms be more productive on average than exiting �rms. Note that increases
in average productivity �Z are exclusively due to the exit of unproductive �rms
and their replacement by more productive ones, given that idiosyncratic produc-
tivity shocks experienced by individual �rms are mean-preserving; we therefore
refer to the productivity growth which is due to increases in �Z as �rm-embodied
technological progress, given that it is embodied in new �rms.
The law of motion for non-adjusted capital is

Kt+1 =
�
1� ~�

�
Kt + It, (22)

where ~� = � + (1� �) Xt
Kt
is the endogenously determined depreciation rate of

(non-adjusted) capital, which includes exogenous physical depreciation � as well
as capital lost because of exiting �rms.

2.4 Balanced Growth

The aim of this section is to transform the model in a way which makes all variables
constant along a balanced growth path, which is de�ned as a situation in which
both the aggregate variables and the distribution of �rm-speci�c variables across
relative productivity levels, grow at constant rates. Relative productivity z =
Z= �Z is de�ned as the productivity level of a given variable relative to average
productivity �Z.
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To �nd the appropriate transformation, notice that the resource constraint
(6), the budget constraint for households and the transition function for aggregate
capital (22) imply that Y , C and I must all grow at the same (gross) rate, say
g, along such a balanced growth path. Furthermore, equation (20), divided on
both sides by K̂t, implies that K̂t and X̂t grow at a rate g � 
z. From the equation
for aggregate output (18), we then obtain the following relationship between �rm-
neutral technological progress 
a, �rm-speci�c technological progress 
z, and the
growth rate of aggregate output g:

g = (
a
z)
�

1�� . (23)

The rate of growth which is due to �rm-embodied technological progress is then



�

1��
z .
One can then de�ne transformations which make all the variables in the model

stationary; transformed variables are denoted by lower-case letters. Speci�cally,
�rst set jt = Jt=g

t for J = Y , C, I, K, E, X and B; second, set jt = Jt= (g
z)
t

for J = K̂, Ê and X̂; third, set jz;t = Jz �Zt;t for J = Yz and Lz; fourth, set
vt (z) = Vt

�
z �Zt
�
=gt and �t (z) = �t

�
�Ztz
�
. Furthermore, aggregate �rm-neutral

productivity at = At=

t
a is normalised to one, while the average of �rm-speci�c

relative productivity �zt =
R1
0
z� (z) dz is equal to one by de�nition. The equilib-

rium equations of the model can then be rewritten in terms of these transformed
variables.
A stationary equilibrium then consists of values for v (z), � (z), i and z� which

satisfy the equilibrium conditions in equations (24) through (27) as described be-
low.
Dropping time subscripts, the value function for a �rm with a relative produc-

tivity of z is

v (z) =

( R1
0

h
�z0k��1 � � + �

g
v (z0)

i
' (
zz

0=z) dz0 if z � z�,

� z < z�,
(24)

where k =
R1
0
� (z) dz. � (z) = �zk��1�� is obtained from equation (19) and from

the fact that average relative productivity �z = k̂=k is equal to one, and r = g=��1
is determined by the Euler equation (10). Equation (24) takes into account the
fact that, since �rm-speci�c productivity z follows a (stationary) random walk
while average productivity �z grows at an expected rate of 
z, any given �rm will
in expected terms see its relative productivity z decline over time at that same
rate 
z. The transition function for the distribution of capital across relative
productivity levels is

� (z) g
z =

Z 1

z�
' [z= (z0
z)]� (z

0) dz + [i+ �x� �k]'e (z) , (25)
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where x =
R z�
�1 � (z) dz.

The expected value of an entering �rm is equal to the cost of buying one unit
of capital, while the value of a �rm with relative productivity z� is equal to the
scrap value of its capital: Z 1

0

'e (z) v (z) dz = g=�, (26)Z 1

0

�
�z0k��1 � � +

�

g
v (z0)

�
' [z0= (z�
z)] dz

0 = �. (27)

The model distinguishes itself from the evolutionary economics literature in
the line of Nelson and Winter (1982) through equations (26) and (27), which
state that entry and exit follow rational, instead of adaptive, expectations. It
distinguishes itself from the industrial evolution literature, which notably includes
papers by Jovanovic (1982) and Hopenhayn (1992), through equation (25), which
states that entering �rms' productivity is not exogenous but instead depends on
the productivity of existing �rms.
The model is solved numerically, following a method which is described in

appendix A.

3 Calibration

The aim of this section is to study the behaviour of a parameterised version of the
model economy, in order to assess the quantitative impact of selection and imita-
tion (that is, �rm-embodied technological progress) on productivity growth in the
U.S., in analogy to Greenwood, Hercowitz, and Krusell (1997), who estimate the
contribution of investment-embodied technological change on productivity growth.
The length of a period is set to one quarter. The parameters which need to

be calibrated are the technology parameter �, the discount rate �, the exogenous
exit probability �, the growth rate of output g, the variance of idiosyncratic shocks
to existing �rms � and to entering �rms �e, the average relative productivity of
entering �rms  e, and the scrap value of capital �.
In order to impose some rigour on the quantitative analysis, the procedure ad-

vanced by Kydland and Prescott (1982) is followed. The parameters in the model
are set such that along the balanced growth path a number of economic variables
assume their average values observed for U.S. data. These average values are taken
from two distinct sources: from the U.S. National Income and Product Accounts
and from studies on establishment-level evidence from the Longitudinal Research
Database (LRD), which tracks between 55'000 and 300'000 establishments in the
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Table 1: Parameterisation

Parameter Chosen Value

Capital share of income, � :32
Discount rate, � :994
Depreciation rate, � :0159
Growth rate of output, g � 1 :0046
Variance of shock to new �rms, �2e .1142
Variance of shock to all �rms, �2 :0177
Relative productivity of entering �rms,  e 0:99
Scrap value of �rms, � :832

US manufacturing sector.1 The government sector is netted out of GDP, given that
the selection mechanism which is at work in the model is speci�c to a competitive
private sector. The sample period for NIPA data is chosen to coincide with that
of the available evidence for LRD data. This is done so that average productivity
growth within the sample period is comparable across the two data sets, in order
to obtain a consistent estimate of the contribution of selection and imitation to
aggregate productivity growth.
Average values for quarterly NIPA data for the years 1972 to 1988 yield a

capital income share of :32; a depreciation rate of 1:67% which we set to match
the endogenous depreciation rate ~� in equation (21); a quarterly growth rate of
per capita output of :54%; and a capital-output ratio of 11:65.
Using LRD data, Foster, Haltiwanger, and Krizan (2001) estimate that the

(output-weighted) average productivity of establishments which have entered be-
tween 1972 and 1988 relative to continuing plants in 1988 is :99, while the corre-
sponding number for establishments which have exited within this time period is
:96; Campbell (1998) reports that between 1972 and 1978 the average quarterly
employment-weighted exit rate of establishments, which in our model corresponds
to  x

X
K
, and that of establishments which are less than one year old, are :83% and

1:64% respectively. Table 1 contains a summary of the calibrated parameters.

1For a review of productivity studies on the LRD see Bartelsman and Dhrymes (1998) and
Caves (1998).
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4 Results

Figure 1 shows the steady-state distribution of �rms along productivity levels. The
exit threshold of establishments, z�, is at 81:78 percent of average productivity.
The calibrated value for the scrap value of capital, �, is close to that of Campbell

(1998), even though his calibration strategy is quite di�erent. Also, the fact that
the estimated variance of the productivity shock to entering establishments, �2e,
is several orders of magnitude larger than the variance of the shock to existing
establishments, �2, is consistent with the �nding by Bartelsman and Dhrymes
(1998) that young plants face substantially more productivity uncertainty than
their older counterparts.
While the model is calibrated on the observed average employment-weighted

exit rate, which is :83 percent, it also broadly matches the non-weighted exit
rate, which is :98 in the model and 1:04 in the data. This means that the model
replicates the size of exiting establishments relative to continuing ones.
One of the key results of the paper concerns the proportion of aggregate pro-

ductivity growth which is due to establishment-embodied technological progress.
The growth rate of �rm-speci�c productivity growth implied by the model is

z = 1:0020. From the discussion in section 2.4, this implies that the yearly
growth rate due to entry, exit and imitation is :36 percent, which corresponds
to 20 percent of total productivity growth. This number can be compared to
microeconomic studies of establishment-level productivity decomposition. Foster,
Haltiwanger, and Krizan (2001) estimate that in the U.S. manufacturing sector,
between 48 and 65 percent of productivity growth takes place within establish-
ments, with the remainder coming from either the reallocation of inputs from
unproductive to more productive establishments, or from entry and exit. Our re-
sults are also closely related to Greenwood, Hercowitz, and Krusell (1997), who
�nd that sixty percent of post-war U.S. productivity growth is due to technical
change which is embodied in capital, and to Atkeson and Kehoe (2005), who es-
timate that over one-third of the payments received by plant owners are due to
plant-speci�c knowledge (i.e., to organisational capital).
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Figure 1: Distribution of Establishments along Productivity Levels
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5 Conclusion

A model was set up in which �rms face idiosyncratic productivity shocks; entry
and exit are endogenous, and entering �rms start with a productivity level which
depends on the average productivity in the economy. This is shown to result in
aggregate growth even in the absence of a exogenous positive trend in productivity
growth at individual �rms, through a process of selection and imitation. The
parametrised version of the model economy suggests that around one-�fth of U.S.
productivity growth is due to such a selection e�ect.
The idea of growth through selection does also have some policy implications,

although they are not formally investigated here. Chief among them is the fact
that since the growth e�ect of selection turns out to be quite substantial, protecting
�rms by setting up entry barriers or by not allowing them to fail can have a sizeable
e�ect not only on real income levels through higher prices, but also on long-run
growth rates. As an illustration, Levinsohn and Petrin (1999) cite an article by the
Economist2 suggesting that Japan's poor economic performance during the 1990s
has been due at least in part to a Japanese aversion to \outright failure" of �rms.

2See the June 20, 1998 issue containing the article "Japan's Economic Plight."
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A Algorithm

The numerical algorithm that is used to solve for the stationary equilibrium of the
model is the following:

1. Guess the equilibrium average growth rate of �rm-speci�c productivity 
z:

2. Guess the aggregate stock of capital, k. Iterate on the �rm's value function
v (z) given by equation (24) until convergence is reached. In practice, z is
discretised into a matrix of dimension [500�1]. Given that v (z) is decreasing
in k, use the free entry condition in (26) to update k through a bisection
method, and iterate until convergence is reached.

3. Use (27) to determine z?.

4. Guess a distribution for � (z). Iterate over the capital transition function
(25) until � (z) converges; at each iteration, set i such that the capital stock
implied by (25) corresponds to the value guessed at step 2.

5. Given that average productivity, which is equal to one at equilibrium, is
a decreasing function of 
z, use �z =

R1
0
z� (z) dz to update 
z through a

bisection method.
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