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Abstract

This paper examines the role of peer gender composition within STEM (Science,
Technology, Engineering, and Mathematics) doctoral programs on persistence and de-
gree completion. We show that peer gender composition provides a proxy for the
female-friendliness of a particular cohort environment and can be used to study the
impact of climate on the gender gap in STEM fields. This paper introduces a new
dataset that links a panel of graduate students’ administrative transcript records from
all public universities in the state of Ohio1 to data from the UMETRICS project, which
provides information on the research environment for all students who are supported
by federal research grants. Utilizing within-program variation in the gender compo-
sition of doctoral cohorts, we identify the effect of female peers on Ph.D. persistence
and completion. We find that women who enter into cohorts with no female peers are
11.9pp less likely to graduate within 6 years than their male counterparts. However, a
1 sd increase in the percentage of female peers in a cohort differentially increases the
probability of on-time graduation for women by 4.6pp. These gender peer effects func-
tion almost completely through changes in the probability of dropping out in the first
year of a Ph.D. program and are largest in programs that are typically male-dominated.

1The Ohio Longitudinal Data Archive is a project of the Ohio Education Research Center (oerc.osu.edu)
and provides researchers with centralized access to administrative data. The OLDA is managed by The Ohio
State University’s Center for Human Resource Research (chrr.osu.edu) in collaboration with Ohio’s state
workforce and education agencies (ohioanalytics.gov), with those agencies providing oversight and funding.
For information on OLDA sponsors, see http://chrr.osu.edu/projects/ohio-longitudinal- data-archive.



1 Introduction

The underrepresentation of women in science, technology, engineering, and mathemat-

ics (STEM) fields starts as early as grade school and intensifies at each successive career

step so that men vastly outnumber women as scientists and engineers at senior levels. A

negative (or female-unfriendly) climate is one mechanism for underrepresentation in STEM

that resonates for many female scientists. In a report on the lack of women in the field

of engineering, Corbett and Hill (2015) summarize: “Stereotypes and biases lie at the core

of the challenges facing women in engineering and computing. Educational and workplace

environments are dissuading women who might otherwise succeed in these fields.” Unfortu-

nately, the climate in these fields has been difficult to quantify empirically and researchers

have consequently struggled to estimate the impact of environment on the gender gap in

STEM.

This paper studies the environment in STEM doctoral programs and the effect on

Ph.D. persistence and completion. We introduce a new dataset that links administrative

transcript records from all public universities in the state of Ohio to data from the UMET-

RICS project, which provides information on the research environment (e.g. source, timing,

and duration of funding) for students who are supported by federal research grants. Using

this novel dataset, we construct an individual-level panel of STEM doctoral students across

the state of Ohio with over 2,500 students enrolled in 33 doctoral programs across 6 public

universities. The data provide detailed information on cohorts of graduate students and indi-

vidual characteristics, which allow us to make great strides in measuring program and cohort

environments while also controlling for alternate mechanisms. We provide a generalizable,

quantitative proxy for the climate towards women using peer gender composition.

This proxy also implies a natural identification strategy due to the inability of individ-

uals to strategically coordinate matriculation decisions. We assume that, within a particular

doctoral program at a given university, year-to-year changes in the gender composition of
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each program are quasi-random (Hoxby (2000) employs a similar strategy for grade-school

students). Our identification strategy exploits the fact that there is uncertainty, both on

the part of admissions and on the part of potential doctoral students as to the gender com-

position of each incoming cohort. While a doctoral program’s admissions committee might

target a specific level of gender balance and an incoming student might know the average

gender balance of past cohorts in a program, neither party can fully anticipate the final

gender composition of an incoming cohort of students.

This provides a source of plausibly exogenous variation in students’ peer gender compo-

sition that allows us to identify a causal effect on the gender gap in STEM Ph.D. persistence

and completion rates. We perform several tests that provide evidence consistent with exoge-

nous variation in our measure of gender composition. We also show that our main findings

are robust to implementing a variety of measures for cohort gender composition.

Using this within-program variation in peer gender composition, we find that: (1) in

cohorts with no female peers, women are 11.9pp less likely to complete a Ph.D. within 6 years

than their male counterparts; (2) a 1 standard deviation increase in the share of female peers

in a cohort differentially increases the probability of on-time graduation for women by 4.6pp;

(3) these effects function almost completely through changes in the probability of dropping

out in the first year of a Ph.D. program; and (4) these gender peer effects are suggestively

largest in programs that are typically very male-dominated. We further investigate whether

these gender peer effects might be due to differences in learning, competing, or securing

financial support. We find no evidence of any differences in financial support due to peer

gender composition and, although we find evidence of a small effect of cohort gender com-

position on grades, the results largely indicate that climate is the mechanism driving the

observed gender peer effects.

This paper offers several significant contributions and adds to two areas of existing

research. Our findings contribute to the broad literature on the gender gap in STEM fields.

The new source of linked administrative data allows us to identify characteristics of incoming
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doctoral cohorts and allows for measurement of program environments, which has been

notoriously difficult. Importantly, we are one of the first papers to provide a measureable

proxy for the female-friendliness of a particular environment. Using this proxy, we show

that climate has a significant impact on the gender gap in STEM Ph.D. persistence and

completion. We hope that this measure will be used in future research and that similar

identification strategies can be implemented in other contexts (e.g. entering cohorts in labs

or companies).

In the literature studying doctoral student outcomes, the question of whether any type

of peer effects exist has not been addressed thus far. We are the first paper to examine this

aspect of the doctoral environment. Doctoral students are an understudied group that may

be of particular interest in the context of investigating the gender gap in STEM fields. These

students have made substantial investments and demonstrated commitment to pursuing a

STEM career and yet are still highly likely to dropout (more than 30% of our sample drop

out in the first 6 years of enrollment). We are able to exploit a source of quasi-exogenous

variation and implement a clean identification strategy to provide the first causal evidence

of gender peer effects among Ph.D. students.

2 Literature Review

The existing literature on climate and female underrepresentation in STEM is limited

and has typically relied on descriptive survey results. However, these survey findings clearly

point to a negative impact of the workplace environment on female scientists persistence

in STEM fields. Fouad and Singh (2011) report that One-in-three women left [engineering

jobs] because they did not like the workplace climate, their boss or the culture. Corbett and

Hill (2015) found that while women who exit engineering jobs are very similar to those who

stay in terms of observable characteristics, the women who left were more likely to report a

toxic, male-dominated environment at their former workplace. Other studies find that, after
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controlling for both individual and occupation characteristics, women were more likely to

report being unsatisfied with their jobs (Lordan and Pischke, 2016) and are more likely to

leave the field entirely (Hunt, 2016) when the share of men in an occupation/field is higher.

In the context of academic economics, recent papers reveal that a toxic workplace

culture may be contributing to female underrepresentation (Wu, 2017) and that female

economists face many systematic barriers to success (Hengel, 2017; Mengel et al., 2017; Sar-

sons, 2017). Wu (2017) analyzes comments from a well-known and anonymous online forum

of economists and finds evidence of negative gender stereotyping towards female economists

and their research. This is one of the few papers in the literature to quantify and provide con-

crete evidence of the negative climate towards women in academia. Our paper builds upon

this work by providing another measure of climate and, importantly, by identifying and

estimating the effect of climate on the educational outcomes of female doctoral students.

Ph.D. completion is a notably understudied outcome variable and very few papers

have investigated the gender gap in STEM doctoral degrees, likely due to a lack of data

(Ceci et al., 2014). However, several studies have found evidence of gender bias in graduate

program admissions in STEM fields. ? and Milkman et al. (2015) each employ audit studies

to reveal that STEM faculty members rate applicants to graduate programs as significantly

more competent and are more likely to respond to email correspondence when a prospective

student is assigned to a male name.

A major contribution of this paper is the focus on doctoral students who represent

an important and very understudied stage of the STEM pipeline. The majority of the re-

search on the outcomes of Ph.D. students is in the education literature (Gardner et al., 2009;

Nettles, 1990; Golde, 2005) with a smaller line in the economics literature. Much of the ed-

ucation research focuses on mentoring (Clark et al., 2000; Hall and Burns, 2009; Bell-Ellison

and Dedrick, 2008; Main, 2014) and professional skills development and socialization (Nerad,

2004; Golde and Dore, 2001). Early work in the economics literature focuses on the relation-

ship between financial support and Ph.D. completion (Abedi and Benkin, 1987; Ehrenberg
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and Mavros, 1995) while more recent work that investigates the interaction between gender

and doctoral success has primarily focused on the impact of same-gender mentors (Neumark

and Gardecki, 1998; Seagram et al., 1998; Hilmer and Hilmer, 2007; Pezzoni et al., 2016;

Gaule and Piacentini, 2017).

The literature finds that financial support, and especially fellowships and research

assistantships, is highly correlated with Ph.D. completion. The findings on same-gender

mentorship are less clear. Both Neumark and Gardecki (1998) and Hilmer and Hilmer

(2007) find that female advisors have no effect on labor market outcomes for female doctoral

students in economics. However, Neumark and Gardecki (1998) do find evidence that female

advisors reduce the time spent in graduate school for female students and both Pezzoni et al.

(2016) and Gaule and Piacentini (2017) find that female doctoral students in STEM fields

who have female advisors are more successful in terms of publishing.

This paper also builds upon research that has focused on the effects of peer charac-

teristics and\or climate on the gender gap in STEM major choice and persistence at the

undergraduate level. Fischer (2017) studies classroom peers at a large public university and

finds that the presence of higher ability peers in an introductory STEM course has negative

effect on STEM major persistence for female students only. Anelli and Peri (2016) study

high school students in Italy and find that cohort gender composition has an effect on initial

college major choice for male students only. Specifically, the authors find that men are more

likely to choose ”predominantly male” majors when they are exposed to a higher share of

male peers in high school. Similarly, both Kugler et al. (2017) and Astorne-Figari and Speer

(2017) find that the gender composition of majors is correlated with female students major

choice and that women are likely to switch out of male-dominated fields.
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3 Data

The data include two linked administrative sources. The Ohio Longitudinal Data

Archive (OLDA) provides administrative transcript records for all students attending public

colleges in Ohio between Summer/Fall 2005 and Spring 2016. This data includes student

demographics, a doctoral program identifier, degree completions, and course-level data on

enrollment and grades. The second source of data is provided by the UMETRICS project,

which contains the university payroll records on all individuals employed under federal re-

search grants at one university in Ohio. This data provides month-level information on

research grant employment over the period of June 2009 to June 2015 for all graduate stu-

dents at this university.

Using the OLDA enrollment data, we construct a panel of students that encompasses

all individuals who first enrolled in a doctoral program at the main campus of any public

4-year university in Ohio2 in the Summer/Fall terms of 2005-2015.3 The enrollment data

combined with degree completions allow us to identify students who drop out and to measure

persistence to year 2, 3, etc. of the doctoral program.

Each student’s doctoral program identifier code in OLDA is linked to a Classification of

Instructional Programs (CIP) code4. We define a doctoral “program” to include all students

attending the same institution with the same enrollment CIP code5 and define a “cohort” to

be all students who first enrolled in a given program in the same year. Note that CIP codes

are more specific than broad fields such that, within a given field at the same institution

there may be multiple doctoral programs. For example, within the field of Chemistry the

same university may have three separate doctoral programs in General Chemistry, Polymer

2We exclude students enrollled at the Medical University of Ohio and Youngstown State University due
to very small sample sizes.

3We exclude students who first enroll in a Winter or Spring quarter and treat students who first enroll
in the Summer quarter as having enrolled in the following Fall quarter.

4https://nces.ed.gov/ipeds/cipcode
5We aggregate to the CIP code level because the OLDA program identifiers are not consistently defined

across school-years. However, our main results are robust to using the university program codes to identify
individual Ph.D. programs.
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Chemistry, and Chemical Physics. As our primary variable of interest is cohort gender

composition, we limit the sample by dropping those students who first enroll in a non-doctoral

graduate program and then transfer into a doctoral program at the same institution, as it is

not clear to which cohort they belong. If these dropped transfer students encompass more

than 20% of the enrollment for a particular program (over all years), then we also drop that

program from the sample.6

We impose three key restrictions in order to create the final estimation sample. First,

we restrict the data to those cohorts for whom we can observe 6 complete years of transcript

data: cohorts starting in 2005-2009. This is because our primary dependent variable for this

analysis is the probability of completing a Ph.D. within 6 years of initial enrollment. Second,

we exclude programs with very small cohort sizes from the sample. For each cohort in each

program we calculate the cohort size (# of students) and the percent of the cohort that is

female. For each program, we also calculate the average over all years (2005-2015) for both of

these variables. Because very small programs exhibit a large amount of variation in percent

of cohort female from one year to another (e.g. in a 3-person program, one additional female

student can change the percent of cohort that is female from a small minority of 33% to a

large majority of 67%) we exclude from the sample all programs with an average cohort size

less than 10 students.7 Finally, we restrict the sample to STEM programs.8

The final “estimation sample” includes 2,541 student observations, grouped into an

unbalanced panel of 33 doctoral programs, representing 6 public universities. Table 1 pro-

vides a full list of these 33 programs and their corresponding CIP codes, CIP fields, and

summary statistics. Table 2 shows the calculated cohort characteristics for the estimation

sample in the top 2 panels, and for the full sample (including all years of the data 2005-2015,

non-STEM programs, and small programs) in the bottom panel for reference. In the esti-

6The main results reported in Section 5 are robust to including/excluding programs with more/fewer
transfer students. See Table 15.

7The main results reported in Section 5 are robust to including/excluding programs with a smaller/larger
average cohort size. See Table 14.

8As designated by the Ohio Department of Higher Education: https://www.ohiohighered.org/node/2104
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mation sample, the average cohort size is approximately 17 students and the average cohort

is 38% female. Unsurprisingly, the full sample is comprised of smaller cohorts, on average,

than the estimation sample and is somewhat more female (due to including the non-STEM

programs). Table 2 also reveals a large amount of variation in cohort gender composition

across programs. While the average cohort is 38% female, the standard deviation is nearly

21%. Within programs, the span of deviations from the mean is approximately 40 percentage

points in either direction.

In Section 5, we investigate whether our main findings are more salient in programs that

typically have a relatively high or low shares of female students. To do this, we calculate

for each program the average percent female across all years of the data (2005-2015) as

well as the median value of this average across all 33 programs in the estimation sample

(38.5% female). We then categorize programs with an average below this sample median

as “typically male” and programs with an average above the sample median as “typically

female.” Student and cohort-level summary statistics for these two subsamples are provided

in Table 3. By dividing the sample in this way, we see that students in typically female

programs are more likely to graduate on-time and are less likely to be foreign-born. Cohorts

in typically female programs and typically male programs are very similar in size.

In order to examine the relationships between cohort gender composition, the proba-

bility of receiving financial support via research funding, and Ph.D. persistence, we link the

estimation sample (expanded to include all cohorts 2005-2015) to the UMETRICS data for

the subset of students who attend one UMETRICS university. This allows us to observe

month-by-month employment for students paid by federal researching grants and to con-

struct indicator variables for obtaining research funding in each year of enrollment for each

student (i.e. employed for at least 28 days of the school year).

Summary statistics for the main estimation sample and for the linked UMETRICS

sample are shown in Table 4. Note that the different time spans for the two linked data

sources mean that each of the funding indictor variables have a different set of cohorts as
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the support. For example, research employment in year 1 of enrollment is observed only for

cohorts starting in 2009-2014, whereas funding in year 2 is observed for cohorts starting in

2008-2013. Table 4 shows that men and women in the estimation sample are quite similar

in terms of demographics, grades, and graduation rates. However, male students do seem

to have a higher probability of obtaining research employment in the first four years of

enrollment.

4 Empirical Strategy

The primary empirical strategy is essentially a difference-in-differences approach, com-

paring women to men between highly-female cohorts and highly-male cohorts within a given

doctoral program. We model the following specification:

P (Yipc = 1) =β1Femalei + β2HighlyFemalepc + β3Femalei ∗HighlyFemalepc (S1)

+ γ′Xipc + δZpc +Dc +Dp + εipc,

where Yipc = 1 if student i, enrolled in program p, in cohort c completes a Ph.D. within 6

years. The model includes individual-level covariates, Xipc, which are: age, age2, race/ethnicity

indicators, and a foreign student indicator variable. The variable Zpc measures cohort size,

while Dc and Dp are year and program fixed-effects, respectively. The primary variables

of interest are: Femalei, an indicator for own gender; HighlyFemalepc, which equals the

percent of students entering into program p in cohort c who are female; and the interaction

term of those 2 variables. We test the robustness of our main specification using several

alternative measures of “highly female” cohorts including: the number of women in the co-

hort; the ratio of women to men in the cohort; and an indicator variable that equals 1 if the

cohort has a fraction of female students that is above the mean for that program (over all

years 2005-2015).
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The coefficient β1 can be interpreted as the percentage point difference in on-time

graduation probabilities for women versus men in highly-male cohorts (cohorts where the

percent of female peers is zero). The coefficient β2 reveals the difference in graduation

probabilities for men in highly-female cohorts versus men in highly-male cohorts. Finally,

the coefficient β3 is the differential effect on women versus men of being in a highly-female

cohort. The model is estimated using a Probit maximum likelihood estimator (Probit MLE),9

thus all tables in Section 5 report the marginal effects corresponding to the descriptions above

and are evaluated at the mean of all covariates. Standard errors are clustered at the program

level.

Identification of the model hinges on the assumption that, within a particular doctoral

program, year-to-year variation in cohort gender composition is quasi-random and not cor-

related with other unobservables influencing graduation rates for that cohort. An example

violation of this assumption might be the appointment of a new department chair who simul-

taneously puts an emphasis on recruiting more female doctoral students while also enacting

other policy changes that improve those new female students’ outcomes (but not those of

previously enrolled female students). A telling signal of this type of endogeneity would be

any evidence of time trends in the cohort gender composition within programs.

Figure 1 plots the percent female in each cohort by program for the years 2005-2015.

Each line in Figure 1 represents a program and the panels group those programs into broader

fields. In this figure it is clear that programs in some fields (e.g. Psychology and Biology)

tend to have higher percentages of female students, while fields such as Computer Engineering

and Physics have very low percentages of women in any given cohort. However, it is also clear

that there is considerable idiosyncratic variation in gender composition within programs over

time and that there do not appear to be any overall or program-specific trends in gender

composition. Furthermore, an AR(1) model of gender composition with program and year

fixed-effects reveals no evidence of path-dependence in this variable.10

9Results estimated using a linear probability model are qualitatively very similar. See Table 13.
10The Wald test statistic for the lagged % cohort female variable is -1.08.
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Figure 2 shows that cohort gender composition is also not significantly correlated with

the covariates included in model S1. In each panel, each point represents a cohort and the

x-axis measures the percent of the cohort that is female minus the average percent female

in the program over all years of the data. The y-axis in each panel represent a different

covariate, also demeaned at the program level. These variables include: cohort size, age,

foreign status, and an indicator for white race. Note that there does appear to be a negative

relationship between cohort age and percent female, however this is largely driven by one

outlier observation.11

5 Results

Table 5 shows the marginal effects results of estimating model S1 described above.

In each column we apply a different definition of highly female cohorts. In column (1) we

use the preferred definition where the HighlyFemalepc variable is measured as the percent

of students in the cohort who are female. These results show that there is a significant

gender gap in Ph.D. completion in cohorts with few women. Women in cohorts with no

female peers are 11.9pp less likely than their male peers to graduate within 6 years of

initial enrollment. However, in highly-female cohorts, that gap closes. For each additional

10% female peers in a cohort, men are 1.10pp less likely to graduate on-time (although

this effect is statistically insignificant in most specifications) and the differential effect on

women is 2.24pp (and statistically significant at the 5% level). This indicates that the effect

of an additional 10% female peers for a woman is a 1.14pp increase in the probability of

graduating on-time. Another way to interpret these results is that a 1 standard deviation

(20.7pp) increase in the share of female peers increases the probability of on-time graduation

for women relative to men by 4.63pp.

Columns (2)-(4) of Table 5 experiment with alternative definitions for highly female

11All results shown in Section 5 are also robust to including a control for cohort age and an interaction
between cohort age and the female indicator.
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cohorts. Column (2) measures highly female cohorts as the ratio of women to men in the

cohort. In column (3), we calculate the average over all years (2005-2015) of the percent

of women in each program and define the HighlyFemalepc variable to be an indicator that

equals one if the percent female in cohort c is above the overall average for program p. This

measure incorporates the notion that program norms may be important in the salience of

gender composition effects. That is, a cohort with 40% women might seem “highly female”

in a typically male program (such as Physics) but that same level might feel “highly male”

in a program with a higher average gender balance (such as Psychology). The results in both

columns (2) and (3) are qualitatively very similar to the main findings in column (1). They

indicate that there is a gender gap in on-time Ph.D. completions among students in highly

male cohorts and that this gap is significantly diminished in cohorts with more female peers.

In column (4) of Table 5, we implement a linear measure of gender composition and

set HighlyFemalepc equal to the number of women students in the cohort. Interestingly,

these results show no evidence of a linear effect of the number of women in a program on the

probability of Ph.D. completion for either gender. However this finding is not inconsistent

with the main results and merely indicates that the effect of an additional female peer

interacts with the cohort size (e.g. 1 additional female peer has a large effect in a small

cohort and little-to-no effect in a very large cohort). This interaction is better captured by

the use of the percent female measure in the main specification.

As discussed above (and shown in Figure 1), there are some fields within the broad

category of STEM that have a much lower average level of female representation than other

fields. There is some evidence at the undergraduate level that these very male-dominated

majors drive the gender gap in STEM major attrition (Astorne-Figari and Speer, 2017).

We next explore whether our main findings are primarily driven by these “typically male”

programs with especially low fractions of female students. As described in Section 3, we

divide the main estimation sample into two subsamples and categorize programs with an

average percent female that is below the sample median (38.5%) as “typically male” and
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programs with an average above the sample median as “typically female.”

The results of estimating model S1 separately for these two subsamples are shown in

Table 6. It is clear from these results that the effect of cohort gender composition on Ph.D.

completion is driven largely by typically male programs. In these programs, the gender gap

in Ph.D. completion is even larger. Women are 15.8pp less likely than men to graduate

on-time in cohorts with no female peers and a 1 sd increase in the fraction of female peers

differentially increases the probability of on-time graduation by 8.82pp for women relative

to men. The results for typically female programs are similar, but the magnitude of the

interaction term coefficient is much smaller and the standard errors are somewhat larger

than in the typically male subsample (despite the sample sizes being almost equal). Thus,

it appears that the effect of peer gender on female Ph.D. success rates is largely driven by

those programs that have the highest rates of female underrepresentation within the realm

of STEM doctoral programs.

We next explore the timing of the gender composition effect over the course of the first

6 years of Ph.D. enrollment. Figure 3 shows the rates of enrollment, dropout, and graduation

for the main estimation sample by year of enrollment. This figure reveals that dropout occurs

primarily in the first 3 years of doctoral programs and that nearly 50% of students graduate

by the end of the 6th year. We model the effect of cohort gender composition on year-to-year

persistence rates in doctoral enrollment as,

P
(
Y t
ipc = 1

)
=βt

1Femalei + βt
2HighlyFemalepc + βt

3Femalei ∗HighlyFemalepc (S2)

+γt′Xipc + δtZpc +Dt
c +Dt

p + εtipc,

where Y t
ipc = 1 if individual i is still enrolled (or has graduated) in the Fall term of year t of

the program (t ∈ [2, 6]). All other variables are unchanged from model S1.

Table 7 shows the marginal effects results of estimating model S2 using a Probit MLE.

The top panel is estimated using the full estimation sample. In Panels B and C, we es-
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timate model S2 using the typically male and typically female subsamples, respectively.

In this table (and all further tables) we show results using our preferred specification where

HighlyFemalepc is defined as the percent of students in the cohort who are female. Columns

(1)-(5) show the effect of cohort gender composition on the probability of not dropping out

before years 2-6, respectively. For example, in column (1) the dependent variable is equal to

one if student i who enrolled in program p in cohort c is either still enrolled or has graduated

with a Ph.D. at the start of the Fall of the following year.

These results indicate that nearly all of the gender composition effect is present by the

beginning of year 2. Women in cohorts with no female peers are 10.2pp less likely to make

it to year 2 of a doctoral program than their male peers. That is equivalent to saying that

women in cohorts with no female peers are 10.2pp more likely to dropout in the first year

of their Ph.D. program. A 1 sd increase in the share of female peers decreases the dropout

rate for women relative to men by 3.68pp in the first year of Ph.D. enrollment. It is clear

from panels B and C that these persistence results are again being driven by the subsample

of typically male programs.

5.1 Potential Mechanisms

There are a number of potential explanations for our finding that women persist longer

and are more likely to complete programs when they have more female peers, some of which

we are able to explore empirically. First, women may learn better from other women and

when surrounded by more women. Also, Gneezy et al. (2003) show that women are less com-

petitive, especially when competing against men, so that women in cohorts with more women

may exert more effort studying and on assignments and exams. Both of these hypotheses

suggest that women should have higher grades in cohorts with more women. Furthermore,

Rask and Tiefenthaler (2008); Ost (2010); Kugler et al. (2017) show that undergraduate

women may be more discouraged by low grades than men when making the choice of under-

graduate major. Similarly, ? find that female undergraduates are more likely to update their
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beliefs about own ability in response to bad grades and subsequently drop out of college than

male undergraduates. This issue has not been previously addressed at the doctoral level. If

these findings carry over to the graduate level, then women may be more discouraged (and

less likely to persist) due to lower first year grades in cohorts with very few female peers.

We test for these learning and competition mechanisms by looking for an effect of cohort

gender composition on grades and by looking for a differential response to first year grades

across genders. For this analysis, we maximize our potential sample by including additional

cohorts of students who start their Ph.D. programs in 2010-2015.12 The raw distribution

of GPA at the end of the first quarter of enrollment for this expanded sample is shown in

Figure 4 for men and women separately in both highly-male (left panel) and highly-female

(right panel) cohorts.13 Based on these unadjusted distributions it appears that there may

be some small closing of a gender grade gap at the top of the distribution in highly-female

programs but the visual evidence is not striking. We estimate this more formally using the

following model,

Yipc =β1Femalei + β2HighlyFemalepc + β3Femalei ∗HighlyFemalepc (S3)

+ γ′Xipc + δZpc +Dc +Dp + εipc,

where Yipc is a measure of individual i’s first year grades. We measure this alternately as

first quarter GPA or first year GPA. All other variables are unchanged from model S1. We

estimate this model with an Ordinary Least Squares (OLS) estimator.

Column (1) of Table 8 shows the results of estimating model S3 with first quarter GPA

as the dependent variable. These estimates show that women in cohorts with no female

peers have first quarter GPAs that are 0.11 grade points lower than their male peers (on a

12Including these additional cohorts for whom we observe less than 6 years of data should not influence
our analysis of first year grades. This is particularly relevant because Table 7 shows that the effect of cohort
gender composition functions primarily through dropout decisions in the first year of enrollment.

13In this figure, highly female cohorts are defined using the same indicator variable as applied in column
(3) of Tables 5 and 6.
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4-point scale). At the sample mean of 3.53, this is equivalent to a 3% gender gap in first

quarter GPA. A 1 sd increase in the share of female peers closes this gap by 0.04 grade

points. Column (2) reveals a similar effect of gender composition on GPA at the end of the

first year, but column (3) shows that the effect on first year grades is entirely captured by

the first quarter GPA.

In Table 9, we estimate the models in S1 and S2 while allowing for a differential effect of

GPA on Ph.D. completion and persistence by gender (by interacting GPA with the Femalei

indicator). In columns (1)-(2) the dependent variable is Ph.D. completion in 6 years (model

S1) and in columns (3)-(4) the dependent variable is an indicator for remaining enrolled into

the Fall of the second year of the Ph.D. program (as in column (1) of Table 7). These results

reveal that while first year grades appear to be largely predictive of both Ph.D. completion

and persistence, female students’ outcomes are not more responsive to grades than men’s.

If anything, the direction of the interaction term coefficients would indicate that female

students are less responsive to first year grades than male students.

The estimates in Tables 8 and 9 indicate that peer gender composition has a small

effect on first quarter GPA such that women have worse grades than men in highly-male

cohorts. However, this effect can explain only a small portion of the overall impact of cohort

gender composition on Ph.D. persistence and completion. For example, a 1 sd increase in

the share of female peers closes the GPA gender gap by 0.04 grade points in the first quarter

of enrollment. The coefficients in column (1) of Table 9 show that a 1 point increase in GPA

increases the probability of on-time graduation by 29.4pp for men and 22.7pp for women.14

Thus, the grade effect of a 1 sd increase in the share of female peers is a differential increase

in the female probability of on-time graduation of 1.15pp. This accounts for, at most, a

quarter of the total differential effect of peer gender composition shown in Table 5.

A second mechanism by which cohort gender composition might influence Ph.D. success

14Note that these two coefficients are likely biased upwards as unobserved ability is almost surely positively
correlated with both first quarter grades and on-time graduation. We can think of these as providing an
upper bound on the causal effect of GPA on Ph.D. completion.
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is through a differential probability of obtaining research support. Previous work has shown

that financial support is highly correlated with Ph.D. completion (Abedi and Benkin, 1987;

Ehrenberg and Mavros, 1995). Using the linked sample of UMETRICS data on students

supported through research projects, we first verify these previous findings. We model this

relationship by,

P
(
Y t
ipc = 1

)
= βtFundingt−1i + γt′Xipc + δtZpc +Dt

c +Dt
p + εtipc, (S4)

where Y t
ipc = 1 if individual i remains enrolled (or has graduated) in the Fall of year t of the

doctoral program (t ∈ [2, 5]) and Fundingt−1i = 1 if individual i receives federally-funded

research support during year t − 1 of the program. For example, when t = 2, β2 measures

the correlation between receiving funding in the first year of a STEM doctoral program and

persisting to the 2nd year of the program. In this model, the vector Xipc includes gender

along with age, age2, race/ethnicity indicators, and a foreign student indicator variable.

In column (1) of Table 10, we estimate the relationship between being employed on

a federally-funded research grant for at least 28 days during the first year of enrollment

and the probability of remaining enrolled (or having graduated) in the Fall term of the

second year. Column (2) shows the relationship between employment in the second year of

enrollment, conditional on enrollment in the second year, and the probability of persisting

to the third year of the doctoral program. As expected, we find that obtaining research

funding is highly correlated with persistence at each year of the doctoral program. Table 11

shows the relationship between obtaining research support and the probability of on-time

graduation for STEM doctoral students. These results are less precise as there are very

few cohorts for whom we can observe both UMETRICS employment and 6-year graduation

rates.

Given that research support appears to play a strong role in Ph.D. success, we next

investigate whether cohort gender composition has an effect on the probability of obtaining
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research employment. If female students are more likely to obtain research funding in cohorts

with more female (and fewer male) peers, that this could be an important mechanism in

explaining our main findings in Table 5. We model the relationship between cohort gender

composition and research support using model S2 where we re-define the dependent variable

to be equal to one only if individual i is employed on a federal research grant for at least

28 days during year t of enrollment in the doctoral program. The marginal effects results

of estimating this specification are shown in Table 12. These estimates provide no evidence

that peer gender composition has any effect on research funding in any year for either gender.

The marginal effects are small, inconsistent in sign, and very noisy. Clearly, these findings

along with our main results do not support a research funding mechanism.

Another set of potential explanations for our main findings focus on mentoring and the

gender mix of faculty. We have explored mentoring by relating completion and retention to

the gender composition of the cohort that entered one year earlier, under the assumption

that the older cohort interacts with the younger cohort. Our data show no effect of the

older cohort on completion or retention of the younger cohort. The gender mix of faculty

is an important factor and one that we plan to explore in future work, but given that our

estimates are identified from year-to-year fluctuations in the composition of cohorts and given

the relatively slow turnover of faculty, faculty composition seems like an unlikely explanation.

The analysis in this section indicates that peer gender composition does not impact

students’ financial support through research funding and that there is only a small effect

of peer gender on first year grades. We estimate an upper bound showing that changes in

learning and\or effort (as they are reflected in grades) can account for at most one quarter

of the total effect of peer gender composition on Ph.D. completions. Having ruled out any

observable mechanisms, we are left to conclude that our measure of peer gender composition

is capturing the unobservable: changes in the climate of each cohort. This implies that

when cohort gender composition is particularly high, the intangible climate towards women

improves, thereby increasing female students’ persistence and on-time graduation. This
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persistence occurs despite the fact that these women experience no change in the prospect

of financial support and only a marginal improvement in first year grades.

6 Robustness Checks

The main findings on the effects of cohort gender composition on Ph.D. completion are

robust to a number of alternate specifications and alternate samples. We show these results

in Tables 13-15. Column (1) of Table 13 replicates the main findings in column (1) of Table

5 for reference.

In column (2) of Table 13 we estimate the main specification in model S1 as a linear

probability model using an OLS estimator. These results are very similar in both magnitude

and precision to the main results. Column (3) shows that the main results are robust to

replacing the dependent variable with an indicator for graduating within 7 years of initial

enrollment (despite the diminished sample size).

In columns (4)-(5) of Table 13, we implement alternate definitions of doctoral programs.

Recall that in the main estimation sample we define a doctoral program to include all students

attending the same institution with the same enrollment CIP code. In column (4), we

aggregate this definition up to include all students attending the same institution with the

same enrollment CIP field. Note that CIP fields are a much broader classification than CIP

codes. Under this classification, the effects of peer gender composition are both smaller and

more noisy, which is consistent with an attenuation bias associated with measurement error

(likely incurred by lumping, for example, 5 different Biology CIP codes into 1 very large

“program”). However, in column (5) of Table 13, we instead disaggregate the CIP codes

into university-specific program identifiers and use these codes to define each program.15

These results are very similar in both size and precision to the main results shown in column

(1).

15We do not use these program identifiers in the main sample because they are not consistently defined
across all years of the sample.
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In column (6) of Table 13, we limit the full sample to programs with an average cohort

size of more than 10 (as in the main estimation sample) but then limit it to non-STEM

programs instead of STEM programs. Note that there are very few of these programs

because most non-STEM doctoral programs have very small cohorts. The magnitudes of

these results are consistent with the main findings, but the estimates are very noisy (which

is unsurprising, given the sample size). Finally, in column (7) of Table 13 we again limit the

sample to programs with an average cohort size of more than 10, but include both STEM

and non-STEM programs. These results are largely similar to the main findings in column

(1).

In the main estimation sample, we limit the data to include programs with an average

cohort size greater than 10. In Table 14 we replicate the main specification in model S1

with alternate estimation samples excluding/including programs with higher/lower average

cohort sizes. Note that column (3) is a replication of the main findings in column (1) of

Table 5. These results show that the main findings are robust to the inclusion/exclusion of

smaller/larger programs.

In the final robustness check, we allow for programs with a higher/lower percentage

of transfer students than in the main estimation sample. Recall that we limited the full

sample by dropping students who first enroll in a non-doctoral graduate program and then

by dropping programs where these transfer students encompass more than 20% of total

enrollment. In Table 15, we show that the main results are largely robust to changing this

cutoff point.

7 Conclusion

The underrepresentation of women in STEM is a topic of great interest in economics

and public policy today. However, it is still not well-understood exactly what factors affect

persistence in STEM fields, especially at the graduate education level. We investigate one
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input into the production process of STEM doctoral degrees, peer gender composition, and

find that it has a significant impact on the gap in Ph.D. completion rates between men and

women. Using year-to-year variation within doctoral programs in the fraction of each cohort

that is female, we find that women in highly-male cohorts with no female peers are 11.9pp

less likely to graduate within 6 years of initial enrollment than men. However, a 1 sd increase

in the share of female peers in a cohort increases the probability of on-time graduation for

women as compared to their male counterparts by 4.63pp.

We find that this effect is largely driven by students in typically-male programs (with

less than 38.5% female student in the average cohort) and by dropout behavior in the first

year of enrollment. We investigate several potential mechanisms and find that gender com-

position has a small effect on first year GPA (which explains only a quarter of the overall

effect of peer gender composition) and no effect on the probability of obtaining research

funding. The small/null findings for these two channels suggest that our results cannot be

entirely explained by women learning or competing more successfully in cohorts with more

female peers. However, our findings are consistent with a climate mechanism, through which

more female peers create a female-friendly environment that encourages women to persist in

doctoral programs, despite having no significant effect on learning or financial support.
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Figure 1: Trends in Cohort Gender Composition By Field
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Figure 2: Correlation Between Cohort Gender Composition and Covariates (Demeaned)
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Figure 3: Dropout and Graduation Rates by Year of Enrollment
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Figure 4: Distribution of First Quarter Grades by Gender
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Table 1: Summary Statistics by CIP Code

CIP Field CIP Code CIP Code Subject Title
Avg Cohort 

Size
Avg % 
Female

# of 
Institutions

Agricultural Science 10103 Agricultural Economics 15.1 44% 1
Biological and Biomedical Sciences 260202 Biochemistry 15.8 44% 1
Biological and Biomedical Sciences 260499 Cell/Cellular Biology and Anatomical Sciences, Other 20.1 57% 1
Biological and Biomedical Sciences 260907 Cardiovascular Science 12.0 44% 1
Biological and Biomedical Sciences 260911 Oncology and Cancer Biology 10.7 67% 1
Biological and Biomedical Sciences 269999 Biological and Biomedical Sciences, Other 18.6 55% 2
Chemical Engineering 140701 Chemical Engineering 16.4 32% 1
Chemical Engineering 143201 Polymer/Plastics Engineering 13.3 33% 1
Chemistry 400501 Chemistry, General 23.9 39% 4
Chemistry 400507 Polymer Chemistry 20.9 28% 1
Chemistry 400599 Chemistry, Other 13.6 36% 1
Computer Engineering 140901 Computer Engineering, General 26.8 16% 2
Computer Science 110101 Computer and Information Sciences, General 24.2 28% 1
Economics (Social Science) 450601 Economics, General 24.5 34% 1
Electrical, Electronics, and Communications Engineering 141001 Electrical and Electronics Engineering 23.6 18% 2
General Health/Public Health 512202 Environmental Health 12.9 62% 1
Materials Engineering 141801 Materials Engineering 17.9 24% 1
Mathematics and Statistics 270101 Mathematics, General 15.0 25% 2
Mathematics and Statistics 270501 Statistics, General 16.1 46% 1
Other Engineering 140501 Bioengineering and Biomedical Engineering 10.8 39% 1
Other Health 511401 Medical Scientist 11.0 62% 1
Pharmacy 512001 Pharmacy 13.6 51% 1
Physics 400801 Physics, General 25.3 23% 2
Psychology 420101 Psychology, General 19.4 63% 2
CIP Codes highlighted in gray represent programs that are typically male (i.e. have an average % cohort female <= 38.5%)
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Table 2: Cohort Characteristics

Mean Std Dev Min Max
Estimation Sample (weighted by # students) N = 2, 541 students
STEM Field 1 0 1 1
Cohort Size 21.78 10.57 1 49
# Female in Cohort 8.17 5.38 0 23
% Female in Cohort .381 .187 0 1
Ratio Female/Male .831 .848 0 7

Estimation Sample (unweighted) N = 151 cohorts
STEM Field 1 0 1 1
Cohort Size 16.83 9.16 1 49
# Female in Cohort 6.40 4.69 0 23
% Female in Cohort .383 .207 0 1
Ratio Female/Male .866 .955 0 7

Full Sample (unweighted) N = 1, 529 cohorts
STEM Field .699 .459 0 1
Cohort Size 7.60 7.68 1 80
# Female in Cohort 3.31 3.25 0 28
% Female in Cohort .489 .305 0 1
Ratio Female/Male 1.10 1.27 0 11
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Table 3: Summary Statistics By Typically Male/Female Programs

Typically Male Programs  Typically Female Programs
Mean Std Dev Mean Std Dev

Ph.D. in 6 Yrs 0.46 0.50 0.54 0.50
Age 24.92 3.64 25.18 4.10
Foreign 0.60 0.49 0.40 0.49
First Term GPA 3.56 0.41 3.49 0.45
Obs 1,288 students 1,253 students

Cohort Size 16.95 8.45 16.71 9.88
% Female in Cohort 0.26 0.14 0.51 0.19
# Female in Cohort 4.43 2.89 8.40 5.31
Obs 76 cohorts 75 cohorts

Student-Level Characteristics

Cohort-Level Characteristics
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Table 4: Summary Statistics

Male Female

Mean Std Dev Mean Std Dev
PhD in 6 Yrs 0.49 0.500 0.50 0.500
Yrs to Graduate 5.45 1.232 5.39 1.261
Drop Out (by end of 6 yrs) 0.30 0.460 0.31 0.461
Still Enrolled (by end of 6 yrs) 0.21 0.406 0.19 0.392
# Yrs Enrolled 4.38 2.078 4.35 2.031
Age (Yr Enrolled - Birth Yr) 25.24 3.977 24.73 3.685
Foreign 0.51 0.500 0.49 0.500
First Term GPA 3.53 0.429 3.53 0.440
First Year GPA 3.56 0.353 3.58 0.336

UMETRICS Variables:
Ever Research Funded Yrs 2-4 0.66 0.475 0.59 0.493
Research Funded Yr 1 0.29 0.455 0.26 0.437
Research Funded Yr 2 0.44 0.497 0.41 0.491
Research Funded Yr 3 0.57 0.495 0.55 0.498
Research Funded Yr 4 0.57 0.496 0.54 0.499
In main estimation sample: N = 1,574 for men and N = 967 for women.
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Table 5: Effect of Cohort Gender Composition on Ph.D. Completion

Complete Ph.D. within 6 Years

% Female Ratio F/M
% Female > 
program avg # Female

(1) (2) (3) (4)

Female -0.119 *** -0.081 ** -0.071 ** 0.035
(.0449) (.0353) (.0290) (.0673)

Highly Female Cohort -0.110 -0.040 ** -0.041 0.001
(.1067) (.0195) (.0269) (.0068)

Female*Highly Female 0.224 ** 0.061 *** 0.082 * -0.007
(.1002) (.0206) (.0443) (.0083)

Obs 2,541 2,541 2,541 2,541
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: 
cohort size, age, age-squared, gender, foreign status, race/ethnicity indicators, year 
FEs, and program FEs.
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Table 6: Effect of Cohort Gender Composition on Ph.D. Completion By Typically
Male/Female

Complete Ph.D. within 6 Years

% Female Ratio F/M
% Female > 
program avg # Female

(1) (2) (3) (4)
Panel A: Typically Male Programs (N=1,287)

Female -0.158 ** -0.118 ** -0.128 ** -0.112 *
(.0675) (.0500) (.0528) (.0587)

Highly Female Cohort -0.162 -0.080 -0.070 ** -0.002
(.1109) (.0605) (.0298) (.0080)

Highly Female*Female 0.426 ** 0.184 *** 0.150 ** 0.013 *
(.1865) (.0700) (.0609) (.0078)

Panel B: Typically Female Programs (N=1,249)
Female -0.185 * -0.112 * -0.041 0.130

(.1109) (.0677) (.0401) (.1039)
Highly Female Cohort -0.081 -0.032 0.009 0.005

(.1839) (.0271) (.0419) (.0102)
Highly Female*Female 0.314 * 0.070 ** 0.028 -0.014

(.1838) (.0305) (.0728) (.0102)
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: 
cohort size, age, age-squared, gender, foreign status, race/ethnicity indicators, year 
FEs, and program FEs.
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Table 7: Effect of Cohort Gender Composition on Ph.D. Persistence

Graduated or Still Enrolled in:
Year 2 Year 3 Year 4 Year 5 Year 6

(1) (2) (3) (4) (5)
Panel A: Full Estimation Sample

Female -0.102 ** -0.087 * -0.105 * -0.109 ** -0.101 *
(.0464) (.0510) (.0552) (.0534) (.0563)

% Cohort Female -0.023 -0.010 -0.002 -0.062 -0.078
(.0747) (.0781) (.0796) (.0961) (.1030)

% Cohort Female*Female 0.178 ** 0.136 0.149 0.155 0.148
(.0779) (.0991) (.1202) (.1123) (.1200)

Obs 2,467 2,529 2,541 2,541 2,541
Panel B: Typically Male Programs

Female -0.183 * -0.186 ** -0.204 ** -0.141 * -0.106
(.0948) (.0811) (.0799) (.0794) (.0784)

% Cohort Female -0.218 ** -0.130 -0.158 -0.173 -0.216
(.1068) (.1164) (.1302) (.1461) (.1557)

% Cohort Female*Female 0.512 ** 0.478 ** 0.534 ** 0.336 0.234
(.2001) (.2173) (.2501) (.2441) (.2334)

Obs 1,287 1,287 1,287 1,287 1,287
Panel C: Typically Female Programs

Female -0.041 -0.036 -0.085 -0.153 -0.137
(.1104) (.0823) (.0922) (.1198) (.1103)

% Cohort Female 0.103 0.033 0.041 -0.044 -0.018
(.0754) (.1018) (.1174) (.1474) (.1434)

% Cohort Female*Female 0.023 0.028 0.078 0.196 0.176
(.1074) (.1262) (.1583) (.1877) (.1766)

Obs 1,179 1,241 1,253 1,253 1,253
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, 
age-squared, gender, foreign status, race/ethnicity indicators, year FEs, and program FEs.
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Table 8: Effect of Cohort Gender Composition on Grades

First Quarter 
GPA First Year GPA

(1) (2) (3)
Female -0.113 *** -0.059 ** 0.011

(.0337) (.0256) (.0104)
% Cohort Female -0.120 -0.117 -0.046

(.0904) (.1229) (.0694)
% Cohort Female*Female 0.210 ** 0.116 * -0.017

(.0782) (.0624) (.0314)
First Quarter GPA 0.714 ***

(.0212)
Obs 5,425 5,195 5,195
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All 
specifications include: cohort size, age, age-squared, gender, foreign 
status, race/ethnicity indicators, year FEs, and program FEs.
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Table 9: Differential Response to Grades By Gender

PhD in 6 Yrs Persist to Yr 2

(1) (2) (3) (4) (5) (6) (7) (8)
First Q GPA 0.269 *** 0.294 ***    0.101 *** 0.098 ***   

(.0413) (.0483)    (.0106) (.0158)   
First Q GPA*Female -0.067    -0.002   

(.0531)    (.0189)   
First Yr GPA  0.425 *** 0.446 ***  0.111 *** 0.110 ***

 (.0524) (.0527)  (.0104) (.0145)
First Yr GPA*Female  -0.056  -0.014

 (.0649)  (.0190)
Female -0.109 ** 0.009 -0.115 ** 0.000  -0.051 ** -0.090 -0.046 ** 0.004

(.0468) (.0160) (.0491) (.0003)  (.0208) (.1162) (.0210) (.0241)
% Cohort Female -0.128 -0.122 -0.092 -0.088  -0.042 -0.043 -0.018 -0.017

(.1095) (.1120) (.1090) (.1121)  (.0407) (.0407) (.0330) (.0329)
% Cohort Female*Female 0.193 * 0.189 * 0.184 * 0.180 *  0.115 *** 0.115 *** 0.089 *** 0.087 ***

(.1004) (.1023) (.0992) (.1020)  (.0419) (.0427) (.0305) (.0311)
Obs 2,541 2,541 2,394 2,394  5,021 5,021 4,799 4,799
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, age-squared, gender, foreign status, race/ethnicity 
indicators, year FEs, and program FEs.
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Table 10: Correlation Between Research Funding and Ph.D. Persistence

Graduated or Still Enrolled in:
Year 2 Year 3 Year 4 Year 5

(1) (2) (3) (4)

Research Funded in Year 1 0.041 ***  
(.0122)  

Research Funded in Year 2 0.070 ***  
(.0132)  

Research Funded in Year 3 0.069 ***  

(.0153)  

Research Funded in Year 4 0.036 ***

(.0054)

Obs 1,983 1,918 1,766 1,437
Cohorts in Sample 09-14 08-13 07-12 06-11
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: 
cohort size, age, age-squared, gender, foreign status, race/ethnicity indicators, year FEs, 
and program FEs.

40



Table 11: Correlation Between Research Funding and Ph.D. Completion

Complete Ph.D. within 6 Years
(1) (2) (3) (4)

Ever Research Funded Years 2-4 0.241 ***  
(.0559)  

Research Funded in Year 2 0.110  
(.0981)  

Research Funded in Year 3 0.099 **  

(.0422)  

Research Funded in Year 4 0.017

(.0387)

Obs 617 587 821 978
Cohorts in Sample 08-09 08-09 07-09 06-09
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, 
age, age-squared, gender, foreign status, race/ethnicity indicators, year FEs, and program FEs.
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Table 12: Effect of Cohort Gender Composition on Receiving Funding

Receive Research Funding in:
Year 1 Year 2 Year 3 Year 4

(1) (2) (3) (4) (5)
Female -0.095 * 0.013 -0.052 0.052 -0.036

(.0541) (.0371) (.0518) (.0847) (.0977)
% Cohort Female -0.066 0.070 0.068 0.142 -0.041

(.1124) (.1159) (.1470) (.1150) (.1744)
% Cohort Female*Female 0.161 -0.074 0.070 -0.143 0.139

(.1602) (.0939) (.1141) (.1711) (.2318)
Obs 1,362 1,989 1,922 1,745 1,554
Cohorts in Sample 08-11 09-14 08-13 07-12 06-11
* p < 0.10, ** p < 0.05, *** p < 0.01

Ever 
Research 

Funded Years 
2-4

Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, 
age-squared, gender, foreign status, race/ethnicity indicators, year FEs, and program FEs.
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Table 13: Robustness Checks

Main  Ph.D in Define Programs Using: Non-STEM STEM &
Specification LPM 7 Yrs CIP Field Prgm Code Only Non-STEM

(1) (2) (3) (4) (5) (6) (7)

Female -0.119 *** -0.107 ** -0.164 *** -0.064 -0.131 ** -0.179 -0.121 ***
(.0449) (.0420) (.0578) (.0444) (.0542) (.1365) (.0425)

% Cohort Female -0.110 -0.089 -0.121 -0.082 -0.173 -0.419 * -0.146
(.1067) (.0986) (.1079) (.0906) (.1243) (.2457) (.0991)

% Cohort Female*Female 0.224 ** 0.195 ** 0.328 *** 0.132 * 0.247 ** 0.344 0.233 **
(.1002) (.0940) (.1106) (.0794) (.1176) (.3256) (.0931)

Obs 2,541 2,541 2,015 3,414 2,448 357 2,898
# Programs 33 33 32 34 52 7 40
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, age-squared, gender, foreign 
status, race/ethnicity indicators, year FEs, and program FEs.
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Table 14: Robustness Checks - Drop Small Programs

Drop Programs with Avg Cohort Size
< 8 < 9 < 10 < 11 < 12
(1) (2) (3) (4) (5)

Female -0.091 ** -0.115 *** -0.119 *** -0.135 *** -0.134 ***
(.0431) (.0440) (.0449) (.0458) (.0477)

% Cohort Female -0.098 -0.122 -0.110 -0.174 * -0.159
(.0925) (.0991) (.1067) (.0978) (.1061)

% Cohort Female*Female 0.177 ** 0.229 *** 0.224 ** 0.229 ** 0.215 *
(.0853) (.0879) (.1002) (.1025) (.1179)

Obs 3,176 2,946 2,541 2,372 2,243
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, 
age-squared, gender, foreign status, race/ethnicity indicators, year FEs, and program FEs.
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Table 15: Robustness Checks - Drop High-Transfer Programs

Drop Programs with % Transfer Students
>= 10% >= 15% >= 20% >= 25% >= 30%

(1) (2) (3) (4) (5)

Female -0.120 ** -0.116 ** -0.119 *** -0.109 ** -0.122 ***
(.0556) (.0517) (.0449) (.0439) (.0427)

% Cohort Female -0.135 -0.102 -0.110 -0.109 -0.136
(.1210) (.1114) (.1067) (.1058) (.1067)

% Cohort Female*Female 0.222 * 0.214 * 0.224 ** 0.209 ** 0.233 **

(.1161) (.1096) (.1002) (.1007) (.0987)
Obs 2,106 2,362 2,541 2,623 2,718
* p < 0.10, ** p < 0.05, *** p < 0.01
Standard errors in parentheses are clustered by program. All specifications include: cohort size, age, 
age-squared, gender, foreign status, race/ethnicity indicators, year FEs, and program FEs.
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