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Abstract

We use bounds on the distribution function of the sum of two random variables with
known marginal distributions obtained by Makarov (1981) to bound the distribution func-
tion of the individual treatment effect. Although the Makarov bounds are pointwise sharp
if we only consider the marginals, they can be improved by using the fact that we know the
mean (and only the mean) of the treatment effect distribution, i.e. the Average Treatment
Effect. We propose a procedure that uses this additional information to obtain more infor-
mative bounds. We also show that if the treatment effect varies with observable covariates,
averaging over these covariates improves the Makarov bounds. We can combine the two
types of additional information by using the known conditional treatment effect means to
improve the conditional Makarov bounds and by subsequently averaging these conditional
bounds. The (improved) Makarov bounds on the cdf of the treatment effect distribution
yield bounds on the quantiles of that distribution. Without covariates we can use the ATE
to directly obtain bounds on these quantiles, that turn out to be identical to the bounds
obtained by using the ATE to improve the cdf bounds. By this equivalence we can use the
average improved conditional Makarov bounds that use information on the conditional ATE
to improve the bounds on the unconditional quantiles. Bounds on the conditional quantiles
cannot be averaged to obtain bounds on the unconditional quantiles. We illustrate the
qualitative features of the bounds for normal and dichotomous outcome distributions.

1 Introduction

The key problem when estimating the effect of a treatment or intervention is that we cannot
observe both the treated and non-treated outcomes for the same unit in the population. As a
consequence, we can only identify treatment parameters that depend on the marginal distribu-
tion of the treated and control outcomes. This is one of the reasons that most studies focus on
parameters as the Average Treatment Effect (ATE) and the Average Treatment Effect on the
Treated (ATT), since the mean, either for the whole population or for some subpopulation, is
the only functional of the distribution of the treatment effect that can be identified from the
marginal distributions of the treated and control outcomes.

Many other estimands of interest in the treatment effect literature only depend on the
marginal distributions of treated and non-treated outcomes. They are not, however, functionals

∗We have benefited from comments of Rustam Ibragimov who pointed us to the Makarov bounds. Financial
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of the distribution of individual treatment effects. For instance, we may be interested in learning
how a program may increase the inequality of outcomes. If we choose some inequality measure,
say the variance, then the effect of the program on the variance can be identified from difference
in variances of the marginal distributions of the treated and control outcomes. Such approach
has been used in some studies as in Imbens and Rubin (1997), Abadie, Angrist Imbens (2002),
Firpo (2005, 2007), Abadie (2002, 2003).

There are other parameters that require an estimate of the distribution of individual treat-
ment effects. An example is the median (or other quantile) of the treatment effect distribution.
If we estimate this by the difference of the medians of the treated and non-treated outcome
distributions, then because the difference of quantiles is not equal to the quantile of the differ-
ence, this parameter is not equal to the median of the individual treatment effect distribution.
Another estimand that requires knowledge of the treatment effect distribution is the fraction
of the population that benefits from the intervention. Heckman, Smith and Clements (1997,
HSC henceforth) propose focusing on many other parameters of the distribution of treatment
effects. In general, if our goal is to assess the effect of an intervention on social welfare and not
individual welfare, then the marginal distributions suffice.1 2

Parameters that depend on the distribution of individual treatment effects require knowledge
of the joint distribution of treated and non-treated outcomes. If the treatment effect is the same
for all members of the population or of subpopulations characterized by a vector of observable
variables, this (conditional) joint distribution is singular and the (conditional) distribution of
individual treatment effects is degenerate. However, in most cases the observed (conditional)
marginal distributions are not related in this way. In that case we can either introduce additional
information that allows us to point identify the distribution of treatment effects, or we can as
e.g. HSC derive bounds on the distribution of treatment effects.

Bounds on the cumulative distribution function (c.d.f.) of the sum of two random variables
with known marginal distributions were first obtained by Makarov (1981) and the generaliza-
tion to the difference is trivial. However if we know the marginal distributions we also know
the mean of the distribution of the treatment effect distribution, the Average Treatment Ef-
fect. Only the first moment is identified from the marginal distributions, because higher order
moments require knowledge of the joint distribution. We show that this additional knowledge
can be used to improve the bounds on the c.d.f. and on the quantiles of the treatment effect
distribution. The improvement procedure for the c.d.f. differs from that for the quantiles.
Because improved bounds on the c.d.f. can also be used to obtain (improved) bounds on the
quantiles, it is important to note that these two approaches give identical bounds, so that the
choice of procedure is mainly a matter of convenience. Obviously if one is interested in bounds
on a quantile, then it is computationally harder to improve the c.d.f. bounds for all values of
the individual treatment effect and to subsequently invert these improved bounds. However,
one may wish to pay that computational cost if the data contain covariates that are correlated
with the outcomes.

Covariates that are correlated with the outcomes can be used to narrow the bounds on the
c.d.f. and on the quantiles This is because the average bounds are in general more informative
than the bounds on the average, i.e. the unconditional, outcome distributions. The availability

1In the social welfare literature, this is due the “anonymity principle”, which is considered a desirable property
of social welfare function.

2Manski(1997) considers the distribution of the mixture of the treated and non-treated outcome, a distribution
that requires knowledge of the joint distribution of the treated and non-treated outcome.
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of covariates raises a number of issues. First, with covariates we can recover the conditional
mean of the treatment effect distribution given the covariates. This conditional mean function
is used to improve the conditional Makarov bounds and the resulting improved bounds are
averaged to obtain the unconditional bounds. Second, because the average of the conditional
quantiles is not equal to the unconditional quantile (that relation does hold for the conditional
c.d.f.), it does not make much sense to use the conditional ATE to improve the bounds on the
conditional quantiles. Instead we invert the improved (using the conditional ATE) bounds on
the conditional c.d.f. to obtain bounds on the unconditional quantiles. The fact that this gives
identical bounds if there are no covariates, shows that this is an efficient way to incorporate
conditional mean information in bounds on the unconditional quantiles. Third, if (some of)
the covariates are continuous the bounds are obtained by averaging nonparametric estimates of
the improved conditional bounds. To do inference, e.g. to compute confidence intervals based
on estimates of the bounds as in Imbens and Manski (2004), we need to derive the asymptotic
distribution of the estimates of the bounds. In this paper we only consider the case that the
covariates are discrete or discretized.

As already noted we are not the first to focus on the distribution of individual treatment
effects. Heckman and Smith (1993, 1998) and in particular Heckman, Smith and Clements
(1997) derive bounds on the distribution of the treatment effect. They also consider additional
restrictions that narrow these bounds and in some cases these assumptions are sufficient to
point identify the treatment effect distribution. Aakvik, Heckman and Vytlacil (2005), Carneiro,
Hansen and Heckman (2003), and Wu and Perloff (2006)) also introduce additional restrictions.

In the next section we introduce the notation and discuss the HSC bounds and subsequent
restrictions that narrow these bounds. The remainder of the paper is organized as follows. In
Section 3 we introduce the Makarov bounds on the distribution of the individual treatment
effect. We show that averaging over covariates that are related to the outcomes improves these
bounds. In Section 4 we show how bounds on the quantiles of the treatment effect distribution
can be improved by using the mean of the treatment effect distribution, the Average Treatment
Effect (ATE). In Section 5 we introduce a similar procedure to improve bounds on the cdf of the
treatment effect distribution. We show that bounds on the quantiles obtained by inverting these
bounds on the cdf are identical to those obtained in Section 4. We also show that the conditional
(on covariates) bounds on the (conditional) cdf can be improved by using the conditional ATE.
Bounds on the (unconditional) cdf of the treatment effect can be obtained by averaging these
conditional bounds and bounds on the unconditional quantiles by inverting these unconditional
cdf bounds. Throughout we illustrate the properties of the bounds for normal and dichotomous
outcome distributions.

2 Distribution of Individual Treatment Effects

We consider the joint distribution (Y, D, X) where Y is the observed outcome; D is a binary
treatment variable that equals one if the unit is treated and zero otherwise; X is a vector of
covariates. We assume first that the support of (Y, D, X) is Y × {0, 1} × X where X is a finite
subset of Rk .

The outcome Y can be written as Y = ∆ · D + Y0, where ∆ ≡ Y1 − Y0 is the individual
treatment effect and Y1 and Y0 are respectively the outcome if the unit is treated and not
treated. The variable of interest is ∆, the individual treatment effect. Every unit has either
D = 1 or D = 0, so that we never observe ∆ but we do observe Y1|Di = 1 or Y0|Di = 0.
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Therefore, without further assumptions it is impossible to identify the distribution of ∆ with a
cdf that we denote by G.

The marginal distributions of Y1 and Y0 are identified if treatment is assigned randomly, so
that(Y1, Y0) ⊥⊥ D, or is ignorable, so that (Y1, Y0) ⊥⊥ D|X (Rubin , 1977).3 We call the identified
marginal distribution of Y1, F1 and the identified marginal distribution of Y0, F0.

Heckman, Smith and Clements (1997) derive bounds on the distribution of individual treat-
ment effects by considering extreme values of parameters defined on this distribution, e.g.
quantiles, if the joint distribution of Y (0), Y (1) ranges over all possible joint distributions with
given marginals. In the construction of the set of joint distributions with given marginals they
use an idea of Whitt (1976). This idea can be directly applied to the empirical distributions of
Y (0) and Y (1) if these have the same number of points of support. In that case the set of joint
distributions is the set pairings obtained by permuting the values of Y (1).

To see how this works consider the case where the number of treated and control units
is the same and equals 2, so that the outcome distributions are dichotomous with points of
support y01, y02 for Y0, both with probability 1/2, and y11, y12 for Y1 also with probability 1/2.
In that case there are only two possible joint distributions with two corresponding distribution
of individual treatment effects: Distribution 1 has points of support y11 − y01, y12 − y02 with
probability 1/2 each and distribution 2 has support y12−y01, y11−y02 each point with probability
also 1/2. In general the number of joint distributions and hence of distributions of ∆ is N !.
The parameter of interest is computed for each of these distributions and the extreme points
give the bounds.

This method of finding the bounds is computationally intensive. If there are covariates,
the computational burden increases, as we need to repeat the procedure for every value of the
covariate vector. It is also not clear how to assess the sampling variation in the bounds. Note
also that if the number of treated units is for instance smaller than the number of controls, then
there is a need for grouping of controls. In that case the mean of the distributions obtained
by permutation is not equal to the average treatment effect, and that “bias” persists in large
samples. Finally, although HSC suggest that these rearrangement bounds are consistent for the
continuous population bounds they do not give a formal proof.

HSC also consider restrictions that allow for narrower bounds or even point identification,
and much of the literature has followed their lead. Two types of assumptions have been used:
(i) assumptions on the joint distribution of the potential outcomes, and (ii) assumptions on
treatment assignment (or combinations of these two types of assumptions. An example of
the first type of assumptions is the assumption that the treatment effect is independent of
the non-treated outcome, that is ∆ ⊥⊥ Y0. HSC and Wu and Perloff (2006) show that under
this assumption one can use deconvolution to point identify the treatment effect distribution.
An example of an assumption of the second type is that treatment assignment maximizes the
gain from participation so that D = I(Y (1) > Y (0)). This is the Roy model (Roy, 1951 and
Heckman and Honoré, 1990). If in addition we assume separability between covariates X and
unobservables U and independence of X and U , then (under some support conditions) G is
point identified. Aakvik, Heckman and Vytlacil (2005) and Carneiro, Hansen and Heckman
(2003) consider a sample selection model in which treatment assignment is not determined
only by ∆. If the other assumptions on the independence of observables and unobservables are
maintained, and in addition an assumption (one factor structure) on the joint distribution of
the unobservables in the treatment assignment and the two potential outcomes is made, then

3A ⊥⊥ B reads A is independent of B.
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the joint distribution of the outcomes and hence of ∆ is identified.
If one is not interested in the whole distribution G but in a parameter of that distribution,

then the derivation of the bounds may be simpler. An example is the variance of ∆. Bounds on
the variance are obtained from bounds on the correlation of Y (0) and Y (1). Fan (2005) derives
sharp bounds on this correlation.

In this paper we consider the bounds on the cdf of the difference of two random variables
with known marginal distributions, as first obtained by Makarov (1981). As we are concerned
with bounds on the distribution of the individual treatment effect ∆, the known marginal dis-
tributions have cdf F0 and F1. Although the Makarov bounds are pointwise sharp, in the sense
that for any value of the individual treatment effect there exist joint distributions (that depend
on the value of the individual treatment effect) of the potential outcomes with the given mar-
ginals, such that the c.d.f. of the difference reaches the upper and lower bound at that particular
value, they can be improved by using the fact that we know ATE. We are to our knowledge the
first to suggest a procedure that uses this additional information to obtain more informative
bounds. The mean is the only feature of the treatment effect distribution that is identified from
the marginal outcome distributions, because higher order moments require knowledge of the
joint distribution. We also show that if the treatment effect varies with observable covariates,
averaging over these covariates improves the Makarov bounds. We can combine the two types
of additional information by using the known conditional treatment effect means to improve
the conditional Makarov bounds and by subsequently averaging these conditional bounds. The
(improved) Makarov bounds on the cdf of the treatment effect distribution yield bounds on
the quantiles of that distribution. Without covariates we can use the ATE to directly obtain
bounds on the quantiles of the treatment effect distribution, that turn out to be identical to
the bounds obtained by using the ATE to improve the cdf bounds. This equivalence means
that we can use the average improved conditional Makarov bounds that use information on
the conditional ATE to improve the bounds on the unconditional quantiles. Bounds on the
conditional quantiles cannot be averaged to obtain bounds on the unconditional quantiles.

3 Makarov Bounds on the Distribution of Individual Treatment
effects

Bounds on the sum and by extension on the difference of the distribution of two random
variables were first derived by Makarov (1981) (see also Frank, Nelsen, and Schweizer, 1987).
We extend these bounds to the case that we observe conditional marginal distributions of the
random variables in the difference. If the conditional cdf of Y0 and Y1 given X = x are given
by F0(y|x) and F1(y|x) respectively with x ∈ X, the support of the distribution of X, then we
have the following bounds

Theorem 1 (Makarov, 1981) Let G denote the cdf of Y1 − Y0, then

GML(y) ≡ E
[
sup

t
max{F1(t|X)− F0(t− y|X)−, 0}

]
≤ G(y) ≤

E
[
inf
t

min{F1(t|X)− F0(t− y|X)− + 1, 1}
]
≡ GMU (y) (1)

with F0(.)− the function of left-hand limits of the cdf.
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Proof: First consider the lower bound. We have for all y0, y1 with y0 + y1 = y and using
the Bonferroni inequality

G(y|x) = Pr(Y1 + (−Y0) ≤ y|X = x) ≥ Pr(Y1 ≤ y1,−Y0 ≤ y0|X = x) ≥

max{Pr(Y1 ≤ y1|X = x) + Pr(−Y0 ≤ y0|X = x)− 1, 0} = max{F1(y1|x)− F0(−y0|x)−, 0}

Hence of we define t ≡ y1, y ≡ y1 + y0

G(y) ≥ E
[
sup

t
max{F1(t|X)− F0(t− y|X), 0}

]
For the upper bound we have

1−G(y|x) = Pr(Y1 + (−Y0) > y|X = x) ≥ Pr(Y1 > y1,−Y0 > y0|X = x) ≥

max{Pr(Y1 > y1|X = x) + Pr(−Y0 > y0|X = x)− 1, 0}

Taking the opposite on both sides of the equation, adding 1, substituting t ≡ y1, y ≡ y1 + y0,
and taking the expectation gives

G(y) ≤ E
[
inf
t

min{F1(t|X)− F0(t− y|X)− + 1, 1}
]

We show that the bounds are themselves cdf-s. Consider the lower bound for G(y|x)

L(y|x) = sup
t

max{F1(t|x)− F0(t− y|x), 0}

Now if y′ ≥ y, then for all t

max{F1(t|x)− F0(t− y′|x)−, 0} ≥ max{F1(t|x)− F0(t− y|x)−, 0}

so that L(y′|x) ≥ L(y|x). Next we show that L(y|x) is right continuous. Consider a sequence
yn ↓ y. First the sequence L(yn|x) is decreasing and bounded from below, so that it has a limit.
Obviously yn − y < ε iff (t− y)− (t− yn) < ε independent of t. Hence for all δ > 0 and n large
enough

F0(t− yn|x) ≥ F0((t− y)|x)− − δ

Note that t− yn ↑ t− y and that F0(.)− is left-continuous. Using this inequality we have for all
t

F1(t|x)− F0(t− y|x)− ≤ F1(t|x)− F0(t− yn|x)− ≤ F1(t|x)− F0((t− y)|x)− + δ

Taking the sup over t from right to left we obtain

L(y|x) ≤ L(yn|x) ≤ L(y|x) + δ

Taking the limit we obtain, because δ is arbitrary, that limn→∞ L(yn|x) = L(y|x), so that the
lower bound is right-continuous. Note that

L(y|x) ≥ F1(y/2|x)− F0(−y/2|x)

so that limy→∞ L(y|x) = 1. Taking the expectation over X we conclude that the lower bound
is indeed a cdf (by dominated convergence limits and expectations can be interchanged). The
proof that the upper bound is also a cdf is analogous. �
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Frank, Nelsen, and Schweizer (1987) show that these bounds are pointwise sharp in the
following sense: for all y there is a joint distribution of Y0, Y1 with marginal cdf-s equal to
F0, F1 such that the cdf of Y1 − Y0 at y is equal to GML(y). There is also (a different) joint
distribution with the same marginals such that the cdf of Y1 − Y0 at y is equal to GMU (y).
This result is derived for the unconditional distributions, but it applies directly if we have
distributions conditional on X = x.

For some distributions the bounds have a closed form.

Example 1: Difference of normals with the same variance.
Consider

Yk ∼ N(µk, σ
2) k = 0, 1

Define the ATE by θ = µ1 − µ0. The lower bound on the cdf of the treatment effect is

GML(y) = 0 if y < θ

= 2Φ
(

y − θ

2σ

)
− 1 if y ≥ θ

The corresponding density is

gML(y) = 0 if y < θ

=
1
σ

φ

(
y − θ

2σ

)
if y ≥ θ

Note that this is the density of a halfnormal distribution with begin point θ. Hence the mean
of the lower bound distribution is

θ + σ
2
√

2√
π

> θ

Hence mean of the lower bound distribution is strictly larger that the mean of the distribution
of Y1 − Y0. The upper bound is

GMU (y) = 2Φ
(

y − θ

2σ

)
if y < θ

= 1 if y ≥ θ

The corresponding density is

gMU (y) =
1
σ

φ

(
y − θ

2σ

)
if y < θ

= 0 if y ≥ θ

which is the density of a halfnormal distribution distribution with end point θ, so that the mean
of the lower bound distribution is equal to

θ − σ
2
√

2√
π

< θ.

By inverting the bounds we obtain bounds on the quantiles of the treatment effect distribution.
If we denote the upper and lower bounds for the p quantile by qML(p) and qMU (p), respectively4,

4The subscripts L, U indicate the fact that the upper bound on the p quantile is obtained by inverting the
lower Makarov bound and the lower bound by inverting the upper Makarov bound.
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then
qMU (p) = θ + 2σΦ−1

(p

2

)
and

qML(p) = θ + 2σΦ−1

(
p + 1

2

)
and these are best possible bounds on the p quantile of the distribution of the treatment effect,
if we do not use the known ATE.

The Makarov bounds on the cdf are not informative if y = θ, because at that point the lower
bound on the cdf is 0 and the upper bound is 1. The bounds on the cdf are more informative
if y is much larger or smaller than the ATE. Interestingly the length of the bound on the p
quantile is proportional to

Φ−1

(
p + 1

2

)
− Φ−1

(p

2

)
and this is minimal if p = 1

2 , i.e. the bounds for the median are most informative. Note that
for the median the bounds are symmetric around θ, but that they are asymmetric for other
quantiles. �

If there are covariates that are correlated with the outcomes, then Theorem 1 suggests to
compute the average (with respect to the covariate distribution) bounds. Theorem 2 states that
the average bounds are narrower than the bounds derived from the average, i.e. unconditional,
outcome distributions.

Theorem 2

sup
t

max{E[F1(t|X)]− E[F0(t− y|X)−], 0} ≤ E
[
sup

t
max{F1(t|X)− F0(t− y|X)−, 0}

]
(2)

E
[
inf
t

min{F1(t|X)− F0(t− y|X)− + 1, 1}
]
≤ inf

t
min{E[F1(t|X)]−E[F0(t−y|X)−]+1, 1} (3)

Proof: For all x ∈ X and all s ∈ <

sup
t

max{F1(t|X = x)− F0(t− y|X = x)−, 0} ≥ max{F1(s|X = x)− F0(s− y|X = x)−, 0}

Hence for all x ∈ X and all s ∈ <

sup
t

max{F1(t|X = x)− F0(t− y|X = x)−, 0} ≥ F1(s|X = x)− F0(s− y|X = x)−

and
sup

t
max{F1(t|X = x)− F0(t− y|X = x)−, 0} ≥ 0

Averaging over the distribution of X gives that for all s ∈ <

E
[
sup

t
max{F1(t|X)− F0(t− y|X)−, 0}

]
≥ E[F1(s|X)]− E[F0(s− y|X)−]

and

E
[
sup

t
max{F1(t|X)− F0(t− y|X)−, 0}

]
≥ 0
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Hence for all s ∈ <

E
[
sup

t
max{F1(t|X)− F0(t− y|X)−, 0}

]
≥ max{E[F1(s|X)]− E[F0(s− y|X)−], 0}

so that we obtain (2). The proof of inequality (3) is analogous. �

The theorem shows that the average Makarov bounds are more informative than the Makarov
bounds on the average distribution. This means that even in a randomized experiment covari-
ate information can be useful in narrowing the bounds on the cdf and the quantiles of the
treatment effect distribution. The next example illustrates the role of averaging for normal
outcome distributions.

Example 2: Mixture of normals with the same variance.
We assume that the outcome distributions are a two-component mixture of normal distributions

Ykl ∼ N(µkl, σ
2) k = 0, 1, l = 1, 2

Define θl = µ1l − µ0l, l = 1, 2 and without loss of generality we assume θ1 < θ2. The fraction in
the population with ATE θl is rl, l = 1, 2 with r1 + r2 = 1. The average lower Makarov bound
as in (1) is

GML(y) = 0 if y < θ1

= r1

(
2Φ
(

y − θ1

2σ

)
− 1
)

if θ1 ≤ y < θ2

= 2
(

r1Φ
(

y − θ1

2σ

)
+ r2Φ

(
y − θ2

2σ

))
− 1 if y ≥ θ2

and the average upper Makarov bound is

GMU (y) = 2
(

r1Φ
(

y − θ1

2σ

)
+ r2Φ

(
y − θ2

2σ

))
if y < θ1

= r1 + 2r2Φ
(

y − θ2

2σ

)
if θ1 ≤ y < θ2

= 1 if y ≥ θ2

The average outcome distribution is a mixture of normals and the bounds do not have a closed
form solution in that case. We consider an example with σ = 3,µ01 = µ11 = 1 so that θ1 = 0
and µ02 = 0, µ12 = 2 so that θ1 = 2. Also r1 = r2 = .5 so that the ATE is 1. Note that
averaging improves the bounds in the interval [0, 2] = [θ1, θ2], but not outside this interval. In
this example the variation in µ explains a fraction .25/9 = .028 of the variation in the outcomes.
�

Example 3: Dummy outcome distributions.
The Makarov bounds also apply of the outcome distribution is discrete. Here we consider the
special case that both Y0 and Y1 are 0-1 variables with Pr(Y0 = 1) = p0 and Pr(Y1 = 1) = p1.
In this case it is possible to derive the bounds on the distribution of Y1 − Y0 directly, because
this distribution has only three points of support -1,0,1. We verify that these bounds are equal
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Fig 1. Average Makarov bounds and Makarov bounds for the average population: Normal
two-point mixture with θ1 = 0, θ2 = 2.

to the Makarov bounds. Also in this case the bounds are uniformly sharp so that knowledge of
the ATE p1 − p0 does not change the bounds.

We first obtain bounds on Pr(Y1 − Y0 = −1) = Pr(Y0 = −1, Y1 = 1). Because of this
equality we have the bounds (use the Bonferroni inequality for the lower bound)

max{p0 − p1, 0} ≤ Pr(Y = −1) ≤ min{1− p1, p0}

The bounds are summarized in Figure 2. Above the 45 degree line the ATE is positive and
below it the ATE is negative. Note that for instance, if the ATE is positive, then less than
half of the population is harmed (negative treatment effect) by the treatment. Actually, for the
bounds for Pr(Y = 1) imply that if the treatment effect is negative, then less than half of the
population benefits (positive treatment effect) from the treatment.

To show that these bounds are indeed Makarov bounds we define

U(t) = min{F1(t)− F0(t + 1)− + 1, 1}

and
L(t) = max{F1(t)− F0(t + 1)−, 0}

10



Fig 2. Bounds on Pr(Y = −1) for 0-1 outcome variables

so that

U(t) = 1 t ≤ −1
= p0 − 1 < t < 0
= min{p0 + 1− p1, 1} ≥ p0 t = 0
= 1− p1 0 < t < 1
= 1 t ≥ 1

and

L(t) = 0 t < 0
= max{p0 − p1, 0} t = 0
= 0 t > 0

By taking the inf and sup over t we get the upper and lower Makarov bounds that are equal to
the bounds derived before.

For Pr(Y = 1) = Pr(Y0 = 0, Y1 = 1) we obtain

max{p1 − p0, 0} ≤ Pr(Y = 1) ≤ min{p1, 1− p0}

Because Pr(Y = 1) = 1 − Pr(Y ≤ 0) we can show that these bounds are Makarov bounds by
substitution of the Makarov bounds on Pr(Y ≤ 0) . Finally, because Pr(Y = 0) = 1− Pr(Y =
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−1)− Pr(Y = 1) we have the following bounds

1−min{1− p1, p0} −min{p1, 1− p0} ≤ Pr(Y = 0) ≤ 1−max{p0 − p1, 0} −max{p1 − p0, 0}

which are again equal to the Makarov bounds.
Let Y ∗ be a random variable with values -1,0,1 and

Pr(Y ∗ = −1) = max{p0 − p1, 0}
Pr(Y = 0) = 1−max{p0 − p1, 0} −max{p1 − p0, 0}
Pr(Y ∗ = 1 = max{p1 − p0, 0}

This distribution is inside the Makarov bounds and equal to the lower bound on the probability
Pr(Y = −1) and Pr(Y = 1) and the upper bound on the probability of Pr(Y = 0). Moreover,

E(Y ∗) = p1 − p0

so that the mean is equal to the ATE. Hence, there is a joint distribution of Y0, Y1 with the
given marginals that coincides with the lower, upper, and lower bounds of the probabilities.
This distribution is the same for all values of Y . An analogous construction gives a distribution
with mean equal to the ATE that coincides with the upper, lower and upper bounds of the
probabilities Pr(Y = y). This implies that the Makarov bounds in this case are best possible.

The construction of the bounding distributions is similar to that used in the next section,
be it that here we do not obtain an improvement. The case of dummy outcomes is special and
the results do not extend to the general discrete case.�

4 Improved Bounds on the Quantiles of the Distribution of
Treatment Effects

We argued that the Makarov bounds are pointwise sharp, because for any value of the individual
treatment effect there is a joint distribution of Y0, Y1 such that the cdf of Y1 − Y0 is equal to
the lower Makarov bound, and the same holds for the upper bound. However, in Example 1
the mean of the lower bound distribution is larger than µ1 − µ0 while the mean of the upper
bound distribution is larger than µ1 − µ0. In general the Makarov bounds do do incorporate
the mean of the treatment effect distribution which is known from the marginal means of Y0

and Y1. Actually the mean is the only feature of the treatment effect distribution that can be
recovered from the marginal outcome distributions. Formally, for any non-constant function
h the moment E[h(Y1 − Y0)] is a functional of the marginal distributions of Y1 and Y0 if and
only if h is the identity function (or a linear transformation of the identity function with known
coefficients). As far as we know the fact that the Makarov bounds do not incorporate the
information on the mean treatment effect has not been noticed in the literature on bounds on
the distribution of sums of random variables. If we observe covariates that are correlated with
the outcomes, then the conditional Makarov bounds do not account for the information in the
conditional treatment effect E[Y1 − Y0|X = x].

In this section we show how we can use the ATE to improve the Makarov bounds on the
quantiles of the treatment effect distribution. In Section 4 we discuss an analogous procedure to
improve the Makarov bounds on the cdf. The latter bounds can be inverted to obtain improved
bounds on the quantiles. It turns out that the resulting bounds are the same as the improved
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bounds on the quantiles derived in this section. We discuss the improvement procedure for the
quantiles separately for expository purposes. A drawback of improving the quantiles is that
with covariates we obtain bounds on the conditional quantiles, and there is no obvious way
to obtain bounds on the unconditional quantiles from these bounds. However, the improved
bounds on the conditional cdf can be averaged to obtain bounds on the unconditional cdf that
can be inverted to obtain bounds on the unconditional quantiles. For this reason omit the
covariates in the derivation of the improved bounds on the quantiles.

The derivation of the improved bounds is based on the fact that if the distribution of Z1

first order stochastically dominates that of Z2 then for any increasing function φ, E(φ(Z1)) ≥
E(φ(Z2)) provided that the expectations exist (e.g. Shaked and Shanthikumar, 1994, p. 4). In
the sequel we assume that all (conditional) expectations exist. We fix the index 0 < p < 1 of
the quantile of the distribution of Y1 − Y0 that will be bounded. We denote this quantile by
qY1−Y0(p). Initially we have the bounds

qMU (p) ≤ qY1−Y0(p) ≤ qLU (p)

with qMk(p) = inf{y|GMk(y) ≥ p} for k = L,U . The labelling of the bounds seems counterin-
tuitive, but the subscripts indicate that the lower bound is the p quantile of the upper Makarov
bound on the cdf (see Figure 2). These bounds are pointwise, i.e. for a given p, sharp in the
same sense as the Makarov bounds, i.e. there is a joint distribution of Y0, Y1 with marginal
cdf-s equal to F0, F1 such that the cdf of Y1−Y0 has p quantile qMU (p). This joint distribution
is obtained by the construction of Frank, Nelsen, and Schweizer(1987) with y = qMU (p). The
upper bound is also sharp in this sense.

In general the upper and lower bound distributions will not have a mean equal to E(Y1−Y0).
The question is whether this additional information gives narrower bounds on the p quantile
qY1−Y0(p). To investigate this we first construct distributions that have p quantile equal to
qMU (p) and qML(p) and are have the largest and smallest cdf, in the sense of first order stochastic
domination, with these p quantiles, and that also are within the Makarov bounds. The largest
cdf GpL is

GpL(y) = GML(y) y < qMU (p)
= p qMU (p) ≤ y < qML(p)
= GML(y) y ≥ qML(p)

The smallest he cdf GpU is

GpU (y) = GMU (y) y < qMU (p)
= p qMU (p) ≤ y < qML(p)
= GMU (y) y ≥ qML(p)

The construction is illustrated in Figure 3. The labelling of these cdf-s indicates the Makarov
bound that they must follow to achieve the objective of having a mean greater than the ATE
for GpL, i.e. GML, and less than the ATE for GpU , i.e. GMU . The next step is to compute the
mean of the distributions with cdf GpL and GpU . The corresponding distributions are mixed
discrete-continuous. For the continuous part we use the fact that for any continuous random
variable Z with support z, z and cdf FZ

E(Z) =
∫ z

0
(1− FZ(z))dz −

∫ 0

z
FZ(z)dz

13



Fig 3. Largest cdf GpL and smallest cdf GpU consistent with Makarov bounds on the p quantile

First, we consider GpL. The corresponding distribution has an atom at qMU (p) and the
probability of this point is p − GML(qMU (p)). To compute the mean we take the average of
the mean of the distribution truncated from above at qMU (p) , the mean of the distribution
truncated from below at qML(p) , and qMU (p) with weights GML(qMU (p)), 1 − p, and p −
GML(qMU (p)), respectively. Note that the interval [qMU (p), qLU (p)] has probability 0 in the
distribution with cdf GpL. The truncated means are

1
GML(qMU (p))

(∫ max{qMU (p),0}

0
(1−GML(y))dy −

∫ min{qMU (p),0}

−∞
GML(y)dy

)

and
1

1− p

(∫ ∞

max{qML(p),0}
(1−GML(y))dy −

∫ 0

min{qML(p),0}
GML(y)dy

)
Hence

µpL = (p−GML(qMU (p)))qMU (p)+
∫ max{qMU (p),0}

0
(1−GML(y))dy−

∫ min{qMU (p),0}

−∞
GML(y)dy+

∫ ∞

max{qML(p),0}
(1−GML(y))dy −

∫ 0

min{qML(p),0}
GML(y)dy

An analogous argument gives

µpU = (GMU (qML(p))−p)qML(p)+
∫ max{qMU (p),0}

0
(1−GMU (y))dy−

∫ min{qMU (p),0}

−∞
GMU (y)dy+

∫ ∞

max{qML(p),0}
(1−GMU (y))dy −

∫ 0

min{qML(p),0}
GMU (y)dy
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Now we distinguish between two cases: (i) µpL ≥ E(Y1−Y0), and (ii) µpL < E(Y1−Y0). In case
(i) there exists a cdf within the Makarov bounds that goes through the lower bound on the p
quantile and has a mean equal to E(Y1−Y0). In case (ii) such a cdf does not exist. The only way
to obtain a cdf of a distribution with a mean equal to the ATE is to move the lower bound on
the p quantile to the right, i.e. to move the atom in the GpL distribution to the right. Because
the mean of the GML distribution is larger than the ATE, there is a lower bound q̃MU (p) such
that the corresponding distribution has mean equal to the ATE. An analogous argument gives
the expression for the improved upper bound and the condition for improvement.

The adjusted bounds on qY1−Y0(p) are

q̃MU (p) ≤ qY1−Y0(p) ≤ q̃ML(p)

with q̃MU (p) ≥ qMU (p) the solution to

(p−GML(q̃MU (p)))q̃MU (p)− (p−GML(qMU (p)))qMU (p) +
∫ max{q̃MU (p),0}

max{qMU (p),0}
(1−GML(y))dy

−
∫ min{q̃MU (p),0}

min{qMU (p),0}
GML(y)dy = max{E(Y1 − Y0)− µpL, 0}

and q̃ML(p) ≤ qML(p) the solution to

(GMU (qML(p))− p)qML(p)− (GMU (q̃ML(p))− p)q̃ML(p) +
∫ max{qMU (p),0}

max{qMU (p),0}
(1−GMU (y))dy−

∫ min{qMU (p),0}

min{q̃MU (p),0}
GMU (y)dy = max{µpU − E(Y1 − Y0), 0}

Note that the information on the mean only gives improved bounds if the right-hand side of
the equations is positive.

Because the lower bound q̃MU (p) is the p quantile of a cdf with mean E(Y1 − Y0) that is
within the Makarov bounds and that by construction is the largest cdf within these bounds
with p quantile q̃MU (p) and mean E(Y1− Y0), the adjusted lower bound is best possible for the
p quantile. The same argument establishes that the adjusted upper bound is best possible.

Example 1, continued: Difference of normals with the same variance.

As discussed in Section 3 the Makarov bounds on the p quantile are

qM,U (p) = θ + 2σΦ−1
(p

2

)
and

qM,L(p) = θ + 2σΦ−1

(
p + 1

2

)
and these are best possible, if we do not use the known ATE. Can these bounds be improved
if we know the ATE? We assume without loss of generality that θ ≥ 0. This implies that
qML(p) ≥ θ ≥ 0. Also we consider the case that qMU (p) ≤ 0 which is equivalent to

θ

σ
≤ −2Φ−1

(p

2

)
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p HL(p) HU (p)
.10 1.14 1.43
.20 0.78 1.08
.30 0.46 0.76
.40 0.15 0.46
.50 -.16 .16
,60 -.46 -.15
.70 -.76 -.46
.80 -1.08 -.78
.90 -1.43 -1.14

This restrictions yields simple explicit expressions for the improved bounds. In most cases the
ATE is small relative to the standard deviation of the outcome distribution, so that this seems
to be the relevant case. If the ratio of the ATE and the standard deviation of the outcome
distribution is less than .2, this case covers up to the 92-th percentile and if this ratio is less
than .1 up it covers up to the 96-th percentile.

If the restriction is met we have

µpL = pθ + σ

(
2pΦ−1

(p

2

)
− 2(1− p)Φ−1

(
p + 1

2

)
+ 4φ

(
Φ−1

(
p + 1

2

)))
and

µpU = (1− p)θ + σ

(
2(1− p)Φ−1

(
p + 1

2

)
+ 2pΦ−1

(p

2

)
− 4φ

(
Φ−1

(p

2

)))
We define

HL(p) =
1
p

(
2(1− p)Φ−1

(
p + 1

2

)
+ 2pΦ−1

(p

2

)
− 4φ

(
Φ−1

(p

2

)))
and

HU (p) =
1

1− p

(
2(1− p)Φ−1

(
p + 1

2

)
+ 2pΦ−1

(p

2

)
− 4φ

(
Φ−1

(p

2

)))
It can be shown that HL(p) ≤ HU (p) and that the lower bound qMU (p) on the p quantile can
be improved iff

θ

σ
≥ HL(p)

The upper bound qML(p) can be improved if

θ

σ
≤ HU (p)

The table gives HL(p) and HU (p) for selected values of p.
Now assume that θ

σ = .10. In that case both the upper and lower bound on the median of
the treatment effect distribution can be improved. For lower quantiles only the upper bound is
improved by knowledge of the ATE while for lower quantiles only the lower bound is improved.
As an illustration consider θ = 1 and σ = 10. Then the Makarov bounds on the median are
[−12.48, 14.48]. The improved lower bound is −12.48 + 2.56 = −9.92. The improved upper
bound is 14.48− .56 = 13.92. �
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5 Improved Bounds on the Distribution Function of the Treat-
ment Effect Distribution

We can also use knowledge of the ATE to improve the bounds on the cdf of the treatment effect
distribution. For instance,in the case that the outcome is valued positively, it is important to
know which fraction of the population is harmed by the intervention, i.e. G(0). As noted above
we can average the improved bounds. Hence we improve the conditional Makarov bounds.

The conditional Makarov bounds on the cdf of the treatment effect distribution in y0 given
X = x are

GML(y0|x) ≡ sup
t

max{F1(t|x)− F0(t− y0|x)−, 0} ≤ G(y0|x) ≤

inf
t

min{F1(t|x)− F0(t− y0|x)− + 1, 1} ≡ GMU (y0|x)

As in the case of bounds on a quantile we note that the bounds do not take into account the
known (conditional) ATE. For the upper bound GML(y0|x) we construct the largest, in the sense
of first order stochastic domination, cdf Gy0U inside the Makarov bounds that passes through
this upper bound. For the lower bound we find the smallest cdf Gy0L inside the Makarov bounds
that passes through the upper bound on the conditional cdf. We have

Fig 4. Smallest cdf Gy0L and largest cdf Gy0U consistent with Makarov bounds on the cdf at y0

Gy0U (y|x) = GML(y|x) y < y0

= GMU (y0|x) y0 ≤ y < G−1
ML(GMU (y0|x)|x))

= GML(y|x) y ≥ G−1
ML(GMU (y0|x)|x))
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and

Gy0L(y|x) = GMU (y|x) y < G−1
MU (GML(y0|x)|x))

= GML(y0|x) G−1
MU (GML(y0|x)|x)) ≤ y < y0

= GMU (y|x) y ≥ y0

The distribution Gy0U (y|x) has an atom at y0 and gives 0 probability to the interval
(y0, G

−1
ML(GMU (y0|x)|x))]. The truncated means of the continuous parts of the distribution are

1
1−GMU (y0|x)

(∫ ∞

max{G−1
ML(GMU (y0|x)|x)),0}

(1−GML(y|x))dy −
∫ 0

min{G−1
ML(GML(y0|x)|x)),0}

GML(y|x)dy

)
and

1
GML(y0|x)

(∫ max{y0,0}

0
(1−GML(y|x))dy −

∫ min{y0,0}

−∞
GML(y|x)dy

)
Hence we have

µy0U = (GMU (y0|x)−GML(y0|x))y0 +
∫ ∞

max{G−1
ML(GMU (y0|x)|x)),0}

(1−GML(y|x))dy

−
∫ 0

min{G−1
ML(GML(y0|x)|x)),0}

GML(y|x)dy+
∫ max{y0,0}

0
(1−GML(y|x))dy−

∫ min{y0,0}

−∞
GML(y|x)dy

The distribution Gy0L(y|x) has an atom at y0 and gives 0 probability to the interval
(G−1

MU (GML(y0|x)|x)), y0]. The truncated means of the continuous parts of the distribution are

1
1−GMU (y0|x)

(∫ ∞

max{y0,0}
(1−GMU (y|x))dy −

∫ 0

min{y0,0}
GMU (y|x)dy

)
and

1
GML(y0|x)

(∫ max{G−1
MU (GML(y0|x)|x)),0}

0
(1−GMU (y|x))dy −

∫ min{G−1
MU (GML(y0|x)|x)),0}

−∞
GMU (y|x)dy

)
Hence we have

µy0L = (GMU (y0|x)−GML(y0|x))y0 +
∫ ∞

max{y0,0}
(1−GMU (y|x))dy −

∫ 0

min{y0,0}
GMU (y|x)dy+

∫ max{G−1
MU (GML(y0|x)|x)),0}

0
(1−GMU (y|x))dy −

∫ min{G−1
MU (GML(y0|x)|x)),0}

−∞
GMU (y|x)dy

The improved bounds are

G̃ML(y0|x) ≤ G(y0|x) ≤ G̃MU (y0|x)

with G̃ML(y0|x) ≥ GML(y0|x) the solution to

(G̃ML(y0|x)−GML(y0|x))y0 +
∫ max{G−1

MU ( eGML(y0|x)|x)),0}

max{G−1
MU (GML(y0|x)|x)),0}

(1−GMU (y|x))dy−
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∫ min{G−1
MU ( eGML(y0|x)|x)),0}

min{G−1
MU (GML(y0|x)|x)),0}

GMU (y|x)dy = max{µy0L − E(Y1 − Y0), 0}

and G̃MU (y0|x) ≤ GMU (y0|x) the solution to

(G̃MU (y0|x)−GMU (y0|x))y0 +
∫ max{G−1

ML(GMU (y0|x)|x)),0}

max{G−1
ML( eGMU (y0|x)|x)),0}

(1−GML(y|x))dy

−
∫ max{G−1

ML(GMU (y0|x)|x)),0}

max{G−1
ML( eGMU (y0|x)|x)),0}

GML(y|x)dy = max{E(Y1 − Y0)− µy0U , 0}

Example 1, continued: Difference of normals with the same variance.

Figures 5-7 give the Makarov bounds and the ATE improved bounds for normal outcome
distributions. The common standard deviation is σ = 3 and the ATE-s are 0, 1 and 2. As
noted before the bounds on the cdf can be inverted to obtain bounds on the quantiles. These
bounds are identical to the bounds that derived in Section 3.

Note that if θ increases the improvement is larger for the upper bound on the cdf or lower
bound on the quantiles. For the largest value of the ATE the fraction that is hurt by the
intervention is between 0 and .4 for the improved bound but between 0 and .6 for the origi-
nal Makarov bound. Hence for the improved bound we can conclude that a majority of the
population benefits from the intervention. �

Example 2, continued: Mixture of normals with the same variance.

The setup is as before and we use the same parameter values. Figure 8 gives the improved
bounds that use the conditional ATE-s, i.e. the conditional Makarov bounds are improved and
averaged over the subpopulations. �
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Fig 5. Makarov bounds and improved Makarov bounds: Normal outcome distributions θ =
0, σ = 3
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Fig 6. Makarov bounds and improved Makarov bounds: Normal outcome distributions θ =
1, σ = 3
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Fig 7. Makarov bounds and improved Makarov bounds: Normal outcome distributions θ =
2, σ = 3

24



Fig 8. Average improved Makarov bounds and Makarov bounds for the average population:
Normal two-point mixture with θ1 = 0, θ2 = 2.
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