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Abstract:

In this paper we develop nonparametric estimators of the unconditional quantile treatment

e¤ects when treatment selection is endogenous.

The identi�cation and estimation of quantile treatment e¤ects (QTE) has received recently

a lot of interest, particularly with applied policy evaluation studies. In this we propose and

analyze new nonparametric estimators of the unconditional QTE when treatment selection is

endogenous. In contrast to conditional QTE, i.e. the e¤ects conditional on a large number

of covariates X, the unconditional QTE summarizes the e¤ects of a treatment for the entire

population and is usually of most interest in policy evaluations. The results can easily be

conveyed and summarized. In addition, and no less important, is that unconditional QTE can

be estimated fully nonparametrically at
p
n rate, which is obviously impossible for conditional

QTE (unless all X are discrete or one imposes parametric assumptions). Hence, unconditional

QTE will usually be much less noisy than estimates of conditional QTE.

In this paper we extend the identi�cation of quantile treatment e¤ects to endogenous treat-

ments. We propose new nonparametric IV estimators, which are root-N consistent. We derive

the semiparametric e¢ ciency bound and give conditions under which our estimator is e¢ cient.

In a Monte Carlo study, we compare the various estimators. The estimator is then applied to

returns to college using distance to college as an instrument.
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1 Introduction

The identi�cation and estimation of quantile treatment e¤ects (QTE) has received recently

a lot of interest, particularly with applied policy evaluation studies. In this we propose and

analyze new nonparametric estimators of the unconditional QTE when treatment selection is

endogenous. In contrast to conditional QTE, i.e. the e¤ects conditional on a large number

of covariates X, the unconditional QTE summarizes the e¤ects of a treatment for the entire

population and is usually of most interest in policy evaluations. The results can easily be

conveyed and summarized. In addition, and no less important, is that unconditional QTE can

be estimated fully nonparametrically at
p
n rate, which is obviously impossible for conditional

QTE (unless all X are discrete or one imposes parametric assumptions). Hence, unconditional

QTE will usually be much less noisy than estimates of conditional QTE.1

For the case where treatment selection is exogenous, conditional onX;2Koenker and Bassett

(1978) analyzed estimation of quantile e¤ects in a parametric framework, whereas Chaudhuri

(1991) analyzed nonparametric estimation of conditional QTE. Nonparametric estimation of

unconditional QTE was recently examined in Firpo (2007), Frölich (2007) and Melly (2006).

If treatment selection is endogenous, di¤erent instrumental variable type approaches have

been considered. Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005) and

Chernozhukov and Hansen (2006) pursue a parametric approach,3 whereas Chernozhukov,

Imbens, and Newey (2007) and Horowitz and Lee (2007) examine nonparametric estimation

of conditional QTE. In this paper, we analyze nonparametric identi�cation and estimation of

unconditional QTE.

A further distinction to Chernozhukov, Imbens, and Newey (2007) and Chernozhukov and

Hansen (2005) is that our identi�cation approach relies on a monotonicity assumption in the

treatment choice equation, whereas they require monotonicity in the outcome equation. Which

of these two assumptions is more appropriate clearly depends on the particular empirical ap-

1By conditional QTE we refer to conditioning on a higher dimensional vector X, which is often needed

to make certain instrumental variables assumptions plausible. If one were interested in estimating the QTE

separately for men and for women, we would subsume this as unconditional QTE since distinction by gender

does not introduce any dimensionality problems. This will become more clear below.
2Also callsed �selection on observables�.
3 Ist das Chernoz Econometrica Papier wirklich parametrisch, oder nur nichtparametrisch aber für conditional

QTE ???
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plication. In some applications, the former assumption may be more plausible, in other appli-

cations the latter assumption may be more appropriate.4 Apart from that, our estimators also

appear to be easier to implement.

In a sense, our approach is thus more in the spirit of Abadie, Angrist, and Imbens (2002) in

that we estimate e¤ects for compliers. We show, however, that their approach is not applicable

for estimating unconditional QTE.

We also derive results for the entire process of quantile e¤ects. This will allow us to do

tests for treatment e¤ect heterogeneity and the like.

In this paper, we �rst propose several new nonparametric instrumental variable type esti-

mators of the quantile treatment e¤ect (QTE) when treatment choice is endogenous. We com-

pare then the �nite sample properties of these estimators in a Monte Carlo study and subse-

quently derive the asymptotic properties, showing
p
n-consistency, asymptotic normality and

semiparametric e¢ ciency.

Finally, in the last section, we apply these estimators to estimate the returns to college in

the USA, an important issue in the debate on inequality. (See e.g. Smith (??) for returns to

college in the USA.) We �nd .....

2 Nonparametric Quantile Treatment E¤ect

2.1 QTE matching estimator

In this section we consider the e¤ect of a binary treatment variable D on a continuous outcome

variable Y . (Extensions are considered in the next subsection). Let Y 1i and Y
0
i be the potential

outcomes of individual i. Hence, Y 1i would be realized if individual i were to receive treatment

1 and Y 0i would be realized otherwise. Most interest has focussed on the estimation of average

treatment e¤ects

E[Y 1 � Y 0]

or average treatment e¤ects on the treated

E[Y 1 � Y 0jD = 1].

4 In future work, we are going to examine the combination of both assumptions.
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Instead of considering only average e¤ects, it is often considerable interest to compare the

distributional e¤ects of the treatment as well. A standard example may be the impact of

some treatment on income inequality. Another example which has received considerable public

interest is educational equality, where many societies would prefer to provide every child with a

fair chance into adult live. Here, Y is a measure of cognitive ability (e.g. obtained from Math

and language tests) and D may be the introduction of computers in classroom (teaching).

In this paper, we will identify and estimate the entire distribution functions of Y 1 and Y 0,

but will focus our attention on quantile treatment e¤ects (QTE):

�� = Q�Y 1 �Q
�
Y 0 ,

where Q�Y 1 is the � quantile of Y
1. In the earnings example, �0:9 would be the impact of

D on the high income part of the distribution. In fact, we will identify the entire processes

Q�Y 1 and Q
�
Y 0 for � 2 (0; 1), which will also to derive estimates and inference e.g. for the

treatment e¤ect on inequality measures such as the interquantile spread. For example, a typical

inequality measure would be the ratio of earnings at the upper decile and the lower decile and

the treatment e¤ect could be de�ned as

Q0:9Y 1

Q0:1
Y 1
�
Q0:9Y 0

Q0:1
Y 0

or as
Q0:9Y 1

Q0:1
Y 1

Q0:1Y 0

Q0:9
Y 0
.

Our main focus is on unconditional treatment e¤ects, i.e. the e¤ects of D in the population

at large. We might also be interested in the e¤ects in subpopulations de�ned by some, usually

broadly de�ned, set A, e.g. women below the age of 25, which we de�ne as

��A = Q�Y 1jA �Q
�
Y 0jA

where Q�Y 1jA is the quantile in the subpopulation A. Notice that this focus di¤ers from AAI,

who focus on conditional treatment e¤ects, i.e. conditional on a set of variables X. We call

our e¤ects unconditional in the sense that A usually contains a very broadly de�ned set, while

X usually consists of a large set of covariates often including continuous variables as well.5

5 In our analysis, we will also need in a �rst step to condition on a large set of regressors X to make the

instrumental variables conditions hold, but then average over the support of X to obtain unconditional e¤ects.
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Conditional and unconditional e¤ects are interesting in their own rights. Whereas conditional

e¤ects may be more interesting in economic analysis of e¤ects heterogeneity, for public policy

unconditional e¤ects will usually be more relevant. The reason for this is not only that policy

and the public need more aggregated results for decision making, but also that unconditional

e¤ects can be estimated (nonparametrically) much more precisely than conditional e¤ects.

We can achieve
p
n-consistency for unconditional QTE, whereas nonparametric estimation of

conditional QTE will always be estimated at a lower rate (unless all X are discrete).

The usual concern with estimating treatment e¤ects is endogeneity of D and we will rely

on exclusion restrictions for some variables Z. Our setup is related to the recent literature on

nonparametric identi�cation of nonseparable models. Consider a nonparametric nonseparable

model:

Yi = '(Di; Xi; Ui) (1)

Di = �(Zi; Xi; Vi),

where U and V are, possibly, related unobservables and X are additional covariates. We will

assume that, after having included X in the model, that Z is excluded from the function '.

The corresponding potential outcomes are

Y di = '(d;Xi; Ui)

Dz
i = �(z;Xi; Vi).

In contrast to Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007)

and Chesher (2007), we impose triangularity, i.e. assume that Y does not enter in �. On the

other hand, we do not need to assume any kind of monotonicity or rank invariance about '.6

We do impose, on the other hand, that the function � is (weakly) monotonous in its �rst

argument, i.e. assume that an exogenous increase in Zi can never decrease the value of Di.

This is the monotonicity assumption of Imbens and Angrist (1994). This assumption may be

more plausible than monotonicity in ' in some applications, whereas in other applications it

may be less appealing.

6Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007) and Chesher (2007) assume

that ' is monotonous in its third argument.
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Our method is well suited for D binary and, with some quali�cations, for discrete D with

few mass points. Imbens and Newey (2003) and Chesher (2003) analyzed identi�cation for

continuous D and Chesher (2005) examined interval identi�cation with discrete D. Heckman

and Vytlacil (2005) analyzed (marginal) average treatment e¤ects for continuous Z and focussed

on treatment e¤ects conditional on X, whereas we aim for unconditional e¤ects.

There are only relatively few contributions that examine explicitly distributional impacts of

treatment. Firpo (2007), Frölich (2007) and Melly (2006) considered estimation of treatment

e¤ects, when D is exogenous conditional on X.

We will focus our attention on the subgroup of compliers, which we de�ne as all individuals

who are responsive to a change in Z within the support of Z. For individuals for whom

Dz
i = �(z;Xi; Vi) does not vary with z in the support of Z,7 we cannot identify their reaction

of D on Y . If the instruments Z are su¢ ciently powerful to move everyone from Di = 0 to

Di = 1, this will lead to the treatment e¤ects in the population. But, in very many applications,

however, the instruments available are not so powerful such that it is interesting to consider

e¤ects in the largest subpopulation for which the e¤ects are identi�ed. But, in very many

applications, the instruments available are not powerful enough to achieve Pr(D = 1jX;Z) = 1

and Pr(D = 0jX;Z) = 0 for every value of X and some values of Z.8 Hence, in almost all

applications we can identify an e¤ect only for a subpopulation which reacts to the instrument.

In addition, if Y is bounded, we can derive bounds on the overall treatment e¤ects because the

size of the subpopulation of compliers is identi�ed as well. We will focus on the QTE for the

compliers, which is the largest subpopulation for which an e¤ect can be identi�ed:

��c = Q�Y 1jc �Q
�
Y 0jc

where Q�Y 1jc = infq
Pr
�
Y 1 � qjT = c

�
� � , where Ti = c means that individual i is a complier,

as de�ned below.

{Blaise: Bitte prüfen, ob nachfolgender Paragraph verständlich geschrieben ist.} If Z con-

sisted only of a single binary variable and if this has a (weakly) monotonous impact in the rela-

tionship determining Di, the largest subpopulation a¤ected by moving the instrument consists

of those individuals who would change D if Z was to be increased from 0 to 1. More generally,

7These are the always-participants or never-participants in the language of Imbens and Angrist (1994).
8This is related to the identi�cation at in�nity argument.
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the largest subpopulation a¤ected would be obtained by moving Z from the smallest point of

its support to its largest point, as long as Z has a weakly monotonous impact on D. If there

is only a single instrument Z with support Z = [zmin; zmax], this corresponds to hypothetically

moving Zi from zmin to zmax for every individual. If Z contains several instrumental variables,

the largest subpopulation a¤ected would be obtained by moving the instruments from z�1 to z
�
2

where

(z�1 ; z
�
2) = argmax

z1;z22Z

����Z (E [DjX;Z = z2]� E [DjX;Z = z1]) dFX

���� ,
where the integral expression measures the size of this subpopulation, as further discussed

below. With monotonicity z�1 and z
�
2 will be at the boundary of the support of Z.9

In the following we will assume throughout that z�1 and z
�
2 are known (and not estimated)

and that Pr(Z = z�1) > 0 and Pr(Z = z�2) > 0.
10 To ease notation we will use the values 0 and

1 subsequently instead of zmin to zmax or z�1 and z
�
2 , respectively. Furthermore, we will in the

following only refer to the e¤ectively used sample fi : Zi 2 f0; 1gg or in other words assume

that Pr(Z = z�1) + Pr(Z = z�2) = 1. This is appropriate for our application where the single

instrument Z is truly binary. In other applications, where Pr(Z = z�1) + Pr(Z = z�2) < 1, our

results apply with reference to the subsample fi : Zi 2 f0; 1gg.11

By considering only the endpoints of the support of Z, and recoding Z as 0 and 1, and with

D being a binary treatment variable, we can partition the population into 4 groups de�ned as

Ti = a if D1
i = D0

i = 1 (always treated), Ti = n if D1
i = D0

i = 0 (never treated), Ti = c if

D1
i > D0

i (compliers), Ti = d if D1
i < D0

i (de�ers). We assume that

Assumption 1:

i) Existence of compliers: Pr(T = c) > 0

ii) Monotonicity: Pr(T = d) = 0

iii) Independent instrument: (Y d; T )??ZjX

iv) Common support: 0 < p(X) < 1 a:s:

9This may not be the case, if the impact of Z is monotonous only given X, such that the relationship

determining D may be decreasing in z for some x and increasing for other x.
10The latter condition requires purely continuous variables to be discretized at their endpoints.
11Consider Pr(Z = z�1) + Pr(Z = z�2) = r < 1 with plim n

N
= r where N is the total sample size and

n =
PN

i=1 1(Zi 2 f0; 1g the number of observations at the endpoints of the support of Z. When calculating the

variance approximation for a particular application, the sample size n should be used. (If r is much smaller than

1, there could be �nite-sample precision gains by smoothing over Z. We leave this for future research.)
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where p(x) = Pr(Z = 1jX = x).

The �rst two assumptions are often referred to as monotonicity. They require thatDz
i either

weakly increases with z for all individuals (or decreases for all individuals). They also require

that at least some individuals react to movements in the instrument. The third assumption

is the main instrumental variable assumption. It implicitly requires an exclusion restriction

(=triangularity) and an unconfounded instrument restriction. In other words, Zi should not

a¤ect the potential outcomes of individual i directly and those individuals for whom Z = z

is observed should not di¤er in their relevant unobserved characteristics from individuals with

Z 6= z. Unless the instrument has been randomly assigned, this last restriction is often very

unlikely to hold. However, conditional on a large set of covariates X, this assumption can often

be plausible.12 Note further that we do not need X to be exogenous. X can be related to U

and V in (1) in any way. This may be important in many applications where X often contains

lagged (dependent) variables that may well be related to unobserved ability U . See also Frölich

(2006b).13

The fourth assumption requires that the support of X is identical in the Z = 0 and the

Z = 1 subpopulation. This assumption is needed since we �rst condition on X to make the

instrumental variables assumption valid but then integrate out to obtain the unconditional

treatment e¤ects.

Theorem 1 (Identi�cation: Matching on X) Under Assumption 1, the potential outcome

distributions for the compliers are nonparametrically identi�ed as

FY 1jc(u) =

R
(E [1 (Y � u) �DjX;Z = 1]� E [1 (Y � u) �DjX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
(2)

FY 0jc(u) =

R
(E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
12 In our application .... Clearly the instrument is not randomly assigned and individuals with Z = 1 are

certainly di¤erent from those with Z = 0. After conditioning on a number of X variables that capture the

endogenous location choice the assumption becomes more plausible. Text anpassen sobald Anwendung

fertig.
13 If X were exogenous, we could strengthen the above assumption and identify the e¤ect for a larger subpop-

ulation in Section 2.@@.
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which gives the QTE as the di¤erence between the quantiles:

Q�Y 1jc = F�1
Y 1jc(�) Q�Y 0jc = F�1

Y 0jc(�).

We can estimate the potential outcome distributions and then the QTE, by plugging in

nonparametric estimators for the conditional expectation functions and the empirical distrib-

ution function for FX .

The following Lemma shows that

Lemma 2 (Propensity score matching) Let P = p(X) and dFP be the distribution of P .

Under Assumption 1 it follows that:

FY 1jc(u) =

R
(E [1 (Y � u) �DjP;Z = 1]� E [1 (Y � u) �DjP;Z = 0]) dFPR

(E [DjP;Z = 1]� E [DjP;Z = 0]) dFP

FY 0jc(u) =

R
(E [1 (Y � u) � (D � 1)jP;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFPR

(E [DjP;Z = 1]� E [DjP;Z = 0]) dFP

(Proof see appendix.)

2.2 QTE weighting estimator

Starting from (2) one can also derive an expression for the unconditional distribution functions

by some kind of weighting through the propensity score. In particular, the expressions in (2)

can be shown to be equivalent to

Lemma 3 (QTE weighting estimator) The potential outcome distributions are identi�ed

as

FY 1jc(u) =
E
h
1 (Y < u) �D � Z�p(X)

p(X)(1�p(X))

i
Pc

(3)

FY 0jc(u) =
E
h
1 (Y < u) � (D � 1) � Z�p(X)

p(X)(1�p(X))

i
Pc

where Pc is the denominator in (2), which can also be written as Pc = E
h
D � Z�p(X)

p(X)(1�p(X))

i
.
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Hence, one could estimate the QTE by the di¤erence

q1 � q0

of the solutions of the two moment conditions

E

�
1 (Y < q1) �D

Z � p(X)
p(X) (1� p(X))

�
= �Pc (4)

E

�
1 (Y < q0) � (D � 1)

Z � p(X)
p(X) (1� p(X))

�
= �Pc

or equivalently

E [f1 (Y < q1)� �gWD] = 0 (5)

E [f1 (Y < q0)� �gW (1�D)] = 0

where the weights W are de�ned as followed.

W =
Z � p (X)

p(X) (1� p(X)) (2D � 1) (6)

We could thus estimate q0 and q1 by univariate quantile regressions in the D = 0 and D = 1

populations. Alternatively, we could estimate the treatment e¤ect directly by a weighted

quantile regression:

Lemma 4 The solution of the following optimization problem

(�; �) = argmin
a;b

E [�� (Y � a� bD) �W ] , (7)

where �� (u) = u � f� � 1 (u < 0)g, is equivalent to the solutions to the moment conditions (5)

in that the solution for a corresponds to q0 and the solution for b corresponds to q1 � q0. (The

proof is straightforward, because (5) are the �rst order conditions of the minimization problem,

see appendix.)

Note thatWi is negative for Zi 6= Di. Therefore, if we use these weights the sample objective

function to (7), i.e. where the expectation operator is replaced by the sample average, will

typically be non-convex. This complicates the optimization problem because local optima can

exist. AAI notice a similar problem in their approach. The problem is not so serious here

since we need to estimate only a scalar in the D = 1 population and in the D = 0 population.
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This one-dimensional estimation problem can be solved by grid-search supported with visual

inspection of the objective function for local minima.

This problem can altogether be avoided by estimating the cdf via (3) instead of the quantiles

via (7), particularly if one is interested in the entire distribution anyhow instead of only the

e¤ect at one single quantile, e.g. the median.

Alternatively, we could apply an iterated expectations argument to obtain

(�; �) = argmin
a;b

E [�� (Y � a� bD) �W ] = argmin
a;b

E [�� (Y � a� bD)E [W jY;D]] (8)

= argmin
a;b

E [�� (Y � a� bD) �W+] (9)

where

W+ = E [W jY;D ] = E

�
Z � p (X)

p(X) (1� p(X)) jY;D
�
(2D � 1) . (10)

These new weights W+ are always nonnegative as shown below. Hence, the sample objective

function of the rightmost term in (8) is globally convex as it would be the sum of convex

functions, and fast linear programming (LP) algorithms can be used. However, we would need

to estimate (10) �rst. Note that AAI suggest a similar projection approach, but their weights

are conditional on Y;D and X. Hence, nonparametric estimation of their weights could be more

di¢ cult and computationally demanding, whereas estimation of (10) requires only univariate

nonparametric regression separately for the D = 0 and D = 1 population.

We show now that these weights W+ are always non-negative. The following relationship

is helpful

E [DjX;Z = 0] � E [DjX] � E [DjX;Z = 1] ,

which follows from the proof of Theorem (1). Via Bayes� theorem one can show that this

implies also

E [ZjX;D = 0] � p(X) � E [ZjX;D = 1] .

Now, if D = 1 the weights would be negative if E [Z � p (X) jY;D ] < 0. However,

E [Z � p (X) jY;D = 1] = E
�
E
�
Z � p (X)

��X;Y 1; D = 1
� ��Y 1; D = 1

�
= E

�
E [ZjX;D = 1]� p (X) jY 1; D = 1

�
(by Assumption 1 iii)

� E
�
p(X)� p (X) jY 1; D = 1

�
= 0.
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Hence, W+ is always non-negative. On the other hand, if D = 0 the weights would be negative

if E [Z � p (X) jY;D ] > 0. However,

E [Z � p (X) jY;D = 0] = E
�
E
�
Z � p (X)

��X;Y 1; D = 0
� ��Y 1; D = 0

�
= E

�
E [ZjX;D = 0]� p (X) jY 1; D = 0

�
(by Assumption 1 iii)

� E
�
p(X)� p (X) jY 1; D = 0

�
= 0.

Therefore, the weights W+ are always non-negative.

2.3 Relationship to AAI

These results bear some resemblance with Abadie, Angrist, and Imbens (2002), who suggested

to estimate a weighted linear quantile regression

argmin
�;�

E

�
�� (Y � �D � �0X) �

�
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

��
. (11)

However, the interpretation is very di¤erent. Abadie, Angrist, and Imbens (2002) impose a

linear parametric speci�cation, whereas our approach is entirely nonparametric. Furthermore,

they are interested in the conditional treatment e¤ects, i.e. conditional on X, whereas we are

interested in the unconditional treatment e¤ects. As argued above, the unconditional treatment

e¤ects have substantial advantages when the number of covariates is large: First, they avoid the

curse of dimensionality without any linearity assumption. Second, policy makers and users of

evaluation studies are often interested in summary measures that summarize the e¤ects in the

population or large subpopulations, instead of examining heterogeneity in every of the many

dimensions of X.

Note that the approach of Abadie, Angrist, and Imbens (2002) cannot be used for estimating

unconditional treatment e¤ects if one does not want to impose a parametric speci�cation since

the weights in (11) are not appropriate for that case. In other words, one might be thinking

to run a weighted quantile regression of Y on a constant and D by using equation (11) and

replacing X by a constant in the �rst term in (11). For that purpose, however, the weights of

Abadie, Angrist, and Imbens (2002) are not correct. Suppose one used the approach of (11)

with X replaced by a constant, i.e.

argmin
�;�

E

�
�� (Y � �� �D) �

�
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

��
. (12)
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Proposition 5 As shown in the appendix, the solution of (12) for � gives the di¤erence between

the � quantiles of the treated compliers and non-treated compliers, respectively:

� = F�1
Y 1jc;D=1(�)� F

�1
Y 0jc;D=0(�)

where

FY 1jc;D=1(u) = Pr(Y 1 � ujD = 1; T = c)

FY 0jc;D=0(u) = Pr(Y 0 � ujD = 0; T = c).

This di¤erence is not very meaningful as one compares the Y 1 outcomes among the treated

with the Y 0 outcomes among the non-treated. (Only if the instrumental variables assumptions

are valid without conditioning on X would this correspond to the QTE of interest.) Therefore

the weights of Abadie, Angrist, and Imbens (2002) are only useful in combination with a

parametric assumption for conditional quantiles.

Hence, if one is interested in nonparametric estimation of the unconditional QTE, one

should use the weights in (7) but not those in (12). On the other hand, if one were interested

in estimating conditional QTE using a parametric speci�cation, the weights W we propose in

(6) could also be used:

Proposition 6 If one assumes a linear model for the conditional quantile for the compliers

F�1Y (� jX;D; T = c) = X 0��0 + �
�
0D,

a weighted quantile regression with weights W would identify ��0 and �
�
0.
14

This follows from showing that the weighted objective function

(�; �) = argmin
a;b

E
�
�� (Y �X 0b� aD) �W

�
(13)

is equivalent to

= argmin
a;b

E
�
�� (Y �X 0b� aD) �W jT = c

�
= argmin

a;b
E

��
D

p(X)
+

1�D
1� p(X)

�
� �� (Y �X 0� � �D) jT = c

�
, (14)

14 Instead of W one could also use E[W jY;X;D], which are always nonnegative, but usually not the weights

W+ = E[W jY;D] as one would also need to condition on X here.
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which is the objective function of a weighted linear quantile regression for compliers. (See

appendix.) Note that all weights are strictly positive and �nite because we assume that

0 < p(X) < 1. Therefore, standard quantile regression results (see for instance Koenker

(2005) theorem 4.1 and 5.1) imply that this function is minimized at ��0 and �
�
0 as long as

E
h�

D
p(X) +

1�D
1�p(X)

�
(X 0; D)0 (X 0; D)

i
is positive de�nite, what is assumed.

Hence, both types of weights, i.e. those of AAI and those in (6), would identify the condi-

tional quantile treatment e¤ects, but it is not clear which would be more e¢ cient. The weights

in (14) vary with x whereas the weights in AAI are identical to one for every complier. In

any case, both types of weights would be generally ine¢ cient since they do not incorporate

the density function of U at the � quantile. Hence, if one were mainly interested in estimating

conditional QTE with a parametric speci�cation, more e¢ cient estimators could be developed.

2.4 Comparison of weighting versus matching

2.5 Extensions to non-binary treatments and non-binary instruments

3 Asymptotic properties

In the previous section a number of di¤erent estimators for the unconditional quantile treatment

e¤ects have been developed. In this section, the large sample properties are examined. We

will �rst derive the semiparametric e¢ ciency bound. Therefore we impose assumptions that

guarantee that the quantile is well de�ned:

Assumption 2:

The random variables Y 1jc and Y 0jc are continuous with positive density in a neighbour-

hood of Q�Y 1jc and Q
�
Y 0jc, respectively.

13



Theorem 7 (E¢ ciency bound) a) The e¢ ciency bound for ��c = Q�Y 1jc �Q
�
Y 0jc is

V = 1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 1)

p(X)
FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 0)

1� p(x)FY jD=1;Z=0;X(Q
�
Y 1jc)

�
1� FY jD=1;Z=0;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 1)

p(X)
FY jD=0;Z=1;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=1;X(Q�Y 0jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 0)
1� p(X) FY jD=0;Z=0;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=0;X(Q�Y 0jc)

��

+
1

P 2c
V ar

 
FY jD=1;Z=0;X(Q

�
Y 1jc)� FY jD=1;Z=1;X(Q

�
Y 1jc)

fY 1jc(Q
�
Y 1jc)

+
FY jD=0;Z=0;X(Q

�
Y 0jc)� FY jD=0;Z=1;X(Q

�
Y 0jc)

fY 0jc(Q
�
Y 0jc)

!

where

fY 1jc(u) =

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
dFX

�
=Pc

fY 0jc(u) = �
�Z �

fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))
�
dFX

�
=Pc

where �(x; z) = Pr(D = 1jX = x;Z = z) and Pc =
R
(�(x; 1)� �(x; 0)) dFX is the fraction of

compliers.

We suppose to estimate everything by llr or kernel regression. We need the following

assumptions:

Theorem 8 (Asymptotic distribution) Under the previous conditions, the estimator is
p
n

consistent and asymptotically normal (and e¢ cient)

p
n
�
�̂�c ���c

�
d�! N (�; �)

To be continued: The proof needs to be typed in.
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4 Monte Carlo

In this section we examine the �nite sample performance of the proposed estimator and compare

it to AAI and some other versions. The basic model setup is

Yi = '(Di; Xi; Ui)

Di = 1 ( �(Zi; Xi; Vi) � 0) weakly monotonous in Z

Zi = 1 ( �(Xi; �i) � 0)

where D and Z are both binary, U; V; � are error terms (where � is independent of U; V ) and X

are covariates that a¤ect Y , D and Z. We examine a variety of di¤erent designs characterized

by the following parameters:

1) Distribution of the X regressors: In a �rst design, X consists of 3 �2(1) variables. In the

second design, X consists of 3 Cauchy variables.

2) Distribution of the random variable p(X) = E[ZjX]: We measure the density mass of

the events 0:05 � p(X) � 0:95 and of 0:01 � p(X) � 0:99. In those designs, where more mass

is in the tails, the estimation problem is much harder.

3) The degree of di¤erentiability of p(X). (Di¤erentiability may be particularly relevant in

the tail areas.)

4) The fraction of compliers: I.e. the percentage of observations that would change D if Z

were increased.

5) The degree of endogeneity measured as the correlation between U and V .

6) The degree of non-linearity of ' as a function of X, measured as the average of the

square of the second derivative (so wie in der spline smoothing Literatur).

Obviously, it would be impossible to run a MonteCarlo for all combinations of these di¤erent

parameters. Therefore, we choose a few designs below and later regress the estimated MSE on

these 7 parameters de�ned before to obtain an indication of which of these characteristics of

the designs are most bene�cial or harmful for the MSE.

Funktionen zu wählen, die relativ symmetrisch in den 3 X sind, so dass wir den Verlauf der

Kurve graphisch leichter darstellen könnten z.B.

Z = 1 ( f1(X1 > 1) + 1(X2 > 1) + 1(X3 > 1)g � + � � 0) .
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Z = 1 ( f1(X1 > 1)X1 + 1(X2 > 1)X2 + 1(X3 > 1)X3g � + � � 0)

und die Parameter so zu wählen, dass �(X) auch viel Masse in den Aussenbereichen hat.

Danach eine Funktion für D und erst zum Schluss eine Funktion für Y 1 und Y 0.

5 Returns to college

The returns to education have received a lot of attention with recent research interests aiming

also particularly at higher education, see e.g. @@@, @Smith, @@ about the returns to college.

In this section we apply the new quantile estimators to estimate the returns to college using

distance to college as an instrument. The data is taken from Card (1995), who found that

the 2SLS estimates of the returns to schooling were about 13% and thus twice as large as the

corresponding OLS estimates. Here, we focus particularly on the treatment e¤ect of having

attended college. The data stems from the National Longitudinal Survey of Young Men (NL-

SYM), which began in 1966 with 5525 men between 14 to 24 years old. The sampling frame

of the NLSYM oversampled neighbourhoods with a large fraction of non-white residents.

We follow Card (1995) in that we examine wages in the year 1976 to mitigate the in�uence

of attrition. About 20% of the sample attrited in the �rst three years of the survey and the total

attrition rate was about 29% in 1976. Total attrition increased further to 35% until the 1981

wave. In 1976 the respondents were between 24 to 34 years old such that most of them should

have completed college at that time. As pointed out in Card (1995), the sample interviewed

in 1976 is very similar in most characterstics to the original 1966 sample apart from a smaller

fraction of blacks. Descriptive statistics for some variables are given in Table 1. The variable

of interest Y is hourly wage in 1976, measured in cents per hour.

The binary indicator D having attended college is also taken from the 1976 wave. About

50% have attended college, while the other 50% did not. Most of the other variables are taken

from the baseline survey in 1966. This includes an indicator for the presence of an accredited

4-year college in the local labour market. Almost 70% of the observations were living in such

neighbourhoods in 1966. In the baseline survey, individuals were also asked about their family

situation when they were 14 years old. 77% lived with both their father and mother, 12% lived

only with their mother, and the other lived with relatives of at least one step-parent. The data

16



also contains information on mother�s and father�s education and race and region of residence:

rural versus urban (Standard Metropolitan Statistical Area, SMSA) and geographic location.

As a �rst step to estimating the QTE of college attendance on wages, we examine the

relationship between the instrumental variable Z and other background characteristics X that

are likely to have a strong in�uence on earnings in 1976. Table 2 shows a probit regression

of Z on X and the following Figure 1 shows the distribution of p(X) = Pr(Z = 1jX) in the

Z = 1 and Z = 0 subpopulations. This �gures shows that those individuals living near to a

college (Z = 1) and those with Z = 0 do indeed seem to di¤er with respect to their family

characteristics X. On the other hand, there does not seem to be a problem with respect to

common support since the support of p(x) is rather similar in these two subpopulations.

The following �gures show the estimators of the quantile treatment e¤ects. Figure 2 gives

the results for the matching estimator, the propensity score weighting estimator and the

propensity score weighting estimator with positive weights.15 Bandwidths are chosen by

cross-validation.16 All three estimators produce relatively similar results. The treatment

e¤ects are positive throughout and increasing with the quantiles. At the lower end the QTE

is about 1.5$ per hour and increases up to 4$ to 8$ per hour for higher quantiles.

Figure 3 compares the estimated QTE to the estimates of the QTE when college atten-

dance is not instrumented for, i.e. when it is considered as exogenous, conditional on X. The

nonparametric estimator of Frölich (2006a) is used for estimating the QTE when D is exoge-

nous, conditional on X. The results clearly show that the QTE when college choice is handled

as endogenous are much larger and the absolute gap increases for larger quantiles. Figure 4

shows the relative comparison of the results of Figure 3. It shows that the instrumentation

doubles the QTE for lower quantiles, whereas for higher quantiles the QTE with endogenous

college choice are about 2.5 times as large than when college choice is treated as exogenous.

Finally, Figure 5 shows bootstrap con�dence intervals for the propensity score weighting

estimator with positive weights of Figure 2. Except for the very low quantiles, the estimates

are signi�kantly di¤erent from zero. (However, only 50 bootstrap replications so far.)

15The propensity score matching estimator will follow soon.
16Markus: Explain the smoothing over discrete and continuous regressors with two di¤erent bandwidths.
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6 Conclusions

...

A Appendix (Proof of theorems)

A.1 Proof of Theorem (1):

We consider the derivation of

FY 0jc(u) =

R
(E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFXR

(E [DjX;Z = 1]� E [DjX;Z = 0]) dFX
. (15)

(The results for FY 1jc are analogous and are omitted.)

Consider �rst the expression

E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]

which by the law of total probability can be partitioned into the four subpopulations:

= E [1 (Y � u) � (D � 1)jX;Z = 1; T = a] Pr (T = ajX;Z = 1)� E [1 (Y � u) � (D � 1)jX;Z = 0; T = a] Pr (T = ajX;Z = 0)

+E [1 (Y � u) � (D � 1)jX;Z = 1; T = n] Pr (T = njX;Z = 1)� E [1 (Y � u) � (D � 1)jX;Z = 0; T = n] Pr (T = njX;Z = 0)

+E [1 (Y � u) � (D � 1)jX;Z = 1; T = c] Pr (T = cjX;Z = 1)� E [1 (Y � u) � (D � 1)jX;Z = 0; T = c] Pr (T = cjX;Z = 0) .

Noting that the value of Z and T together determine the value of D and using that T ??ZjX

from assumption 1, we obtain

= 0 � Pr (T = ajX)

�
�
E
�
1
�
Y 0 � u

�
jX;Z = 1; T = n

�
� E

�
1
�
Y 0 � u

�
jX;Z = 0; T = n

�	
Pr (T = njX)

+
�
0 + E

�
1
�
Y 0 � u

�
jX;Z = 0; T = c

�	
Pr (T = cjX) .

Now we use Y d??ZjX; T by assumption 1 to obtain

= �
�
E
�
1
�
Y 0 � u

�
jX; T = n

�
� E

�
1
�
Y 0 � u

�
jX; T = n

�	
Pr (T = njX)

+
�
E
�
1
�
Y 0 � u

�
jX; T = c

�	
Pr (T = cjX)

= E
�
1
�
Y 0 � u

�
jX; T = c

�
Pr (T = cjX) .
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Now we insert this result into the numerator of (15) to obtainZ
(E [1 (Y � u) � (D � 1)jX;Z = 1]� E [1 (Y � u) � (D � 1)jX;Z = 0]) dFX

=

Z
E
�
1
�
Y 0 � u

�
jX; T = c

�
Pr (T = cjX) dFX

=

Z
E
�
1
�
Y 0 � u

�
jX; T = c

�
dFXjc � Pc

= E
�
1
�
Y 0 � u

�
jT = c

�
� Pc

where the second last equality made use of Bayes�theorem:

dFXjc � Pc = Pr (T = cjX) � dFX .

Now consider the denominator of (15) and proceed as before. First notice that conditional

on X

E [DjX;Z = 1]� E [DjX;Z = 0]

= E [DjX;Z = 1; T = a] Pr (T = ajX;Z = 1)� E [DjX;Z = 0; T = a] Pr (T = ajX;Z = 0)

+E [DjX;Z = 1; T = c] Pr (T = cjX;Z = 1)� E [DjX;Z = 0; T = c] Pr (T = cjX;Z = 0)

using that T ??ZjX from assumption 1, we obtain

= Pr (T = ajX)� Pr (T = ajX) + Pr (T = cjX)

= Pr (T = cjX) .

Inserting this into the denominator of (15) and again making use of Bayes�theorem

Z
Pr (T = cjX) dFX =

Z
dFXjc � Pc = Pc.

Putting these results together we obtain for the right hand side of (15)

E
�
1
�
Y 0 � u

�
jT = c

�
� Pc

Pc
= Pr

�
Y 0 � ujT = c

�
= FY 0jc(u).
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A.2 Proof of Lemma (2):

The following two variants of using iterated expectations show the equality for a typical com-

ponent of the estimator

E

�
1 (Y � u)DZ

p(X)

�
=

Z
E

�
1 (Y � u)DZ

p(X)
jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 1] dFX

E

�
1 (Y � u)DZ

p(X)

�
= E

�
E

�
1 (Y � u)DZ

p(X)
jp(X) = �

��
= E

�
E

�
�
1 (Y � u)D

p(X)
jp(X) = �; Z = 1

��
= E [E [1 (Y � u)Djp(X) = �; Z = 1]] .

For the corresponding components in the Z = 0 population, Z is replaced by 1� Z and p(X)

is replaced by 1� p(X) in the previous derivations.

A.3 Proof of Lemma (3):

Note that by iterated expectations

E

�
1 (Y � u)DZ

p(X)

�
=

Z
E

�
1 (Y � u)DZ

p(X)
jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 1] dFX

and

E

�
1 (Y � u)D(1� Z)

1� p(X)

�
=

Z
E

�
1 (Y � u)D(1� Z)

1� p(X) jX
�
dFX =

Z
E [1 (Y � u)DjX;Z = 0] dFX

Hence, the equation (2) can be written as

FY 1jc(u) =

R �
E
h
1 (Y � u)D

�
Z�p(X)

p(X)(1�p(X))

�i�
dFX

Pc

and analogously for FY 0jc(u).

A.4 Proof of Lemma (4):

If the objective function has a unique interior solution, it follows that

argmin
a;b

E [W � �� (Y � a� bD)] (16)

= arg zero
a;b

E

24W � f� � 1 (Y < a+ bD)g �

0@ 1

D

1A35 . (17)
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This implies the moment conditions:

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g �D
�
= 0.

Multiplying the �rst moment condition with (D + (1�D)) inside the expectation operator

and inserting the second moment condition gives:

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g � (1�D)
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) (2D � 1) f� � 1 (Y < a+ bD)g �D
�
= 0

which is equivalent to

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < a)g � (1�D)
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < a+ b)g �D
�
= 0.

Renaming a with q0 and a + b with q1 and subtracting the term E
h
� Z�p(X)
p(X)(1�p(X))

i
, which is

zero, from the �rst moment condition gives

E

�
Z � p(X)

p(X) (1� p(X)) f1 (Y < q0) (D � 1)� �D)g
�
= 0

E

�
Z � p(X)

p(X) (1� p(X)) f� � 1 (Y < q1)g �D
�
= 0,

which are identical to (4).

A.5 Proof of Proposition (5)

Replicating the previous proofs in reverse order, one can �rst show that the �rst order conditions

to

argmin
a;b

E

��
1� D(1� Z)

1� p(X) �
(1�D)Z
p(X)

�
�� (Y � �� �D)

�
are:

E

�
D

�
Z � p(X)
1� p(X)

�
1 (Y < �+ �)

�
= � � P (T = c;D = 1) (18)

E

�
(D � 1)

�
Z � p(X)
p(X)

�
1 (Y < �)

�
= � � P (T = c;D = 0):
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where Pr(T = c;D = 1) = Pr(D = 1jT = c) Pr(T = c) = E
h
DZ�p(X)
1�p(X)

i
is the fraction of

�treated compliers�and Pr(T = c;D = 0) = Pr(D = 0jT = c) Pr(T = c) = E
h
(D � 1)Z�p(X)p(X)

i
is the fraction of �non-treated compliers�. (Since the proof is very similar to the previous one

it is ommitted.)

De�ne the distributions of the potential outcomes for treated compliers and non-treated

compliers as

FY 1jc;D=1(u) = Pr(Y 1 � ujD = 1; T = c)

FY 0jc;D=0(u) = Pr(Y 0 � ujD = 0; T = c).

Analogously to the previous proofs one can show that these distributions are identi�ed as

FY 1jc;D=1(u) =
E
h
1 (Y < u) �D � Z�p(X)1�p(X)

i
Pr(T = c;D = 1)

FY 0jc;D=0(u) =
E
h
1 (Y < u) � (D � 1) � Z�p(X)p(X)

i
Pr(T = c;D = 0)

.

Hence, � + � and � in (18) de�ne the quantiles in the sense that FY 1jc;D=1(�0 + �0) = � =

FY 0jc;D=0(�0). This implies then that F
�1
Y 1jc;D=1(�) = �0 + �0 and F

�1
Y 0jc;D=0(�) = �0 and that

�0 = F�1
Y 1jc;D=1(�)� F

�1
Y 0jc;D=0(�).

A.6 Proof of Proposition (6):

We show that E [�� (Y �X 0b� aD) �W ] has expectation zero in the subpopulation of always-

and never-participants, for every value of a and b. Hence, E [�� (Y �X 0b� aD) �W jT = a ] �

Pr (T = a) such that the relationship below Proposition (6) follows.

Note �rst that

E
�
�� (Y �X 0� � �D)W jT = a

�
= E

�
�� (Y �X 0� � �D) Z � p (X)

p(X) (1� p(X)) (2D � 1) jT = a

�
= E

�
E

�
�� (Y

1 �X 0� � �) Z � p (X)
p(X) (1� p(X)) jX;Z; T = a

�
jT = a

�
= E

�
E
�
�� (Y

1 �X 0� � �)jX; T = a
� E [ZjX;T = a]� p (X)

p(X) (1� p(X)) jT = a

�
= E

�
E
�
�� (Y

1 �X 0� � �)jX; T = a
� E [ZjX]� p (X)
p(X) (1� p(X)) jT = a

�
= 0:
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where Y d??ZjX; T and T ??ZjX has been used which follows from Assumption 1. The same

result holds for the never-taker. Therefore the expression (13) is equivalent to

(�; �) = argmin
a;b

E
�
�� (Y �X 0b� aD) �W jT = c

�
= argmin

a;b
E

��
D

p(X)
+

1�D
1� p(X)

�
� �� (Y �X 0� � �D) jT = c

�
,

which is the objective function of a weighted linear quantile regression for compliers. Note that

all weights are strictly positive and �nite because we assume that 0 < p(X) < 1. Therefore,

standard quantile regression results (see for instance Koenker (2005) theorem 4.1 and 5.1) imply

that this function is minimized at ��0 and �
�
0 as long as E

h�
D
p(X) +

1�D
1�p(X)

�
(X 0; D)0 (X 0; D)

i
is positive de�nite, what is assumed.

A.7 Proof of Theorem (7):

Semiparametric e¢ ciency bounds were introduced by Stein (1956) and developed by Koshevnik

and Levit (1976), Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang, and Wellner (1983)

and Bickel, Klaassen, Ritov, and Wellner (1993). See also the survey of Newey (1990) or Newey

(1994).

We need to derive the e¢ ciency bound for

��c = Q�Y 1jc �Q
�
Y 0jc.

For this it will be helpful to have an expression for fY 1jc and fY 0jc. From Theorem (1) it follows

that

fY 1jc(u) =

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
dFX

�
=Pc

fY 0jc(u) = �
�Z �

fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))
�
dFX

�
=Pc

where �(x; z) = Pr(D = 1jX = x; Z = z) and Pc =
R
(�(x; 1)� �(x; 0)) dFX is the fraction of

compliers.

By Assumption 2 the quantiles Q�Y 1jc and Q
�
Y 0jc are unique and de�ned as

0 = E
h
1(Y 1 � Q�Y 1jc)� � jT = c

i
=

Z �
1(u � Q�Y 1jc)� �

�
� fY 1jc(u)du (19)

0 = E
h
1(Y 0 � Q�Y 0jc)� � jT = c

i
=

Z �
1(u � Q�Y 0jc)� �

�
� fY 0jc(u)du
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where fY djc are given above. We thus have expressed the quantiles in terms of the densities of

the observed variables.

The joint density of the observed variables (Y;D;Z;X) with D and Z binary can be written

as

f (y; d; z; x) = f (yjd; z; x) f (djz; x) f (zjx) f(x)

= f (yjd; z; x)
n
�(x; z)d � (1� �(x; z))1�d

on
p(x)z � (1� p(x))1�z

o
f(x).

Consider a regular parametric submodel indexed by � with �0 corresponding to the true

model: f (y; d; z; x; �0) = f (y; d; z; x). The density f (y; d; z; x; �) can be written as

f (y; d; z; x; �) = f11 (yjx; �)dz � f10z (yjx; �)d(1�z) � f01 (yjx; �)(1�d)z � f00 (yjx; �)(1�d)(1�z)n
�(x; z; �)d � (1� �(x; z; �))1�d

on
p(x; �)z � (1� p(x; �))1�z

o
f(x; �),

where fdz (yjx; �) = f (yjd; z; x; �).

We will assume throughout that all terms of the previous equation admit an interchange of

the order of integration and di¤erentiation, such thatZ
@f (y; d; z; x; �)

@�
dydddzdx =

@

@�

Z
f (y; d; z; x; �) dydddzdx = 0.

Su¢ cient conditions for permitting interchanging di¤erentiation and integration are, for exam-

ple, given by Theorem 1.3.2 of Amemiya (1985).

The corresponding score of f (y; d; z; x; �) is

s (y; d; z; x; �) =
@ ln f (y; d; z; x; �)

@�

= dz �f11 (yjx; �) + d(1� z) �f10 (yjx; �) + (1� d)z �f01 (yjx; �) + (1� d)(1� z) �f00 (yjx; �)

+
d� �(x; z; �)
1� �(x; z; �) ��(x; z; �) +

z � p(x; �)
1� p(x; �) �p(x; �) +

�f(x; �),

where the subscript �f de�nes a derivative of the log, i.e. �f(x; �) = @ ln f(x; �)=@�.

At the true value �0 the expectation of the score is zero. The tangent space of the model

is the set of functions that are mean zero and satisfy the additive structure of the score:

= =

8<: dzs11 (yjx) + d(1� z)s10 (yjx) + (1� d)zs01 (yjx) + (1� d)(1� z)s00 (yjx)

+ (d� � (x; z)) � s�(x; z) + (z � p (x)) � sp(x) + sx(x)

9=; (20)
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for any functions s11; s10; s01; s00; sx satisfying the mean-zero property: E
�
sdzjD = d; Z = z;X

�
=

0 = E [sx(x)] and s�(x; z) and sp(x) being square-integrable measurable functions.

The semiparametric variance bound of��c is the variance of the projection on = of a function

 (Y;D;Z;X) (with E [ ] = 0 and E[k (�)k2] < 1) that satis�es for all regular parametric

submodels
@��c (F�)

@� j�=�0
= E [ (Y;D;Z;X) � s(Y;D;Z;X)]j�=�0 (21)

If  itself already lies in the tangent space, the variance bound is given by E
�
 2
�
.

As a �rst step to calculating the variance bound, we need to derive

@��c (�)

@�
=
@Q�Y 1jc(�)

@�
�
@Q�Y 0jc(�)

@�
.

The identify (19) holds for all submodels � such that we obtain

@

@�

Z �
1(u � Q�Y 1jc(�))� �

�
� fY 1jc(u; �)du = 0

= (1� �) @
@�

Q�
Y 1jc(�)Z
�1

fY 1jc(u; �)du� �
@

@�

1Z
Q�
Y 1jc

(�)

fY 1jc(u; �)du

= fY 1jc(Q
�
Y 1jc(�); �) �

@Q�Y 1jc(�)

@�
+

Z �
1(u � Q�Y 1jc(�))� �

� @

@�
fY 1jc(u; �)du = 0.

by Leibniz�s rule of di¤erentiation. We thus obtain that the derivative evaluated at the true �0

is

@��c (�)

@� j�=�0
=

R �
� � 1(u � Q�Y 1jc)

�
@
@�fY 1jc(u; �0)du

fY 1jc(Q
�
Y 1jc)

�

R �
� � 1(u � Q�Y 0jc)

�
@
@�fY 0jc(u; �0)du

fY 0jc(Q
�
Y 0jc)

where

@

@�
fY 1jc(u; �0) =

1

Pc

@

@�

�Z �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
f(x)dx

�
� fY 1jc(u; �0)

@ lnPc(�0)

@�
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such that

@��c (�)

@� j�=�0

=

R �
� � 1(u � Q�Y 1jc)

�
@
@�

�R �
fY jX;D=1;Z=1(u)� (x; 1)� fY jX;D=1;Z=0(u)� (x; 0)

�
f(x)dx

	
du

Pc � fY 1jc(Q�Y 1jc)

+

R �
� � 1(u � Q�Y 0jc)

�
@
@�

�R �
fY jX;D=0;Z=1(u) (1� �(x; 1))� fY jX;D=0;Z=0(u) (1� �(x; 0))

�
f(x)dx

	
du

Pc � fY 0jc(Q�Y 0jc)

De�ne

�dz(x) =
1

Pc � fY djc(Q�Y djc)

n�
� � 1(y � Q�Y djc)

�
� E

h
� � 1(y � Q�Y djc)jD = d; Z = z;X = x

io
and

#dz(x) =
1

Pc � fY djc(Q�Y djc)
E
h
� � 1(y � Q�Y djc)jD = d; Z = z;X = x

i
and choose  (Y;D;Z;X) as

 (y; d; z; x) =
zd

p(x)
�11(x)�

(1� z)d
1� p(x)�10(x) +

z(1� d)
p(x)

�01(x)�
(1� z)(1� d)
1� p(x) �00(x)

+#11(x)� #10(x) + #01(x)� #00(x)� E [#11(x)� #10(x) + #01(x)� #00(x)] ,

which, after some tedious calculations, can be shown to satisfy (21).

Since  is mean zero and lies in the tangent space, the variance bound is

E
�
 (y; d; z; x)2

�
= E

"�
zd

p(x)
�11(x)�

(1� z)d
1� p(x)�10(x) +

z(1� d)
p(x)

�01(x)�
(1� z)(1� d)
1� p(x) �00(x)

�2#

+
1

P 2c
V ar

 
FY jD=1;Z=0;X(Q

�
Y 1jc)� FY jD=1;Z=1;X(Q

�
Y 1jc)

fY 1jc(Q
�
Y 1jc)

+
FY jD=0;Z=0;X(Q

�
Y 0jc)� FY jD=0;Z=1;X(Q

�
Y 0jc)

fY 0jc(Q
�
Y 0jc)

!

=
1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

"�
zd

p(x)
�11(x)

�2#
+

1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

"�
(1� z)d
1� p(x)�10(x)

�2#

+
1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

"�
z(1� d)
p(x)

�01(x)

�2#
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

"�
(1� z)(1� d)
1� p(x) �00(x)

�2#

+
1

P 2c
V ar

 
FY jD=1;Z=0;X(Q

�
Y 1jc)� FY jD=1;Z=1;X(Q

�
Y 1jc)

fY 1jc(Q
�
Y 1jc)

+
FY jD=0;Z=0;X(Q

�
Y 0jc)� FY jD=0;Z=1;X(Q

�
Y 0jc)

fY 0jc(Q
�
Y 0jc)

!
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=
1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 1)

p(X)
FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 1jc(Q

�
Y 1jc)

E

�
�(X; 0)

1� p(x)FY jD=1;Z=0;X(Q
�
Y 1jc)

�
1� FY jD=1;Z=0;X(Q�Y 1jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 1)

p(X)
FY jD=0;Z=1;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=1;X(Q�Y 0jc)

��
+

1

P 2c f
2
Y 0jc(Q

�
Y 0jc)

E

�
1� �(X; 0)
1� p(X) FY jD=0;Z=0;X(Q

�
Y 0jc)

�
1� FY jD=0;Z=0;X(Q�Y 0jc)

��

+
1

P 2c
V ar

 
FY jD=1;Z=0;X(Q

�
Y 1jc)� FY jD=1;Z=1;X(Q

�
Y 1jc)

fY 1jc(Q
�
Y 1jc)

+
FY jD=0;Z=0;X(Q

�
Y 0jc)� FY jD=0;Z=1;X(Q

�
Y 0jc)

fY 0jc(Q
�
Y 0jc)

!

because

E

"�
DZ

p(X)
�11(X)

�2#
= E

�
E

�
DZ

p2(X)
�211(X)jX

��
= E

�
E

�
�(X; 1)p(X)

p2(X)
E
�
�211(X)jD = Z = 1; X

�
jX
��

and

E
�
�211(X)jD = Z = 1; X

�
= FY jD=1;Z=1;X(Q

�
Y 1jc)

�
1� FY jD=1;Z=1;X(Q�Y 1jc)

�
and analogously for the other terms.
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Table 1: Descriptive statistics 
 
    Variable     N          Mean       Std Dev       Minimum       Maximum 
   ---------------------------------------------------------------------- 
   ID        3613       2609.78       1498.51     2.0000000       5225.00 
   NEARC2    3613     0.4317741     0.4953919             0     1.0000000 
   NEARC4    3613     0.6781068     0.4672669             0     1.0000000 

   NEARC4A   3613     0.4921118     0.5000070             0     1.0000000 
   NEARC4B   3613     0.1859950     0.3891565             0     1.0000000 
   ED76      3613    13.2252975     2.7497411             0    18.0000000 
   ED66      3613    10.7428730     2.4590854             0    18.0000000 
   AGE76     3613    28.1752007     3.1718104    24.0000000    34.0000000 
   DADED     3613    10.0028785     3.2960212             0    18.0000000 
   NODADED   3613     0.2241904     0.4171058             0     1.0000000 
   MOMED     3613    10.3421672     3.0293785             0    18.0000000 
   NOMOMED   3613     0.1143094     0.3182308             0     1.0000000 
   WEIGHT    3613     320318.35     168006.76      75607.00    1752340.00 
   MOMDAD14  3613     0.7921395     0.4058326             0     1.0000000 
   SINMOM14  3613     0.1001937     0.3002997             0     1.0000000 
   STEP14    3613     0.0384722     0.1923599             0     1.0000000 
   REG661    3613     0.0445613     0.2063671             0     1.0000000 
   REG662    3613     0.1549958     0.3619508             0     1.0000000 
   REG663    3613     0.1940216     0.3955003             0     1.0000000 
   REG664    3613     0.0691946     0.2538199             0     1.0000000 
   REG665    3613     0.2095212     0.4070232             0     1.0000000 
   REG666    3613     0.0929975     0.2904691             0     1.0000000 
   REG667    3613     0.1101578     0.3131296             0     1.0000000 
   REG668    3613     0.0309992     0.1733394             0     1.0000000 
   REG669    3613     0.0935511     0.2912434             0     1.0000000 
   SOUTH66   3613     0.4126764     0.4923837             0     1.0000000 
   WORK76    3613     0.8350401     0.3711957             0     1.0000000 
   WORK78    3613     0.7351232     0.4413287             0     1.0000000 
   LWAGE76   3010     6.2618319     0.4437977     4.6051702     7.7848893 

   LWAGE78   2639     6.3291080     0.4442450     4.6965200     8.2409240 
   FAMED     3613     5.9128148     2.6504318     1.0000000     9.0000000 
   BLACK     3613     0.2300028     0.4208925             0     1.0000000 
   SMSA76R   3613     0.6947135     0.4605924             0     1.0000000 
   SMSA78R   3319     0.6929798     0.4613273             0     1.0000000 
   REG76R    3613     0.3996679     0.4898978             0     1.0000000 
   REG78R    3319     0.3968063     0.4893089             0     1.0000000 
   REG80R    3227     0.4028509     0.4905473             0     1.0000000 
   SMSA66R   3613     0.6426792     0.4792768             0     1.0000000 
   WAGE76    3017   576.0888300   263.8199090    25.0000000       2404.00 

   WAGE78    2656   724.5591114   526.1991520    17.0000000      17628.00 
   WAGE80    2520   869.8940476   492.1729068    27.0000000      13857.00 
   NOINT78   3613     0.0813728     0.2734447             0     1.0000000 
   NOINT80   3613     0.1068364     0.3089479             0     1.0000000 
   ENROLL76  3613     0.0946582     0.2927827             0     1.0000000 
   ENROLL78  3317     0.0654206     0.2473038             0     1.0000000 
   ENROLL80  3220     0.0583851     0.2345066             0     1.0000000 
   KWW       3543    33.4891335     8.6918079             0    56.0000000 
   IQ        2470   102.5878543    15.4450703    50.0000000   156.0000000 
   MARSTA76  3604     2.3571032     2.1096377     1.0000000     6.0000000 
   MARSTA78  3319     2.2136186     2.0058342     1.0000000     6.0000000 
   MARSTA80  3227     2.1041215     1.9088835     1.0000000     6.0000000 
   LIBCRD14  3598     0.6717621     0.4696372             0     1.0000000 
 ---------------------------------------------------------------------- 
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Table 2: Probit regression of instrument Z on X 

 
 
. probit nearc4 kww exp76 exp762  $listev 
Probit regression                                 Number of obs   =       3543 
                                                  LR chi2(29)     =     953.90 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1753.1777                       Pseudo R2       =     0.2139 
------------------------------------------------------------------------------ 
      nearc4 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         kww |   .0094064   .0033342     2.82   0.005     .0028716    .0159413 
       exp76 |  -.0107292   .0237444    -0.45   0.651    -.0572673    .0358089 
      exp762 |  -.0001186   .0011236    -0.11   0.916    -.0023208    .0020835 
       black |   .2748305   .0730832     3.76   0.000     .1315902    .4180709 
     smsa76r |   .2206061   .0675998     3.26   0.001     .0881129    .3530993 
      reg76r |  -.0669019    .092463    -0.72   0.469    -.2481261    .1143222 
     smsa66r |   .9840224   .0662247    14.86   0.000     .8542245     1.11382 
      reg662 |   .0459755   .1539718     0.30   0.765    -.2558036    .3477547 
      reg663 |  -.5406716   .1447889    -3.73   0.000    -.8244527   -.2568905 
      reg664 |  -.3624839     .15834    -2.29   0.022    -.6728245   -.0521433 
      reg665 |  -.6388701   .1644876    -3.88   0.000    -.9612599   -.3164804 
      reg666 |  -1.006969   .1747037    -5.76   0.000    -1.349382   -.6645563 
      reg667 |  -.9341539   .1739213    -5.37   0.000    -1.275033   -.5932744 
      reg668 |   -.770222   .1859383    -4.14   0.000    -1.134654   -.4057896 
      reg669 |   -.241757   .1597352    -1.51   0.130    -.5548322    .0713183 
       daded |   .0096197   .0153433     0.63   0.531    -.0204527    .0396921 
       momed |  -.0117358   .0146098    -0.80   0.422    -.0403705     .016899 
     nodaded |  -.1937773   .1928149    -1.00   0.315    -.5716875     .184133 
     nomomed |  -.0784467   .1258471    -0.62   0.533    -.3251024     .168209 
          f1 |  -.0416213   .2844138    -0.15   0.884    -.5990621    .5158196 
          f2 |   -.314627   .2581221    -1.22   0.223    -.8205371    .1912831 
          f3 |  -.1896419   .2373843    -0.80   0.424    -.6549065    .2756228 
          f4 |  -.0248458     .16387    -0.15   0.879    -.3460252    .2963335 
          f5 |  -.2643152   .2345548    -1.13   0.260    -.7240343    .1954038 
          f6 |  -.2811006   .2241565    -1.25   0.210    -.7204393    .1582382 
          f7 |  -.3104026    .238763    -1.30   0.194    -.7783694    .1575642 
          f8 |  -.1938829    .206183    -0.94   0.347    -.5979941    .2102283 
    momdad14 |  -.0287816    .094051    -0.31   0.760    -.2131181     .155555 
    sinmom14 |   .1059404   .1294821     0.82   0.413    -.1478398    .3597207 
       _cons |   .2952601   .3249659     0.91   0.364    -.3416613    .9321816 
------------------------------------------------------------------------------ 
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Figure 1: Distribution of P(Z=1|X) in the Z=0 and Z=1 subpopulation 
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Figure 2: Nonparametric IV estimators of the QTE of college attendance 
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Figure 3: Nonparametric estimation of QTE with and without endogeneity 
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Figure 4: Comparison of QTE with and without endogeneity: relative comparison 
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Figure 5: Bootstrap confidence bands for QTE with endogenous college choice 
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