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Abstract

Productivity differences across firms are large and persistent but the evidence for worker
reallocation as an important source of aggregate productivity growth is mixed. The purpose of
the paper is to estimate the structure of an equilibrium model of growth through innovation
designed to identify and quantify the role of resource reallocation in the growth process. The
model is a version of the Schumpeterian theory of firm evolution and growth developed by Klette
and Kortum (2004) extended to allow for firm heterogeneity. The data set is a panel of Danish
firms that includes information on value added, employment, and wages. The model’s fit is
good. We show that the empirical growth decomposition identity popularized by Baily, Hulten,
and Campbell (1992) does not identify the contribution of resource reallocation to growth in
a steady state stochastic growth model such as ours. However, the theory implies that more
productive firms in each cohort grow faster and consequently crowd out less productive firms in
steady state. This selection effect accounts for 55% of aggregate growth in the estimated version
of the model.
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1 Introduction

In their review article of empirical productivity studies based on longitudinal plant and firm data,

Bartelsman and Doms (2000) conclude that the extent of dispersion in productivity across produc-

tion units, firms or establishments, is large. Furthermore, the productivity rank of any unit in the

distribution is highly persistent. Although the explanations for firm heterogeneity in productivity

are not fully understood, economic principles dictate that its presence will induce the reallocation

of resources from less to more profitable firms.

To quantify the effect of worker reallocation on growth, decompositions of productivity growth

into terms associated with productivity growth within firms and between firms have been proposed

and implemented.1 Studies based on these decomposition identities provide mixed evidence of the

importance of reallocation as a source of aggregate productivity growth. Based on data on U.S.

manufacturing firms, Bartelsman and Doms (2000) find that roughly one quarter of growth can

be attributed to gross reallocation, another quarter to net entry, and roughly half of all growth

to be a result of within firm growth. However, based on the same data Foster, Haltiwanger, and

Krizan (2001) find that “...much of the increase in labor productivity would have occurred even

if labor share had been held constant at their initial levels.”2 In a study of a number of different

OECD countries, Scarpetta, Hemmings, Tressel, and Woo (2002) also find that the majority of

growth can be attributed to within firm growth. In this paper we argue that the between firm

component does not capture the role of reallocation in the growth process. Indeed, in a broad class

of models including that studied in this paper, the term is zero in the absence of transitory shocks

and measurement error.

Our model is an extension on that proposed by Klette and Kortum (2004), which itself builds

on the endogenous growth model of Grossman and Helpman (1991). It is designed to capture

the implications for growth through reallocation induced by the creative destruction process. In

the model, final consumption output is produced by a competitive sector using a continuum of

1The literature on the connection between aggregate and micro productivity growth include: Foster, Haltiwanger,
and Krizan (2001), Baily, Hulten, and Campbell (1992), Baily, Bartelsman, and Haltiwanger (1996), Bartelsman and
Dhrymes (1994), Griliches and Regev (1995), and Olley and Pakes (1996),Tybout (1996), Aw, Chen, and Roberts
(1997), and Liu and Tybout (1996).

2The discrepancy can be traced to variation in the particular choices of productivity and weighting measures.
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differentiated intermediate products as inputs. More productive or higher quality versions of each

intermediate product type are introduced from time to time as the outcome of R&D investment

by both existing firms and new entrants. The supplier of the current version has monopoly power

based on frontier knowledge and uses it to set price above the marginal cost of production. As new

products and services displace old, the process of creative destruction induces the need to reallocate

workers across activities. In the version of the model estimated here, firms differ with respect to

the expected productivity of the intermediate goods and services that they create. The model has

two principal empirical implications. First, a firm that is of a more innovative type in the sense

that the quality improvement embodied in its products is higher, can charge a higher price, is more

profitable, and as a consequence invests more in innovation and grows relatively faster after entry.

Second, the expected firm growth conditional on firm type is independent of size.

In an earlier paper, Lentz and Mortensen (2005), we establish the existence of a general equi-

librium solution to a simplified version of the model applied in this paper. In this paper, we use

the equilibrium relationships and information on value added, employment, and wage payments

drawn from a Danish panel of firms over the period 1992-1997 to estimate the model’s parameters

by the method of indirect inference. Providing a good fit to data, the model is estimated on a

number of cross section and dynamic moments including size, productivity, and firm growth distri-

bution moments. The model is also estimated to fit the growth decomposition pioneered by Foster,

Haltiwanger, and Krizan (2001) found in our data.

In spite of the fact that that all growth arises because resources are reallocated from less to

more rapidly growing firms in the model, the term typically interpreted as the contribution of gross

reallocation is close to zero in our data. We show that this result is to be expected in a stochastic

equilibrium model such as ours. Although in the model more profitable firms in each cohort grow

faster on average as a consequence of more frequent innovation, the aggregate share of products

supplied and inputs required by each firm type are constant in the model’s ergodic steady state

by definition. As a consequence, the “between” and “cross” terms in the Foster, Haltiwanger, and

Krizan (2001) decomposition should be zero in the absence of measurement error and transitory

shocks.
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In our model, the aggregate growth rate in final good consumption is equal to the sum of

the expected percentage increase in the productivity of the intermediate inputs weighted by their

contributions to final consumption output. This term can be decomposed by type of firm into the

net contribution of entrants and incumbents. As in the empirical decomposition literature, the net

contribution of entry is the average increase in productivity of the entrants relative to those that

exit the market within each period. The second term, that associated with continuing firms, can be

decomposed into two parts designed to reveal the consequences of the selection process associated

with differences in firm growth and survival rates. The first is the contribution of incumbents if

the share of value added supplied by each firm type were to remain equal to that at entry and the

second is the contribution of the difference between the steady state share and the share at entry.

Because a more productive firm type grows faster, its share in steady state exceeds that at entry

which implies that selection contributes positively to growth. Indeed, our estimated model implies

that net entry accounts for 20% of the aggregate growth rate while 55% can be attributed to the

selection effect.

2 Danish Firm Data

Danish firm data provide information on productivity dispersion and the relationships among pro-

ductivity, employment, and sales. The available data set is an annual panel of privately owned

firms for the years 1992-1997 drawn from the Danish Business Statistics Register. The sample of

approximately 4,900 firms is restricted to those with 20 or more employees. The sample does not

include entrants.3 The variables observed in each year include value added (Y ), the total wage

bill (W ), and full-time equivalent employment (N). In this paper we use these relationships to

motivate the theoretical model studied. Both Y and W are measured in Danish Kroner (DKK)

while N is a body count.

Non-parametric estimates of the distributions of two alternative empirical measures of a firm’s

labor productivity are illustrated in Figure 1. The first empirical measure of firm productivity

is value added per worker (Y/N) while the second is valued added per unit of quality adjusted

3The full panel of roughly 6,700 firms contains some entry, but due to the sampling procedure, the entrant
population suffers from significant selection bias. Rather than attempt to correct for the bias, we have chosen not to
rely on the entrant population for identification of the model.
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Figure 1: Observed firm productivity distribution, 1992
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Note: Value added (Y ) measured in 1 million DKK. N is the raw labor force size measure. N ∗ is
the quality adjusted labor force size.

employment (Y/N∗). Standard labor productivity misrepresents cross firm productivity differences

to the extent that labor quality differs across firms. However, if more productive workers are

compensated with higher pay, as would be true in a competitive labor market, one can use a

wage weighted index of employment to correct for this source of cross firm differences in productive

efficiency. Formally, the constructed quality adjusted employment of firm j is defined asN ∗
j = Wj/w

where

w =

∑

j Wj
∑

j Nj
(1)

is the average wage paid per worker in the market.4 Although correcting for wage differences across

firms in this manner does reduce the spread and skew of the implied productivity distribution

somewhat, both distributions have high variance and skew and are essentially the same general

shape.

Both distributions are consistent with those found in other data sets. For example, productivity

distributions are significantly dispersed and skewed to the right. In the case of the adjusted measure

4In the case, where a firm is observed over several periods, the implicit identification of the firm’s labor force
quality is taken as an average over the time dimension to address issues of measurement error. The alternative
approach of identifying a quality measure for each year has no significant impact on the moments of the data set.
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Table 1: Productivity – Size Correlations

Employment (N) Adjusted Employment (N ∗) Value Added (Y )

Y/N 0.0017 0.0911 0.3138
Y/N∗ −0.0095 −0.0176 0.1981

of productivity, the 5th percentile is roughly half the mode while the 95th percentile is approximately

twice as large are the mode. The range between the two represents a four fold difference in value

added per worker across firms. These facts are similar to those reported by Bartelsman and Doms

(2000) for the U.S.

There are many potential explanations for cross firm productivity differentials. A comparison of

the two distributions represented in Figure 1 suggests that differences in the quality of labor inputs

does not seem to be the essential one. The process of technology diffusion is a well documented.

Total factor productivity differences across firms can be expected as a consequence of slow diffusion

of new techniques. If technical improvements are either factor neutral or capital augmenting,

then one would expect that more productive firms would acquire more labor and capital. The

implied consequence would seem to be a positive relationship between labor force size and labor

productivity. Interestingly, there is no correlation between the two in Danish data.

The correlations between the two measures of labor productivity with the two employment

measures and sales as reflected in value added are reported in Table 1. As documented in the table,

the correlation between labor force size and productivity using either the raw employment measure

or the adjusted one is zero. However, note the strong positive associate between value added and

both measures of labor productivity.

The theory developed in this paper is in part motivated by these observations. Specifically, it

is a theory that postulates labor saving technical progress of a specific form. Hence, the apparent

fact that more productive firms produce more with roughly the same labor input per unit of value

added is consistent with the model.
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3 An Equilibrium Model of Creative Destruction

As is well known, firms come is an amazing range of shapes and sizes. This fact cannot be ignored

in any analysis of the relationship between firm size and productivity. Furthermore, an adequate

theory must account for entry, exit and firm evolution in order to explain the size distributions

observed. Klette and Kortum (2004) construct a stochastic model of firm product innovation and

growth that is consistent with stylized facts regarding the firm size evolution and distribution. The

model also has the property that technical progress is labor saving. For these reasons, we pursue

their approach in this paper.

Although Klette and Kortum (2004) allow for productive heterogeneity, firm productivity and

growth are unrelated because costs and benefits of growth are both proportional to firm produc-

tivity in their model. Allowing for a positive relationship between firm growth and productivity

is necessary for consistency with the relationships found in the Danish firm data studied in this

paper.

3.1 Preferences and Technology

The model is set in continuous time. Intertemporal utility of the representative household at time

t is given by

Ut =

∫ ∞

t
lnCse

−r(s−t)ds (2)

where lnCt denotes the instantaneous utility of the single consumption good at date t and r

represents the pure rate of time discount. Each household is free to borrow or lend at interest rate

rt. Nominal household expenditure at date t is Et = PtCt. Optimal consumption expenditure must

solve the differential equation Ė/E = rt − r. Following Grossman and Helpman (1991), we choose

the numeraire so that Et = z for all t without loss of generality, which implies rt = r for all t. Note

that this choice of the numeraire also implies that the price of the consumption good, Pt, falls over

time at a rate equal to the rate of growth in consumption.

The consumption good is supplied by many competitive providers and the aggregate quantity

produced is determined by the quantity and productivity of the economy’s intermediate inputs.

Specifically, there is a measure 1 continuum of different inputs and consumption is determined by

7



the CES production function

Ct =

[
∫ 1

j=0
Z(j)

(

At(j)xt(j)
)

σ
σ−1dj

]

σ−1

σ

, σ ≥ 0 (3)

where xt(j) is the quantity of input j at time t and At(j) is the productivity of input j at time t.

Z (j) reflects that expenditure shares vary across the intermediary inputs. The level of productivity

of each input is determined by the number of technical improvements made in the past. Specifically,

At(j) =

Jt(j)
∏

i=1

qi(j), (4)

where Jt(j) is the number of innovations made in input j up to date t and qi(j) > 1 denotes the

quantitative improvement (step size) in the input’s productivity attributable to the ith innovation

in product j. Denote by q(j) the latest quality improvement of good j. Innovations arrive at

rate δ which is endogenous but the same for all intermediate products under the assumption that

innovation is equally likely across the set of intermediate goods.

If the latest innovation in good j happened at time t, the profit maximizing demand for inter-

mediate good j at time t+ a can be expressed as,

xt+a(j) =
zt+a(j)

pt+a(j)
, (5)

where

zt+a(j) = zt(j)e
g(1−σ)a, and zt(j) = zZt(j)

σ

(

Pt(j)

Pt

)1−σ

. (6)

Pt(j) = pt(j)/At(j) is the per quality unit price of good j, and the price of the final consumption

good is given by,

Pt =

(
∫ 1

j=0
Pt(j)

1−σZ(j)σdj

)

1

1−σ

.

In between quality improvement events, the demand for good j is time dependent because its quality

remains fixed while the quality of the other intermediate goods is on average growing at rate g.

For a given price, if the intermediate goods are gross substitutes (σ > 1), consumers will decrease

demand for good j as the quality of the alternatives is increasing. If goods are gross compliments

the demand will increase over time. Only in the unit elastic case is demand stationary.
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3.2 The Value of a Firm

Each individual firm is the monopoly supplier of the products it has created in the past that have

survived to the present. The price charged for each is the minimum of the monopoly price and the

limit price resulting from competition with suppliers of previous versions of the good. In Nash-

Bertrand equilibrium, the limit price exactly prices out all suppliers of previous version of the good.

Consumers are exactly indifferent between the higher quality intermediate good supplied by the

quality leader at the limit price and the highest quality alternative priced at marginal cost. The

limit price is the product of the magnitude of the latest quality improvement and the marginal

cost of production. If the monopoly price is below the limit price, the firm will simply charge the

monopoly price which also prices out the previous suppliers.

The output of any intermediate good requires labor and capital input in fixed proportions. Total

factor productivity is the same across all goods and is set equal to unity without loss of generality.

Denote by w the wage of a unit of labor, and by κ the cost of capital. The price charged for good

j can be expressed as,

p(j) = m
(

q(j), σ
)

(w + κ), where m (q, σ) =

{

σ
σ−1 if q > σ

σ−1 and σ > 1

q otherwise.
(7)

The gross profits associated with supplying good j at time t+ a is,

Πt+a(j) =
(

p(j) − w − κ
)zt+a(j)

p(j)

= π
(

q(j), σ
)

zt+a(j), (8)

where π(q, σ) = 1 −m(q, σ)−1.

Following Klette and Kortum (2004), the discrete number of products supplied by a firm,

denoted as k, is defined on the integers. Its value evolves over time as a birth-death process

reflecting product creation and destruction. A firm enters with one product and a firm exit when

it no longer has leading edge products. In Klette and Kortum’s interpretation, k reflects the firm’s

past successes in the product innovation process as well as current firm size. New products are

generated by R&D investment. The firm’s R&D investment flow generates new product arrivals

at frequency γk. The total R&D investment cost is wc(γ)k where c(γ)k represents the labor input

required in the research and development process. The function c(γ) is assumed to be strictly
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increasing and convex. According to the authors, the implied assumption that the total cost of

R&D investment is linearly homogenous in the new product arrival rate and the number of existing

product, “. . . captures the idea that a firm’s knowledge capital facilitates innovation.” In any

case, the cost structure implies that Gibrat’s law holds in the sense that innovation rates are size

independent contingent on type.

The market for any current product supplied by a firm is destroyed by the creation of a new

version by some other firm, which occurs at the rate δ. Below we refer to γ as the firm’s creation

rate and to δ as the common destruction rate faced by all firms. The firm chooses the creation rate

γ to maximize the expected present value of its future net profit flow.

At entry the firm instantly learns its type, τ , which is a realization of the random variable,

τ̃ ∼ φ (·). When an innovation occurs, the productivity improvement realization is drawn from

a type conditional distribution. Specifically, a τ -type’s improvement realizations are represented

by the random variable, q̃τ , that is distributed according to the cumulative distribution function,

Fτ (·). It is assumed that a higher firm type draws realizations from a distribution that stochastically

dominates that of lower firm types, that is if τ ′ > τ then Fτ ′ (q̃) ≤ Fτ (q̃) for all q̃ ≥ 1.5 Assume

that the lower bound of the support of q̃τ is 1 for all τ .

By assumption firms cannot direct their innovation activity toward a particular market. Fur-

thermore, their ability to create new products is not specific to any one or subset of product types.6

Since product demand Z (j) and quality levels vary across products, firms face demand uncertainty

for a new innovation resolved only when the product type of an innovation is realized. By equation

(6) the initial product line demand realization zt(j) = zZt(j)
σ

(

Pt(j)
Pt

)1−σ
is a result of a random

draw over the product space j ∈ [0, 1]. Denote by G (·) the steady state cumulative distribution

function of zt(j) across products. The initial demand for an innovation is then determined as a

realization of the random variable z̃ ∼ G (·). By definition of zt(j) it follows that z = E
[

z̃
]

. z̃ and

5The “noise” in the realization of quality step size suggests the need for a new entrant to learn about its type in
response to the actual realizations of q. We abstract from this form of learning. Simulation experiments using the
parameter estimates obtained under this assumption suggest that learning ones type is not an important feature of
the model’s equilibrium solution.

6On its face, this feature of the model is not realistic in the sense that most firms innovate in a limited number
of industries. However, if there are a large number of product variants supplied by each industry, then it is less
objectionable. In the appendix we show that similar results are obtained when estimating the model within broadly
defined industries.
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q̃τ are independent.

A firm’s state is characterized by the number of products it currently markets, k, and the

particular productivity improvement and demand realization for each products as represented by

the vectors, q̃k =
{

q̃1, . . . , q̃k
}

and z̃k =
{

z̃1, . . . , z̃k
}

. Because the demand for any surviving

product changes deterministically, the current demand level is a sufficient statistic. Given such a

state, the value of a type τ firm is accordingly given by,

rVτ

(

q̃k, z̃k, k
)

= max
γ≥0

{

k
∑

i=1

z̃iπ (q̃i) − kwc (γ) + kγ

[

Eτ

[

Vτ

(

q̃k+1, z̃k+1, k + 1
)

]

− Vτ

(

q̃k, z̃k, k
)

]

+kδ

[

1

k

k
∑

i=1

Vτ

(

q̃k−1
〈i〉 , z̃k−1

〈i〉 , k − 1
)

− Vτ

(

q̃k, z̃k, k
)

]

+ V̇τ

(

q̃k, z̃k, k
)

}

, (9)

where
(

q̃k−1
〈i〉 , z̃k−1

〈i〉

)

refers to
(

q̃k, z̃
)

without the ith elements. The first term on the right side is

current gross profit flow accruing to the firms product portfolio less current expenditure on R&D.

The second term is the expected capital gain associated with the arrival of a new product line. The

third term represents the expected capital loss associated with the possibility that one among the

existing product lines (chosen at random) will be destroyed. Finally, the last term is the change in

value over time as a result of demand time dependence of existing products.

As one can verify by substitution, the unique solution to (9) is given by,

Vτ

(

q̃k, z̃k, k
)

=
k

∑

i=1

z̃iπ (q̃i, σ)

r + δ − g(1 − σ)
+ kzΨτ , (10)

where,

Ψτ = max
γ≥0

γντ − wĉ (γ)

r + δ

ντ =
π̄τ (σ)

r + δ − g(1 − σ)
+ Ψτ ,

where π̄τ (σ) = 1−E
[

m(q̃τ , σ)−1
]

and ĉ (γ) ≡ c (γ) /z. Ψτ is the type conditional innovation option

value embodied in each product. ντ is the type conditional expected value of a product. It is

the sum of the innovation option value and the discounted stream of expected profits where the

effective discount rate is the sum of the the interest rate, the product destruction rate, and the rate

of decline in the future demand for the product

It then follows directly from (9) that the firm’s optimal choice of creation rate, γτ , satisfies,

wĉ′ (γτ ) = ντ , (11)
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where ντ is the type conditional expected value of an additional product line.

Equation (11) implies that the type contingent creation rate is size independent - a theoretical

version of Gibrat’s law. Also, the second order condition, c′′(γ) > 0, and the fact that the marginal

value of a product line is increasing in π̄τ imply that a firm’s creation rate increases with profitability.

Therefore, we obtain that γτ ′ ≥ γτ for τ ′ ≥ τ . These results are the principal empirical implications

of the model.

3.3 Firm Entry

The entry of a new firm requires innovation. Suppose that there are a constant measure m of

potential entrants. The rate at which any one of them generates a new product is γ0 and the total

cost is wc(γ0) where the cost function is the same as that faced by an incumbent. The firm’s type

is unknown ex ante but is realized immediately after entry. Since the expected return to innovation

is E [ντ ] and the aggregate entry rate is η = mγ0, the entry rate satisfies the following free entry

condition

wĉ′
( η

m

)

=
∑

τ

ντφτ , (12)

where φτ is the probability of being a type τ firm at entry. Of course, the second equality follows

from equation (11).

3.4 The Steady State Distribution of Firm Size

A type τ firm’s size is reflected in the number of product lines supplied which evolves as a birth-

death process. As the set of firms with k products at a point in time must either have had k

products already and neither lost nor gained another, have had k − 1 and innovated, or have had

k + 1 and lost one to destruction over any sufficiently short time period, the equality of the flows

into and out of the set of type τ firms with k > 1 products requires

γτ (k − 1)Mτ (k − 1) + δ(k + 1)Mτ (k + 1) = (γτ + δ)kMτ (k)

for every τ where Mτ (k) is the steady state mass of firms of type τ that supply k products. Because

an incumbent dies when its last product is destroyed by assumption but entrants flow into the set
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of firms with a single product at rate η,

φτη + 2δMτ (2) = (γτ + δ)Mτ (1)

where φτ is the fraction of the new entrants of type τ . Births must equal deaths in steady state

and only firms with one product are subject to death risk. Therefore, φτη = δMτ (1) and

Mτ (k) =
k − 1

k

γτ

δ
Mτ (k − 1) =

ηφτ

δk

(γτ

δ

)k−1
(13)

by induction.

The size distribution of firms conditional on type can be derived using equation (13). Specifi-

cally, the total firm mass of type τ is

Mτ =
∞

∑

k=1

Mτ (k) =
φτη

δ

∞
∑

k=1

1

k

(γτ

δ

)k−1
(14)

=
η

δ
ln

(

δ

δ − γτ

)

δφτ

γτ

.

where convergence requires that the aggregate rate of creative destruction exceed the creation rate

of every incumbent type, i.e., δ > γτ ∀τ . Hence, the fraction of type τ firm with k product is

Mτ (k)

Mτ
=

1
k

(γτ
δ

)k

ln
(

δ
δ−γτ

) . (15)

Equation (15) is the steady state distribution of k̃τ . This is the logarithmic distribution with

parameter γτ/δ.
7 Consistent with the observations on firm size distributions, the one implied by

the model is highly skewed to the right.

By equation (15), the mean of the type conditional firm size distribution is,

E
[

k̃τ

]

=
∞

∑

k=1

kMτ (k)

Mτ
=

γτ
δ−γτ

ln
(

δ
δ−γτ

) , (16)

It follows that the total mass of products produced by type τ firms, Kτ , is

Kτ =
∞

∑

k=1

kMτ (k) =
ηφτ

δ − γτ

. (17)

7This result is in Klette and Kortum (2004). We include the derivation here simply for completeness.
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As the product creation rate increases with expected profitability, expected size does also.

Formally, because (1 + a) ln(1 + a) > a > 0 for all positive values of a, the expected number of

products is increasing in expected firm profitability,

∂E
[

k̃τ

]

∂γτ

=

(

(1 + aτ ) ln(1 + aτ ) − aτ

(1 + aτ ) ln2(1 + aτ )

)

1 + aτ

δ − γτ

> 0 (18)

where aτ = γτ
δ−γτ

.

Finally by the condition that the total product mass
∑

τ Kτ is constant and normalized at

unity, the rate of creative-destruction is the sum of the entry rate and the aggregate creation rates

of all the incumbents,

δ = η +
∑

τ

Kτγτ . (19)

3.5 Labor Demand and Market Clearing

There is a fixed measure of available workers, denoted by `, seeking employment at any positive

wage. In equilibrium, these are allocated across production and R&D activities, those performed

by both incumbent firms and potential entrants.

By the normalization of labor productivity at unity, it follows from equations (5) and (6) that

the production labor demand for an age a product line with initial demand realization z̃ and quality

realization q̃ is given by

`p(z̃, q̃, a) =
z̃eg(1−σ)a

m(q̃, σ)(w + κ)
. (20)

Denote by `pτ the average labor demand per product of a type τ firm for the purpose of production.

Product age is going to be exponentially distributed with parameter δ. It follows that,

`pτ =

∫ ∞

1

∫ ∞

0

∫ ∞

0
m(q, σ)−1(w + κ)−1z′eg(1−σ)aδe−δadadG(z′)dFτ (q)

=
δz

(

1 − π̄τ (σ)
)

(w + κ)[δ − g(1 − σ)]
. (21)

Hence, the average type conditional labor demand per product is,

`τ = `pτ + c(γτ ). (22)

The expected type conditional per product labor demand, `τ is decreasing in π̄τ (σ) if the reduc-

tion in labor demand for production, `pτ , dominates the increase in labor demand for innovation,
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c(γτ ). So, although more profitable firms on average supply more products, total type conditional

expected employment, `τE
[

k̃τ

]

, need not increase with π̄τ (σ), in general. Hence, the hypothesis

that firms with the ability to create greater productivity improvements grow faster is consistent

with dispersion in labor productivity and the correlations between value added, labor force size,

and labor productivity observed in Danish data reported above.

Labor market clearing requires that the equilibrium wage solves

` =
∑

τ

Kτ `τ +mc
(

η/m
)

. (23)

3.6 Growth Rate

Given stationarity of z/w, log-differentiation of equation (3) and applying the law of large numbers

yield,

Ċt

Ct
=

∫ 1
0 Zt(j)(At(j)xt(j))

σ−1

σ
Ȧt(j)
At(j)

dj
∫ 1
0 Zt(j)(At(j)xt(j))

σ−1

σ dj
= E

[

Ȧt (j)

At(j)

]

.

As the number of innovations Jt(j), j ∈ [0, 1] are independently and identically distributed

Poisson random variables with common expectation δt, and the (ln q)s are iid across time and

product lines, the law of large number implies that

E

[

Ȧt (j)

At(j)

]

= δE[ln q].

Hence, the growth rate in consumption is,

g =
Ċ

C
= E

[

Ȧ(j)

A(j)

]

= δE[ln(q)] = η
∑

τ

φτE[ln(q̃τ )] +
∑

τ

KτγτE[ln(q̃τ )]. (24)

3.7 Equilibrium

Definition 1 A steady state market equilibrium is a triple (w, δ, g) together with optimally chosen

entry rate η = mγ0, and creation rate γτ , and a steady state size distribution Kτ for each type that

satisfy equations (11), (12), (17), (19), (23), and (24).

See Lentz and Mortensen (2005) for a proof of existence of a slightly simpler version of the

model. In Appendix A, we describe in detail the steady state equilibrium solution algorithm used

in the estimation procedure described below.
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4 Estimation

If the ability to create higher quality products is a permanent firm characteristic, then differences

in firm profitability are associated with differences in the product creation rates chosen by firms.

Specifically, more profitable firms grow faster, are more likely to survive in the future, and supply

a larger number of products on average. Hence, a positive cross firm correlation between current

gross profit per product and sales volume should exist. Furthermore, worker reallocation from

slow growing firms to more profitable fast growing firms will be an important source of aggregate

productivity growth because faster growing firms also contribute more to growth.

In this section, we demonstrate that firm specific differences in profitability are required to

explain Danish interfirm relationships between value added, employment, and wages paid. In the

process of fitting the model to the data, we also obtain estimates of the investment cost of innovation

function that all firms face as well as the sampling distribution of firm productivity at entry.

4.1 Danish Firm Data

If more profitable firms grow faster in the sense that π̄τ > π̄τ ′ ⇒ γτ > γτ ′ , then (18) implies

that fast growing firms also supply more products and sell more on average. However, because

production employment per product decreases with productivity, total expected employment need

not increase with π̄τ in general and decreases with π̄τ when growth is independent of a firm’s past

product productivity improvement realizations. These implications of the theory can be tested

directly.

The model is estimated on an unbalanced panel of 4,872 firms drawn from the Danish firm panel

described in Section 2. The panel is constructed by selecting all existing firms in 1992 and following

them through time, while all firms that enter the sample in the subsequent years are excluded. In

the estimation, the observed 1992 cross-section will be interpreted to reflect steady state whereas

the following years generally do not reflect steady state since survival probabilities vary across firm

types. Specifically, due to selection the observed cross-sections from 1993 to 1997 will have an

increasing over-representation of high creation rate firm types relative to steady state. The ability

to observe the gradual exit of the 1992 cross-section will be a useful source of identification. Entry

16



in the original data set suffers from selection bias and while one can attempt to correct for the bias,

we have made the choice to leave out entry altogether since it is not necessary for identification.

By including the 1997 cross section in the set of moments, dynamic processes that change the cross

sectional composition of survivors over time are reflected in the estimation.

The first two columns of Table 2 present a set of distribution moments with standard deviations

in parenthesis. The standard deviations are obtained through bootstrapping on the original panel.

Unless otherwise stated, amounts are in 1,000 real 1992 Danish Kroner where the Statistics Denmark

consumer price index was used to deflate nominal amounts. It is seen that the size distributions are

characterized by significant skew. The value added per worker distribution displays some skew and

significant dispersion. All distributions display a right shift from 1992 to 1997. The distribution

moments also include the positive correlation between firm productivity and output size and the

slightly negative correlation between firm productivity and labor force size.

The last two columns of Table 2 contain the dynamic moments used in the estimation. First of

all, note that empirical firm productivity displays significant persistence and some mean reversion.

The dynamic moments also include the cross section distribution of growth rates that display

significant dispersion. Furthermore, there is a slightly negative correlation between output size and

growth rate in the data. The moments relating to firm growth rates (∆Y/Y ) include firm death,

specifically an exiting firm will contribute to the statistic with a −1 observation. Excluding firm

deaths from the growth statistic results in a more negative correlation between firm size and growth

due to the negative correlation between firm size and the firm exit hazard rate. Since the model

also exhibits a negative correlation between the exit rate and size, the same will be true in the

model simulations.

Finally, Table 2 also includes a standard empirical labor productivity growth decomposition. We

use the preferred formulation in Foster, Haltiwanger, and Krizan (2001) which is taken from Baily,

Bartelsman, and Haltiwanger (1996) and ultimately based on the Baily, Hulten, and Campbell
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Table 2: Data moments (std dev in parenthesis)

1992 1997 1992 1996

4872.000 3628.000 0.476 0.550
Survivors

– (32.132)
Cor[ Y

N∗ ,
Y+1

N∗

+1

]
(0.088) (0.091)

26277.262 31860.850 −0.227 −0.193
E[Y ]

(747.001) (1031.252)
Cor[ Y

N∗ ,∆
Y
N∗ ]

(0.103) (0.057)

13472.812 16448.965 −0.120
Med[Y ]

(211.851) (329.417)
Cor[ Y

N∗ ,
∆Y
Y ]

(0.016)

52793.105 64120.233 0.119
Std[Y ]

(5663.047) (7741.448)
Cor[ Y

N∗ ,
∆N∗

N∗ ]
(0.032)

13294.479 15705.087 −0.029
E[W ]

(457.466) (609.595)
E[∆Y

Y ]
(0.008)

7231.812 8671.939 0.550
Med[W ]

(92.720) (154.767)
Std[∆Y

Y ]
(0.067)

30613.801 35555.701 −0.061
Std[W ]

(6750.399) (8137.541)
Cor[∆Y

Y , Y ]
(0.012)

384.401 432.118 1.015
E[ Y

N∗ ]
(2.907) (5.103)

Within
(0.146)

348.148 375.739 0.453
Med[ Y

N∗ ]
(1.829) (2.139)

Between
(0.112)

205.074 305.306 −0.551
Std[ Y

N∗ ]
(19.633) (42.491)

Cross
(0.196)

0.852 0.857 0.084
Cor[Y,W ]

(0.035) (0.045)
Exit

(0.066)

−0.018 −0.026
Cor[ Y

N∗ , N∗]
(0.013) (0.011)

0.198 0.143
Cor[ Y

N∗ , Y ]
(0.036) (0.038)

(1992) index (BHC).8 The decomposition takes the form,9

∆Pt =
∑

i∈Ct

sit−1∆pit +
∑

i∈Ct

pit−1∆sit +
∑

i∈Ct

∆pit∆sit +
∑

i∈Et

pitsit −
∑

i∈Xt

pit−1sit−1, (25)

where Pt =
∑

i sitpit, pit = Yit/Nit, and sit = Nit/Nt.

8Griliches and Regev (1995) present another variation on the Baily, Hulten, and Campbell (1992) decomposition.
It performs much the same way as the Foster, Haltiwanger, and Krizan (2001) formulation.

9In the implementation of the decomposition we employ the version of (25) where the between term and the
entry/exit terms are normalized by Pt−1,

∆Pt =
X

i∈Ct

sit−1∆pit +
X

i∈Ct

(pit−1 − Pt−1) ∆sit +
X

i∈Ct

∆pit∆sit +
X

i∈Et

(pit − Pt−1) sit −

X

i∈Xt

(pit−1 − Pt−1) sit−1.
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The identity in (25) decomposes time differences in value added per worker into 5 components in

the order stated on the right hand side; within, between, a cross component, and entry and exit. As

the names suggest, the BHC growth decomposition literature attaches particular significance to each

term: The within component is interpreted as identifying growth in the productivity measure due

to productivity improvements by incumbents. The between component is interpreted to capture

productivity growth from reallocation of labor from less to more productive firms. The cross

component captures a covariance between input shares and productivity growth and the last two

terms capture the growth contribution of entrants and exits. The sum of the between and cross

components is also sometimes referred to as gross reallocation.

We include the BHC growth decomposition in the set of data moments because it conveniently

relates the estimation to the empirical growth literature. Furthermore, it does reflect a particular

aspect of the dynamics in the data. As mentioned, the sample in this paper does not include entry,

so there is no entry share in the decomposition. Consequently, the decomposition cannot be directly

related to the results in Foster, Haltiwanger, and Krizan (2001), although a full decomposition is

performed on the estimated model in section 5.

4.2 The BHC Growth Decomposition in Steady State

Despite the usual interpretations of the second and third terms, the BHC decomposition does

not identify the contribution of reallocation to growth in a stochastic steady state model such as

ours. Indeed, the second and third terms equal zero in any structural equilibrium model of the

type studied in this paper for the following reason. In the model, all firms of the same type have

the same productivity by the definition of type, and although individual firms can and do grow

and contract over time, the steady state distribution of inputs over firm types is stationary by

the definition of stationary stochastic equilibrium. Hence, if we let j ∈ J represent an element of

the set of firm types, let Ij denote the set of firms of type j, let s∗jt represent the average share

of employment per type j firm in period t, and let p∗jt be the productivity of type j firms, then

abstracting from entry and exit one can formulate the growth decomposition in terms of firm types
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as follows.10

∆Pt =
∑

j∈J

∑

i∈Ij

sit−1∆pit +
∑

j∈J

∑

i∈Ij

pit−1∆sit +
∑

j∈J

∑

i∈Ij

∆pit∆sit

=
∑

j∈J

|Ij | s
∗
jt−1∆p

∗
jt +

∑

j∈J

|Ij | p
∗
jt−1∆s

∗
jt +

∑

j∈J

|Ij |∆p
∗
jt∆s

∗
jt

=
∑

j∈J

|Ij | s
∗
j∆p

∗
jt (26)

where |Ij | is the number of firms of type j and s∗jt−1 = 1
|Ij |

∑

i∈Ij
sit−1. The first equality is implied

by the fact that the set {I1, I2, ...Ij , ...} is a partition of the set of all firms I, the second by the fact

that the firms of the same type have the same productivity at any given date, and the last by the

fact that the average share per firm of each type is constant (consequently, ∆s∗jt = 0 for all j and

t) in a steady state equilibrium. The final expression in (26) is the first term in the Baily, Hulten,

and Campbell (1992) index.

An interpretation of the sum of the between and cross components,
∑

i∈I ∆sitpit as the gross

effect of reallocating resources across firms is incorrect because gains in employment share are

exactly off set by losses in share across firms of the same type in steady state. In other words, workers

are never exogenously reallocated across types in equilibrium as is implicit in the interpretation.

As such, the decomposition cannot capture the steady state growth contribution from reallocation.

The fact that many empirical studies based on the BHC decomposition have found little evidence

of a significant contribution to growth from the gross reallocation component is not a surprise in

light of the above argument.11

4.3 Model Estimator

An observation in the panel is given by ψit = {Yit,Wit, N
∗
it}, where Yit is real value added, Wit the

real wage sum, and N ∗
it quality adjusted labor force size of firm i in year t. Let ψi be defined by,

ψi =
{

ψi1,...,ψiT

}

and finally, ψ = {ψ1, . . . , ψI} .

The model is estimated by indirect inference. The estimation procedure, as described in for

example Gourieroux, Monfort, and Renault (1993), Hall and Rust (2003), and Alvarez, Browning,

10The general argument that includes entry and exit is presented in the appendix.
11Petrin and Levinsohn (2005) also reach the conclusion that the empirical measure

P

i∈I ∆sitpit has no meaning
of interest. Specifically, they argue the traditional “Solow residual” adapted to allow for market imperfections, which
is the first component of the BHC index, is the correct measure for welfare comparisons. Their argument is valid for
our structural model.
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and Ejrnæs (2001), is as follows: First, define a vector of auxiliary data parameters, Γ (ψ). The

vector consists of all the items in Tables 2 except the number of survivors in 1992 and one of the

growth decomposition components. Thus, Γ (ψ) has length 37.

Next, produce a simulated panel ψs (ω) for a given set of model parameters ω. The model simu-

lation is initialized by assuming that the economy is in steady state in the first year and consequently

that firm observations are distributed according to the ω implied steady state distribution.12

The simulated auxiliary parameters are then given by,

Γs (ω) =
1

S

S
∑

s=1

Γ (ψs (ω)) ,

where S is the number of simulation repetitions.13

The estimator is the choice of model parameters that minimizes the weighted distance between

the data and simulated auxiliary parameters,

ω̂ = arg min
ω∈Ω

(

Γs (ω) − Γ (ψ)
)′
A−1

(

Γs (ω) − Γ (ψ)
)

, (27)

where A is the variance-covariance matrix of the data moments Γ(ψ). Following Horowitz (1998)

it is estimated by bootstrap.

The variance of the estimator is estimated by bootstrap. In each bootstrap repetition, a new

set of data auxiliary parameters Γ
(

ψb
)

is produced, where ψb is the bootstrap data in the bth

bootstrap repetition. ψb is found by randomly selecting observations ψi from the original data

with replacement. Thus, the sampling is random across firms but is done by block over the time

dimension (if a particular firm i is selected, the entire time series for this firm is included in the

sample). For the bth repetition, an estimator ωb, is found by minimizing the weighted distance

between the re-centered bootstrap data auxiliary parameters
[

Γ
(

ψb
)

− Γ (ψ)
]

and the re-centered

simulated auxiliary parameters
[

Γs
(

ωb
)

− Γs (ω̂)
]

,

ωb = arg min
ω∈Ω

(

[

Γs (ω) − Γs (ω̂)
]

−
[

Γ(ψb) − Γ (ψ)
]

)′
A−1

(

[

Γs (ω) − Γs (ω̂)
]

−
[

Γ(ψb) − Γ (ψ)
]

)

.

In each bootstrap repetition, a different seed is used to generate random numbers for the de-

termination of Γs (ω). Hence, V (ω̂) captures both data variation and variation from the model

12Alternatively, one can initialize the simulation according to the observed data in the first year. This approach
has the complication that a firm’s number of products is not directly observed.

13The model estimate in the following section uses S = 1000.
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simulation.14

4.4 Model Specification and Simulation

Given a set of parameter values, the model is used to generate time paths for value added (Y ),

the wage sum (W ), and labor force size (N) for each simulated firm. The firm type distribution is

specified as a 3-point discrete type distribution φτ . The type conditional productivity realization

distributions are three parameter Weibull distributions that share a common shape parameter βq

and a unity point of origin. Each distribution is distinguished by its own scale parameter ξτ .

Thus, the three productivity realization distributions are specified with 4 parameters. The demand

realization distribution G(·) is a three parameter Weibull where oZ is the origin, βZ is the shape

parameter, and ξZ is the scale parameter. The cost function is parameterized by c(γ) = c0γ
(1+c1).

A type τ firm with k products characterized by q̃k and z̃k has value added,

Yτ

(

q̃k, z̃k
)

=
k

∑

i=1

z̃i, (28)

and by equation (20) a wage bill of,

Wτ

(

q̃k, z̃k
)

=
w

w + κ

k
∑

i=1

z̃i
m(q̃i)

+ wkc (γτ ) . (29)

Equations (28) and (29) provide the foundation for the model simulation.

In Appendix A, we describe the detailed procedure of how to find the steady state equilibrium

for given model fundamentals. The initial characteristics of each firm are drawn from the model’s

steady state distributions. The steady state firm type probability distribution is

φ∗τ =
ηφτ ln

(

δ
δ−γτ

)

Mγτ

, τ = 1, 2, ..., N

where M =
∑

τ Mτ is the total steady state mass of firms. A firm’s type is drawn according to

φ∗. Once a firm’s type has been determined, its 1992 product line size is drawn from the type

conditional steady state distribution of k̃τ characterized in equation (15). Then the age realization

of each product is drawn from the exponential age distribution. The age realization is used to

adjust the demand realization draw for each product from G(·) according to equation (6).

14Variance estimates are obtained using 500 bootstrap repetitions
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The growth rate in quality is reflected in the aggregate price index. Thus, everything else equal

Yτ and Wτ grow at rate g.

Given an initial size for a firm, its future size evolves according to the stochastic birth-death

process described earlier. The forward simulation is done by dividing each annual time period

into a large number of discrete sub-intervals, n. By assumption, in each sub-interval each of the

stochastic creation and destruction processes can have zero or one event arrivals. Hence, a type

τ firm with k products will in a given sub-interval lose a product with probability 1 − e−kδ/n and

gain a product with probability 1− e−kγτ /n. As n→ ∞, the procedure will perfectly represent the

continuous time processes in the model. In the simulations below, the model has been simulated

with n = 104.

The estimation allows for measurement error in both value added and the wage bill. The

measurement error is introduced as a simple log-additive process,

ln Ŷτ

(

q̃k, Z̃k
)

= lnYτ

(

q̃k, Z̃k
)

+ ξY

ln Ŵτ

(

q̃k, Z̃k
)

= lnWτ

(

q̃k, Z̃k
)

+ ξW ,

where ξY ∼ N
(

−1
2σ

2
Y , σ

2
Y

)

and ξW ∼ N
(

−1
2σ

2
W , σ2

W

)

. Given this specification, the expected value

of the process with noise and without are equal. The estimation is performed on the quality adjusted

labor force size. Consequently, the wage bill measurement error is assumed to carry through to the

labor force size, N̂τ

(

q̃k, Z̃k
)

= Ŵτ

(

q̃k, Z̃k
)

/w since by construction, N ∗
i w = Wi for all firms in the

data.

4.5 Identification

The interest rate is set at r = .05. The wage w is immediately identified as the average worker

wage in the sample w = 190.24. Excluding these two, the set of structural model parameters ω has

16 parameters; ω = (c0, c1, κ, σ,m, βZ , ξZ , oZ , βq, ξ1, ξ2, ξ3, φ1, φ2, σ
2
Y , σ

2
W ), where φ3 = 1 − φ1 − φ2

in the case of three types. In the actual implementation of the estimation, m is replaced by η as a

fundamental model parameter. Of course, η is endogenous to the equilibrium, but since m is a free

parameter, m can always be set to make the η estimate consistent with steady state equilibrium.

The set of data moments Γ (ψ) has size 37.
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The fact that the dimension of Γ (ψ) exceeds that of ω does not in itself guarantee separate

identification of the elements in ω. To understand the identification of the model it is useful to

consider a stripped down version without stochastic demand and product quality improvement

realizations; that is, V [Z̃] = 0 and V [q̃τ ] = 0 ∀τ . In this case, by equations (10) and (11) the

optimal type conditional creation rate choice satisfies,

wc̃′ (γτ ) =
π̄τ (σ)

r + δ − g (1 − σ)
+
γτwc̃

′ (γτ ) − wc̃ (γτ )

r + δ
, τ = 1, . . . , N.

The value added of an average product is found by taking the expectation over the exponential age

distribution of products. This yields,

E[Yτ ] =
δz

δ − g(1 − σ)
E

[

k̃τ

]

,

provided that δ > g(1− σ). By equation (22), the expected type conditional wage bill is, E[Wτ ] =

w`τE
[

k̃τ

]

. The average type conditional labor share is then given by,

ατ = E

[

Wτ

Yτ

]

= w

[

1 − π̄τ (σ)

w + κ
+
δ − g (1 − σ)

δ
c̃ (γτ )

]

, τ = 1, . . . , N. (30)

Simulation of (Y,W,N) panel data absent of product demand variation due to age dispersion

then follows from the expressions for the type conditional (Y,W,N) at time t,

Yτ ,t

(

k̃τ

)

= k̃τze
gt

Wτ ,t

(

k̃τ

)

= k̃τzατe
gt

Nτ ,t

(

k̃τ

)

=
Wτ ,t

(

k̃τ

)

wegt
= k̃τz

ατ

w
,

where k̃τ is the type conditional product size random variable.

In order to solve for the type conditional dynamics of (Yτ,t,Wτ,t) , it is necessary to know (δ, γτ )

because these two parameters govern the birth-death process of k̃τ . Thus, to simulate the full firm

panel {Yjt,Wjt, Njt}j,t for N separate firm types it is necessary to know,

Λ = {δ, z, g, (α1, . . . , αN ) , (γ1, . . . , γN ) , (φ∗1, . . . , φ
∗
N )} . (31)
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This is 3N + 2 independent parameters given the restriction that
∑

τ φ
∗
τ = 1. Taking separate

identification on w and r, the underlying structural parameters of the simplified model are,

{c0, c1, σ, κ, η, z, (q1, . . . , qN ) , (φ1, . . . , φN )} ,

which is 2N + 5 independent parameters. Thus, fully separate identification of ω requires that the

underlying true data generating process has at least three distinct types and that ω is formulated

for at least three types.

Given the other parameters, {δ, Z, (φ∗1, . . . , φ
∗
N )} and {η, Z, (φ1, . . . , φN )} are related to each

other one-to-one. The separate identification discussion can consequently be confined to the rela-

tionship between {g, (α1, . . . , αN ) , (γ1, . . . , γN )} and {σ, c0, c1, κ, (q1, . . . , qN )}. Consider the case

where {ĝ, (α̂1, . . . , α̂N ) , (γ̂1, . . . , γ̂N )} and δ̂ have been identified by indirect inference such that

δ̂ > γ̂τ , ∀τ . There exists a unique η that is consistent with steady state for given δ̂ and γ̂τ (see

appendix for proof). Denote this steady state implied aggregate entry rate by η̂. Similarly, the

steady state product mass distribution across types K̂τ also directly follows from the given δ̂ and

γ̂τ . {σ, c0, c1, κ, (q1, . . . , qN )} is then identified through the system,

wc0(1 + c1)γ̂
c1
τ =

π̄τ (σ)

r + δ̂ − ĝ (1 − σ)
+
wc0c1γ̂

1+c1
τ

r + δ̂
, τ = 1, . . . , N (32)

α̂τ = w

[

1 − π̄τ (σ)

w + κ
+
δ̂ − ĝ (1 − σ)

δ̂
c0γ̂

1+c1
τ

]

, τ = 1, . . . , N. (33)

ĝ = η̂
N

∑

τ=1

φτE
[

ln(qτ )
]

+
N

∑

τ=1

γ̂τ K̂τE
[

ln(qτ )
]

, (34)

where the profits have been explicitly stated to depend on the type dependent quality improvement

and σ. In the case of 3 distinct types, equations (32)-(34) are 7 equations in 7 unknowns.

Unlike other applications of the Dixit-Stiglitz demand model where σ is identified directly

through an average observed markup in the data, the source of identification of σ is non-trivial

in this case. Although σ > 1 imposes an upper bound, markups are first and foremost generated

through quality improvements because of the Nash-Bertrand competition between producers of the

same intermediate good. As it turns out the data strongly rejects values of σ much larger than

one because these values severely dampen value added per worker dispersion across firms. Given

the non-conventional identification of σ we provide a robustness analysis of some of the central
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implications of the estimation to different values of σ in section 6.

As will be shown in the following sections, the true data generating process supports at least

3 distinct types. For all estimations where the model is specified with more than one type, the

estimation always yields a low type (order the types so that the low type is indexed by 1) where

γ1 ' 0. The higher types are estimated with γτ > 0 ∀τ > 1. Consequently, since estimated c0 > 0,

the non-labor cost share is determined through equation (33) as κ ' w(1 − α1)/α1.

The estimation of type heterogeneity is tied to three characteristics of the data: 1) The observa-

tion of substantial dispersion in value added per worker, 2) the positive relationship between value

added per worker and output size, and 3) the flat relationship between value added per worker

and input size. Within the framework of the model, it is possible to generate value added per

worker dispersion without type heterogeneity through stochastic q realizations. However, it does

not generate a positive relationship between value added per worker and output size whereas a

negative relationship between labor shares and creation rates will. The positive correlation be-

tween Y/N and Y and the zero correlation between Y/N and N will result in an estimate where

γτ ′ > γτ ⇒ ατ ′ < ατ . It directly follows from equation (33) that qτ ′ > qτ . As a caveat, it is worth-

while noting that all three characteristics could in principle be a result of simple measurement error

in Y . If so, it should be clear that one would need a pretty sizeable measurement error. We have

included measurement error in the estimation for this and other reasons. Measurement error is

estimated to have little impact on the relationships in the data. The dynamics in the data play an

important role as well. They determine magnitudes of the creation-destruction rates through the

dispersion in growth rates and changes in cross section moments over time.

The estimation is performed under the assumption that the true firm population of interest

coincides with the size censoring in the data. That is, the estimation does not correct for size

censoring bias. While a strong assumption, it reasonably assumes that the large number of very

small firms in the economy are qualitatively different from those in this analysis and are not just

firms with fewer products.
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Table 3: Parameter Estimates (standard deviation in parentheses)

τ = 1 τ = 2 τ = 3

95.1898 0.8683 0.0661 0.0655
c0/Z (6.0254)

φτ (0.0118) (0.0037) (0.0096)

3.5069 0.7667 0.1145 0.1188
c1 (0.0326)

φ∗τ (0.0153) (0.0054) (0.0147)

152.1388 0.0000 0.3262 0.9914
κ

(1.9631)
ξτ (0.0000) (0.0455) (0.1250)

16730.3381 0.3779 0.3779 0.3779
Z

(342.6157)
βq (0.0250) (0.0250) (0.0250)

0.9548 0.0000 0.0553 0.0570
βZ (0.0217)

γτ (0.0000) (0.0016) (0.0015)

481.0943 0.5701 0.2029 0.2270
oZ (109.5790)

Kτ (0.0171) (0.0140) (0.0220)

0.0462 0.0000 3.1850 3.5439
η

(0.0015)
vτ (0.0000) (0.1994) (0.2003)

0.0336 0.0000 0.2486 0.2719
σ2

Y (0.0037)
πτ (0.0000) (0.0137) (0.0137)

0.0228 1.0000 1.1237 1.1546
σ2

W (0.0661)
Med[q̃τ ] (0.0000) (0.0213) (0.0325)

0.0704 0.0000 0.4339 0.4921
δ

(0.0017)
E[ln q̃τ ] (0.0000) (0.0352) (0.0361)

1.4660 1.0000 2.3827 2.5703
m

(0.0598)
E[k̃τ ] (0.0000) (0.1197) (0.1495)

44.6786
`

(0.9175)

0.0141
g

(0.0006)

σ 1.0818

Note: Equilibrium wage is estimated at w = 190.239. Standard errors obtained by bootstrap subject to
σ estimate.

4.6 Estimation Results

The model parameter estimates are presented in Table 3. As mentioned, the standard errors are

obtained through bootstrapping. The bootstrap procedure yields estimates conditional on the point

estimate of σ.15

15The introduction of σ into the set of model parameters to be estimated seems to induce local minima in the
criterion function in equation (27). The production of the point estimate in Table 3 consequently involves extensive
use of global search methods and is quite time consuming (1 week) even with the use of parallel computation methods
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The model estimates imply that at least 3 distinct types have significant representation in the

steady state equilibrium.16 The low type produces almost no improvement in quality whereas the

median quality improvement of the middle and high type are 12.4% and 15.5%, respectively. The

low type represents 76.7% of all firms and produces 57% of the products in steady state. This is

in stark contrast to the low type’s representation at entry, which is estimated at φ1 = .868. This

reflects a significant selection in steady state.

The low type’s creation rate is almost zero, whereas the middle and high types have creation

rates at γ2 = .055 and γ3 = 0.057, respectively. The high and middle types are in effect crowding

out the the low type through the creative destruction process. This is true in terms of firm rep-

resentation because the low type has a higher exit rate, but it is particularly strong in terms of

product representation because the middle and high types are substantially larger in expectation

than the low type. The survival conditional size expectation is only barely above a single product

for the low type whereas it is 2.4 products for the middle type and 2.6 products for the high type.

The overall creation and destruction rate is estimated at an annual rate of .07. The implied

average lifespan of a product is about 14 years. The destruction rate is roughly consistent with

evidence in Rosholm and Svarer (2000) that the worker flow from employment to unemployment is

roughly 10% annually.

The demand distribution is estimated to be close to an exponential distribution with substan-

tial dispersion. The low type firm will employ 49 manufacturing workers for the average demand

realization. The measurement error processes are estimated to produce modest amounts of mea-

surement error noise. The size of the labor supply is inferred for the estimated market wage w. The

estimated steady state implies that 4.5% of the labor force is engaged in innovation. The remainder

is employed in production.

In the appendix, we include estimates of the model by industry. The results confirm that the

central qualitative features of the data persist at the disaggregate level. In particular, one observes

on a large computer cluster. This is prohibitively long for the bootstrap and a compromise was made to produce
bootstrapped errors conditional on the σ estimate. One may worry that the presence of local minima could somehow
signify identification problems. However, plotting out the minimized criteria function (27) for given values of sigma
produces a globally concave function with a single minimum (see Appendix C). Thus, to the best of our knowledge σ
is identified, but questions remain about the precision of the estimate. This is part of the motivation of the robustness
study in section 6.

16An estimation with 4 discrete types did not improve the fit appreciably.
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Table 4: Model Fit (data in top row, estimated model in bold in bottom row)

1992 1997 1992 1996

4872.000 3628.000 0.476 0.550
Survivors

4872.000 3594.621
Cor[ Y

N∗ ,
Y+1

N∗

+1

]
0.720 0.719

26277.262 31860.850 −0.227 −0.193
E[Y ]

23119.155 27096.128
Cor[ Y

N∗ ,∆
Y
N∗ ]

-0.341 -0.353

13472.812 16448.965 −0.120
Med[Y ]

13327.214 15207.558
Cor[ Y

N∗ ,
∆Y
Y ]

-0.099

52793.105 64120.233 0.119
Std[Y ]

31730.683 37685.054
Cor[ Y

N∗ ,
∆N∗

N∗ ]
0.120

13294.479 15705.087 −0.029
E[W ]

11812.141 13658.271
E[∆Y

Y ]
0.022

7231.812 8671.939 0.550
Med[W ]

7115.871 8078.232
Std[∆Y

Y ]
0.781

30613.801 35555.701 −0.061
Std[W ]

14961.133 17571.025
Cor[∆Y

Y , Y ]
-0.042

384.401 432.118 1.015
E[ Y

N∗ ]
379.719 416.989

Within
0.951

348.148 375.739 0.453
Med[ Y

N∗ ]
346.478 378.693

Between
0.342

205.074 305.306 −0.551
Std[ Y

N∗ ]
200.013 221.175

Cross
-0.405

0.852 0.857 0.084
Cor[Y,W ]

0.928 0.928
Exit

0.112

−0.018 −0.026
Cor[ Y

N∗ , N∗]
-0.029 -0.022

0.198 0.143
Cor[ Y

N∗ , Y ]
0.173 0.179

significant firm productivity dispersion along with a positive correlation between productivity and

output size, but a virtually zero correlation between productivity and input size in all industries.

5 Model Fit

Table 4 shows a comparison of the data moments and the simulated moments for the estimated

model.

29



5.1 Size distributions.

The estimated size distributions do not quite match the heaviness of the right tail in the data.

As a result, the model under-estimates the first and second moments of the distributions while

matching the median. While generally performing well in terms of matching firm size distributions,

the problems fitting the heavy far right tail in empirical size distributions is a well known issue

associated with the Klette and Kortum (2004) model. Improvements of the model along this

dimension is a topic well worth of future research.

Size dispersion is impacted by the stochastic birth-death process in products, demand realization

variation and potentially measurement error. Model simulation without measurement error (σ2
Y =

σ2
W = 0) yields a reduction in the 1992 Std[Y ] estimate to 30, 916.42. If in addition demand

shock variation is eliminated, that is oz = E[Z̃], the 1992 Std[Y ] estimate is reduced to 23, 309.43.

Thus, a first order explanation of firm size dispersion is found in the relationship between the type

conditional creation rates γτ and the rate of total creative-destruction δ. These type conditional

relationships determine the distribution of k̃τ . Demand realization variation plays a secondary role

and measurement error almost none.

5.2 Productivity and size correlations.

Figure 2 shows non-parametric regressions of empirical firm productivity and size for both data

and the estimated model. The model performs reasonably well in explaining the relationships, at

least in the central portion of the distribution of labor productivity. Table 4 shows that the model

fits the correlations it has been trained to fit very well.

As mentioned in the previous section, firm type heterogeneity plays an important role in ex-

plaining the productivity and size correlations. The positive correlation between value added per

worker measure and output size in the data suggests a negative relationship between the firm’s

wage share and its growth rate. In the model, firm type heterogeneity delivers these relationships

by positively correlating high productivity types with high growth rates. The zero correlation be-

tween input size and value added per worker is delivered by balancing the labor saving feature of

innovations at the product level with the greater growth rate of higher productivity firms.
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Figure 2: Firm productivity and size, 1992.
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Note: Value added (Y ) measured in 1 million DKK. Labor force size (N ∗) measured in efficiency units.
Estimated model point estimate and 90% confidence bounds drawn in solid pen. Data in dashed pen.
Shaded areas are 90% confidence bounds on data.

Measurement error has the potential of explaining these correlations as well. The estimation al-

lows for both input and output measurement error which are estimated at fairly moderate amounts.

If the model is simulated without the measurement error (σ2
Y = σ2

W = 0), the 1992 size–productivity

correlations change to Cor[Y/N, Y ] = 0.144 and Cor[Y/N,N ] = 0.006. Thus, measurement error is

estimated to have little impact on these moments in the data. Rather, they are explained as a result

of the labor saving innovation process at the heart of the model combined with type heterogeneity

which yields not only value added per worker dispersion across types, but also different growth

rates across types.

5.3 Value added per worker distribution

Figure 3 compares the distribution of empirical firm productivity in data with the estimated model.

The model does a good job of explaining this important feature of the data.

The distribution of empirical firm labor productivity Y/N is explained primarily by type het-

erogeneity, within type quality improvement dispersion, and the capital share. The level of value

added per worker is closely linked to the estimate of κ. In particular, since the low firm type is

estimated to have an almost zero creation rate and to add almost no improvement to quality, κ is

31



Figure 3: Firm productivity distribution fit, 1992
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Note: Value added (Y ) measured in 1 million DKK. Labor force size (N ∗) measured in efficiency
units. Estimated model in solid pen. Data in dashed pen.

estimated as κ ' w(1 − α1)/α1. This implies a low type wage share of 55.5%. The average wage

share in the data is roughly 55%.

Measurement error adds to the dispersion measure, but to a much smaller extent than firm

type heterogeneity. Simulation without measurement error (σ2
Y = σ2

W = 0) yields a reduction in

the 1992 Y/N standard deviation measure to 168.92.

In the absence of innovation labor demand, demand side shocks have no impact on the value

added per worker of the firm because manufacturing labor demand and value added move propor-

tionally in response to demand realizations. However, demand side shocks can affect value added

per worker dispersion through its effect on the relative size of the manufacturing and innovation

labor demands. If in addition to zero measurement error shocks, the model is also estimated with-

out demand realization dispersion, the 1992 Std[Y/N ] estimate barely changes, which means that

demand realization dispersion has almost no impact on the Y/N distribution.
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5.4 Cross-section shifts from 1992 to 1997

Both the size and empirical productivity distributions shift right from 1992 to 1997. The model

explains this through the growth rate g and as a result of a survivor bias property of the sample.

The exit hazard is higher for smaller firms both in the data and in the model. As a result the

mass at the lower end of the size distribution is reduced at a faster pace than elsewhere in the

distribution. Furthermore, type heterogeneity also contributes to the right shift since larger firms

tend to be of the high type which have lower net destruction rates. Thus, the general turnover in

the model as represented by δ has an impact on the right shift as well.

The survivor bias and type heterogeneity account for a substantial part of the right shift in the

size distributions. If growth is set to zero by artificially imposing a constant price index, one finds

that EY estimate shifts from 23, 118 in 1992 to 24, 923 in 1997. Thus, growth accounts for the

remainder of the right shift in Table 4.

While growth explains a little less than half of the right shift in the size distributions, it explains

almost all of the right shift of the productivity distribution. If growth is set to zero, the E[Y/N ]

estimate shifts from 379.76 in 1992 to 383.32 in 1997. Thus, growth accounts for about 90% of the

estimated right shift of the productivity distribution.

In general, the estimation does not match the full right shift of the size distributions whereas

it does well in capturing the right shift of the productivity distribution. Clearly, the estimation

has traded off fitting the right shift of the productivity distribution with the right shift of the

size distributions. If g were set higher, the estimation would have done better with the right shift

of the size distributions but would have over-shot the right shift of the productivity distribution.

Furthermore, it would also have taken the average firm growth rate in the wrong direction.

5.5 Firm growth rate distribution and exit hazards

The model does well in terms of capturing the amount of firm exit as well as the distribution of

firm growth rates. δ is a particularly important parameter in this respect. Firm exit is directly

tied to δ because it is the exit hazard of a one product firm. But, because the level of δ also

determines the amount of overall turnover, it impacts the dispersion in growth rates as well. The
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average firm growth rate is estimated a little too high. Again, the estimation has faced a trade-off

between increasing the δ estimate to reduce the average firm growth rate and reducing the number

of survivors which is estimated a little below the observed number.

5.6 Value added per worker persistence and mean reversion.

The model estimates at the top of the second column of Table 4 imply too much persistence and

mean reversion. The persistence in firm labor productivity can be explained directly through

demand and supply shocks, the magnitudes of the creation and destruction rates γτ and δ, and

measurement error. The given estimate of the overall creation and destruction rate implies that

both the supply and the demand shock processes are quite permanent.

In the absence of measurement error, the model estimate implies very high persistence of value

added per worker. In this case one obtains 1992 persistence and mean reversion moments of

Cor
[

Y
N ,

Y+1

N+1

]

= .965 and Cor
[

Y
N ,∆

Y
N

]

= −.019. Adding measurement error reduces the perma-

nence measure and increases the mean reversion measure. Given the one instrument, the estimation

has traded off an under-estimate of persistence and an over-estimate of mean reversion.

It is important to note that transitory demand shocks have much the same impact as the

measurement error components along this dimension. One can speculate that the introduction of an

additional demand noise component of a more transitory nature will result in a lower measurement

error noise estimate.

5.7 Growth rate and size (Gibrat Law)

Beginning with Gibrat (1931), much emphasis has been placed on the relationship between firm

growth and firm size. Gibrat’s law is interpreted to imply that a firm’s growth rate is size inde-

pendent and a large literature has followed testing the validity of this law. See Sutton (1997) for a

survey of the literature. No real consensus seems to exist, but at least on the study of continuing

establishments, a number of researchers have found a negative relationship between firm size and

growth rate. For a recent example, see Rossi-Hansberg and Wright (2005). One can make the

argument that Gibrat’s law should not necessarily hold at the establishment level and that one

must include firm death in order to correct for survivor bias. Certainly, if the underlying discussion
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Figure 4: Kernel Regression of Firm Growth Rate and Size (1992).
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Note: Value added (Y ) measured in 1 million DKK. Model and 90% point wise confidence
bounds in solid pen. Data in dashed pen. Shaded area is a 90% point wise confidence
bound on data.

is about some broad notion of decreasing returns to scale in production, it is more likely to be

relevant at the establishment level than at the firm level. However, as can be seen from Figure 4,

in the current sample of firms where the growth rate – size regression includes firm exits, one still

obtains a negative relationship.

At a theoretical level, the model satisfies Gibrat’s law in the sense that each firm’s expected

growth is size independent. But two opposing effects will impact the unconditional size and growth

relationship: First, due to selection, larger firms will tend to over-represent higher creation rate

types and in isolation the selection effect will make for a positive relationship between size and

the unconditional firm growth rate. Second, the mean reversion in demand shocks, measurement

error, and to a smaller extend in supply shocks introduces an opposite effect: The group of small

firms today will tend to over-represent firms with negative demand and measurement error shocks.

Chances are that the demand realization of the next innovation will reverse the fortunes of these

firms and they will experience relatively large growth rates. On a period-by-period basis, the same

is true for the measurement error processes that are assumed to be iid over time. Large firms have
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Table 5: FHK growth decomposition and counterfactuals.

Steady state with entry

Data
Point

Estimate
Point

Estimate
Counter-
factual 1

Counter-
factual 2

Counter-
factual 3

Within 1.0149 0.9511 1.1216 0.8872 0.9303 0.8013
Between 0.4525 0.3417 0.2919 0.0734 0.1142 0.0000
Cross −0.5514 −0.4047 −0.6087 −0.1548 −0.2390 0.0000
Exit 0.0839 0.1119 0.1331 0.1318 0.1314 0.1279
Entry — — 0.0621 0.0624 0.0631 0.0709
Survivor growth rate 0.0165 0.0165 0.0165 0.0164 0.0165 0.0165
Growth rate — — 0.0141 0.0141 0.0141 0.0141

Note: All counterfactuals are performed on the estimated model.
Counterfactual 1 imposes zero measurement error, σ2

Y = σ2
W = 0.

In addition to counterfactual 1, counterfactual 2 imposes zero demand realization dispersion while maintaining
E[Z̃] at its estimated level, Var[Z̃] = 0.
In addition to counterfactual 2, counterfactual 3 imposes within type zero quality improvement dispersion,
q̃τ = (1 − κ)/(1 − κ − π̄τ ) ∀τ . Also, product age dispersion is eliminated.
The growth rate is the annual growth rate in aggregate value added per worker calculated on existing firms at
a given point in time. The survivor growth rate describes the value added per worker growth rate of surviving
1992 firms.

many products and experience less overall demand variance. The demand shock and measurement

error effects dominate in the estimated model as can be seen in Figure 4.17 Note that the growth

statistics include firm death. If firm deaths are excluded and the statistic is calculated only on

survivors, the survival bias will steepen the negative relationship between firm size and firm growth

both for the data and for the model since the model reproduces the higher exit hazard rate for

small firms that is also found in data.

If the model is estimated without measurement error and demand realization dispersion, one

obtains a 1992 firm size and growth correlation of Cor[∆Y/Y, Y ] = .04. This reflects the positive

selection effect.

5.8 Labor productivity growth decomposition

Table 5 presents the decomposition results. Because there is no entry in the observed panel, no

entry component is recorded in the data and point estimate columns. Furthermore, it is important

to keep in mind that the growth in value added per worker is in part a result of survivor selection

17Figure 4 uses value added as the firm size measure. Using labor force size as the size measure instead results in
a very similar looking figure and no significant change in the correlation between size and growth.
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bias. Therefore, the table presents both a growth measure of the selected sample of surviving 1992

firms and the overall steady state growth rate.

The third column of Table 5 presents the decomposition performed on the estimated model

where entry has been included in the simulation.18 Consequently, each time period is a reflection

of the same steady state. Thus, in the third column one can clearly see the survivor selection bias

in the productivity growth rate in the data: The steady state annual growth rate is .014 whereas

the annual growth rate of the survivor selected sample is .016.

The remaining 3 columns present counterfactuals for the estimated steady state model where

the noise processes are gradually shut off. This will impact the decomposition results but will not

affect the aggregate growth rate.

A comparison of the first two columns in Table 5 reveals that the estimated model fits the BHC

type growth distribution components fairly well. The results, particularly the sign pattern, are

generally consistent those found in the empirical literature. For example, the component shares for

the decomposition of labor productivity growth with employment weights for U.S. Manufacturing

over the period 1977-1987 reported by Foster, Haltiwanger, and Krizan (2001) are within = 0.74,

between = 0.08, cross = -0.14, and net entry = 0.29.

The model has three major noise processes: Measurement error, stochastic demand realizations,

and within type stochastic quality improvement realizations. In addition product age dispersion

will add demand variation to the extent that σ 6= 1. The measurement error and stochastic

q realizations turn out to be the most important in terms of explaining the between and cross

components. Given the discussion of the decomposition in section 4.1, it is not surprising that an

explanation of a non-zero between and cross components requires the existence of measurement

error and transitory shocks processes. In the absence of noise processes, both terms will be zero in

steady state.

The first counterfactual sets measurement error to zero. It is seen that this alone dramatically

reduces the magnitude of both the between and the cross components. The second counterfactual

18Entry is simulated much the same way that the model is simulated forward as described in section 4.4. Each
year is divided into n subperiods in which a potential entrant enters with probability 1 − e−γ0/n. At the time of
entry, the type of the entrant is drawn from φ and the subsequent life of the entrant is simulated forward just like
any incumbent from that point on.
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turns off both the measurement error and demand realization noise processes. It is seen that

demand realization dispersion has a limited impact on the decomposition.

In addition to setting measurement error and demand noise to zero, the third counterfactual

eliminates within type q realization dispersion by deterministically setting each firm’s qτ to match

the estimated expected profit πτ . In this case the theoretical result that the between and cross

components equal zero almost holds. If in addition one artificially eliminates product age dispersion

effects on demand one obtains that the between and cross component are exactly zero.

It is an important point that the observation of non-zero between and cross components does

not necessarily imply that the data reflect an out-of-steady-state situation. The results in Table 5

show that it may simply reflect the existence of various types of noise processes. Especially those

that produce noise in the productivity measure.

6 Reallocation and Growth

Aggregate productivity growth as defined in equation (24) is the sum of the contributions of entrants

and incumbents where each term is equal to the sum over types of the average increases in the

productivity of innovations relative to the product or service replaced, the product of the innovation

frequency and quality improvement per innovation, weighted by relative sizes as reflected in the

fraction of product lines supplied by each type. Note that the appropriate empirical counterpart is

the traditional growth accounting measure recommended by Petrin and Levinsohn (2005), not the

BHC productivity difference index.

Table 6 presents the equilibrium steady state annual growth rate implied by the estimated

model, g = 0.0141. As reported in Table 5, the annual growth rate for the sample is 0.0165. This

estimate is biased upward because of survivor selection. The traditional growth measure (the TD

index) using the value added per worker for continuing firms only is 0.0148. However, the TD

index will be biased upward as well in the presence of exit hazard heterogeneity that is negatively

correlated with firm growth rates. The model estimate of the steady state growth rate g = 0.0141

provides a structural adjustment of the sample selection bias in the data.

The model also permits the identification of the contribution of survival and firm size selection,
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Table 6: The Productivity Growth Rate and Its Components (std dev in parenthesis).

σ = 1.0818 σ = 0.600 σ = 1.000 σ = 1.250

0.0141 0.0131 0.0137 0.0143
g

(0.0006) — — —

Decomposition (fraction of g)
0.2003 0.2208 0.2122 0.2422

– Entry/exit
(0.0142) — — —

0.2438 0.2523 0.2462 0.2577
– Residual

(0.0124) — — —

0.5559 0.5269 0.5415 0.5001
– Selection

(0.0260) — — —

Note: Standard deviation estimates obtained by bootstrap. Standard deviation estimates
have not been calculated for the robustness analysis.

reflected in differential firm growth rates, to aggregate growth. Specifically, because the expected

productivity of the products created differ across firms and because these differences are positively

associated with differences in expected profitability and consequently in creation rates, aggregate

growth reflects the selection of more profitable firms by the creative-destruction process. Indeed,

equation (24) can be rewritten as

g =
∑

τ

γτE [ln q̃τ ]φτ +
∑

τ

γτE [ln q̃τ ] (Kτ − φτ ) + η
∑

τ

Eτ [ln q̃τ ]φτ (35)

where the first term is the contribution to growth of continuing firms under the counter factual

assumption that the share of products supplied by continuing firms of each type is the same as at

entry, the second term accounts for type distributional impact of differential firm growth rates after

entry, and the third term is the net contribution of entry and exit. Because the steady state fraction

of products supplied by type τ firms is Kτ = ηφτ/(δ − γτ ), the selection effect is positive because

firms that are expected to create higher quality products supply more product lines on average.

(Formally, stochastic dominance Fτ ≤ Fτ ′ =⇒ both E [ln q̃τ ] ≥ E [ln q̃τ ′ ] and Kτ −φτ ≥ Kτ ′ −φτ ′ .)

Table 6 presents the decomposition estimate. The estimated model implies that the entry/exit

component accounts for 20.03% and the selection component 55.6% of the aggregate growth rate.

Hence, the dynamics of entry and firm size evolution, a process that involves continual reallocation

to new and growing firms, is responsible for over three-quarters of the growth in the modelled
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economy.

Of course, all growth in the model is a result of worker reallocation. Every time a new innovation

is created workers flow to its supplier from firms with products that have recently become obsolete.

This observation does not address the issue of resource allocation across types, however. The

selection effect measures the loss in productivity growth that would result if more productive firm

types in any given cohort were not allowed to increase their resource share relative to that at birth.

Because the more productive types in any cohort will gradually gain an ever increasing share of

resources of that cohort, as a cohort ages it becomes increasingly selected while also shrinking

relative to the size of the overall economy. The model’s steady state is the sum of overlapping

cohorts with different degrees of selection. The steady state distribution of product lines and the

resources required to supply them remains constant over time because firms in the existing cohorts

contract at a rate equal to the entry rate of new firms of that type. If the reallocation induced by

selection is shut down, the distribution of product lines across types will gradually deteriorate to

the point where it equals the entry distribution, and productivity growth will fall by 55.6%.

Finally, Table 6 also includes a check of the robustness of the growth decomposition with respect

to the σ estimate. The values for σ span an interval where the model fit remains relatively good in

comparison to the fit of the point estimates reported in Table 3. The span covers both the cases of

complements and substitutes. It is seen that the growth estimate and the decomposition results are

not particularly sensitive to the value of σ. The overall growth estimate is increasing in σ which is

a result of the age effect on demand of surviving products. In the complements case, the demand

of surviving products increases with age whereas the opposite is true in the substitutes case. The

data moments are based on a selected sample of surviving firms. Hence, the steady state growth

rate will adjust to size of the survivor bias, which is impacted by the age effect. For values of σ

above 1.25, the model fit deteriorates rapidly as a result of a reduction in the dispersion of value

added per worker across firms.

7 Concluding Remarks

Large and persistent differences in firm productivity and firm size exist. Worker reallocation in-

duced by heterogeneity should be an important source of aggregate productivity growth. However,
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empirical studies based on the Baily, Hulten, and Campbell (1992) growth decomposition have

found mixed evidence of the importance reallocation as a source of growth. We argue that the

BHC growth decomposition does not correctly identify the steady state contribution of resource

reallocation to productivity growth. Indeed, we show that models in which the distribution of

resources across firm types is stationary imply that the “between” and “cross” firm components of

the decomposition are zero in the absence of transitory noise what ever the true data generating

process.

In this paper we explore a variant of the equilibrium Schumpeterian model of firm size evolution

developed by Klette and Kortum (2004). In our version of the model, firms that can develop

products of higher quality have an incentive to grow faster relative to less profitable firms in each

cohort though a process of creative destruction. Worker reallocation from less to more profitable

firms induced by the process contributes to aggregate productivity growth. Furthermore, the model

is consistent with the observation that there is no correlation between employment size and labor

productivity and a positive correlation between value added and labor productivity observed in

Danish firm data.

We fit the model to the Danish firm panel for the 1992 − 1997 time period. The parameter

estimates are sensible and the model provides a good fit to the joint size distribution and dynamic

moments of the data. Although the model fits the Foster, Haltiwanger, and Krizan (2001) variant of

the BHC growth decomposition well, the ”between” and ”cross” terms vanish in a counterfactual

exercise in which purely transitory shocks and measurement errors are set to zero. Finally, the

estimated model also fits the negative relationship between size and growth in the data even though

at a theoretical level it satisfies Gibrat’s law in the sense that a firm’s innovation rate is independent

of its size.

All growth in our model is attributed to reallocation in the sense that resources must flow from

firms that loss markets to innovators that provide new more productive goods and services. We

decompose the reallocation component into a net contribution from firm entry and exit, a firm

type selection effect, and a residual. The net contribution of entry is 20% of the model’s implied

growth rate. The selection component, which accounts for 55% of growth, captures the contribution

41



attributable to the fact that resources are reallocated from slow growing less productive firms to

fast growing more creative ones in each cohort.
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A Steady State Equilibrium Solution Algorithm

In this section, we present the steady state equilibrium solution algorithm given the parameter

vector
(

κ, η, w, σ, φ, F (·), c(·)
)

. Both η and w are endogenous to the equilibrium. w is estimated as

the average 1992 worker wage in the data and ` is subsequently set to match the aggregate labor

demand for the equilibrium wage. Similarly, the estimate of η maps directly to the estimate of m

for the estimated model through the first order condition,

wc′(η/m) =
∑

τ

φτvτ .

The core of the solution algorithm is based on the following proposition,

Proposition 1 There exists a unique steady state (K, δ, g) for any given (η, γ, φ) such that η > 0,

γτ ≥ 0 ∀τ , and φτ > 0 ∀τ . The steady state satisfies,

Kτ =
ηφτ

δ − γτ

> 0 ∀τ

δ = η +
∑

τ

Kτγτ > 0

g =
∑

τ

(Kτ + ηφτ )γτE
[

ln(q̃τ )
]

≥ 0.

Proof. The evolution of the distribution of products across the n firm types can be written as,

K̇τ = γτKτ + ηφτ − δKτ , τ = 1, . . . , n,

where
∑

Kτ = 1. In steady state, this reduces to,

δ = η +
n

∑

τ=1

γτKτ , (36)

and,

Kτ =
ηφτ

δ − γτ

=
ηφτ

η +
∑

i6=τ γiKi − (1 −Kτ ) γτ

(37)

m

Kτ =
ηφτ +Kτ (1 −Kτ ) γτ

η +
∑

i6=τ γiKi
≡ Γτ (Kτ ,K−τ ) , τ = 1, . . . , n. (38)

Γτ (Kτ ,K−τ ) is a continuous, strictly concave function inKτ ∈ [0, 1]. Since Γτ (0,K−τ ) = Γτ (1,K−τ ) ∈

(0, 1) there exists a unique fixed point K̂τ = Γτ

(

K̂τ ,K−τ

)

where K̂τ ∈ (0, 1). Define the mapping
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Ω : [0, 1]n → (0, 1)n such that Ω (K) = Γ (Ω (K) ,K). Ω (K) is continuous in K and since [0, 1]n is

a compact and convex set, Brouwer’s fixed point theorem can be applied to prove the existence of

a fixed point K∗ = Ω (K∗). It follows by K∗
τ ∈ (0, 1) , ∀τ , that any fixed point has the property

that δ > γτ , ∀τ .

To prove uniqueness, suppose to the contrary that there exists two distinct fixed points K0 =

Ω
(

K0
)

and K1 = Ω
(

K1
)

, K0 6= K1. Denote by δi = η+
∑

τ γτK
i
τ , i = 1, 2. Since Ki is a solution

to (38) it must be that
∑

τ K
i
τ =

∑

τ
ηφτ

δi−γτ
= 1, i = 1, 2. Combined with δi > γτ , ∀τ , i = 1, 2 this

implies that δ0 = δ1. But it then follows that K0
τ = ηφτ

δ0−γτ
= ηφτ

δ1−γτ
= K1

τ , ∀τ , contradicting the

assumption of two distinct fixed points.

The type conditional creation rate choice satisfies,

wĉ′ (γτ ) = ντ , (39)

where

Ψτ = max
γ≥0

γντ − wĉ (γ)

r + δ

vτ =
π̄τ

r + δ − g(1 − σ)
+ Ψτ .

Given the model parameters
(

κ, η, w, σ, φ, F (·), c(·)
)

where η > 0, the solution algorithm can

be formulated as a fixed point search in (Ψ, δ, g) subject to the constraints

r + δ > g(1 − σ)

δ > 0

Ψτ ≥ 0, ∀τ

g ≥ 0.

All four constraints are satisfied in a model equilibrium, but it is worth noting that existence of

equilibrium may fail to materialize for certain model parameter combinations because of violation

of the first constraint.

For a given (Ψ, δ, g) satisfying the above constraints there exists a unique solution for vτ which

directly yields γτ ≥ 0, ∀τ . With these type conditional creation rates and the given η > 0, one can
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then apply the insights of Proposition 1 to yield the implied steady state values for (δ ′, g′). The

search for the steady state reduces to solving a non-linear system of equations. Given the steady

state value of the destruction rate, one obtains

Ψ′
τ =

γτvτ − wĉ(γτ )

r + δ′
, ∀τ .

Denote this mapping by, (Ψ′, δ′, g′) = Υ(Ψ, δ, g). Steady state equilibrium is a fixed point,

(Ψ∗, δ∗, g∗) = Υ(Ψ∗, δ∗, g∗).

The search for this fixed point can be done in a number of ways. A particularly simple method

is straightforward iteration on the mapping Υ. This turns out to be a robust and quick method.

B The BHC Decomposition in Stochastic Steady State

Denote by It the set of firms at time t. The aggregate productivity change is written by,

∆P =
∑

i∈It

sitpit −
∑

i∈It−1

sit−1pit−1.

Define the set of continuing firms between t−1 and t as the intersection of It−1 and It, Ct = It−1∩It.

Define the set of entrants at time t as complement of It and Ct, Et = It \ Ct. The set of exiting

firms between It−1 and It is similarly defined as Xt−1 = It−1 \ Ct. With this in hand we can write

the change in aggregate productivity as,

∆P =
∑

i∈Et

sitpit +
∑

i∈Ct

sitpit −
∑

i∈Ct

sit−1pit−1 −
∑

i∈Xt−1

sit−1pit−1

=
∑

i∈Ct

sit−1∆pit +
∑

i∈Ct

∆sitpit−1 +
∑

i∈Ct

∆sit∆pit +
∑

i∈Et

sitpit −
∑

i∈Xt−1

sit−1pit−1.

This is the Foster, Haltiwanger, and Krizan (2001) decomposition.

Now, state the summations in terms of groups of identical type firms j. Furthermore, define

the resource share of the group of type j firms at time t, by s̄jt = 1
|Ij |

∑

i∈Ij
sit. Similarly, define

the average productivity of type j firms at time t, by p̄jt = 1
|Ij |

∑

i∈Ij
pit. In steady state it must
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be that s̄jt = s̄jt−1 = s̄j implying that ∆s̄jt = 0. The change in productivity can be written as,

∆P =
∑

j

∑

i∈Et∩Ijt

sitpit +
∑

j

∑

i∈Ct∩Ijt

sitpit −
∑

j

∑

i∈Ct∩Ijt−1

sit−1pit−1 −
∑

j

∑

i∈Xt−1∩Ijt−1

sit−1pit−1

=
∑

j

∑

i∈Ct∩Ijt

sitpit −
∑

j

∑

i∈Ct∩Ijt

sitpit−1 +
∑

j

∑

i∈Ct∩Ijt

sitpit−1 −
∑

j

∑

i∈Ct∩It−1

sit−1pit−1 +

∑

j

∑

i∈Et∩Ij

sitpit −
∑

j

∑

i∈Xt−1∩It−1

sit−1pit−1

=
∑

j

∑

i∈Ct∩Ijt

sit∆pit +
∑

j

∑

i∈Ct∩Ijt

sitpit−1 +
∑

j

∑

i∈Et∩Ij

sitpit−1 −





∑

j

∑

i∈Ct∩It−1

sit−1pit−1 +
∑

j

∑

i∈Xt−1∩It−1

sit−1pit−1



 +
∑

j

∑

i∈Et∩Ij

sitpit −
∑

j

∑

i∈Et∩Ij

sitpit−1

=
∑

j

∑

i∈Ct∩Ijt

sit∆pit +
∑

j

∑

i∈Ijt

sitpit−1 −
∑

j

∑

i∈Ijt−1

sit−1pit−1 +
∑

j

∑

i∈Et∩Ij

sit∆pit

=
∑

j

∆p̄jt

∑

i∈Ijt

sit +
∑

j

p̄jt−1

∑

i∈Ijt

sit −
∑

j

p̄jt−1

∑

i∈Ijt−1

sit−1

=
∑

j

∆p̄jt |Ijt| s̄jt +
∑

j

p̄jt−1 |Ijt| s̄jt −
∑

j

p̄jt−1 |Ijt−1| s̄jt−1.

In steady state it must be that,

∆Pt =
∑

j

|Ij | s̄j∆p̄jt +
∑

j

[|Ij | s̄j − |Ij | s̄j ] p̄jt−1

=
∑

j

|Ij | s̄j∆p̄jt.

If type were observable, ∆p̄j would be estimated by taking the average growth in p for the set of

continuing type j firms.
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C Identification of σ

Figure 5 plots part of the intermediate output of a global search routine over σ. The points in

the figure are minimized values of the criteria function for given values of σ. The points off the

minimum frontier reflect local minima that were abandoned by the search routine.

Figure 5: Criteria Function
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D Estimation Results by Industry

This section contains model estimates by industry. The estimation is done subject to the σ = 1.0818

estimate from the full data set since this is considered common to all the industries. We are showing

the results for the three largest industries. The smaller industries are too small to yield statistically

interesting results.
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Table 7: Manufacturing – Parameter Estimates (standard deviation in parentheses)

τ = 1 τ = 2 τ = 3

76.2759 0.8342 0.0147 0.1511
c0/Z (6.7627)

φτ (0.0191) (0.0326) (0.0363)

3.2576 0.7314 0.0222 0.2464
c1 (0.0381)

φ∗τ (0.0221) (0.0531) (0.0572)

146.7780 0.0000 0.0976 0.5677
κ

(2.8209)
ξτ (0.0000) (0.0707) (0.0524)

19275.7389 0.6526 0.6526 0.6526
Z

(537.6697)
βq (0.0398) (0.0398) (0.0398)

0.8230 0.0000 0.0471 0.0508
βZ (0.0267)

γτ (0.0000) (0.0039) (0.0021)

3181.3213 0.5572 0.0327 0.4101
oZ (432.9361)

Kτ (0.0229) (0.0898) (0.0935)

0.0450 0.0000 2.9391 3.7606
η

(0.0020)
vτ (0.0000) (0.6506) (0.2750)

0.0245 0.0000 0.2412 0.2978
σ2

Y (0.0032)
πτ (0.0000) (0.0482) (0.0183)

0.0181 1.0000 1.2178 1.3238
σ2

W (0.1586)
Med[q̃τ ] (0.0000) (0.0717) (0.0545)

0.0673 0.0000 0.3328 0.4394
δ

(0.0023)
E[ln q̃τ ] (0.0000) (0.0803) (0.0384)

1.5472 1.0000 1.9342 2.1853
m

(0.0815)
E[k̃τ ] (0.0000) (0.1751) (0.1406)

51.5503
`

(1.4053)

0.0129
g

(0.0008)

σ 1.0818

Note: Equilibrium wage is estimated at w = 190.660. Point estimate and standard errors are obtained
subject to overall product demand specification estimate of σ = 1.0818.
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Table 8: Manufacturing – Model Fit (data in top row, estimated model in bottom row)

1992 1997 1992 1996

2051.000 1536.000 0.650 0.728
Survivors

2051.000 1536.219
Cor[ Y

N∗ ,
Y+1

N∗

+1

]
0.644 0.646

30149.461 35803.473 −0.024 −0.195
E[Y ]

25974.016 29936.366
Cor[ Y

N∗ ,∆
Y
N∗ ]

−0.397 −0.406

15117.552 18858.445 −0.133
Med[Y ]

14819.859 16758.498
Cor[ Y

N∗ ,
∆Y
Y ]

−0.127

56081.995 69574.991 0.145
Std[Y ]

33152.398 38562.133
Cor[ Y

N∗ ,
∆N∗

N∗ ]
0.151

15047.636 17318.195 −0.035
E[W ]

13258.885 15060.236
E[∆Y

Y ]
0.005

8031.273 9531.066 0.474
Med[W ]

7948.588 8943.336
Std[∆Y

Y ]
0.481

24667.884 27159.439 −0.073
Std[W ]

15561.368 17813.551
Cor[∆Y

Y , Y ]
−0.042

379.047 422.471 0.863
E[ Y

N∗ ]
374.100 407.843

Within
0.864

347.100 375.300 0.365
Med[ Y

N∗ ]
347.282 377.355

Between
0.262

163.174 226.860 −0.297
Std[ Y

N∗ ]
140.725 154.685

Cross
−0.256

0.889 0.855 0.068
Cor[Y,W ]

0.934 0.935
Exit

0.129

0.011 −0.003
Cor[ Y

N∗ , N∗]
−0.003 0.009

0.236 0.200
Cor[ Y

N∗ , Y ]
0.220 0.232

Table 9: Manufacturing – Growth Decomposition (standard deviation in parentheses)

Point Estimate Fraction of g

0.0129 1.0000
g

(0.0008) —

0.0032 0.2492
Entry/exit

(0.0003) (0.0209)

0.0036 0.2799
Residual

(0.0003) (0.0139)

0.0061 0.4710
Selection

(0.0006) (0.0338)
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Table 10: Wholesale and Retail – Parameter Estimates (standard deviation in parentheses)

τ = 1 τ = 2 τ = 3

71.9217 0.9269 0.0012 0.0719
c0/Z (6.2081)

φτ (0.0065) (0.0083) (0.0096)

2.9448 0.8705 0.0019 0.1276
c1 (0.0304)

φ∗τ (0.0084) (0.0144) (0.0157)

177.5595 0.0000 0.0168 2.1016
κ

(2.7765)
ξτ (0.0000) (0.0232) (0.1732)

16811.6212 0.8222 0.8222 0.8222
Z

(515.8550)
βq (0.0768) (0.0768) (0.0768)

0.9502 0.0000 0.0421 0.0477
βZ (0.0363)

γτ (0.0000) (0.0038) (0.0017)

1175.5965 0.7502 0.0030 0.2468
oZ (398.9608)

Kτ (0.0127) (0.0270) (0.0294)

0.0505 0.0000 4.7427 6.8165
η

(0.0017)
vτ (0.0000) (0.9755) (0.2813)

0.0165 0.0000 0.3878 0.5289
σ2

Y (0.0042)
πτ (0.0000) (0.0709) (0.0207)

0.0198 1.0000 1.6151 2.3457
σ2

W (0.3790)
Med[q̃τ ] (0.0000) (0.2264) (0.1518)

0.0623 0.0000 0.5912 0.9502
δ

(0.0019)
E[ln q̃τ ] (0.0000) (0.1439) (0.0471)

2.5787 1.0000 1.8504 2.2439
m

(0.1033)
E[k̃τ ] (0.0000) (0.1688) (0.1173)

41.6051
`

(1.2684)

0.0147
g

(0.0008)

σ 1.0818

Note: Equilibrium wage is estimated at w = 187.720. Point estimate and standard errors are obtained
subject to overall product demand specification estimate of σ = 1.0818.
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Table 11: Wholesale and Retail – Model Fit (data in top row, estimated model in bottom row)

1992 1997 1992 1996

1584.000 1189.000 0.325 0.674
Survivors

1584.000 1185.787
Cor[ Y

N∗ ,
Y+1

N∗

+1

]
0.739 0.745

22952.920 28386.719 −0.195 −0.259
E[Y ]

20178.326 22850.027
Cor[ Y

N∗ ,∆
Y
N∗ ]

−0.324 −0.335

12757.909 15288.949 −0.088
Med[Y ]

12777.856 14215.385
Cor[ Y

N∗ ,
∆Y
Y ]

−0.094

33400.313 41409.060 0.189
Std[Y ]

24007.935 27848.885
Cor[ Y

N∗ ,
∆N∗

N∗ ]
0.164

10696.683 12712.898 −0.042
E[W ]

9403.578 10452.085
E[∆Y

Y ]
−0.005

6423.473 7650.564 0.425
Med[W ]

6224.264 6894.377
Std[∆Y

Y ]
0.424

15360.222 16802.715 −0.090
Std[W ]

9887.575 11089.624
Cor[∆Y

Y , Y ]
−0.034

410.234 466.591 1.176
E[ Y

N∗ ]
403.265 445.119

Within
0.798

373.928 408.244 0.618
Med[ Y

N∗ ]
372.462 408.447

Between
0.236

171.661 278.495 −0.826
Std[ Y

N∗ ]
166.805 188.294

Cross
−0.170

0.922 0.914 0.032
Cor[Y,W ]

0.903 0.900
Exit

0.135

−0.028 −0.039
Cor[ Y

N∗ , N∗]
−0.002 0.017

0.252 0.188
Cor[ Y

N∗ , Y ]
0.288 0.311

Table 12: Wholesale and Retail – Growth Decomposition (standard deviation in parentheses)

Point Estimate Fraction of g

0.0147 1.0000
g

(0.0008) —

0.0035 0.2364
Entry/exit

(0.0003) (0.0199)

0.0033 0.2229
Residual

(0.0002) (0.0110)

0.0080 0.5407
Selection

(0.0007) (0.0306)
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Table 13: Construction – Parameter Estimates (standard deviation in parentheses)

τ = 1 τ = 2 τ = 3

66.6745 0.5522 0.1969 0.2509
c0/Z (8.0458)

φτ (0.0441) (0.0150) (0.0425)

3.6104 0.4373 0.2291 0.3336
c1 (0.0640)

φ∗τ (0.0393) (0.0170) (0.0431)

81.0334 0.0000 0.0902 1.2743
κ

(2.3698)
ξτ (0.0000) (0.0153) (0.2217)

8433.0564 0.6568 0.6568 0.6568
Z

(172.4217)
βq (0.0308) (0.0308) (0.0308)

1.3145 0.0000 0.0468 0.0567
βZ (0.1323)

γτ (0.0000) (0.0038) (0.0041)

3619.6641 0.3085 0.2514 0.4401
oZ (1079.7041)

Kτ (0.0302) (0.0226) (0.0410)

0.0465 0.0000 0.9345 1.8701
η

(0.0024)
vτ (0.0000) (0.1450) (0.1661)

0.0347 0.0000 0.0908 0.1671
σ2

Y (0.0041)
πτ (0.0000) (0.0133) (0.0118)

0.0205 1.0000 1.0516 1.1202
σ2

W (0.0229)
Med[q̃τ ] (0.0000) (0.0091) (0.0139)

0.0833 0.0000 0.1039 0.2106
δ

(0.0044)
E[ln q̃τ ] (0.0000) (0.0161) (0.0182)

1.0970 1.0000 1.5551 1.8703
m

(0.0820)
E[k̃τ ] (0.0000) (0.0592) (0.1128)

28.4961
`

(0.6216)

0.0099
g

(0.0010)

σ 1.0818

Note: Equilibrium wage is estimated at w = 191.849. Point estimate and standard errors are obtained
subject to overall product demand specification estimate of σ = 1.0818.
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Table 14: Construction – Model Fit (data in top row, estimated model in bottom row)

1992 1997 1992 1996

651.000 480.000 0.428 0.345
Survivors

651.000 474.231
Cor[ Y

N∗ ,
Y+1

N∗

+1

]
0.386 0.379

15191.354 16869.551 −0.327 −0.560
E[Y ]

12116.030 14011.735
Cor[ Y

N∗ ,∆
Y
N∗ ]

−0.540 −0.550

8688.501 10711.648 −0.187
Med[Y ]

8844.399 9943.091
Cor[ Y

N∗ ,
∆Y
Y ]

−0.231

31287.564 22454.655 0.089
Std[Y ]

10759.536 12657.142
Cor[ Y

N∗ ,
∆N∗

N∗ ]
0.192

9973.166 10594.737 −0.025
E[W ]

7847.026 9012.535
E[∆Y

Y ]
0.004

5785.053 6838.405 0.448
Med[W ]

5907.388 6607.510
Std[∆Y

Y ]
0.447

24526.438 14181.147 −0.122
Std[W ]

6560.671 7712.691
Cor[∆Y

Y , Y ]
−0.079

305.075 342.273 0.986
E[ Y

N∗ ]
303.475 323.656

Within
1.035

286.749 311.509 0.635
Med[ Y

N∗ ]
287.092 306.474

Between
0.421

133.111 173.871 −0.870
Std[ Y

N∗ ]
95.424 100.840

Cross
−0.555

0.967 0.922 0.249
Cor[Y,W ]

0.924 0.926
Exit

0.098

−0.040 −0.093
Cor[ Y

N∗ , N∗]
−0.091 −0.082

0.131 0.174
Cor[ Y

N∗ , Y ]
0.193 0.195

Table 15: Construction – Growth Decomposition (standard deviation in parentheses)

Point Estimate Fraction of g

0.0099 1.0000
g

(0.0010) —

0.0034 0.3446
Entry/exit

(0.0004) (0.0302)

0.0040 0.3999
Residual

(0.0005) (0.0191)

0.0025 0.2554
Selection

(0.0005) (0.0435)
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