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Abstract

We propose a new regression method for modelling unconditional quantiles of

an outcome variable as a function of explanatory variables. The method consists

of running a regression of the (recentered) influence function of the unconditional

quantile of the dependent variable on the explanatory variables. The influence

function is a widely used tool in robust estimation that can easily be computed

for each quantile of interest. The estimated regression model can be used to infer

the impact of various explanatory variable on a given unconditional quantile, just

like the regression coefficients are used in the case of the mean. Our approach can

thus be used, for example, to decompose quantiles as a function of the different

explanatory variables (as in a standard Oaxaca-Blinder mean decomposition), or

to predict the effect of changes in policy or other variables on quantiles.

Keywords: Influence Functions, Quantile Regressions.

∗We are indebted to Richard Blundell, David Card, Geert Ridder, Jean-Marc Robin, Hal White and
seminar participants at the CESG 2005 Meetings for useful comments on this and earlier versions of the
manuscript. We thank Kevin Hallock for kindly providing the birthweight data used in the application.
Financial support was provided by SSHRC Grants INE #512-2002-1005.

1



1 Introduction

Quantile regressions are an increasingly popular method in empirical economics. Just like

OLS regressions provides a simple way of estimating the effect of explanatory variables

on the conditional mean of an outcome variable, quantile regressions provide simple

estimates of the effect of the same variables on any conditional quantile of the outcome

variable. Quantile regressions enable researchers to “go beyond the conditional mean”,

which is useful for a number of reasons. In particular, in many cases we not only care

about the mean of the outcome variable, but also about other aspects of the distribution.

For instance, Koenker and Hallock (2001) apply quantile regressions to the case of infant

birthweight. From a public health perspective, we are especially concerned with the

lower tail of the birthweight distribution, and in particular with cases that fall below

the “low birthweight” threshold of 2500 grams. Koenker and Hallock (2001) show that

providing pre-natal care has a much larger impact at lower conditional quantiles than

at higher conditional quantiles of the birthweight distribution. This suggests that such

practices may provide an effective way of reducing the problem of low birthweight even

if they have limited impact on the mean of birthweight.

Starting with Chamberlain (1994) and Buchinsky (1994), quantile regressions have

also been used in the large labor economics literature on wage inequality. From a

welfare point of view, both the mean and the distribution of real wages matter. It

is thus important to see how wage setting factors like education and union status (the

two cases studied by Chamberlain) affect both the conditional mean and the conditional

dispersion of wages. For instance, Chamberlain shows that unions have a much larger

effect at lower than higher quantiles, confirming the well established view that they tend

to compress wages among workers with the same observable characteristics.

On closer examination, however, quantile regressions are not always well suited for

answering many questions of distributional interest. The key difficulty occurs when the

ultimate object of interest is the unconditional distribution, as in the case of low birth-

weight or wage inequality discussed above. The problem is that a particular quantile of

the unconditional outcome distribution cannot be expressed as a function of the corre-

sponding conditional quantiles. Thus the coefficients of a particular quantile regression

cannot be used to predict the effect of a given covariate on the corresponding quantile

of the unconditional distribution. In fact, we show that even the sign of the coefficient

may be “wrong”. For example, we show in the empirical section that while unions have

a positive effect on the 90th conditional quantile, unionization tends to reduce the 90th
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quantile of the unconditional wage distribution. By contrast, it is well known that the

expected value of the conditional mean is equal to the unconditional mean of the outcome

variable. This implies that a regression coefficient can be either interpreted as the effect

of a covariate on the conditional or unconditional mean. For instance, if the OLS esti-

mate of the effect of unions on log wages is 0.2, this also means that moving everybody

from non-union to union would increase the (unconditional) mean of log wages by 0.2.

Another way of illustrating the limitations of quantile regressions is to go back to the

birthweight example. Consider a quantile regression for the 10th conditional quantile.

Koenker and Hallock (2001) show that prenatal care has a large effect on this conditional

quantile. Unfortunately, the 10th conditional quantile is very different depending on

other characteristics of the mother. The 10th quantile for smoking black mothers with a

high school education or less (at 2183 grams) is well below the low birthweight threshold

of 2500 grams.1 By contrast, the 10th quantile for white college educated mothers who do

not smoke (at 2880 grams) is well above the low birthweight threshold, in fact it is above

the corresponding birthweight for the 41th quantile of the previous group. The quantile

regression estimate at the 10th conditional quantile thus mixes the impact of prenatal care

for some infants above and below the low birthweight threshold. Conditional quantile

regressions may not be the best way to infer the impact of prenatal care on the weight

of infants right around the 2500 grams threshold.2

In this paper, we propose a new computationally simple regression method that can

be used to model the unconditional quantiles of the outcome variable as a function of

the explanatory variables. Our approach builds upon the concept of the influence func-

tion (IF), a widely used tool in robust estimation of statistical or econometric models.

Intuitively, the influence function for a given distributional parameter is simply the con-

tribution of an individual observation to this parameter. For example, the influence

function of an observation to the mean is simply its demeaned value. More generally,

the influence function is easily computed for other distributional measures, including

quantiles. Here, we propose, in the simplest case, to run OLS regressions of a (recen-

tered) influence function (RIF) on the explanatory variables. This corresponds to what

we usually do in the case of the mean for which the recentered influence function is

the observation value itself. The estimated model can thus be used to construct policy

conterfactuals or decomposition of the unconditional quantile in the same way OLS is

1As computed from the Koenker and Hallock (2001) data.
2Empirically however, conditional and unconditional quantile regressions estimates in this particular

case will give similar results.
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typically used for the mean.

We view our method as a very useful complement to quantile regressions. Of course,

in some settings quantile regressions are the appropriate method to use. For instance,

quantile regressions are a useful descriptive tool that provide a parsimonious representa-

tion of the conditional quantiles. Under the stronger assumption of rank preservation,

quantile regression estimates can also be given a causal interpretation as the “treatment

effect” for someone of a given rank in the distribution of unobservables. Quantile re-

gressions are also a natural model to estimate in the “traditional” econometric approach

where regressors are treated as fixed. We follow a different approach here since we are

treating regressors as random, and want to compute the unconditional distribution of

the outcome variables under various scenarios about the distribution of regressors.

The structure of the paper is as follows. In the next section, we propose an intuitive

introduction to the concept of unconditional quantile regressions by contrasting them

with conditional quantile regressions. In Section 3, we establish the general concepts of

recentered influence functions which can be applied to any functional of the distribution of

interest. We formally show how the recentered influence function can be used to compute

what happens to a distributional statistic ν when the distribution of the outcome variable

Y changes in response to a change in the distribution of covariates X. In section 4, we

focus on the case of quantiles and link the impact of specific changes in the distribution of

the covariates on the outcome variables to estimable paramters. We also consider these

parameters in the context of structural models. We discuss estimation issues in Section

5. Section 6 illustrates the workings of our method by applying it to the birthweight

example above and the impact of unions on the distribution of wages. We conclude in

Section 7.

2 Unconditional vs Conditional Quantile Regressions

Before presenting the details of our estimation method, it is important to first clarify the

difference between commonly estimated conditional quantile regressions and our proposed

approach. As we note above, the key difference is that the parameters from a standard

quantile regression indicate the effect of a covariate on a conditional quantile, but in many

cases the effect on the unconditional quantile may be of more policy or economic interest.

A useful way of illustrating the difference between the conditional and unconditional

effects is to go back to the case of the mean for which the literature is extensively
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developed.

When the conditional expectation of the outcome variable, Y , is linear in the ex-

planatory variables, X, it is straighforward to estimate the partial effect of each element

of X by OLS. As is well know, OLS provides consistent estimates of the average partial

effect (APE) of X on Y , where the “average” reflects the fact that the effect is averaged

over all possible values of Y given X. The simple link between model parameters and

APE does not extend, however, to non-linear models. For example, in a probit model,

the parameters of the latent model do not correspond to the APE of X on the means

of the outcome variable Y (a proportion in this case). As a result, applied researchers

commonly compute some average partial (or marginal) effects that are of more direct

economic interest than the parameters per se. In some case, people simply compute the

partial effect at a particular value of the explanatory variables (for instance the mean of

X). Since this conditions on a particular value of X, this particular effect corresponds

to what Wooldridge (2004) calls a conditional average partial effect (CAPE). In other

case, the partial effect is averaged out over all observed values of the explanatory vari-

ables, which now corresponds to what Wooldridge (2004) calls an unconditional average

partial effect (UAPE).

We can similarly think of quantile regressions as a method for estimating quantile

partial effects. If those quantile partial effects refer to the conditional quantiles of Y given

a particular value X, conditional quantile regressions are typically involved. We refer to

this type of quantile partial effects as “conditional quantile partial effects” (CQPE). On

the other hand, the method proposed here seeks to estimate in a simple fashion the effect

of changes in X on unconditional quantiles of Y . We will refer to these partial effects as

unconditional quantile partial effects (UQPE).

The difference between conditional and unconditional partial effects is easily illus-

trated in the case of the mean, µ = E [Y ] =

∫
y · dFY (y). From the law of iterated

expectations, it follows that

µ =

∫
E [Y |X = x] · dFX(x).

This shows that the unconditional mean of Y can be recovered by integrating the condi-

tional mean E [Y |X], using the distribution of X. Generally speaking, we are interested

in the effect of X on the outcome variable Y . Since E [Y |X] is easily estimated by re-

gression methods, a first answerable question is what is the effect of a small change in X

(holding everything else constant) on the conditional expectation E [Y |X] evaluated at

5



a specific value x of X. As mentioned above, Wooldridge calls this effect the conditional

average partial effect (CAPE) to highlight the fact that it is being computed for a given

value of X

CAPE(x) =
∂E [Y |X = x]

∂x
.

By contrast, the unconditional APE (UAPE) captures the average impact of a small

change of X (at all values of X) on the unconditional expectation of Y , E(Y ) = µ. If

follows from the law of iterated expectations that

UAPE =

∫
∂E [Y |X = x]

∂x
· dFX(x) =

∫
CAPE(x) · dFX(x).

The last part of the equation shows that the UAPE also turns out be the average of

CAPE(x) over all values of X. As we show later, however, this interesting result does

not generalize beyond the mean.

In the standard linear regression model where the conditional expectation is assumed

to be linear in X [E(Y |X) = X ′β], the CAPE is equal to β for all values of X, so

that UAPE = CAPE. This results has great practical importance. It means that the

OLS estimate of β always provides the “correct” answer, irrespective of whether we are

interested in estimating the conditional or the unconditional effect of X on the mean of

Y . This result does not hold, however, for other functionals of Y and, in particular,

for quantiles. When the focus is on quantiles, which are the object of interest in many

studies about distributional issues, one has to be much more careful in deciding whether

the question of economic or policy interest has to do with conditional or unconditional

effects.

Since quantile regressions are a model of the conditional distribution of Y given X,

they provide direct estimates of the CQPE. Unlike the case of the mean, however, the

integration of those conditional effects using the distribution of X does not yield any

meaningful functional of the unconditional distribution of Y . By contrast, our proposed

regression method provides direct estimates of the partial effect of X on the unconditional

quantile of Y , the so-called UQPE. For each possible value of X, the conditional τ th

quantile of Y , Qτ(Y |X), is implicitly defined as

τ = [1I {y ≤ Qτ(Y |X)} |X] ,
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while the unconditional τ th quantile, qτ , is defined as

τ =

∫
E [1I {Y ≤ qτ} |X] · dFX(x).

Unlike the case of the mean, however, there is no “law of iterated quantiles” that can

provide a relationship between the conditional and unconditional quantiles. This means

that, in general

qτ 6=
∫

Qτ(Y |x) · dFX(x).

Taking derivatives from both sides of the equation, it follows that the integration of

the conditional quantile partial effects with respect to the distribution of X bears no

relationship to the parameter investigated in this article, the “unconditional quantile

partial effects” (UQPE):

UQPE 6=
∫

CQPE (x) · dFX(x) =

∫
∂Qτ(Y |x)

∂x
· dFX(x)

To define the UQPE properly, consider the general case of a distributional statistic

ν, such as the mean or quantiles. As we later show, it is always the case that:

ν =

∫
RIF(y; ν) · dFY (y) =

∫
E [RIF(Y ; ν)|X = x] · dFX(x)

where RIF(Y ; ν) is the recentered influence function, which we formally defined in the

next section. The RIF(Y ; ν), besides having an expected value equal to functional ν,

corresponds to the leading term of a von Mises type expansion. The parameter UQPE

is simply the expected value of the derivative with respect to x (the average derivative)

of the conditional expectation of RIF(Y ; qτ) given X = x, that is,

UQPE =

∫
∂E [RIF(Y ; qτ)|X = x]

∂x
· dFX(x)

The conditional expectation E [RIF(Y ; qτ)|X] can be estimated by the same regression

methods used in the case of the mean. In particular, when RIF is assumed to be linear

in X, (E [RIF(Y ; qτ)|X] = X ′γτ ), then the UQPE is simply the regression parameter γτ

of RIF(Y ; qτ) on the X.3 Generally speaking, the UQPE can be thought of as a specific

3In case of the mean, even if E [RIF(Y ; µ)|X = x] is non-linear in x, the UAPE has both the inter-
pretations of being the average of conditional effects and the partial effect on the unconditional average.
This results from the fact that RIF(Y ; µ) = Y .
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policy experiment where X is increased by an equal small amount for all observations.

There is no particular reason, however, why it should always be the parameter of interest.

Our method can easily address other policy experiments.

To better illustrate the workings of the method for quantiles, which are the focus of

this paper, we now give an intuitive interpretation of the recentered influence function,

RIF(Y ; qτ), for the τ th quantile, qτ :

RIF(Y ; qτ) = qτ + IF(Y ; qτ) = qτ +
τ − 1I {Y ≤ qτ}

fY (qτ )
. (1)

The derivation and theoretical foundations of this expression are shown below. First

note that the recentered influence function RIF(Y ; qτ) only depends on the value of

Y through the indicator variable 1I {Y ≤ qτ}. Thus, observations with a value of Y

below qτ have a negative influence on qτ , while observations with a value of Y above qτ

have a positive influence on qτ . Leaving aside the constant τ and the density (scaling

factor) fY (qτ), this implies that a regression of the influence function on covariates is

simply a linear probability model for whether a given observation lies above or below the

quantile qτ . Alternatively, one can run a logit (or probit) model and compute the average

marginal effects of each covariate. Since the indicator variable is divided by the density

fY (qτ) in equation (1), the coefficients in the influence function regression are simply the

coefficients of the linear probability model rescaled by the density fY (qτ), which can be

easily estimated using kernel density methods.

The intuition for why we need to divide the linear probability model coefficients by

the density is easily understood in the context of the birthweight example.4 Say we run

a linear probability model for whether birthweight is below the low birthweight threshold

of 2500 grams. The estimated coefficient on prenatal care now indicates by how much

prenatal care reduces the incidence of low birthweight. Say that it reduces the incidence

of low birthweight by one percentage point, from 6 to 5 percent. While this probability

impact is of some clear interest, it is not directly comparable to the corresponding esti-

mated effect of prenatal care in an OLS or quantile regression of birthweight. To get a

comparable effect, we need to transform the probability impact back into a birthweight

impact. Roughly speaking, the function that transforms probabilities into birthweights

is simply the inverse of the cumulative distribution function (CDF), and the slope of the

inverse CDF is the inverse of the density. If the density of birthweight at 2500 grams is

4We note that the methods for binary choice model proposed by Lewbel (2004, 2005) also involve
weighting by the inverse probability density function.
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1/10,000, then the 0.01 impact of prenatal care on the probability of low birthweight will

translate into a 0.01×10,000=100 grams impact on the 10th quantile of the birthweight

distribution. Prenatal care would thus increase the 10th quantile of the birthweight dis-

tribution from 2500 to 2600 grams. The reader primarly interested in applications can

skip to Section 6 to get a precise idea of what empirical UQPE and CQPE look like.

3 General Concepts

In this section we first review the concept of influence functions, which arises in the

von Mises (1947) approximation and is largely used in the robust statistics literature.

We then introduce the concept of recentered influence functions which will be key to

the derivation of unconditional quantile regressions. Finally we apply the von Mises

approximation, defined for a general alternative or counterfactual distribution, to the

case of where this counterfactual distribution arises from changes in the covariates. Using

the law of iterated expectations, we can write the derivative of ν in the direction of the

counterfactual distribution of interest as the integral of the conditional expectation of

the recentered influence function given X, over the distributional change of interest in

the covariates. The derivations are developed for general functionals of the distribution;

they will be applied to quantiles and the mean, for comparison, in the next section.

3.1 Definition of Recentered Influence Functions

We begin by recalling the theoretical foundation of the definition of the influence functions

following Hampel et all (1986). Hampel (1968, 1974) introduced the influence function

as a measure to study the infinitesimal behavior of real-valued functionals ν (F ), where

ν : Fν → R and Fν is a class of distribution functions such that F ∈ Fν if |ν (F )| < +∞.

Following Huber (1977), we say that ν (·) is Gâteaux diferentiable at F if there exists a

real kernel function a (·) such that for all G in Fν:

lim
t↓0

ν (Ft,G) − ν(F )

t
=

∂ν (Ft,G)

∂t
|t=0 =

∫
a (y) · dG (y) (2)

where 0 ≤ t ≤ 1 and where the mixing distribution Ft,G

Ft,G = (1 − t) · F + t · G = t · (G − F ) + F (3)
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is the probability distribution that is t away from F in the direction of the probability

distribution G.

The expression on the left hand side of equation (2) is the directional derivative of ν

at F in the direction of G. Note that we can replace dG (y) on the right hand side of

equation (2) by d (G − F ) (y):

lim
t↓0

ν ((1 − t) · F + t · G) − ν(F )

t
=

∂ν (Ft,G)

∂t
|t=0 =

∫
a (y) · d (G − F ) (y) (4)

since
∫

a (y) · dF (y) = 0, which can be shown by considering the case where G = F .

The concept of influence function arises from the special case in which G is replaced

by ∆y , the probability measure that put mass 1 at the value y, in the mixture Ft,G. This

yields Ft,∆y, the distribution that contains a blip or a contaminant at the point y,

Ft,∆y ≡ (1 − t) · F + t · ∆y

The influence function of the functional ν at F for a given point y is defined as

IF(y; ν, F ) ≡ lim
t↓0

ν(Ft,∆y) − ν(F )

t
=

∂ν
(
Ft,∆y

)

∂t
|t=0

=

∫
a (y) · d∆y (y) = a (y) (5)

Combining (4) and (5) explicitly shows that the directional derivative of the functional

ν (Ft,G), at F with a small contaminant in the direction of the distribution G, is obtained

by integrating up the influence function at F over the distributional differences between

G and F , which arise from the introduction of the contaminant,

∂ν (Ft,G)

∂t
|t=0 =

∫
IF(y; ν, F ) · d (G − F ) (y) . (6)

Using the definition of the influence function, the functional ν (Ft,G) itself can be

represented as a von Mises linear approximation (VOM):5

ν (Ft,G) = ν(F ) + t ·
∫

IF(y; ν, F ) · d (G − F ) (y) + r (t; ν;G,F ) (7)

5This expansion can be seen as a Taylor series approximation of the real function A(t) = ν (Ft,G)
around t = 0 : A(t) = A(0)+A′(0) ·t+Rem1. But since A(0) = ν(G), and A′(0) =

∫
a1(y) d (G − F ) (y),

where a1(y) is the influence function, we get the VOM approximation.
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where r (t; ν;G,F ) is a remainder term.6 Now consider the leading term of equation (7)

as an approximation for ν (G), that is, for t = 1:

ν (G) ≈ ν(F ) +

∫
IF(y; ν, F ) · dG (y) .

By analogy with the influence function, for the particular case G = ∆y, we call this first

order approximation term the Recentered Influence Function (RIF)

RIF(y; ν) = ν(F ) +

∫
IF(y; ν, F ) · d∆y (y) = ν(F ) + IF(y; ν, F ).

The recentered influence function RIF(y; ν) has two interesting properties: i) it inte-

grates up to the functional ν(F ) and ii) provides a simple way to obtain the asymptotic

variance of the functional ν(F ) (as does the influence function)

i)

∫
RIF(y; ν) · dF (y) =

∫
(ν(F ) + IF(y; ν, F )) · dF (y) = ν(F )

ii)

∫
(RIF(y; ν) − ν(F ))2 · dF (y) =

∫
(IF(y; ν, F ))2 · dF (y) = AV (ν, F )

where AV (ν, F ) is the asymptotic variance of functional ν under the probability distri-

bution F .

Note also that the equivalent of equation (6) holds7

∂ν (Ft,G)

∂t
|t=0 =

∫
RIF(y; ν, F ) · d (G − F ) (y) .

This result would not be very useful if both F and G were known, since we could then

compare ν(G) and ν(F ) to see how the distribution parameter ν changes when the

distribution moves from F to G. What we have in mind here, however, is that while F

is the observed distribution of Y , G is an alternative counterfactual distribution.

6See Withers (1983), Fernholz (2001) for the study of higher order terms. The second order term is
much more involved

A′′(0) =
∫ ∫

a2(x, y) d(G − F )(x)d(G− F )(y)

where a2(x, y) =
∂

∂t
IF(y; ν, Ft,∆y)|t=0 + IF(y; ν, F )),

and where a2(x, y) = a2(y, x), for all x, y.
7This follows from the fact that densities integrate to one.
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3.2 Impact of General Changes in the Distribution of X

The counterfactual distribution G of interest here will be the one that prevails when

we change the distribution of covariates X. Specifically, assume that we observe Y in

the presence of covariates X, so that Y and X have a joint distribution, FY,X (·, ·) :

R × X → [0, 1], and X ⊂ Rk is the support of X. We can now talk of the impact of

distributional changes in the covariates X on Y , since any change a covariate X can be

represented as a change in the distribution of the X. The recentered influence function

will provide a convenient way of assessing the impact of changes in the covariates on

the distribution statistic ν without having to compute the corresponding counterfactual

distribution which is, in general, a difficult estimation problem.

We begin by considering general changes in the covarates, represented by GX (x) the

counterfactual distribution of the covariates X of desired changes. For example, we want

to know how ν(FY ), the functional of the unconditional distribution of Y , is affected if

we allow a change of size t in the distribution of covariates X from FX in the direction of

GX , where GX is another probability distribution defined over X and t is a positive real

number, which can be made arbitrarily small. We will narrow our attention to specific

distributional changes in the covariates and their associated impacts on Y in Section 4.

These general distributional changes can be described by mixtures of distributions

that we now define formally.8 By definition, the unconditional distribution function of

Y can be written as:

FY (y) =

∫
FY |X (y|X = x) · dFX (x)

where the subscript Y is now used to differentiate the unconditional distribution, FY ,

from the conditional distribution, FY |X , and the distribution of covariates, FX. Thus it

is always the case, by the law of iterated expectations, that

ν(FY ) =

∫
RIF(y; ν) · dFY (y) =

∫
E [RIF(Y ; ν)|X = x] · dFX(x)

where E [RIF(Y ; ν)|X = x] =
∫

y
RIF(y; ν) · dFY |X (y|X = x).

The counterfactual mixing distribution FY,t·GX
(y) represent the distribution of y re-

sulting from a change t away from FX in the direction of the alternative probability

distribution GX

FY,t·GX
(y) ≡

∫
FY |X (y|X = x) · dFX,t·GX

(x)

8Note that the following integral operators correspond to k integrals, as X is now assumed to be a
random vector of length k.
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where FX,t·GX
is the mixing distribution that captures a change t away from FX in

the direction of the probability distribution GX .9 The counterfactual distribution GY

is obtained similarly by replacing the distribution of covariates, FX , by the alternative

distribution, GX :

GY (y) ≡
∫

FY |X (y|X = x) · dGX (x)

that is, the distribution GY now stands explicitly for the counterfactual distribution, as

opposed to the general distribution G used above.

Our central result here is that the impact of a small change of size t in the distribu-

tion of covariates from FX in the direction of GX on the functional ν (FY ) is given by

integrating up the expectation of the recentered influence function with respect to the

changes in distribution of the covariates d (GX − FX).

Theorem 1 [Effect of Infinitesimal Distributional Changes t · GX ]:

∂ν (FY,t·GX
)

∂t
|t=0 =

∫
RIF(y; ν) · d (GY − FY ) (y)

=

∫
E [RIF(Y ; ν)|X = x] · d (GX − FX) (x)

The proof, provided in the Appendix A, builds on the fact that since, by definition,

GY only changes in response to a change in GX , the mixing distribution FY,t·GY
(y) =

FY,t·GX
(y). Because the result applies to any distribution of interest GX , this theorem

gives us a powerful tool to consider commonly estimated partial effects, as well as effects

related to discrete changes linked to any policy of interest. The conditional expectation

E [RIF(Y ; ν)|X] can be estimated by the same regression methods used in the case of

the mean. In particular, we show in Section 5 that, in the case of quantiles, if RIF

is assumed to be linear in X, (E [RIF(Y ; qτ)|X] = X ′γτ ), then the UQPE will simply

the regression parameter γτ of RIF(Y ; qτ) on the X. We also show that, alternatively,

non-parametric estimation methods can be applied.

4 Application to Unconditional Quantiles

We now turn to the application of these general results to the case of unconditional

quantiles, while providing a comparison with the case of the mean. We will also consider

two important specific cases of the impact of changes in the covariates. The leading case

9Or more formally, FX,t·G ≡ (1 − t) · FX + t · GX .
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of such a specific change is the unconditional quantile partial effect UQPE defined in

Section 2, the second case UQPE(x) correspond to an unconditional quantile partial

effect evaluated at a specific value of X = x. We also show that for some structural

models, there is a direct link between the UQPE and the structural parameters.

4.1 Recentered Influence Functions for Quantiles

In this section, we explicitly derive the recentered influence function for quantiles and

show that it provides an approximation of order (t) to the actual quantile. However to

fix ideas, we begin with the familiar case of the mean, ν(F ) = µ, for which the concept

of the recentered influence function is trivial and where the approximation in equation

(7) is exact.

Applying the definition of influence function of equation (5) to µ =
∫

y · dF (y), we

find that the influence function of the mean at a point y is simply that point itself, but

demeaned

IF(y;µ,F ) =
∂ν
(
Ft,∆y

)

∂t
|t=0 =

∂
∫

y · ((1 − t) · dF (y) + t · d∆y (y))

∂t
|t=0

=
∂
(
t ·
∫

y · d (∆y − F ) (y) +
∫

y · dF (y)
)

∂t
|t=0

=

∫
y · d (∆y − F ) (y) = y −

∫
y · dF (y)

= y − µ

We also find when we apply the VOM linear approximation of equation (7) to the mean,

µ, that the remainder r (t;µ;G,F ) equals zero

ν (G) = ν(F ) +

∫
IF(y; ν, F ) · d (G − F ) (y) + r (t; ν;G,F )

= µ +

∫
(y − µ) · dG (y) + r (t;µ;G,F )

=

∫
y · dG (y) + r (t;µ;G,F ) = ν (G) + r (t;µ;G,F ) .

The recentered influence function of the mean is thus trivial

RIF(y;µ) = µ + IF(y;µ,F ) = µ + y − µ = y

14



so are the expressions for the expectation of the RIF(y;µ) and its asymptotic variance :

i)

∫
RIF(y;µ) · dF (y) =

∫
y · dF (y) = µ

ii)

∫
(RIF(y;µ) − µ)2 · dF (y) =

∫
(y − µ)2 · dF (y) = σ2

Turning to our application of interest, the expression for the influence function of

quantiles also has some intuitive appeal: it is equal to a function that locates the point

y either above or below quantile τ , inversely weighted by the density at that point.

Consider the τ th quantile: ν(F ) = qτ , which is defined implicitly as the integral bound

in

τ =

∫ qτ

−∞
dF (y) =

∫ ν(F )

−∞
dF (y) =

∫ ν(Ft,∆y )

−∞
dFt,∆y (y) .

It is easily shown by taking the derivative of this last expression with respect to t and

rewriting the resulting expression in terms of ∂ν
(
Ft,∆y

)
/∂t that10

IF(y; qτ , F ) =
∂ν
(
Ft,∆y

)

∂t
|t=0

=

∫
1I {y ≤ ν(F )}dF (y) − 1I {y ≤ ν(F )}

dF (y)/dy|y=ν(F )

=
τ − 1I {y ≤ qτ}

f (qτ)
,

where f (·), is the probability density associated with the probability distribution F .

In the case of the quantile, the VOM appproximation does not hold exactly:

ν (G) = ν(F ) +

∫
IF(y; ν, F ) · d (G − F ) (y) + r (t; ν;G,F )

= qτ +

∫ (
τ − 1I {y ≤ qτ}

f (qτ)

)
· dG (y) + R (t; qτ ;G,F )

rather the reminder is of the order t

R (t; qτ ;G,F ) = t ·
(∫ (

τ − 1I {y ≤ q̃τ,G}
fG (q̃τ,G)

)
· dF (y) −

∫ (
τ − 1I {y ≤ qτ}

f (qτ)

)
· dG (y)

)

+ r (t; ν;G,F )

= O (t)

10See the Appendix A for details
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since r (t; ν;G,F ) is o(t), where q̃τ,G = ν (G) when ν is the τ thquantile and fG (·) is the

probability density function associated with the probability distribution G.

The recentered influence function is

RIF(y; qτ) = qτ + IF(y; qτ, F ) = qτ +
τ − 1I {y ≤ qτ}

f (qτ )
.

It is easy to check that the mean of the recentered influence function of qτ is the quantile

itself: ∫
RIF(y; qτ) · dF (y) =

∫ (
qτ +

τ − 1I {y ≤ qτ}
f (qτ )

)
· dF (y) = qτ

and its variance is:

∫
(RIF(y; qτ) − qτ)

2 · dF (y) =

∫ (
τ − 1I {y ≤ qτ}

f (qτ)

)2

· dF (y) =
τ · (1 − τ )

f2 (qτ)

4.2 Impact of Changes in the Distribution of X on Uncondi-

tional Quantiles

Let us start by applying the general definitions of section 3.2 to the case of quantiles.

When X is multivariate and continuously distributed, we can express the quantile τ in

terms of the conditional distribution of Y given X and of the distribution of X

τ = FY (qτ ) =

∫
FY |X (qτ |X = x) · dFX (x) .

Then the counterfactual quantile q̃τ,t·GX
(t) that would result from the small change t in

the direction of GX , is implicitly defined by

τ =

∫ q̃τ,t·GY
(t)

dFY,t·GX
(y) =

∫
FY |X (q̃τ,GX

(t) |X = x) · dFX,t·GX
(x)

and the impact of the infinitesimal change t·GX itself simply follows from the application

of Theorem 1:

∂q̃τ,t·GX
(t)

∂t
|t=0 =

∫
E [RIF(Y ; qτ)|X = x] · d (GX − FX) (x)

= − 1

fY (qτ)
·
∫ (

FY |X (qτ |X = x)
)
· d (GX − FX) (x)
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4.2.1 Unconditional Quantile Partial Effects

Let’s now focus of some specific changes of interest. We show that the Unconditional

Quantile Partial Effects (UQPE) correspond to the policy experiment where everybody

in the population is given an infinitesimal ξ increase in their X values, where ξ ∈ Rk.

For this experiment to be meaningful, assume that support of X is unbounded, or at

least, not bounded above. Thus, the distribution GX will be that of the random variable

Z = X + ξ. The cumulative distribution function of Z is simply FZ (x) = FX (x − ξ).11

To characterize the effects of changing the distribution of X from FX to FZ on qτ , the

τ -th quantile of the unconditional distribution of Y , consider first the marginal effect on

the unconditional quantile of increasing X by ξ and call this parameter κ (qτ ; ξ)

κ (qτ ; ξ) =
∂q̃τ,t·FX(x−ξ) (t)

∂t
|t=0 =

∫
E [RIF(Y ; qτ)|X = x] · (dFX (x− ξ) − dFX (x))

=

∫
(E [RIF(Y ; qτ)|X = x + ξ] −E [RIF(Y ; qτ)|X = x]) · dFX (x)

then letting ξ go to zero

UQPE (τ ) =
∂κ (qτ ; ξ)

∂ξ
|ξ=0 =

∫
dE [RIF(Y ; qτ)|X = x]

dx
· dFX (x) (8)

= − 1

fY (qτ)
·
∫

F ′
Y |X (qτ |X = x) · dFX (x) (9)

where F ′
Y |X (qτ |X = x) = dFY |X (qτ |X = x) /dx is the vector of partial derivatives, in

which each entry corresponds to ∂FY |X (qτ |X = x) /∂xj, j = 1, . . . , J . In the case of

discrete covariates where X may assume K different values, we define UQPE (τ ) as12

UQPE (τ ) =

K∑

k=1

(
E [RIF(Y ; qτ)|X = xk+1] − E [RIF(Y ; qτ)|X = xk]

xk+1 − xk

)
· Pr [xk]

= − 1

fY (qτ )
·

K∑

k=1

(
FY |X (qτ |X = xk+1) − FY |X (qτ |X = xk)

xk+1 − xk

)
· Pr [xk]

While κ (qτ ; ξ) corresponds exactly the marginal effect on qτ of changing the distri-

bution of X from FX to FZ, it may not be very interesting as it depends on ξ, the value

11Note the important particular case in which ξ = [0, . . . , 0, 1, 0, . . . , 0]′ corresponds to an unit increase
in the covariate Xj .

12In what follows, by a normalization argument we make xK+1 = xK and therefore
FY |X (qτ |X = xK+1) = FY |X (qτ |X = xK) and E [RIF(Y ; qτ )|X = xK+1] = E [RIF(Y ; qτ)|X = xK ].
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of the transfer. Its infinitesimal version UQPE (τ ) is the average partial effect on qτ of

a small lump-sum changes in the distribution of X. As we show below, it corresponds in

a number of settings to the usual parameter of interest.

4.2.2 Unconditional Quantile Partial Effects at X = x

There are some circumstances, such as the effect of compulsory schooling on the distri-

bution of earnings for example, where the policy maker is particularly interested in the

effect of some fixed value x of the covariate X on the quantile τ of the unconditional

distribution of Y . To capture such effect, for X continuously distributed, we need to

compare the effects of the two following experiments on the quantile of the marginal

distribution of Y : a change towards X = x + ξ and a change towards X = x. These two

experiments correspond to changes in the distribution of X from FX to ∆x and ∆x+ξ

the degenerate distributions at x and x + ξ, respectively. Analogously to the UQPE

parameter, we define the following parameter that allow the comparison between these

two experiments:

κ (qτ ;x, ξ) =
∂q̃τ,t·∆x+ξ

(t)

∂t
|t=0 −

∂q̃τ,t·∆x (t)

∂t
|t=0

and UQPE (τ ;x) =
∂κ (qτ ;x, ξ)

∂ξ
|ξ=0 =

∫
dE [RIF(Y ; qτ)|X = x]

dx
· d∆x (x)

=
dE [RIF(Y ; qτ)|X = x]

dx
= − 1

fY (qτ)
· F ′

Y |X (qτ |X = x) .

In the case of discrete covariates where X may assume K different values, we define

UQPE (τ ;xk)

UQPE (τ ;xp) =
E [RIF(Y ; qτ)|X = xk+1] − E [RIF(Y ; qτ)|X = xk]

xk+1 − xk

= − 1

fY (qτ )
·
FY |X (qτ |X = xk+1) − FY |X (qτ |X = xk)

xk+1 − xk

.

The policy parameter UQPE (τ ;x), is the unconditional quantile partial effect eval-

uated at a given X = x.13 It is a second derivative and corresponds exactly to the

13Note that this parameter is different from CQPE introduced in section 2 which is based on the
conditional quantile rather UQPE (τ ; x) is based on the unconditional quantile of Y .
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integrand in the expression derived for UQPE (τ ), that is, for the continuous case

UQPE (τ ) =

∫
UQPE (τ ;x) · dFX (x)

or in general

UQPE (τ ) = E [UQPE (τ ;X)] .

It will prove a useful tool to understand the interpretations of these parameters under

various structural assumptions below.

4.2.3 A brief comparison with the case of the mean µ

We now verify that the formulas above for the effects of changes in the distribution of X

when applied to µ the unconditional expectation of Y , for which RIF(Y ;µ) = Y , give us

the well-known parameters, UAPE and CAPE. The UAPE is the average derivative of

the conditional expectation of Y given X, and CAPE, its the conditional counterpart,

is simply the derivative of the same conditional expectation:

UAPE =

∫
dE [RIF(Y ;µ)|X = x]

dx
· dFX (x)

=

∫
dE [Y |X = x]

dx
· dFX (x)

CAPE (x) = dE [RIF(Y ;µ)|X = x] /dx = dE [Y |X = x] /dx

and note finally, as expected, that

UAPE =

∫
CAPE (x) · dFX (x) .

4.3 The policy parameter and the structural form

In this subsection, we introduce unobservables variables and assume that the dependent

variable Y is a function of observables X and unobservables ε, according to the following

model: g(X, ε) where g(·, ·) is an unknown mapping, assumed to be monotonic in ε. We

will consider two situations: independence between X and ε; and no independence. We

then link the parameters UQPE (τ) and UQPE(τ ;x) to this structural model.

We first derive a general expression that links the partial effect of changes in Xj on

the marginal quantile of Y to the structural form Y = g (X, ε) through the UQPE (τ ;x)

parameter, as the UQPE (τ ) follows by integrating the distribution of covariates.
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Proposition 1 [UQPE and its relation to the structural form]:

i) Assuming that the structural form Y = g(X, ε) is monotonic in ε, , the function

UQPEj (τ ;x), which corresponds to the jth entry in the J-vector dE [RIF(Y ; qτ)|X = x]/dx

of partial derivatives can be expressed as:

UQPEj (τ ;x) =
∂E [RIF(Y ; qτ)|X = x]

∂xj

=

[
∂g (x, qτ)

∂xj
·
fε|X (g−1 (x, qτ))

∂g (x, qτ ) /∂qτ
−

∂Fε|X (·|x)

∂xj

]/∫
fε|X (g−1 (x, qτ ))

∂g (x, qτ ) /∂qτ
· dFX (x)

while its expectation, the parameter UQPEj (τ ), will be:

UQPEj (τ ) = E

[
∂g (X, qτ )

∂xj
·
fε|X (g−1 (X, qτ ))

∂g (X, qτ) /∂qτ
−

∂Fε|X (g−1 (X, qτ ) |X)

∂xj

]

·E
[
fε|X (g−1 (X, qτ))

∂g (X, qτ ) /∂qτ

]−1

= E

[
∂g(X, qτ )

∂xj

· fε (g−1 (X, qτ))

∂g (X, qτ ) /∂qτ

]
· E
[
fε (g−1 (X, qτ ))

∂g (X, qτ) /∂qτ

]−1

ii) If, in addition, we assume that X and ε are independent, then

UQPEj (τ ;x) =
∂E [RIF(Y ; qτ)|X = x]

∂xj
(10)

=
∂g(x, qτ)

∂xj
· fε (g−1 (x, qτ))

∂g (x, qτ ) /∂qτ

/∫
fε (g−1 (x, qτ))

∂g (x, qτ) /∂qτ
· dFX (x) (11)

while its expectation, the parameter UQPEj (τ ), will be simply:

UQPEj (τ ) = E

[
∂g(X, qτ )

∂xj
· fε (g−1 (X, qτ))

∂g (X, qτ ) /∂qτ

]
· E
[
fε (g−1 (X, qτ ))

∂g (X, qτ) /∂qτ

]−1

The proof follows from the application of the definition of the recentered influence

function for the quantile and is provided in the Appendix. Under the hypothesis that

X and ε are independent and g monotonic in ε, we may invoke the results by Matzkin

(2003) that guarantee that both the distribution of ε and the link function g will be

non-parametrically identified. Thus, we know that under the independence assumption,

our parameters UQPEj (τ ;x) and UQPEj (τ ) are identified.

The general formula of Proposition 1 allows us to establish a simple link between
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UQPE and the structural parameters of interest in some important special cases that

are discussed next.

4.3.1 Case 1: Linear, additively separable model

We start considering that g(X, ε) = Xᵀβ + ε and that X and ε are independent. Then,

∂g (X, qτ )/∂Xj = βj , ∂g (x, qτ ) /∂qτ = 1, and g−1 (x, qτ ) = qτ − xᵀβ. Therefore:

UQPEj (τ ;x) = βj ·
fε (qτ − xᵀβ)

E [fε (qτ − Xᵀβ)]

and UQPEj (τ) = βj

By definition of UQPEj, βj will then correspond to a unit increase in Xj on the

marginal quantile of Y . In this very restricted model, the partial effects UQPEj (τ ;x)

at different levels of X will be different and they will also be different along the marginal

distribution of Y . However, averaging over the X the numerator and denominator cancels

out and we will have that UQPEj = UAPEj . This is the case where not much is gained

by considering unconditional or conditional quantiles, or alternatively it is a case that

allows us to verify that the various parameters estimate what they promise to do.

4.3.2 Case 2: Non-linear, additively separable

Now, consider the special case of an index model g(X, ε) = h (Xᵀβ + ε), where h is

differentiable and monotonic. We keep the assumption that X and ε are indepen-

dent. Then, ∂g (X, qτ )/∂Xj = βj · h′ (Xᵀβ + qτ), ∂g (x, qτ) /∂qτ = h′ (Xᵀβ + qτ), and

g−1 (x, qτ ) = h−1 (qτ) − xᵀβ. The parameter of interest will be

UQPEj (τ ;x) = βj · fε

(
h−1 (qτ ) − xᵀβ

)
· E
[
fε (h−1 (qτ) − Xᵀβ)

h′ (Xᵀβ + qτ )

]−1

and UQPEj (τ ) = βj · E
[
fε

(
h−1 (qτ ) − Xᵀβ

)]
·E
[
fε (h−1 (qτ) − Xᵀβ)

h′ (Xᵀβ + qτ)

]−1

Thus, the effect of small changes of Xj on the τ th quantile of Y , UQPEj (τ ;x), will

be heterogenous as it will in general depend on the value of x and the quantile itself.

Here, after integrating X out according to its distribution, the partial effect, UQPEj (τ )

will depend on the quantile being evaluated. They will however be proportional to the

structural parameters βj .

With more structure, we are able to better establish the proportionality factor.
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Adding a normality assumption about the distribution εi, that is, εi ∼ N(0, 1), we

can replace the fε by the normal density in the expression above. The marginal effects

are then derived in the same way as in a Probit model

UQPEj (τ ;x) = βj · φ
(
xᵀβ − h−1 (qτ)

)
· E
[
φ (Xᵀβ − h−1 (qτ))

h′ (Xᵀβ + qτ)

]−1

UQPEj (τ ) = βj · E
[
φ
(
Xᵀβ − h−1 (qτ)

)]
· E
[
φ (Xᵀβ − h−1 (qτ))

h′ (Xᵀβ + qτ)

]−1

To see why this is similar to the marginal effects of a Probit, note that in this case,

equation (10) simplifies to

UQPEj (τ ;x) =
dE [RIF(Y ; qτ)|X = x]

dxj
= βj ·

1

fY (qτ)
· φ
(
xᵀβ − h−1 (qτ)

)

where

fY (qτ ) =
dPr [Y ≤ qτ ]

dqτ

=
dE [Pr [Y ≤ qτ |X]]

dqτ

=
dE [Φ (−Xᵀβ + h−1 (qτ))]

dqτ
= E

[
φ (Xᵀβ − h−1 (qτ))

h′ (Xᵀβ + qτ)

]

Since the marginal effects in a probit model tend to be quite close to the slope estimates

in a linear probability model, this gives a nice interpretation of the recentered influence

function linear projection coefficients.14

4.3.3 Case 3: Non-linear, additively separable, Gaussian unobservables, Het-

eroscedastic Probit

Consider an alternative model where the error terms are possibly heteroscedastic, i.e.

V ar(εi|Xi) = σ2 (xi) 6= σ2. Because this is a violation of the independence assumption,

we use the first result i) of Proposition 1. We will also assume that g(X, ε) = h (Xᵀβ + ε),

where εi = σ (xi) · ηi, where η|X ∼ η ∼ N (0, 1). Thus, we have:

Fε|X
(
g−1 (x, qτ) |x

)
= Fε|X

(
h−1 (qτ) − xᵀβ|x

)
= Φ

(
xᵀβ − h−1 (qτ)

σ (x)

)

14We note that while software such as STATA computes the marginal effects of the probit model at
the mean of the covariates, Wooldridge (2002) for example suggests taking the average valued of the
individual marginal effects as an alternative.
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and

fε|X
(
g−1 (x, qτ)

)
=

1

σ (x)
· φ
(

xᵀβ − h−1 (qτ)

σ (x)

)

and
∂Fε|X (·|x)

∂xj

= −∂σ (x)

∂xj

·
(

xᵀβ − h−1 (qτ )

σ2 (x)

)
· φ
(

xᵀβ − h−1 (qτ)

σ (x)

)

Therefore:

UQPEj (τ ;x) = φ

(
xᵀβ − h−1 (qτ)

σ (x)

)
·
(

βj

σ (x)
+

∂σ (x)

∂xj
·
(

xᵀβ − h−1 (qτ)

σ2 (x)

))

·E
[

1

σ (X)
· φ
(

Xᵀβ − h−1 (qτ )

σ (X)

)/
h′ (Xᵀβ + qτ)

]−1

and

UQPEj (τ ) = E

[
φ

(
Xᵀβ − h−1 (qτ)

σ (X)

)
·
(

βj

σ (X)
+

∂σ (X)

∂xj
·
(

Xᵀβ − h−1 (qτ)

σ2 (X)

))]

·E
[

1

σ (X)
· φ
(

Xᵀβ − h−1 (qτ )

σ (X)

)/
h′ (Xᵀβ + qτ)

]−1

Because of the heteroscedasticity factor, the UQPEj(τ) is no longer proportional to

structural parameters, instead it is a weighed combination of the βj and of the indirect

effects of σ(X). In the heteroscedastic case, the UQPEj(τ ) can even change sign with

the quantile, if the second term in the expression

(
βj

σ (X)
+

∂σ (X)

∂xj

·
(

Xᵀβ − h−1 (qτ)

σ2 (X)

))

dominates the first term and is of opposite sign. In the union example below, the impact

of unionization will be positive for low τ and negative for high τ .

5 Estimation

In this section, our focus will be on the estimation of UQPE (τ ), which is unsurpringly

more involved than the case of the mean. We first have to estimate the recentered

influence function, which will depend on some unknown objects (the quantile and the

density) of the marginal distribution of Y . Then, in the estimation of parameters κ (qτ ; ξ),

we will have to consider the estimation of E [RIF(Y ; qτ)|X = x] and its derivative, which

will be important for the UQPE (τ ) parameters.
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The simplest case for the estimation of the expectation of the recentered influence

function conditional of the X is a simple OLS regression Ê
[
R̂IF(Y ; q̂τ) |X = x

]
= x′ · γ̂τ ,

whose consistency will depend on the linearity of the recentered influence function at

X = x. We call this method the RIF-OLS regression.

The results from section 3.2 indicate, however, that dE
[
RIF(Y ; qτ) |X = x

]
/dx will

generally depend on x, even when Y depends linearly on X and unobservables are in-

dependent of X. In order to deal with the fact that dE
[
RIF(Y ; qτ) |X = x

]
/dx will

depend on x, we consider an alternative nonparametric estimation procedure, which is

nonparametric in the sense that it does not assume any functional form (as in RIF-OLS)

or distribution for the errors (as in the probit marginal effects).

For a general functional of the marginal distribution of Y , ν (FY ), we have that

the parameters of interest would be dE
[
RIF(Y ; ν)|X = x

]
/dx and its expectation,

E
[
dE
[
RIF(Y ; ν)|X

]
/dX

]
. The last parameter is the expectation of a derivative and,

for continuous X with unbounded support, the estimation of E
[
dE [RIF(Y ; qτ)|X] /dX

]

will follow standard methods of average derivative estimation.15. In this paper we do not

proceed with this possible way to estimate UQPE (τ ) as in many applications we will

need an estimator that has nice properties for covariates with bounded support and have

high dimensionality.

Actually, for the particular case of quantiles we can build on the result in Equation

(9)

UQPE (τ ) = − 1

fY (qτ)
·
∫

F ′
Y |X (qτ |X = x) · dFX (x)

and estimate nonparametrically the quantities fY (qτ) and F ′
Y |X (qτ |X = x) by respec-

tively f̂Y (q̂τ ) and F̂ ′
Y |X (q̂τ |X = x) . In doing so, we will be able to estimate UQPE (τ )

by

ÛQPENP (τ ) = − 1

N · f̂Y (q̂τ)
·

N∑

i=1

F̂ ′
Y |X (q̂τ |X = Xi)

The remainder of this section is divided as following. In the first part we present an

estimator for the recentered influence function of quantiles. We then present sufficient

assumptions and prove that the estimator will be uniformly consistent for the true RIF.

15Under an appropriate set of sufficient assumptions, we can prove the asymptotic normality of the
non-parametric estimator of E

[
dE

[
RIF(Y ; ν)|X

]
/dX

]
. The proof of this result is a direct consequence

of Theorem 3.1 in Härdle and Stoker (1989), after making an adjustment that takes into account the fact
that we have to estimate first RIF(y; ν) by R̂IF(Yi; ν̂). Details of this result are available upon request
from the authors. However, the non-parametric method is empirically applicable only in cases where
the covariates have close to unbounded support and their dimensionality is reduced as in Deaton and
Ng (1998).
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The second part presents the OLS-RIF method to estimate UQPE (τ) and its large-

sample properties. We then present details of the nonparametric method and its large

sample properties.

5.1 Estimating the Recentered Influence Functions

In order to estimate either UQPE (τ ;x) or UQPE (τ ) we first have to obtain the esti-

mated recentered influence functions. We propose the following

R̂IF(Y ; q̂τ) = q̂τ +
τ − 1I {Y ≤ q̂τ}

f̂Y (q̂τ)

which also involves two unknown quantities to be estimated q̂τ and f̂Y (·).16 The estimator

of the population quantile τ of the marginal distribution of Y is q̂τ , the ordinary τ -th

sample quantile, which can be represented, using Koenker and Basset (1978) as

q̂τ = arg min
q

N∑

i=1

(τ − 1I {Yi − q ≤ 0}) · (Yi − q)

The estimator of the density of Y is f̂Y (·), the kernel density estimator. In the em-

pirical section we propose using the Gaussian kernel with associated optimal bandwidth.

The actual requirements for the kernel and for the bandwidth are described in the asymp-

totics section. Let KY (z) be a kernel function and bY a positive scalar bandwidth, such

that for a point y in the support of Y :

f̂Y (y) =
1

N · bY
·

N∑

i=1

KY

(
Yi − y

bY

)
(12)

5.1.1 Uniform consistency of the estimated recentered influence functions

For all y in the support of Y , we establish conditions that guarantee that R̂IF (y; q̂τ)
P→

RIF (y; qτ):

Assumption 1 [Conditions on the distribution of Y] (i) FY (·) is absolutely con-

tinuous and differentiable over y ∈ R and fY (y) = dFY (y) /dy; (ii)
∫

y · fY (y) · dy < ∞;

(iii) fY (·) is uniformly continuous; (iv)
∫
|fY (y)| · dy < ∞; (v) fY (·) is three times dif-

ferentiable with bounded third derivative in a neighborhood of y; (vi) for τ ∈ (0, 1), the

16This is unlike the case of the mean where R̂IF(Y ; Y ) = Y .
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sets Υτ = infq {FY (q) ≥ τ}, are singletons and their elements qτ ∈ Υτ satisfy qτ < ∞
and fY (qτ) > 0.

Assumption 2 [Kernel Function and Bandwidth] (i) KY (·) is a bounded real-valued

function satisfying (a)
∫

KY (y) · dy = 1, (b)
∫
|KY (y)| · dy < ∞, (c)

∫
K2

Y (y) · dy < ∞,

(d) limy→±∞ |y| · |KY (y)| = 0, (e) supy |KY (y)| < ∞, (f) KY (y) = 1
2π

∫
exp (−i · t · y) ·

φ (t) · dt, where φ (t) is the absolutely integrable characteristic function of KY (·); (ii) hY

is a bandwidth sequence satisfying hY = O
(
N−1/6

)
and, therefore, limN→+∞ hY = 0 and

limN→+∞ N · h2
Y = +∞.

Lemma 1 Under assumptions 1 and 2 supy

∣∣∣R̂IF (y; q̂τ) − RIF(y; qτ)
∣∣∣ P→ 0

5.2 OLS-RIF Regression

In this subsection we propose a simple way to estimate the parameters we derived pre-

viously by means of OLS regressions. Like in the familiar OLS regression, we implicilty

assume that the recentered influence function is linear in the covariates X, which may

however include higher order or non-linear transformations of the original variables. If

the linearity assumption seems inappropriate in particular applications, one can always

turn to non-parametric estimation as proposed next. Moreover, OLS is known to produce

the linear function of covariates that minimizes the specification error.

Consider first estimation of mτ (x) = E

[
RIF(Y ; qτ)

∣∣∣∣X = x

]
:

m̂τ,linear (x) = xᵀ · γ̂τ

where

γ̂τ =

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi · R̂IF(Yi; q̂τ) (13)

Note that since 1I{Y ≤ q̂τ} is a dummy variable for whether a given observation i is

below (or above) the τ th sample quantile, the recentered influence function projections

are closely related to linear probability model. As 1I{Y ≤ q̂τ} is divided by f̂Y (q̂τ), the

projection coefficients γ̂τ (except for the constant) are simply equal to the coefficients

in a linear probability model divided by the rescaling factor f̂Y (q̂τ). Note that in this

parametric case,

ÛQPEOLS (τ ) = γ̂τ = ÛQPEOLS (τ ;x) .
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5.2.1 Large-sample properties of ÛQPEOLS

We start defining

Ui,τ = RIF(Yi; qτ) − Xᵀ
i · γτ

where

γτ = (E [X · Xᵀ])−1 ·E [X · RIF(Y ; qτ)]

therefore, by definition of Ui,τ and γτ

E [Ui,τ · Xi] = 0

We make the following assumptions regarding the joint distribution of Ui,τ and Xi.

Assumption 3 [Conditions on the joint distribution of X and Uτ ] (i) E [X · Xᵀ]

is invertible; (ii) all moments up to the fourth moment of X exist and are finite; and

(iii) the variance of the product Uτ · X, V [Uτ ·X].

Theorem 2 [Asymptotic Normality of OLS estimator] Under the Assumptions

invoked in Lemma 1 plus Assumption 3, letting X contain the constant, and with a

random sample of (Y ,X):

√
N · (γ̂τ − γτ ) = (E [X ·Xᵀ])−1 · 1√

N
·

N∑

i=1

Xi · Ui,τ + op (1)

where

(E [X · Xᵀ])−1· 1√
N
·

N∑

i=1

Xi·Ui,τ
D→ N

(
0, (E [X · Xᵀ])−1 · E

[
U2

τ · X · Xᵀ] · (E [X · Xᵀ])−1)

5.3 Nonparametric Estimation of UQPE (τ )

We will estimate UQPE (τ ) nonparametrically by

ÛQPENP (τ ) = − 1

N · f̂Y (q̂τ)
·

N∑

i=1

F̂ ′
Y |X (q̂τ |X = Xi)

The estimator for the density f̂Y (·) and the sample quantile q̂τ were already presented.

We now show how to estimate F̂ ′
Y |X (q̂τ |X = Xi). Then we discuss the asymptotic

properties of our estimator.
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Define

Tτ ≡ 1I{Y ≤ qτ}

and the probability of Tτ = 1 given X = x is

FY |X (qτ |X = x) = Pr [Tτ = 1|X = x] ≡ pτ (x)

Suppose that qτ was known. A nonparametric estimator for Pr [Tτ = 1|X = x] was

introduced by Hirano, Imbens and Ridder (2003). They propose using a polynomial

series approximation to log (pτ (x))− log (1 − pτ (x)), i.e., to use polynomial functions of

X to approximate the log odds ratio of pτ (x).17 The coefficients corresponding to those

functions are estimated by a pseudo-maximum likelihood method.

Start by defining HK(τ)(x) = [HK(τ), j(x)] (j = 1, ...,K (τ )), a vector of length K (τ )

of polynomial functions of x ∈ X satisfying the following properties: (i) HK(τ) : X →
RK(τ); (ii) HK(τ), 1(x) = 1, and (iii) if K (τ ) > (n + 1)r, then HK(τ)(x) includes all

polynomials up order n.18 In what follows, we will assume that K (τ ) is a function of the

sample size N such that K (τ ) → ∞ as N → ∞.19

For a given value x of X, we define an unfeasible estimator of pτ (x) by p̂U
K(τ)(x) ≡

L(HK(τ)(x)ᵀπ̃K(τ)), where L : R → R, L(z) = (1 + exp(−z))−1; and

π̃K(τ) = arg max
π∈RK(τ )

QN (π)

where

QN (π) =
N∑

i=1

(
Tτ ,i · log(L(HK(τ)(Xi)

ᵀπ)) + (1 − Tτ,i) · log(1 − L(HK(τ)(Xi)
ᵀ
π))
)

Such estimator is unfeasible as we do not know the true value qτ . If instead we use the

sample quantile q̂τ , we can define

T̂τ ≡ 1I{Y ≤q̂τ}
17The log odds ratio of pτ (x) is equal to log (pτ (x) / (1 − pτ (x))).
18Further details regarding the choice of HK(τ)(x) and its asymptotic properties can be found in

Hirano, Imbens and Ridder (2003).
19Some criterion should be used in order to choose the length K (τ ) as function of the sample size.

For example, one could use a cross-validation method to choose the order of the polynomial.
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and the feasible estimator of pτ (x) will be p̂F
K(τ)(x) ≡ L(HK(τ)(x)′π̂K(τ)), where

π̂K(τ) = arg max
π∈RK(τ )

Q̂N (π)

where

Q̂N (π) =
N∑

i=1

(
T̂τ ,i · log(L(HK(τ)(Xi)

ᵀπ)) + (1 − T̂τ,i) · log(1 − L(HK(τ)(Xi)
ᵀπ))

)

Finally, the feasible estimator F̂ ′
Y |X (q̂τ |X = x) is the derivative of p̂F

K(τ)(x) with

respect to x. This is:

F̂ ′
Y |X (q̂τ |X = x) =

dL
(
HK(τ)(x)ᵀπ̂K(τ)

)

dx

=

(
dHK(τ)(x)

dx

)ᵀ

· π̂K(τ) · L′ (HK(τ)(x)ᵀπ̂K(τ)

)

= GK(τ)(x)ᵀ · π̂K(τ) · p̂F
K(τ)(x) ·

(
1 − p̂F

K(τ)(x)
)

where GK(τ) : Rk → RK(τ)×k, GK(τ) (x) = dHK(τ)(x)/dx is the matrix K (τ ) × k of

derivatives of the vector HK(τ)(x) of polynomial functions of x with respect to x. Finally,

we can write ÛQPENP as

ÛQPE
ᵀ
NP = −

π̂ᵀ
K(τ)

N · f̂Y (q̂τ)
·

N∑

i=1

GK(τ)(Xi) · p̂F
K(τ)(Xi) ·

(
1 − p̂F

K(τ)(Xi)
)

(14)

5.3.1 Large-sample properties of ÛQPENP

In order to derive the asymptotic distribution of ÛQPENP , we use the fact that ÛQPENP =

− 1

f̂Y (q̂τ )
·
∑N

i=1 F̂ ′
Y |X (q̂τ |X = Xi) /N , that is, we have an average derivative estimator di-

vided by −f̂Y (q̂τ). Under the assumptions invoked for Lemma 1, this scale factor will

converge uniformly in probability to −fY (qτ). Hence, all we need to compute is the

limiting distribution of
∑N

i=1 F̂ ′
Y |X (q̂τ |X = Xi) /N .

Consider first the unfeasible estimator

1

N
·

N∑

i=1

F̂ ′
Y |X (qτ |X = Xi) =

1

N
·

N∑

i=1

GK(τ)(Xi)
ᵀ · π̃K(τ) · p̂U

K(τ)(Xi) ·
(
1 − p̂U

K(τ)(Xi)
)

of E
[
F ′

Y |X (qτ |X)
]

= E
[
·
pτ (X)

]
where

·
pτ (X) = dpτ (x)

dx
|x=X .Such estimator will be
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unfeasible since qτ is unknown.

We now follow Newey (1994) and Newey and Stoker (1993) that established that

regardless of choice of the estimation procedure in the first step, the average derivative

estimators will have the same influence function.

Proposition 2 [Asymptotic Distribution of Average Derivative Estimator]:

Under the regularity conditions in Newey and Stoker (1993, Assumptions 3.1 and 3.2)

we have

1√
N

·
N∑

i=1

(
F̂ ′

Y |X (qτ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

=
1√
N

·
N∑

i=1

(
F ′

Y |X (qτ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

+
1√
N

·
N∑

i=1

l (Xi) · (Tτ,i − pτ (Xi)) + op (1)

where l (x) = d ln fX (x) /dx.

We do not provide a proof of Proposition 2 as it is a special case of Newey and Stoker’s

(1993) Theorem 3.1. Note that the key difference from them is about the choice of the

nonparametric estimator of pτ (x) and its derivative, which does not affect the limiting

distribution of the estimator. In their paper, Newey and Stoker consider estimating the

conditional expectation by series. We exploit the fact that our conditional expectation is

a conditional probability which is in [0, 1] and estimate its log-odds ratio by series. Such

difference should not affect the limiting distribution of the final estimator.

In reality we use the feasible estimator, which uses q̂τ instead of qτ . We now show

that under the assumptions invoked in Lemma 1 and assumptions about the series ap-

proximation, this is also irrelevant for the limiting distribution, that is, the feasible and

the unfeasible estimators will be asymptotically equivalent.

Proposition 3 [Asymptotic Equivalence of Feasible and Unfeasible Estimators]:

Under the assumptions for the Sieve-series approximation in Hirano, Imbens and Ridder
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(2003, Assumption 5), and assumptions 1 and 2 we have

1√
N

·
N∑

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

=
1√
N

·
N∑

i=1

(
F ′

Y |X (qτ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

+
1√
N

·
N∑

i=1

l (Xi) · (Tτ,i − pτ (Xi)) + op (1)

Finally, a combination of the previous results allows us to establish that

Corollary 1 [Asymptotic Distribution of ÛQPENP ]: Under the assumptions in

propositions 2 and 3 we have that

√
N ·

(
ÛQPENP − UQPE

)
= − 1√

N
·

N∑

i=1

(
F ′

Y |X (qτ |X = Xi)

fY (qτ )
+ UQPE

)

− 1

fY (qτ ) ·
√

N
·

N∑

i=1

l (Xi) · (Tτ,i − pτ (Xi)) + op (1)

6 Empirical Applications

To illustrate how our methodology works in practice, we present two empirical appli-

cations. The first one revisits the birthweight model of Koencker and Hallock (2001),

where the authors show that there are differential impacts of being a boy or having a

black mother, for example, at different quantiles of the conditional birthweight distri-

bution. While on average boys are larger than girls, the disparity is much smaller in

the lower quantiles and considerably larger in the upper quantiles. The second empirical

application focuses on the impact of unions on male wages which are well known to have

differential impacts at different points in the wage distribution (e.g. Card (1996)). There

are several reasons why the impact of unions may be different at different quantiles of

the wage distribution. First, unions both increase the conditional mean of wages (the

“between” effect) and decrease the conditional distribution of wages (the “within” ef-

fect). This means that unions tend to increase wages in low wage quantiles where both

the between and within group effects go in the same direction, but can decrease wages in

high wage quantiles where the between and within group effects go in opposite directions.
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This is compounded by the fact that the union wage gap generally declines as a function

of the (observed) skill level.

These two examples are also useful in illustrating differences between unconditional

and conditional quantiles regressions. In the first case, the conditional and unconditional

distribution of birthweight are very similar, both look like Gaussian distributions slightly

shifted one from another, so that the unconditional and conditional quantiles regressions

will yield estimates that are generally similar to each other.20 Note also that despite a

large sample of 198,377 observations, the standard errors are quite large, a pattern that

can also be found in Figure 4 of Koencker and Hallock (2001).21 The large standard errors

mean that the covariates do very little to explain individual differences in birthweight,

so it is not surprising that the conditional and unconditional quantile estimates are

similar. These conditional and unconditional (using the RIF-OLS and the non-parametric

estimation strategy) quantile estimates, are presented in Figure 1a. The point estimates

are generally very close, even for the variables for which they appear different, given the

large standard errors, displayed in Figure 1b, they are not statistically different.

In the second empirical application, however, the conditional and unconditional dis-

tribution of log wages are more dissimilar. For example, the distribution of log wages

conditional on being covered by a union is not only shifted to the right of the uncondi-

tional distribution, but it is also a more compressed and skewed distribution, correspond-

ing to location-scale-twist of the unconditional distribution. By contrast the distribution

of wages for non-union workers is closer to a normal distribution, but it typically has a

mass point in the lower tail at the minimum wage.22 The conditional and unconditional

quantile regression estimates for union status will thus be very different, as illustrated

in Figures 2a and 2b. On the other hand, the distributions of log wages by different

experience levels are less dissimilar and the corresponding unconditional and conditional

quantile regression estimates will be closer. We now discuss in more detail the estimation

results in the case of unions.

6.1 Unions and Wage Inequality

Table 1 reports the estimates using the RIF-OLS method at the 10th, 50th and 90th

quantiles using a large sample of U.S. males from the 1983-85 Outgoing Rotation group

20See the figures in Appendix Figure A1.
21We use the same June 1997 Detailed Natality Data published by the National Center for Health

Statistics as used by Koencker and Hallock (2001).
22At least in 1983-85, see Appendix Figure A2.
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(ORG) supplement of the Current Population Survey. We start with 1983 because it is

the first year in which the ORG supplement asked about union status. The dependent

variable is the real log hourly wage for all wage and salary workers. Other data processing

details can be found in Lemieux (2006b). The results are also compared with the

OLS benchmark, and with standard quantile regressions at the corresponding quantiles.

Interestingly, the effect of unions first increases from 0.198 at the 10th quantile to 0.349

at the median before turning negative (-0.137) at the 90th quantile. These findings

strongly confirm the well known results that unions have different effects (UQPE here,

to be precise) at different points of the wage distribution. Note that the effects are

very precisely estimates for all specifications, thanks to the large available sample sizes

(266,956 observations).

The quantile regression estimates reported in the corresponding columns show, as in

Chamberlain (1994), that unions increase the location of the conditional wage distribu-

tion (i.e. positive effect on the median) but also reduce conditional wage dispersion. This

explains why the effect of unions monotonically declines from 0.288, to 0.195 and 0.088

as quantiles increase. One cannot infer from the quantile regressions, however, what is

the overall effect of unions on the unconditional wage distribution. The key problem

is that, unlike conditional means, conditional quantiles do not aggregate up to uncon-

ditional quantiles. For example, the fact that unions increase the conditional median

by 0.196 does not say anything about the effect of unions on the unconditional median.

In fact, Table 1 shows that the effect of unions on unconditional quantiles estimated

using RIF-OLS regressions are quite different from the conditional quantile estimates.

For instance, the effect on the median (0.349) largely exceeds the conditional quantile

regression estimate of 0.195.

The difference between RIF-OLS estimates of UQPE and quantile regression esti-

mates of CQPE is illustrated in detail in Figure 2a, which plots both sets of estimates

for each covariate at 19 different quantiles (from the 5th to the 95th). The pattern of

estimated union effect on conditional and unconditional quantiles is very different. The

unconditional effect is highly non-monotonic, while the conditional effect declines mono-

tonically. In particular, the unconditional effect first increases from about 0.1 at the 5th

quantile to about 0.4 at the 35th quantile, before declining and eventually reaching a large

negative effect of over -0.2 at the 95th quantile. The large effect at the top end reflects

the fact that compression effects dominate everything else there. Union wages are more

compressed and do not exhibit the “fat” upper tail of the non-union wage distribution.

As a result, unions have large and negative impact on the probability of earning more
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than the 95th quantile.

By contrast, traditional (conditional) quantile regression estimates decline almost

linearly from about 0.3 at the 5th quantile, to barely more than 0 at the 95th quantile.

So while both conditional and unconditional quantile regressions generally indicate that

unions reduce wage inequality, the implied impacts are very different at different points

of the wage distribution. For instance, one may read the quantile regressions estimates

as indicating that de-unionization would uniformly reduce inequality at different points

of the distribution. Unconditional regressions show, however, that the effect is much

more non-linear. For instance, since the impact on the 10th and 50th quantiles are

quite similar, this suggests that a decline in unionization would not result in expanding

“low-end” wage inequality measured by the 50-10 gap. But since unions have a much

larger impact at the median than at the 90th percentile, this suggests that a decline in

unionization would result in a large expansion in the 90-50 gap. This is an important

finding since recent studies such as Lemieux (2006a) and Autor et al. (2006) show that

inequality has expanded much more at the “top-end” than at the “low-end” over the last

twenty years.

The difference between conditional and unconditional effects is also quite important

for several other covariates. For example, the effect of being a high-school dropout

(relative to a high school graduate) goes in opposite directions for conditional and un-

conditional regressions above the 15th quantile. On the one hand, the fact that the

(negative) effect of being a dropout increase with quantiles for conditional quantile re-

gressions simply reflects the heteroskedasticity in the data (residual dispersion increases

with education). On the other hand, the opposite happens for unconditional regres-

sions. The reason is that while being a dropout instead of a high school graduate has a

big negative impact at low quantiles, the effect is much smaller at higher quantiles where

having or not completed high school changes very little to the probability of earning a

very high wage (like the 95th percentile). One basically “needs” some college education

to have any chance of earning these higher wages.

Another interesting feature of the unconditional quantile regression estimates is that,

for all covariates, the estimated effects at the 10th and especially the 5th quantile tend to

go abruptly towards zero. For example, the negative wage effect of being “non-white”

hovers between 0.15 to 0.20 from the 15th to the 50th quantile, but drops to 0.12 at the

10th, and only 0.05 at the 5th quantile. The situation looks even more extreme for the

effect of having very low experience (less than five years). The explanation for this

puzzling pattern is that the 5th is very close to the value of the minimum wage. Since
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the bottom of the distribution gets “bunched-up” at the minimum wage, factors like not

being white and having little experience no longer have a negative effect in this part of

the distribution. The unconditional wage regressions thus capture this important feature

of the wage distribution that is mostly masked in the conditional quantile regressions.

Figure 2b report similar estimates for the more recent period (2003-05). While

most estimates look qualitatively similar to those for 1983-85, a number of interesting

new patterns also emerge. For example, there is now a more marked difference for the

conditional and unconditional effects linked to education categories. In particular, the

unconditional effect of having a post-graduate degree now increases much more steeply

from the 5th to the 95th quantile than the conditional effect.

The remaining figures illustrate that, in a number of respects, the RIF-OLS regressions

appear to be providing very robust estimates of the underlying parameter of interest, the

UQPE. Figure 2c compares the RIF-OLS estimates to those obtained by computing the

marginal effects from a logit regression with the same parametrization as the one used

for the RIF-OLS (see Table 1). In most cases, the two sets of estimates are very close

to each other. This confirms the “common wisdom” in empirical work that marginal

effects from the linear probability model (RIF-OLS) are very similar to those from a logit

or probit. In the case of unions, the last panel of Figure 2d shows that the confidence

intervals obtained using the two methods are very close to each other. This is in sharp

contrast with the very big difference in confidence intervals obtained when comparing

RIF-OLS estimates with conditional quantile regressions in the first panel of Figure 2d.

Note also that we use bootstrap standard errors for the logit marginal effects to also take

account of the fact that the density (denominator in the RIF) is estimated. Accounting

for this source of variability has very little impact on the confidence intervals because

densities are very precisely estimated in our large sample.

The second panel of Figure 2d shows, however, that even if the density is precisely

estimated, the choice of the bandwidth does matter for some of the unconditional quantile

regression at the 15th, 20th, and 25th quantiles. The problem is that there is a lot of

heaping at $5 and $10 in this part of the wage distribution, which makes the kernel

density estimates erratic when small bandwidths (0.02 or even 0.04) are used. The

figure suggests it is better to oversmooth a bit the data with a larger bandwidth (0.06)

even when the sample size is very large. Oversmoothing makes the estimates better

behaved between the 15th and the 25th quantile, but has very little impact at other

quantiles. Finally, the third panel of Figure 2d shows that using the fully nonparametric

estimator (flexible NP in the graph) yields estimates that are virtually identical to those
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obtained with the parametric logit or the RIF-OLS.23

Having established that the RIF-OLS method works very well in practice, we return

to an important potential limitation of our approach that has to do with the fact that the

influence function is only a derivative. As a result, the UQPE estimated by RIF-OLS

(or non-parametric methods) is only accurate for infinitesimal changes in the covariates.

For larger changes in the covariates, there is an approximation error. How large is the

approximation error is, however, an empirical question.

To assess the importance of the approximation error, we conduct a small experiment

looking at the effect of unions (in the 1983-85 data) but ignoring all other covariates.

To predict the effect of changes in unionization using our approach, we run RIF-OLS

regressions using only union status as explanatory variable. We then predict the value

of the quantile at different levels of unionization by computing the predicted value of the

RIF for different values of the unionization rate. The straight lines in Figures 4a to 4g

show the result of this exercise for various changes in the unionization rate relative to

the baseline rate (26.2 percent).

Since we only have a dummy covariate, it is also straightforward in this case to

compute an “exact” effect of unionization by simply changing the proportion of union

workers, and recomputing the various quantiles in this “reweighted” sample.24 The re-

sulting estimates are the diamonds reported in Figure 3a to 3g. Generally speaking, the

RIF-OLS estimates are remarkably close to the “exact” estimates, even for large changes

in unionization (plus or minus 10 percentage points). So while this is only a very special

case, the results suggest that our approach is a very good approximation that works both

for small and larger changes in the distribution of covariates.

The very last panel of Figure 3 (Figure 3h) repeats the same exercise for the variance.

The advantage of the variance is that, unlike quantiles, it is possible to find a closed form

expression for the effect of unions on the variance. More specifically, the well known

analysis of variance formula implies that the overall variance is given by:

V ar(w) = U · σ2
u + (1 − U) · σ2

n + U · (1 − U) · D2

where U is the unionization rate, σ2
u (σ2

n) is the variance within the union (non-union)

sector, and D is the union wage gap. The effect of a change ∆U in the unionization rate

23We fully interact union status with all the other variables shown in Table 1 to get a “non-parametric”
effect for unions.

24This can be viewed as a special case of Dinardo and Lemieux (1997)’s reweighting estimator of the
effect of unions, where they perform a conditional reweighting where other covariates are also controlled
for.
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is simply:

∆V ar(w) = ∆U · (σ2
u − σ2

n) +
[
∆U(1 − 2U) − (∆U)2

]
· D2

For an infinitesimal change in ∆U , the derivative of V ar(w) with respect to U is

dV ar(w)

dU
= (σ2

u − σ2
n) + (1 − 2U) · D2

Using the derivative to do a first-order approximation of ∆V ar(w) thus yields:

˜∆V ar(w) = ∆U ·
[
(σ2

u − σ2
n) + (1 − 2U) · D2

]

It is easy to show that running a RIF-OLS regression for the variance and using it to

predict the effect of changes in unionization on the variance yields the approximation
˜∆V ar(w) while the exact effect is ∆V ar(w) from above. The approximation error is,

thus, the second order term ∆V ar(w) − ˜∆V ar(w) = (∆U)2 · D2. It corresponds to the

difference between the straight lines and the diamonds in Figure 3g. The diamonds

are on a quadratic curve because of the second order term (∆U)2 · D2, but the linear

curve approximates the quadratic very well even for large changes in the unionization

rate. In other words, the RIF-OLS approach yields very similar results compared to the

analysis of variance formula that has been widely used in the literature. The fact that

the approximation errors for both the quantiles and the variance are very small gives us

great confidence that our approach can be used to generalize the distributional analysis

of unions (or other factors) to any quantile of the unconditional distribution.

7 Conclusion

In this paper, we propose a new intuitive and computationally simple method for esti-

mating unconditional quantile regressions. The method is based on the first order VOM

appromixation of the unconditional quantile, which relies on the well-known influence

function. In its simplest form, it consists of a linear projection of the recentered influence

function of a given quantile onto the covariates. The method is useful complement to

conditional quantile regressions when the parameter of policy interest has to do with the

unconditional distribution.

We begin our exposition by contrasting unconditional quantile regressions with the

popular conditional quantile regressions. As is well-known, an important problem with

conditional quantile regressions is that they do not aggregate up. That is, the condi-
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tional quantile evaluated at the mean of the covariates is not equal to the unconditional

quantile. In many contexts, where there is a need to apply a decomposition method,

such as the Oaxaca-Blinder approach, this is an undesirable property. On the contrary,

an unconditional quantile evaluated at the mean of the covariates will be equal to the

unconditional quantile. Thus our method can be used to construct policy conterfactuals

or decomposition of the unconditional quantile in the same way OLS is typically used for

the mean.

We then proceed with a review of the basic concepts underlying our first order VOM

approximation, which we call recentered influence function, of any functional of a given

distribution of the dependent variable of interest, observed in the presence of covariates.

We also provide a general result on the impact of changes in the distribution of the

covariates, which can be written in general terms as mixtures of the original distribution

and of a small change in the direction of a counterfactual distribution of desired changes.

Our central result describes the impact of a small change in the distribution of covariates

in the direction of the counterfactual distribution of desired changes on the functional

of interest, as the integral of the expectation of the recentered influence function with

respect to the changes in distribution of the covariates. Because this result applies to any

counterfactual distribution, it gives us a powerful tool to consider commonly estimated

partial effects, as well effects related to discrete changes linked to any policy of interest.

Also, although we develop the details of our estimation strategies for quantiles, because

this central result implies to any functional, our simplest estimation strategy would also

work for other functionals, such as the variance or the Gini coefficient.

Our next step is to apply this general result to the case where the functional of interest

is a given quantile of the unconditional distribution and consider two important specific

cases of the impact of changes in the covariates. The leading case is the one where the

counterfactual distribution of desired changes corresponds to providing a small increase in

the value of the vector of covariates to everyone in the population. Its corresponds to the

Unconditional Quantile Partial Effect (UQPE), whose counterpart in the case of the mean

is shown to be the Unconditional Average Partial Effect (UAPE) (Wooldridge, 2004). We

show that the UQPE of a particular covariate can be expressed as the average derivative

of the conditional expectation of the recentered influence function with respect to that

covariate. This expression can also be written as the average derivative of the conditional

distribution of the dependent variable with respect the covariate of interest, rescaled by

the inverse of the density of the dependent variable at the given quantile. These two key

expressions for the UQPE provide us with the basic formulas underlying our estimation
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strategies. We also explore the links between the UQPE and a structural model that links

the dependent variable to observed and unobserved covariates through a given functional

form. We provide the corresponding expression in the general case and illustrate these

links more precisely in three special cases that illustrate some simplifications, as well as

potential pitfalls, when the unobservables are or are not independent of the observed

covariates.

In the estimation section, we provide the details of our two estimation strategies for

the alternative expressions of the UQPE, as well as the corresponding asymptotic results.

As already mentionned, the first one simply consists in running an OLS regression of the

recentered influence function of the unconditional quantile of the dependent variable on

the explanatory variables and is called RIF-OLS. The second one consists in estimat-

ing non-parametrically the average derivative involved. Both strategies are relatively

straightforward since the estimation of their various components relies on known estima-

tors for the quantile (Koenker and Basset, 1978), for the non-parametric kernel density

function, and for the log odds ratio of the conditional probability for a given quantile

(Hirano, Imbens and Ridder, 2003).

Finally in the empirical section, we revisit two classic applications of quantile regres-

sion that illustrates well the differences between conditional and unconditional quantile

regressions. In the first one, which restimates the birthweight model of Koencker and

Hallock (2001), the two types of quantile regressions are very close. In the second one,

which considers in particular the impact of unions of wages, the results are more strink-

ingly different. While Chamberlain (1984) had found that unions have a much larger

effect at lower than higher conditional quantiles, we actually find a negative effect of

unions at the highest quantile of the wage distribution.

8 Appendix

Proof of Theorem 1: Let us define define HY,t as the following probability distribution

over the support of Y :

FY,t·GY
= (1 − t) · FY + t · GY
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We have

FY,t·GY
(y) = t · (GY − FY ) (y) + FY (y)

= t · (GY − FY ) + FY

= t ·
∫

FY |X (y|X = x) · d (GX − FX) (x)

+

∫
FY |X (y|X = x) · dFX (x)

=

∫
FY |X (y|X = x) · d (t · (GX − FX) + FX) (x)

=

∫
FY |X (y|X = x) · dFX,t·GX

(x)

= FY,t·GX
(y)

The effect on the functional ν of the marginal distribution of Y of an infinitesimal change

in the distribution of X from FX towards GX is defined as:

∂ν (FY,t·GY
)

∂t
|t=0 =

∫
IF(y; ν, FY ) · d (GY − FY ) (y)

=

∫
RIF(y; ν) · d (GY − FY ) (y)

=
∂ν (FY,t·GX

)

∂t
|t=0

Now, note that

dFY,t·GX
(y)

dy
= d

∫ ∫ y
dFY |X (z|X = x) · dFX,t·GX

(x)

dy

=

∫
fY |X (y|X = x) · dFX,t·GX

(x)
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thus,

∂ν (FY,t·GX
)

∂t
|t=0 =

∫
RIF(y; ν) · d (GY − FY ) (y)

=
1

t
·
∫

RIF(y; ν) · dFY,t·GX
(y)

=
1

t
·
∫

y

RIF(y; ν) ·
∫

x

fY |X (y|X = x) · dFX,t·GX
(x) · dy

=

∫

x

(∫

y

RIF(y; ν) · fY |X (y|X = x) · dy

)
· dFX,t·GX

(x)

t

=

∫
E [RIF(Y ; ν)|X = x] · d (GX − FX) (x)

�
Derivation of the Influence Function of a Quantile:

Let the τ th quantile be defined implicitly as

τ =

∫ qτ

−∞
dF (y) =

∫ ν(F )

−∞
dF (y) =

∫ ν(Ft,y)

−∞
dFt,y (y)

Then by taking the derivative of the last expression with respect to t we obtain:

0 =
∂
∫ ν(Ft,y)

−∞ dFt,y (y)

∂t

=
∂ν (Ft,y)

∂t
· dFt,y (y)

dy
|y=ν(Ft,y) +

∫ ν(Ft,y)

−∞
d (∆y − F ) (y)

=
∂ν (Ft,y)

∂t
· dFt,y (y)

dy
|y=ν(Ft,y) + 1I {y ≤ ν(Ft,y)} −

∫
1I {y ≤ ν(Ft,y)} dF (y)

Thus:
∂ν (Ft,y)

∂t
=

∫
1I {y ≤ ν(Ft,y)} dF (y)− 1I {y ≤ ν(Ft,y)}

dFt,y(y)
dy

|y=ν(Ft,y)

�
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Proof of Proposition 1:

UQPEj (x) =
∂E [RIF(Y ; qτ)|X = x]

∂xj

= ∂
{qτ + (τ − E [1I{g(x, ε) ≤ qτ}|X = x] )/fY (qτ )}

∂xj

= ∂

{
qτ + (τ − E

[
1I{ε ≤ g−1(x, qτ)}|X = x

]
)/fY (qτ )

}

∂xj

= − (fY (qτ ))
−1 ·

∂Fε|X (g−1 (x, qτ ) |x)

∂xj

= − (fY (qτ ))
−1 ·

(
∂g−1 (x, qτ )

∂xj
·fε|X

(
g−1 (x, qτ ) |x

)
+

∂Fε|X (·|x)

∂xj

)

where defining the function H as

H
(
g−1 (·) , x1, x2, ..., xj, ..., xk

)
≡ Fε|X

(
g−1 (x, qτ) |x

)

⇒
∂Fε|X (·|x)

∂xj
=

∂H (g−1 (·) , x1, x2, ..., xj, ..., xk)

∂xj

Let us now work out an expression for the density of Y at qτ :

fY (qτ) =
dPr [Y ≤ qτ ]

dqτ
=

dPr [ε ≤ g−1 (X, qτ)]

dqτ

=
d
∫

Pr [ε ≤ g−1 (x, qτ) |X = x] · dFX (x)

dqτ

=

∫
dPr [ε ≤ g−1 (x, qτ ) |X = x]

dqτ
· dFX (x)

=

∫
∂g−1 (x, qτ)

∂qτ
· fε|X

(
g−1 (x, qτ) |x

)
· dFX (x)

=

∫
fε|X (g−1 (x, qτ) |x)

∂g (x, qτ) /∂qτ
· dFX (x)

and an expression for ∂g−1 (x, qτ) /∂xj, which uses the implicit function theorem:

∂g−1 (x, qτ )

∂xj
= −∂g (x, qτ ) /∂xj

∂g (x, qτ ) /∂qτ
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therefore, we have that UQPEj (x) can be expressed as:

UQPEj (x) = (fY (qτ))
−1 ·

(
∂g−1 (x, qτ)

∂xj

·fε|X
(
g−1 (x, qτ) |x

)
+

∂Fε|X (·|x)

∂xj

)

=

(
∂g (x, qτ)

∂xj
·
fε|X (g−1 (x, qτ))

∂g (x, qτ ) /∂qτ
−

∂Fε|X (·|x)

∂xj

)

·
(∫

fε|X (g−1 (x, qτ ))

∂g (x, qτ ) /∂qτ
· dFX (x)

)−1

Now, let us use the fact that ε and X are independent, that is, ∂Fε|X (·|x) /∂xj = 0 and

fε|X (·) = fε (·):

UQPEj (x) =
∂g(x, qτ)

∂xj
· fε (g−1 (x, qτ))

∂g (x, qτ ) /∂qτ

/∫
fε (g−1 (x, qτ))

∂g (x, qτ) /∂qτ
· dFX (x)

�
Proof of Lemma 1:

Start by opening up the expression supy

∣∣∣R̂IF (y; q̂τ) − RIF (y; qτ)
∣∣∣:

sup
y

∣∣∣R̂IF (y; q̂τ) −RIF (y; qτ)
∣∣∣

= sup
y

∣∣∣∣∣q̂τ +
τ − 1I {y ≤ q̂τ}

f̂Y (q̂τ )
− qτ −

τ − 1I {y ≤ qτ}
fY (qτ)

∣∣∣∣∣

and that is bounded by

≤ |q̂τ − qτ |

+τ ·

∣∣∣∣∣
f̂Y (q̂τ ) − fY (qτ)

fY (qτ) · f̂Y (q̂τ)

∣∣∣∣∣

+sup
y

∣∣∣∣∣
1I {y ≤ q̂τ} − 1I {y ≤ qτ}

f̂Y (q̂τ )

∣∣∣∣∣

+sup
y

∣∣∣∣∣

(
f̂Y (q̂τ) − fY (qτ)

fY (qτ) · f̂Y (q̂τ )

)
· 1I {y ≤ qτ}

∣∣∣∣∣

Following for example van der Vaart (1998, p. 55), under Assumption 1:
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√
N · (q̂τ − qτ) =

τ − 1I {Y ≤ qτ}
fY (qτ)

+ op (1)
D→ N

(
0,

τ · (1 − τ)

f2
Y (qτ)

)

thus, Equation (15) is Op

(
N−1/2

)
, that is, there is a constant c, such that, with high

probability

|q̂τ − qτ | <
c√
N

= O
(
N−1/2

)

Equation (15) can be bounded in probability by noticing that:

τ ·

∣∣∣∣∣
f̂Y (q̂τ) − fY (qτ)

fY (qτ) · f̂Y (q̂τ)

∣∣∣∣∣

≤ c1 ·

(∣∣∣f̂Y (q̂τ) − fY (q̂τ)
∣∣∣+ |fY (q̂τ) − fY (qτ )|

)

fY (qτ) ·
∣∣∣
(
f̂Y (q̂τ ) − fY (q̂τ) + fY (q̂τ) − fY (qτ) + fY (qτ)

)∣∣∣

≤ c1 ·

(
supy

∣∣∣f̂Y (y) − fY (y)
∣∣∣+ |fY (q̂τ) − fY (qτ)|

)

fY (qτ) ·
(
fY (qτ) − c2 · supy

∣∣∣f̂Y (y) − fY (y)
∣∣∣− c3 · |fY (q̂τ) − fY (qτ)|

)

where c1, c2 and c3 are constants. By Assumption 1, fY (y) is and continuously differen-

tiable for all y in the support of Y , which allows us to apply the so-called Delta-method:

√
N ·(fY (q̂τ) − fY (qτ)) = f ′

Y (qτ)·
√

N ·(q̂τ − qτ)+op (1)
D→ N

(
0, (f ′

Y (qτ ))
2 · τ · (1 − τ )

f2
Y (qτ)

)

It is important here to invoke the work out a known result (for example, Pagan and

Ullah, 1999, Theorems 2.4 and 2.8 on pp. 33-37) that follows from assumptions 1 and 2

about the kernel density estimator f̂Y (·) being uniformly consistent to fY (·):

sup
y

∣∣∣f̂Y (y) − fY (y)
∣∣∣ ≤ sup

y

∣∣∣f̂Y (y) − E
[
f̂Y (y)

]∣∣∣+ sup
y

∣∣∣E
[
f̂Y (y)

]
− fY (y)

∣∣∣

= Op

((
N · h2

Y

)−1/2
)

+ O
(
h2

Y

)

= Op

(
N−1/2 · N1/6

)
+ O

(
N−1/3

)
= Op

(
N−1/3

)

Therefore

τ ·

∣∣∣∣∣
f̂Y (q̂τ ) − fY (qτ)

fY (qτ) · f̂Y (q̂τ)

∣∣∣∣∣ = Op (1) ·

(
Op

(
N−1/3

)
+ Op

(
N−1/2

)

Op (1) + Op (N−1/3) + Op (N−1/2)

)
=

Op

(
N−1/3

)

Op (1)

= Op

(
N−1/3

)
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Next we consider Equation (15)

sup
y

∣∣∣∣∣
1I {y ≤ q̂τ} − 1I {y ≤ qτ}

f̂Y (q̂τ)

∣∣∣∣∣

≤
supy |1I {y ≤ q̂τ} − 1I {y ≤ qτ}|

fY (qτ ) − c1 · supy

∣∣∣f̂Y (y) − fY (y)
∣∣∣− c2 · |fY (q̂τ) − fY (qτ)|

Define the function ay (q) = 1I {q ≥ y}, which is Lipschitz for all y ∈ R, that is, for small

real ε, there exist a constant cy such that

sup
y

|ay (q + ε) − ay (q)| < cy · |ε|

and, therefore, there will be a constant c1 that with high probability:

√
N · sup

y
|1I {y ≤ q̂τ} − 1I {y ≤ qτ}|

≤
√

N · sup
y

∣∣∣1I
{
y ≤ qτ + c1/

√
N
}
− 1I {y ≤ qτ}

∣∣∣

≤
√

N · cy ·
∣∣∣c1/

√
N
∣∣∣

= O (1)

Thus:

sup
y

∣∣∣∣∣
1I {y ≤ q̂τ} − 1I {y ≤ qτ}

f̂Y (q̂τ)

∣∣∣∣∣

=
Op

(
N−1/2

)

Op (1) + Op (N−1/3) + Op (N−1/2)
= Op

(
N−1/2

)

Finally, consider Equation (15),

sup
y

∣∣∣∣∣

(
f̂Y (q̂τ) − fY (qτ)

fY (qτ ) · f̂Y (q̂τ)

)
· 1I {y ≤ qτ}

∣∣∣∣∣

≤

∣∣∣∣∣

(
f̂Y (q̂τ) − fY (qτ)

fY (qτ) · f̂Y (q̂τ )

)∣∣∣∣∣ = Op

(
N−1/3

)
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Therefore,

sup
y

∣∣∣R̂IF (y; q̂τ) − RIF (y; qτ)
∣∣∣ = Op

(
N−1/2

)
+ Op

(
N−1/3

)
+ Op

(
N−1/2

)
+ Op

(
N−1/3

)

= Op

(
N−1/3

)
= op (1)

�
Proof of Theorem 2: Now, let us rewrite γ̂τ

γ̂τ =

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi · R̂IF(Yi; q̂τ)

=

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi · RIF(Yi; qτ)

+

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)

= γτ +

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi · Ui,τ

+

(
N∑

i=1

Xi · Xᵀ
i

)−1

·
N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)

Thus:

∥∥∥∥∥
√

N · (γ̂τ − γτ ) − (E [X · Xᵀ])−1 · 1√
N

·
N∑

i=1

Xi · Ui,τ

∥∥∥∥∥

≤

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])−1


 · 1√

N
·

N∑

i=1

Xi · Ui,τ

∥∥∥∥∥∥
(15)

+

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])−1


 · 1√

N
·

N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)
∥∥∥∥∥∥

(16)

+

∥∥∥∥∥(E [X · Xᵀ])−1 · 1√
N

·
N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)∥∥∥∥∥ (17)
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Given Assumption 3, we can apply a central limit theorem to get

1√
N

·
N∑

i=1

Xi · Ui,τ
D→ N

(
0, E

[
U2

τ · X ·Xᵀ])

and therefore

(E [X · Xᵀ])−1· 1√
N
·

N∑

i=1

Xi·Ui,τ
D→ N

(
0, (E [X · Xᵀ])−1 · E

[
U2

τ · X · Xᵀ] · (E [X · Xᵀ])−1)

thus, N−1/2 ·
∑N

i=1 Xi · Ui,τ = Op (1). Also by Assumption 3 we can apply a law of large

numbers to get (
1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X ·Xᵀ])−1 = op (1)

thus Equation (15) is

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])
−1


 · 1√

N
·

N∑

i=1

Xi · Ui,τ

∥∥∥∥∥∥
= op (1)·Op (1) = op (1) .

The fact that Equation (16) is op (1) is a direct consequence of Lemma 1:

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])−1


 · 1√

N
·

N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)
∥∥∥∥∥∥

≤

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])−1



∥∥∥∥∥∥
·

∥∥∥∥∥
1√
N

·
N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)∥∥∥∥∥

≤ sup
y

∣∣∣R̂IF (y; q̂τ) − RIF(y; qτ)
∣∣∣ ·

∥∥∥∥∥∥



(

1

N
·

N∑

i=1

Xi · Xᵀ
i

)−1

− (E [X · Xᵀ])−1



∥∥∥∥∥∥
·

∥∥∥∥∥
1√
N

·
N∑

i=1

Xi

∥∥∥∥∥

= op (1) · op (1) · Op (1) = op (1) .
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Finally, Equation (17) is bounded by the same type of argument:

∥∥∥∥∥(E [X · Xᵀ])−1 · 1√
N

·
N∑

i=1

Xi ·
(
R̂IF(Yi; q̂τ) − RIF(Yi; qτ)

)∥∥∥∥∥

≤ sup
y

∣∣∣R̂IF (y; q̂τ) −RIF (y; qτ)
∣∣∣ ·
∥∥(E [X · Xᵀ])−1

∥∥ ·
∥∥∥∥∥

1√
N

·
N∑

i=1

Xi

∥∥∥∥∥
= op (1) · Op (1) · Op (1) = op (1) .

�
Proof of Proposition 3: Start by writing 1√

N
·
∑N

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

as

1√
N

·
N∑

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

=
1√
N

·
N∑

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − F̂ ′
Y |X (qτ |X = Xi)

)

+
1√
N

·
N∑

i=1

(
F̂ ′

Y |X (qτ |X = Xi) − E
[
F ′

Y |X (qτ |X)
])

=
1√
N

·
N∑

i=1

(
F ′

Y |X (qτ |X = Xi) −E
[
F ′

Y |X (qτ |X)
])

+
1√
N

·
N∑

i=1

l (Xi) · (Tτ,i − pτ (Xi)) + op (1)

thus we need to show that 1√
N
·
∑N

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − F̂ ′
Y |X (qτ |X = Xi)

)
is op (1).
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1√
N

·
N∑

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − F̂ ′
Y |X (qτ |X = Xi)

)

=
1√
N

·
N∑

i=1

GK(τ)(Xi)
ᵀ ·
(
π̂K(τ) · p̂F

K(τ)(Xi) ·
(
1 − p̂F

K(τ)(Xi)
)
− π̃K(τ) · p̂U

K(τ)(Xi) ·
(
1 − p̂U

K(τ)(Xi)
))

=
1√
N

·
N∑

i=1

GK(τ)(Xi)
ᵀ ·
(
π̂K(τ) − π̃K(τ)

)
· p̂U

K(τ)(Xi) ·
(
1 − p̂U

K(τ)(Xi)
)

+
1√
N

·
N∑

i=1

GK(τ)(Xi)
ᵀ · π̂K(τ) ·

(
p̂F

K(τ)(Xi) ·
(
1 − p̂F

K(τ)(Xi)
)
− p̂U

K(τ)(Xi) ·
(
1 − p̂U

K(τ)(Xi)
))

≤
∣∣∣∣

1√
N

·
√∥∥π̂K(τ) − π̃K(τ)

∥∥2 · sup
x∈X

(
p̂U

K(τ)(x) ·
(
1 − p̂U

K(τ)(x)
)
·
√∥∥GK(τ)(x)

∥∥2
)∣∣∣∣

+

∣∣∣∣
√∥∥π̂K(τ)

∥∥2 · sup
x∈X

(√∥∥GK(τ)(x)
∥∥2 ·

(
1 − p̂F

K(τ)(x)− p̂U
K(τ)(x)

))∣∣∣∣ ·
∣∣∣∣∣

1√
N

·
N∑

i=1

(
p̂F

K(τ)(Xi) − p̂U
K(τ)(X

By using the fact that QN (π) and Q̂N (π) are concave functions in π, we can apply

the Convexity Lemma (see, for example, Hjört and Pollard, 1993) which establishes

that the minimizers (maximizers) of convex (concave) random functions that can be

approximated by the same quadratic function in a neighborhood of the true minimum

will be asymptotically equivalent. Thus, given that as N increases q̂τ gets closer in

probability to qτ , Q̂N (·) will get closer uniformly in probability to QN (·) and one can

show that
∥∥π̂K(τ) − π̃K(τ)

∥∥ = op (1).

Also, according to the assumptions of Hirano, Imbens and Ridder (2003)

sup
x∈X

(
p̂U

K(τ)(x) ·
(
1 − p̂U

K(τ)(x)
)
·
√∥∥GK(τ)(x)

∥∥2
)

= Op (1)

and therefore,

∣∣∣∣
1√
N

·
√∥∥π̂K(τ) − π̃K(τ)

∥∥2 · sup
x∈X

(
p̂U

K(τ)(x) ·
(
1 − p̂U

K(τ)(x)
)
·
√∥∥GK(τ)(x)

∥∥2
)∣∣∣∣ = op (1)

Finally, by the assumptions involving the series approximation,

√∥∥π̂K(τ)

∥∥2 · sup
x∈X

(√∥∥GK(τ)(x)
∥∥2 ·

(
1 − p̂F

K(τ)(x) − p̂U
K(τ)(x)

))
= Op (1)
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and

∣∣∣∣∣
1√
N

·
N∑

i=1

(
p̂F

K(τ)(Xi) − p̂U
K(τ)(Xi)

)
∣∣∣∣∣

=

∣∣∣∣∣
1√
N

·
N∑

i=1

L(HK(τ)(Xi)
ᵀπ̂K(τ)) − L(HK(τ)(Xi)

ᵀπ̃K(τ))

∣∣∣∣∣

≤

∣∣∣∣∣
1√
N

·
N∑

i=1

L′(HK(τ)(Xi)
ᵀπ̂∗

K(τ))

∣∣∣∣∣ ·
√∥∥π̂K(τ) − π̃K(τ)

∥∥2

= Op (1) · op (1) = op (1)

where π̂∗
K(τ) is an intermediate value between π̂K(τ) and π̃K(τ). Thus, we have that

1√
N

·
N∑

i=1

(
F̂ ′

Y |X (q̂τ |X = Xi) − F̂ ′
Y |X (qτ |X = Xi)

)
= op (1)

�
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Table 1: Comparing OLS, Conditional quantile regressions (CQR) and unconditional quantile 
regressions (UQR), 1983-85 CPS data from men. 
═════════════════════════════════════════════════════════════════════════════════════════            
                  OLS        10th centile        50th centile         90th centile     
                          ─────────────────   ────────────────    ──────────────── 
                            UQR       CQR       UQR       CQR       UQR       CQR      
───────────────────────────────────────────────────────────────────────────────────────── 
Union coverage   0.179     0.198     0.288     0.349     0.195    -0.137     0.088   
                (0.002)   (0.002)   (0.003)   (0.003)   (0.002)   (0.004)   (0.004) 
 
Non-white       -0.134    -0.118    -0.139    -0.169    -0.134    -0.101    -0.120 
                (0.003)   (0.005)   (0.004)   (0.004)   (0.003)   (0.005)   (0.005) 
 
Married          0.140     0.197     0.166     0.162     0.146     0.044     0.089 
                (0.002)   (0.003)   (0.003)   (0.004)   (0.002)   (0.004)   (0.004) 
Education 
 Elementary     -0.351    -0.311    -0.279    -0.469    -0.374    -0.244    -0.357 
                (0.004)   (0.008)   (0.006)   (0.006)   (0.004)   (0.005)   (0.007) 
 
 HS Dropout     -0.190    -0.349    -0.127    -0.202    -0.205    -0.069    -0.227 
                (0.003)   (0.006)   (0.004)   (0.004)   (0.003)   (0.004)   (0.005) 
 
 Some college    0.133     0.059     0.058     0.185     0.133     0.156     0.172 
                (0.002)   (0.004)   (0.003)   (0.004)   (0.003)   (0.005)   (0.004) 
 
 College         0.406     0.199     0.252     0.481     0.414     0.592     0.548 
                (0.003)   (0.004)   (0.004)   (0.005)   (0.003)   (0.008)   (0.005) 
 
 Post-graduate   0.478     0.140     0.287     0.541     0.482     0.859     0.668 
                (0.004)   (0.004)   (0.004)   (0.005)   (0.003)   (0.010)   (0.005) 
 
Experience 
 0-4            -0.545    -0.599    -0.333    -0.641    -0.596    -0.454    -0.650 



                (0.004)   (0.007)   (0.005)   (0.006)   (0.004)   (0.008)   (0.007) 
 
 5-9            -0.267    -0.082    -0.191    -0.360    -0.279    -0.377    -0.319 
                (0.004)   (0.005)   (0.005)   (0.006)   (0.004)   (0.008)   (0.006) 
 
 10-14          -0.149    -0.040    -0.098    -0.185    -0.152    -0.257    -0.188 
                (0.004)   (0.004)   (0.005)   (0.006)   (0.004)   (0.009)   (0.006) 
 
 15-19          -0.056    -0.024    -0.031    -0.069    -0.060    -0.094    -0.077 
                (0.004)   (0.004)   (0.005)   (0.006)   (0.004)   (0.009)   (0.007) 
 
 25-29           0.028     0.001     0.001     0.034     0.029     0.063     0.038 
                (0.004)   (0.005)   (0.006)   (0.007)   (0.005)   (0.011)   (0.007) 
 
 30-34           0.034     0.004    -0.007     0.038     0.033     0.063     0.064 
                (0.004)   (0.005)   (0.006)   (0.007)   (0.005)   (0.011)   (0.008) 
 
 35-39           0.042     0.021    -0.014     0.041     0.043     0.073     0.095 
                (0.005)   (0.005)   (0.006)   (0.007)   (0.005)   (0.011)   (0.008) 
 
 40+             0.005     0.042    -0.066     0.002     0.017    -0.030     0.061 
                (0.005)   (0.006)   (0.007)   (0.007)   (0.005)   (0.010)   (0.008) 
 
Constant         1.742     0.970     1.145     1.732     1.744     2.512     2.332 
                (0.004)   (0.005)   (0.005)   (0.006)   (0.004)   (0.008)   (0.006) 
───────────────────────────────────────────────────────────────────────────────────────── 
 



Figure 1a. Unconditional and Conditional Quantile Regressions Estimates  
for the Birthweight Model 
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 Figure 1b. Significance of the Differences between Different Quantile Estimates 
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Figure 2a. Unconditional and Conditional Quantile Estimates for the Log Wages Model, 
 Men 1983-1985 
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Figure 2b. Unconditional and Conditional Quantile Estimates for the Log Wages Model, 
 Men 2003-2005 
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Figure 2c. RIF-OLS and Non-Parametric Unconditional Quantile Regressions Estimates 
for the Log Wages Model, Men 1983-1985 
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Figure 2d. Sensitivity of Unconditional Estimates for the Log Wages Model,  
Men 1983-1985 
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Figure 3: Approximation error (relative to reweighting) when predicting the effect of changes in the unionization rate using the 
unconditional quantile regression  

A: 5th percentile

0.80

0.85

0.90

0.95

-0.10 -0.05 0.00 0.05 0.10

Change in unionization rate

Predicted
change

Actual change
(reweighting)

B: 10th percentile

0.90

0.95

1.00

1.05

-0.10 -0.05 0.00 0.05 0.10

Change in unionization rate
 

C: 25th percentile

1.30

1.35

1.40

1.45

-0.10 -0.05 0.00 0.05 0.10

Change in unionization rate
 

D: 50th percentile

1.75

1.80

1.85

1.90

-0.1 -0.05 0 0.05 0.1
Change in unionization rate  



Figure 3: Continuation 
E: 75th percentile
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Figure A1. Probability Density Functions of Birthweight 
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Figure A2. Probability Density Functions of Log Wages, 
a) Men 1983-85 
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b) Men 2003-05 
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