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Abstract

Where should better learning technology improve decisions? I develop a formal model of
decision-making in which better learning technology is complementary with experimentation.
Noisy, inconsistent decision-making by humans introduces quasi-experimental variation into
training datasets, which complements learning. The model makes heterogeneous predictions
about when machine learning algorithms can improve human biases. These algorithms will can
remove human biases exhibited in historical training data, but only if the human training deci-
sions are sufficiently noisy; otherwise the algorithms will codify or exacerbate existing biases. I
then test these predictions in a field experiment hiring workers for white-collar jobs. The intro-
duction of machine learning technology yields candidates that are a) +14% more likely to pass
interviews and receive a job offer, b) +18% more likely to accept job offers when extended, and
c) 0.2s-0.4s more productive once hired as employees. They are also 12% less likely to show
evidence of competing job offers during salary negotiations. These results were driven by can-
didates who were evaluated in a noisy, biased way in historical data used for training. These
candidates are broadly non-traditional, particularly candidates who graduated from non-elite
colleges, who lack job referrals, who lack prior experience, whose credentials are atypical and
who have strong non-cognitive soft-skills.
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1 Introduction

Where should better learning technology improve decisions? In many theoretical and empirical
settings, better use of empirical data improves productivity and reduces bias. However, predic-
tive algorithms are also at the center of growing controversy about algorithmic bias. Scholars
concerned about algorithmic bias have pointed to a number of troubling examples in which al-
gorithms trained using historical data appear to codify and amplify historical bias. Examples ap-
pear in judicial decision-making (Angwin et al., 2016), to hiring (Datta et al., 2015; Lambrecht and
Tucker, 2016) to targeted advertising (Sweeney, 2013). Policymakers ranging from German chan-
cellor Angela Merkel1 to the US Equal Employment Opportunity Commission2 have reacted with
public statements and policy guidance. The European Union has adopted sweeping regulations
targeting algorithmic bias.3

Counterfactual comparisons between algorithms and other decision-making methods are rare.
Where they exist, machine judgement often appears to less biased than human judgement, even
when trained on historical data (Kleinberg et al., 2017; this paper). How can algorithms trained on
biased historical data ultimately decrease bias, rather than prolong it? Where in the economy will
machine learning and data create better decision-making and resulting productivity benefits?

In this paper, I model the relationship between learning technology and decision-making. The
key feature of the model is that learning technology and experimentation are complementary.
However, even if human decision-makers refuse to experiment and are biased towards certain
behaviors, their pattern of choices can nonetheless provide useful exploration. The model endo-
genizes algorithmic bias, showing that its magnitude depends on the noisiness of the underlying
data-generating process. The behavioral noisiness of human decision-making effectively substi-
tutes for deliberate exploration, and provides the random variation that is complementary with
learning technology.

The model shows the relationship between the magnitudes of noise and bias. As a bias becomes
increasingly large, a progressively smaller amount of noise is needed for de-biasing. The model
suggest that tasks and sectors featuring noisy, biased human decision-makers are most ripe for
productivity enhancements from machine learning. With sufficient noise, superior learning tech-
nology can overcome not only taste-based biases against certain choices, but also biases in how
outcomes are graded. However, the requirements for completely eliminating bias are extreme.
A more plausible scenario is that algorithms using this approach will reduce, rather than fully
eliminate, bias.

I then test the predictions of this model in a field experiment in hiring for full-time, white collar
office jobs (software engineers). Before the experiment, a large company trained an algorithm to
predict which candidates would pass its interviews. In the experiment, this algorithm randomly
overrides the choices of experienced human screeners (the status quo at the firm) in deciding who

1In October 2016, German chancellor Angela Merkel told an audience that “Algorithms, when they are not transpar-
ent, can lead to a distortion of our perception.” https://www.theguardian.com/world/2016/oct/27/angela-merkel-
internet-search-engines-are-distorting-our-perception

2In October 2016, the US EEOC held a symposium on the implications of “Big Data” for Equal Employment Oppor-
tunity law. https://www.eeoc.gov/eeoc/newsroom/release/10-13-16.cfm

3See the EU General Data Protection Regulation https://www.eugdpr.org/, adopted in 2016 and enforceable as of
May 25, 2018.
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is extended an interview.

The field experiment yields three main results. First, the machine candidates outperform human
screeners on nearly all dimensions of productivity. I find that the marginal candidate picked by the
machine (but not by the human) is +14% more likely to pass a double-blind face-to-face interview
with incumbent workers and receive a job offer offer, compared to candidates who the machine
and human both select. These “marginal machine candidates” are also +18% more likely to accept
job offers when extended by the employer, and 12% less likely to show evidence of competing job
offers during salary negotiations. They are 0.2s-0.4s more productive once hired as employees.
The increased quality of hires is achieved while increasing the volume of employees hired.

Second, the algorithm increases hiring of non-traditional candidates. In addition, the produc-
tivity benefits come from these candidates. This includes women, racial minorities, candidates
without a job referral, graduates from non-elite colleges, candidates with no prior work experi-
ence, candidates who did not work for competitors.

Lastly, I find that the machine advantage comes partly from selecting candidates with superior
non-cognitive soft-skills such as leadership and cultural fit, and not from finding candidates with
better cognitive skills. The computer’s advantage appear precisely the soft dimensions of em-
ployee performance which some prior literature suggests that humans – and not machines – have
innately superior judgement. Given the findings of psychologists about the noisiness and bias of
assessments of cultural fit, this is also consistent with the theoretical model.

I also find three results about the mechanisms behind these effects. First, I show evidence for
the key feature in the of the theoretical model: The noisiness and inconsistency of human re-
cruiters provides exploration of non-traditional candidates’ performance. The strongest effects
come through candidates who were relatively unlikely to be selected by human recruiters, but who
were also evaluated in a noisy, inconsistent way. This provided performance observations on these
candidates, despite their disadvantages in the process.

Second, human underperformance is driven by poor calibration on a relatively small number of
variables. Between 70% and 90% of the productivity benefit from the algorithm’s can be recovered
from a low-dimensional OLS approximation. However, recovering the optimal parameters of the
simpler model is not straightforward. The parameters may be impossible to recover without first
creating the higher-dimensional model, and then approximating it with a simpler model. The
machine’s advantage in processing higher number of variables than a human can may be indirectly
useful. They may help the machine learn a small number of optimal weights, even if most of the
variables are ultimately can have effectively zero weight in evaluations.

Third, tests of combining human and algorithmic judgement fare poorly for human judgement.
Regressions of interview performance and job acceptance on both human and machine assess-
ments puts nearly all weight on the machine signal. I found no sub-group of candidates for whom
human judgement is more efficient. When human screeners are informed of the machine’s judg-
ment, they elect to defer to the machine.

In the final section of the paper, I compare heterogeneous treatment effects to the “weights”
inside the algorithm’s model. Policy entrepreneurs often seek transparency in algorithms (pub-
lishing an algorithm’s code and numerical weights) as a way of evaluating their bias and impact.
However, my experiment shows how this could be highly misleading. Even if an algorithm (say)
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penalizes inexperienced candidates with negative weights, it might help such candidates if the
weights in the counterfactual method are worse. This experiment shows that the weights are not
only different magnitudes as the treatment effects – they are also often not even the same sign.

While my data comes from a stylized setting, these results show evidence of productivity gains
from IT adoption (). Limiting or eliminating human discretion improves both the rate of false
positives (candidates selected for interviews who fail) as well as false negatives (candidates who
were denied an interview, but would have passed if selected). These benefits come exclusively
through re-weighting information on the resume – not by introducing new information (such as
human-designed job-tests or survey questions) or by constraining the message space for represent-
ing candidates.

Section 2 outlines a theoretical framework for comparing human and algorithmic judgment. Sec-
tion 3 discusses the empirical setting and experimental design, and section 4 describes the econo-
metric framework for evaluating the experiment. Section 5 contains results. Section 6 concludes
with discussion of some reasons labor markets may reward “soft skills” even if they can be effec-
tively automated, and the effect of integrating machine learning into production processes.

1.1 Related Literature

The model in this paper is related to the emerging fairness literature in computer science (Friedler
and Wilson, eds, 2018), and particularly to the usefulness for randomness in learning. Within the
fairness literature, several papers explore the application multi-armed bandidts, active- and online
learning (Joseph et al., 2016; Dimakopoulou et al., 2017). These papers emphasize the benefit of
deliberate, targeted exploration through randomization.

However, some settings give researchers the bandit-like benefits of random exploration for free
because of noise in the environment (particularly noise in human decision-making). This may
be particularly useful when multi-armed bandits aren’t allowed or feasible.4 However, the ex-
periments arising from environmental noise (described in this paper) are inefficient and poorly
targeted.

Methods from the bandit literature are far more statistically efficient because they utilize noise
more effectively than human psychology’s behavioral quirks. In addition, many bandit-methods
eventually (asymptotically) converge to unbiasedness. However as I discuss in Proposition 4, the
approach in this paper may not ever converge if the environment isn’t sufficiently noisy.

This paper also builds on an early formal models of the effects of machine learning and algorith-
mic in decision-making, particularly in a strategic environment. This theory model is related to
Mullainathan and Obermeyer (2017); Chouldechova and G’Sell (2017); Hardt et al. (2016); Klein-
berg et al. (2016). In addition, Hoffman et al. (2016) contains a theoretical model of decision-making
by humans and algorithms and evaluates differences.

This paper is related to Agrawal et al. (2017), which models the economic consequences of im-
proved prediction. The paper concludes by raising “the interesting question of whether improved
machine prediction can counter such biases or might possibly end up exacerbating them.”

4Algorithms requiring deliberate randomization are sometimes viewed as taboo or unethical.
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This paper aims to advance this question by characterizing and decomposing the nature of pre-
diction improvements. Prediction improvements may come about from improvements in bias
or variance, which may have differing economic effects. As Agrawal et al. (2017) allude, some
changes that superficially resemble “prediction improvements” may in fact reinforce deeply held
biases.

The model in this paper separately integrates prediction errors from bias and variance – and the
possibility of each improving – into a single model that makes heterogeneous predictions about
the effects of AI. It also develops microfoundations for how these changes arise endogenously –
from the creation of training data through its use by machine learning engineers.

How would this effect the overall quality of candidates? This approach has the advantage of
permitting real-world empirical verification of the models. Researchers can organize trials – field
experiments and A/B tests – to test the policy by modifying screening policy. By contrast, re-
searchers cannot easily randomly alter candidate characteristics in the real world. The idea of
using model features (weights, coefficients, or derivatives of an algorithm) to measure the impact
of an algorithm – which is implicit in Kusner et al. (2017) and related papers – is formally analyzed
in Proposition 9 of this paper.

2 Theoretical Framework

In this section, I examine a simple labor market search problem in which an employer evaluates
candidates. The employer’s selections, along with outcomes for selected candidates, are codified
into a dataset. This dataset is then utilized by a machine learning engineer to develop and optimize
a predictive algorithm.

The model endogenizes the level of algorithmic bias. Algorithmic bias arises from sample selec-
tion problems in the engineer’s training data. These sample selection problems arise endogenously
from the incentives, institutions, preferences and technology of human decision-making.

The framework is motivated by hiring, and many of the modeling details are inspired by the
empirical section later in the paper. However, the ideas in the model can be applied to decision-
making in other settings. The goal is to characterize settings where algorithmic decision-making
will improve decision-making more generally.

2.1 Setup: Human Decision-maker

A recruiter is employed to select candidates for a job test or interview. The recruiter faces discrete
choice problem: Because interviewing is costly, he can select only one candidate and must choose
the candidate most likely to pass. If a selected candidate passes the interview, the recruiter is paid
a utility bonus of r � 0. r comes from a principal who wants to encourage the screener to find
candidates who pass. If the selected candidate does not pass, the recruiter is paid zero bonus and
is not able to re-interview the rejected candidate.

For ease of explanation, suppose there are two candidates represented by q = 1 and q = 0. The
interviewer can see k characteristics about each type. The recruiter uses these k characteristics
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to estimate probabilities p0 and p1 that either candidate will pass the interview if selected. We
will assume that the recruiters’ p estimates are accurate (later, we will relax this assumption). Job
candidates not strategic players in the model and either pass (or not) randomly based on their true
ps. Type 1 is more likely to pass (p1 > p0).

The recruiter’s decisions exhibit bias. The recruiter a hidden taste payoff b � 0 for choosing Type
0, compelling taste-based discrimination. In addition, the recruiter also receives random net utility
shocks h ⇠ F for picking Type 1. The h utility shocks add random noise and inconsistency to the
recruiter’s judgement. They are motivated by the psychology and behavioral economics literature,
showing the influence of random extraneous factors in human decision-making. For example, the
noise shocks may come from exogenous factors such as weather (Schwarz and Clore, 1983; Rind,
1996; Hirshleifer and Shumway, 2003; Busse et al., 2015), sports victories (Edmans et al., 2007; Card
and Dahl, 2011), stock prices (Cowgill and Zitzewitz, 2008; Engelberg and Parsons, 2016), or other
sources of environmental variance that affect decision-makers’ mindset or mood, but are unrelated
to the focal decision.5 At a recent NBER conference on economics and AI, (Kahneman, 2017) stated
“We have too much emphasis on bias and not enough emphasis on random noise [...] most of the
errors people make are better viewed as random noise [rather than bias].”

This formulation of noise – a utility function featuring a random component – is used in other
models and settings, beginning as as early as (Marschak, 1959) and in more recent discrete choice
research. Noise has been a feature of the contest- and tournament- literature since at least Lazear
and Rosen (1981) and continuing into the present day (Corchón et al., 2018), and is mostly typically
as measurement error (they can be here as well).

Suppose F is continuous, symmetric, and has continuous and infinite support. F could be a
normal distribution (which may be plausible based on the central limit theorem) but can assume
other shapes as well. The mean of F is zero. If there are average non-zero payoffs to the screener
to picking either type, this would expressed in the bias term b.

2.2 Recruiter’s Optimal Choices

Before turning to the machine learning engineer, I’ll briefly characterize the recruiter’s optimal
choices. Given these payoffs, a risk-neutral human screener will make the “right” decision (Type
1) if rp1 + h > rp0 + b. In other words, the screener makes the right decision if the random utility
shocks are enough to offset the taste-based bias (b) favoring Type 0. Let h = r(p0 � p1) + b be the
minimum h necessary to offset the bias, given the other rewards involved. Such an h (or greater)
happens with probability of Pr(h > r(p0 � p1) + b) = 1 � F(r(p0 � p1) + b)) = q.

Because this paper is motivated by employer bias, we will restrict attention to the set of distri-
butions F for which q 2 [0, 1

2 ]. In other words, there will be variation in how often the screener
chooses the right decision, but she does not make the right decision in a majority of cases.

The probability q of picking the right candidate changes as a function of the other parameters of
this model. The simple partial derivatives of q are the basis for Proposition 1 and the comparative
statics of the human screener selecting Type 1.

5Note that these exogenous factors may alter the payoffs for picking both Type 0 and Type 1 candidates; F is the
distribution of the net payoff for picking Type 1.
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Proposition 1. The screener’s probability of picking Type 1 candidates (q) is decreasing in b, increasing in
r, increasing in the quality difference in Type 1 and Type 0 (p1 � p0), and increasing in the variance of F.
Proof: See Appendix A.1.

Proposition 1 makes four statements that can be interpreted as follows. First, as the bias b is
greater, the shock necessary to offset this bias must be larger. If F is held constant, these will be
more rare.

Second, as the reward for successful decisions r increases, the human screener is equally (or
more) likely to make the right decision to pick Type 1. This is because the rewards benefit from
picking Type 1 will increasingly outweigh his/her taste-based bias. The hs necessary to offset this
bias are smaller and more common.

Third: Proposition 1 states that as the difference between Type 1 and Type 0 (p1 � p0) is larger,
the screener is more likely to choose Type 1 despite her bias. This is because the taste-based bias
against Type 1 is offset by a greater possibility of earning the reward r. The minimum h necessary
for the Type 1 candidate to be hired is thus smaller and more probable.

Finally, q can be higher or lower depending on the characteristics of F, the random utility shocks
function with mean of zero. For any b and r, I will refer to the default decision as the type the
screener would choose without any noise. Given this default, F is “noisier” if increases the prob-
ability mass necessary to flip the decision from the default. This is similar to the screener “trem-
bling” (Selten, 1975) and picking a different type than she would without noise.

Where Type 0 is the default, a default F will place greater probability mass above h. This cor-
responds to a greater h realizations above h favoring Type 1 candidates. In these situations, q is
increasing in the level of noise in F. For a continuous, symmetric distribution such as the nor-
mal distribution, greater variance in F places is noisier regardless of r and b, since it increases the
probability of a h that flips the decision.

2.3 Setup: Machine Learning Engineer

Recruiters’ utility comes entirely from r, b and h. After interviewing is completed, each candidate
has an interview outcome y, a binary variable representing whether the candidate was given an
offer. Candidates who have an offer feature y = 1, candidates who are not interviewed or don’t
pass have y = 0. After every recruiter decision, y and the k characteristics (including q) are recorded
into a training dataset. The choice to interview is not recorded; only those who are given an offer or
not.6

After many rounds of recruiter decisions, training dataset is given to an algorithm developer.
The developer is tasked with creating an algorithm to select candidates for interviews. Like the
recruiter, the engineer is paid r for candidates who pass the interview. The developer can view q
and y for each candidate, but cannot see the values p1, p0, q, b or the h realizations.

The humans’ h noise realizations are hidden, and this complicates the measurement of bias in
the training dataset. Even if the engineer knows about the existence of the hs (and other variables

6I discuss this assumption later in Section ??.
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observable to the human and not the engineer), she may not know that these variables are noise
and uncorrelated with performance.

The machine learning engineers thus face a limited ability to infer information about candidate
qualities. A given training dataset could plausibly be generated by a wide variety of p1, p0, q, b or
the h realizations. This is similar to labor economists’ observation that differential hiring rates are
not (alone) evidence of discrimination or bias.

The engineers may have wide priors about which of these is more likely, and little clues from
the data alone. They may believe a variety of stories are equally likely. Furthermore, because
the hs were not recorded, the engineers cannot exploit the hs for econometric identification. The
engineers lack the signals necessary to isolate “marginal” candidates that are the topic of economic
studies of bias.

The engineers predicament in this model is realistic and should be familiar to empirical economists.
Econometric identification is difficult for many topics, particularly those around bias and discrim-
ination. Researchers perpetually search for convincing natural experiments. Like the engineers in
this model, they often fail to discover them.

The engineers’ flat priors is also realistic. Machine learning engineers often approach problems
with an extensive prediction toolkit, but without subject-area expertise. Even if they did, improv-
ing priors may be difficult because of the identification issue above.

Although the above issues frustrate the engineers’ estimation p, the engineers can clearly attempt
to estimate y 2 {0, 1} (the variable representing whether the candidate was extended an offer).
y is a composite variable combining both choice to be interviewed and the performance of the
interview. E[y|q] will clearly be misleading estimate of p|q. However as I describe below, many
machine learning practitioners proceed to estimate y in this scenario, particularly when the issues
above preclude a better strategy. The next section of results outlines when E[y|q] will be practically
useful alternative to human decision-making, even if it is a misleading estimate of p.

2.4 Modeling Choices

Why not knowing who interviewed? This paper will study an algorithm in which knowing why
candidates were interviewed – or whether they were interviewed at all – is not necessary. I will
assume that all the ML engineers can see is q and an outcome variable y for each candidate. y will
equal 1 if the candidate was tested and passed and equal zero otherwise.

In the next section, I analyze the equilibrium behavior for the setup above, beginning with a
discussion of a few modeling choices. Although the setup may apply to many real world settings,
there are a few limitations of the model worth discussing.

First, although human screeners are able to observe and react to the h realizations, they do not
recognize them as noise and thus do not learn from the experimentation they induce. This assump-
tion naturally fits settings featuring taste-based discrimination, as I modeled above. In Section
2.7.1, I discuss alternative microfoundations for the model, including statistical discrimination.
From the perspective of this theory, the most important feature of the screeners’ bias is that it is
stubborn and is not self-correcting through learning. Insofar as agents are statistical discrimina-
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tors, the experimentation is not deliberate and they do not learn from the exogenous variation
generated by the noise.

Second, the human screeners and machine learning engineers do not strategically interact in the
above model. For example, the human screeners do not attempt to avoid job displacement by feed-
ing the algorithm deliberately sabotaged training data. This may happen if the screeners’ direct
immediate costs and rewards from picking candidates outweigh the possible effects of displace-
ment costs in the future of automation (perhaps because of present bias).

In addition, there is no role for “unobservables” in this model besides noise. In other words,
the only variables privately observed by the human decision-maker (and not in the training data)
are noise realizations h. These noise realizations are not predictive of the candidate’s underlying
quality, and serve only to facilitate accidental experimentation and exploration of the candidate
space. By contrast, in other models (Hoffman et al., 2016), humans are able to see predictive vari-
ables that the ML algorithm cannot, and this can be the source of comparative advantage for the
humans, depending on how predictive the variable is.

For the theory in this paper to apply, the noise realizations h must be truly random – uncorrelated
with other observed or unobserved variables, as well as the final productivity outcome. If these
conditions are violated, the algorithm may nonetheless have a positive effect on reducing bias.
However, this would have to come about through a different mechanism than outlined in the
proofs below.

Lastly, this paper makes assumptions about the asymptotic properties of algorithmic predictions.
In particular, I assume that the algorithm convergest to E[Y|q], but without specifying a functional
form. This is similar to Bajari et al.’s 2018 “agnostic empirical specification.” The convergence
property is met by a variety of prediction algorithms, including OLS. However, asymptotic prop-
erties of many machine learning algorithms are often still unknown. Wager and Athey (2017)
shows that the predictions of random forests are asymptotically unbiased. I do not directly model
the convergence or its speed. The paper is motivated by applications of “big data,” in which sam-
ple sizes are large. However, it is possible that for some machine learning algorithms, convergence
to this mean may be either slow or nonexistant, even when trained on large amounts of data.

Note that in this setup, the human labeling process is both the source of training data for machine
learning, as well as the counterfactual benchmark against which the machine learning is assessed.

2.5 ML Engineer’s Choices

As previously discussed in Section ??, this paper examines a set of algorithms in which the engineer
is asked to predict y (passing the test) from q by approximating E[y|q]. For Type 0 candidates, this
converges to (1 � q)p0. For Type 1 candidates, this convergees to qp1.

The ML engineers then use the algorithm to pick the type with a higher E[Y|q]. It then imple-
ments this decision consistently, without any noise. I will now compare the performance of the
algorithm’s selected candidate to that of the human decision process.
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2.6 Effects of Shift from Human Screener to Algorithm

Proposition 2. If screeners exhibit bias but zero noise, the algorithm will perfectly codify the humans’
historical bias. The algorithm’s perfomance will precisely equal that of the biased screeners and exhibit high
goodness-of-fit measures on historical human decision data. Proof: See Appendix A.2.

Proposition 2 formalizes a notion of algorithmic bias. In the setting above – featuring biased
screeners b > 0 with no noise – there is no difference in the decision outcomes. The candidates
approved (or rejected) by the humans would face the same outcomes in the machine learning
algorithm.

The intuition behind Proposition 2 is that machine learning cannot learn to improve upon the
existing historical process without a source of variation and outcomes. Without a source of clean
variation – exposing alternative outcomes under different choices – the algorithms will simply
repeat what has happened in the past rather than improve upon it.

Because the model will perfectly replicate historical bias, it will exhibit strong goodness-of-fit
measures on the training data. The problems with this algorithm will not be apparent from cross-
validation, or from additional observations from the data generating process.

Thus there are no decision-making benefits to using the algorithm. However it is possible that
the decision-maker receives other benefits, such as lower costs. Using an algorithm to make a
decision may be cheaper than employing a human to make the same decision.

Proposition 3. If screeners exhibit zero bias but non-zero amounts of noise, the algorithm will improve upon
the performance of the screeners by removing noise. The amount of performance improvement is increasing
in the amount of noise and the quality difference between Type 1 and Type 0 candidates. Proof: See Appendix
A.3.

Proposition 3 shows that performance improvements from the algorithm can partly come from
improving consistency. Even when human decisions are not biased, noise may be a source of their
poor performance. Although noise is useful in some settings for learning – which is the main
theme of this paper – the noise harms performance if the decision process is already free of bias.

Proposition 4. If biased screeners are NOT sufficiently noisy, the algorithm will codify the human bias.
The reduction in noise will actually make outcomes worse. Proof: See Appendix A.4.

Proposition 4 describes a setting in which screeners are biased and noisy. This generates some
observations about Type 1’s superior productivity, but not enough for the algorithm to correct for
the bias. In the proof for Proposition 4 in Appendix A.4, I formalize the threshold level of noise
below which the algorithm is biased.

Beneath this threshold, the algorithm ends up codifying the bias, similarly to Proposition 2
(which featured bias, but no noise). However, the adoption of machine learning actually wors-
ens decisions in the setting of Proposition 4 (whereas it simply made no difference in the setting of
Proposition 2). In a biased human regime, any amount of noise actually helps the right candidates
gain employment.
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The adoption of the machine learning removes this noise by implementing the decision consis-
tently. Without sufficient experimentation in the underlying human process, this algorithm cannot
correct the bias. The reduction in noise in this setting actually makes outcomes worse than if we
trusted the biased, slightly noisy humans.

Proposition 5. If screeners are biased and sufficiently noisy, the algorithm will reduce the human bias.
Proof: See Appendix A.5.

Proposition 5 shows the value of noise for debasing – one of the main results of the paper. If
the level of noise is above the threshold in the previous Proposition 4, then the resulting algorithm
will feature lower bias than the original screeners’ data. This is because the random variation
in the human process has acted as a randomized controlled trial, randomly exposing the learning
algorithm to Type 1’s quality, so that this productivity can be fully incorporated into the algorithm.

In this sense, experimentation and machine learning are compliments. The greater experimenta-
tion, the greater ability the machine learning to remove bias. However, this experimentation does
not need to be deliberate. Random, accidental noise in decision-making is enough to induce the
debiasing if the noise is a large enough influence on decision-making.

Taken together, Propositions 4 and 5 have implications for the way that expertise interacts with
machine learning. A variety of research suggests that the benefit of expertise is lower noise and/or
variance, and that experts are actually more biased than nonexperts (they are biased toward their
area of expertise, Li, 2017).

If this is true, then Proposition 4 suggests that using expert-provided labels for training data
in machine learning will codify bias. Furthermore, the performance improvement coming from
lower noise will be small, because counterfactual expert was already consistent. Even if experts’
evaluations are (on average) better than nonexperts, experts’ historical data are not necessarily
more useful for training machine learning (if the experts fail to explore).

Proposition 6. If the algorithms’ human data contain non-zero bias, then “algorithmic bias” cannot be
reduced to zero unless the humans in the training data were perfectly noisy (i.e., picking at random). Proof:
See Appendix A.6.

Even if screeners are sufficiently noisy to reduce bias (as in Proposition 5), the algorithm’s pre-
dictions still underestimate the advantage of Type 1 above Type 0.

In particular, the algorithm predicts a y of qp1 for Type 1 and (1� q)p0 for Type 0. The algorithm’s
implicit quality ratio of Type 1 over Type 0 is qp1/(1 � q)p0. This is less than the quality ratio of
Type 1 over Type 0 (p1/p0) – unless noise is maximized by increasing the variance of F until q = 1/2.
This would make the training data perfectly representative (i.e., humans were picking workers at
random). Despite the reduction in bias, the algorithm will remain handicapped and exhibit some
bias because of its training on biased training data.

Picking at random is extremely unlikely to appear in any real-world setting, since the purpose
of most hiring is to select workers who are better than average and thus undersample sections of
the applicant pool perceived to be weaker. A complete removal of bias therefore appears infeasible
from training datasets from real-world observations, particularly observations of agents who are
not optimizing labels for ex-post learning.
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It is possible for an algorithm to achieve a total elimination of bias without using perfectly rep-
resentative training data. This may happen if a procedure manages to “guess” the a totally unbi-
ased algorithm from some other heuristic. Some of the algorithmic innovations suggested by the
emerging fairness literature may achieve this. However, in order to achieve certainty that this is
algorithm is unbiased, one would need a perfectly representative training dataset (i.e., one where
the screeners were picking at random).

Proposition 7. As the amount of noise in human decisions increases, the machine learning can correct
increasingly small productivity distortions. The algorithm needs only a small amount of noise to correct
errors with large productivity consequences. Proof: See Appendix A.7.

The proposition means that if the screeners’ bias displays a large amount of bias, only a small
amount of noise is necessary for the algorithm to correct the bias. Similarly if screeners display
a small amount of bias, then high amounts of noise are necessary for the algorithm to correct the
bias. Large amounts of noise permit debiasing for both large and smaller biases, where as small
noise permits only correction of large biases only.7 Because we want all biases corrected, lots of
noise is necessary to remove both large and small biases. However, Proposition 7 suggests that
even a small amount of noise is necessary to reduce the most extreme biases.

The intuition behind Proposition 7 is as follows: Suppose that screeners were highly biased
against Type 1 workers; this would conceal the large productivity differences between Type 1 and
Type 0 candidates. The machine learning algorithm would need to see only a few realizations – a
small amount of noise – in order to reduce the bias. Because each “experiment” on Type 1 workers
shows so much greater productivity, few such experiments would be necessary for the algorithm
to learn the improvement. By contrast, if the bias against Type 1 is small, large amounts of noise
would be necessary for the algorithm to learn its way out of it. This is because each “experiment”
yields a smaller average productivity gain. As a result, the algorithm requires more observations
in order to understand the gains from picking Type 1 candidates.

A recent paper by Azevedo et al. (2018) makes a similar point about A/B testing. A company
whose innovation policy is focused on large productivity innovations will need only a small test of
each experiment. If the experiments produce large effects, they will be detectable in small sample
sizes.

Proposition 7 effectively says there are declining marginal returns to noise. Although there may
be increasing cumulative returns to noise, the marginal returns are decreasing. As Proposition 2
states, no corrections are possible if screeners are biased and feature no noise. The very first unit of
noise – moving from zero noise to positive noise – allows for correction of any large productivity
distortions. As additional noise is added, the productivity improvements from machine learning
become smaller.

Proposition 8. In settings featuring bias and sufficiently high noise, the algorithm’s improvement in bias
will be positive and increasing in the level of noise and bias. However, metrics of goodness-of-fit on the
training data (and on additional observations from the data-generating process) have an upper bound that is
low compared to settings with lower noise and/or lower bias. Proof: See Appendix A.8.

7“Large” and “small” biases are used here in a relative sense – “small” biases in this model could be very harmful
on a human scale, but are labeled “small” in this model only in comparison to still even greater biases.

12



The proof in Appendix A.8 comprares the algorithm’s goodness-of-fit metrics on the training
data in the setting of Proposition 5 (where debiasing happens) to Propositions 2 and 4, which codify
bias. In the setting that facilitates debiasing, goodness-of-fit measures are not only low relative to
the others, but also in absolute numbers (compared to values commonly seen in practice).

The implication of Proposition 8 is: If engineers avoid settings where models exhibit poor goodness-
of-fit on the training data (and future samples), they will avoid the settings where machine learning
has the greatest potential to reduce bias.

Proposition 9. The “coefficient” or “weight” the machine learning algorithm places on q = 1 when ranking
candidates does not equal the treatment effect of using the algorithm rather than human discretion for q = 1
candidates. Proof: See Appendix A.9.

Proposition 9 discusses how observers should interpret the coefficients and/or weights of the
machine learning algorithm. It shows that these weights may be highly misleading about the im-
pact of the algorithm. For example: It’s possible for an algorithm that places negative weight
on q = 1 when ranking candidates could nonetheless have a strong positive benefit for q = 1
candidates and their selection outcomes. This would happen if the human penalized these charac-
teristics even more than the algorithm did.

The internal weights of these algorithms are completely unrelated to which candidates benefit
from the algorithm compared to a status quo alternative. The latter comparison requires a com-
parison to a counterfactual method of selecting candidates.

2.7 Extensions

2.7.1 Other Microfoundations for Noise and Bias

In the setup above, I model bias as taste-based discrimination, and noise coming from utility
shocks within the same screener over time. However, both the noise and bias in the model can
arise from different microfoundations. These do not affect conclusions of the model. I show these
alternative microfoundations formally in Appendix A.10.

The formulation above models the bias against Type 1 candidates as “taste-based” (Becker, 1957),
meaning that screeners receive direct negative payoffs for selecting one type of worker. A taste-
based discriminator may be conscious of his/her taste-based bias (as would a self-declared racist)
or unconscious (as would someone who feels worse hiring a minority, but can’t say why). Either
way, taste-based discrimination comes directly from the utility function.

Biased outcomes can also arise from statistical discrimination (Phelps, 1972; Arrow, 1973). Screen-
ers exhibiting statistical discrimination (and no other type of bias) experience no direct utility
preferences for attributes such as gender or race. “Statistical discrimination” refers to the pro-
cess of making educated guesses about an unobservable candidate characteristic, such as which
applicants’ perform well as employees. If applicants performance is (on average) even slightly
correlated with observable characteristics such as gender or race, employers may be tempted to
use these variables as imperfect proxies for unobservable abilities. If worker quality became easily
observable, screeners exhibiting statistical discrimination would be indifferent between races or
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genders.

The framework in this paper can be reformulated so that the bias comes from statistical discrimi-
nation. This simply requires one additional provision: That the “educated guesses” are wrong and
are slow to update. Again, the psychology and behavioral economics literature provides ample
examples of decision-makers having wrong, overprecise prior beliefs that are slow to update.

Similarly, the noise variable h can also have alternative microfoundations. The formulation be-
ginning in Section 2 proposes that h represents time-varying noise shocks within a single screener
(or set of screeners). However, h can also represent noise coming from between-screener variation.
If a firm employs multiple screeners and randomly assigns applications to screeners, then noise
can arise from idiosyncrasies in the each screener’s tastes.

The judgment and decision-making literature contains many examples of this between-screener
variation as a source of noise.8 This literature uses “noise” to refer to within-screener and between-
screener random variations interchangeably. Kahneman et al. (2016) simply writes, “We call the
chance variability of judgments noise. It is an invisible tax on the bottom line of many companies.”

Similarly, the empirical economics literature has often exploited this source of random variation
for causal identification.9 This includes many papers in an important empirical setting for the CS
literature on algorithmic fairness: Judicial decision-making. As algorithmic risk-assessment tools
have grown in popularity in U.S. courts, a series of academic papers and expose-style journalism
allege these risk assessment tools are biased. However, these allegations typically do not com-
pare the alleged bias to what a counterfactual human judge would have done without algorithmic
guidance.

A series of economics papers examine the random assignment of court cases to judges. Because
human judges’ approaches are idiosyncratic, random assignment creates substantial noisiness in
how cases are decided. These researchers have documented and exploited this noise for all kinds of
analysis and inference. The randomness documented in these papers suggests that courts exhibit
the noisiness I argue is the key prerequisite for debiasing human judgement through algorithms.

However, clean comparisons with nonalgorithmic judicial decision-making are rare. One paper
that does this is Kleinberg et al. (2017). It utilizes random assignment in judges for evaluating a
machine learning algorithm for sentencing and finds promising results on reducing demographic
bias.

8For example, this literature has shown extensive between-screener variation in valuing stocks (Slovic, 1969), eval-
uating real-estate (Adair et al., 1996), sentencing criminals (Anderson et al., 1999), evaluating job performance (Taylor
and Wilsted, 1974), auditing financies (Colbert, 1988), examining patents (Cockburn et al., 2002) and estimating task-
completion times Grimstad and Jørgensen (2007).

9For example, assignment of criminal cases to judges (Kling, 2006), patents applications to patent examiners (Sampat
and Williams, 2014; Farre-Mensa et al., 2017), foster care cases to foster care workers (Doyle Jr et al., 2007; Doyle Jr,
2008), disability insurance applications to examiners (Maestas et al., 2013), bankruptcy judges to individual debtors
(Dobbie and Song, 2015) and corporations (Chang and Schoar, 2013) and job seekers to placement agencies (Autor and
Houseman, 2010).
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2.7.2 Additional Bias: How Outcomes are Codified

Until now, the model in this paper has featured selection bias in which a lower-quality candidate
joins the training data because of bias. This is a realistic portrayal of many fields, where perfor-
mance is accurately measured for workers in the field, but entry into the field may contain bias.
For example: In jobs in finance, sales, and some manual labor industries, performance can be mea-
sured objectively and accurately for workers in these jobs. However, entry into these labor markets
may feature unjust discrimination.

In other settings, bias may also appear within the training data in the way outcomes are eval-
uated for workers who have successfully entered. For example: Suppose that every positive out-
come by a Type 1 candidate is scored at only 90% as valuable as those by Type 0. In this extension,
I will evaluate the model’s impact when q = 1 candidates are affected by both types of bias.

Let d 2 [0, 1] represent the discount that Type 1’s victories are given in the training data. High ds
represent strong bias in the way Type 1’s outcomes are evaluated. If d = 0.9, then Type 1’s victories
are codified as only 10% as valuable as Type 0’s even if they are equally valuable in an objective
sense. This could happen if (say) the test evaluators were biased against Type 1 and subtracted
points unfairly.10

In Appendix B, I provide microfoundations for d and update the propositions above to incorpo-
rate both types of bias. Again, noise is useful for debasing in many settings (Appendix Proposition
15). The introduction of the second type of bias actually increases the usefulness of noise. How-
ever, the existence of the second type of bias also creates limitations. For a threshold level of d,
the algorithm under this procedure will not decrease bias and can only entrench it (Appendix
Proposition 11) no matter how much noise in selection.

These conclusions assume that evaluations could be biased (d), but these evaluations are not
themselves noisy (in the same way that selection decisions were). Future research will add a pa-
rameter for noisy posthire evaluations.

2.8 Model Discussion and Conclusion

This paper contains a model of how human judges make decisions, how these decisions are codi-
fied into training data, and how this training data is incorporated into a decision-making algorithm
by engineers under mild assumptions.

I show how characteristics of the underlying human decision process propagate the later codifi-
cation into training data and an algorithm, under circumstances common in practice.

The key feature of the model is that improvements to the human process are made possible
only through experimental variation. This experimentation need not be deliberate and can come
through random noise in historical decision-making.

Although the model was motivated by hiring, it could be applied to a wide variety of other
settings in which bias and noise may be a factor. For example: Many researchers wonder if machine

10As with the earlier bias in hiring (b), the evaluation bias here (d) could itself be the result of tastes or statistical
inferences about the underlying quality of work.
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learning or AI will find natural applications decreasing behavioral economics biases (loss aversion,
hindsight bias, risk-aversion, etc). This model predicts that this is a natural application, but only
these biases are realized in a noisy and inconsistent way.

Similarly, one can also use this model to assess why certain machine learning applications have
been successful and which ones may be next. For example: Early, successful models of com-
puter chess utilized supervised machine learning based on historical human data. The underly-
ing humans most likely played chess with behavioral biases, and also featured within-player and
between-player sources of noise. The model suggests that the plausibly high amounts of bias and
noise in human chess moves make it a natural application for supervised AI that would reduce
both the inconsistency and bias in human players.

Recent work by (Brynjolfsson and Mitchell, 2017; Brynjolfsson et al., 2018) attempts to classify
jobs tasks in the Bureau of Labor Statistics’ O*NET database for their suitability for machine learn-
ing applications. The authors create “a 21 question rubric for assessing the suitability of tasks for
machine learning, particularly supervised learning.” A similar paper by Frey and Osborne (2017)
attempts to classify job tasks easily automated by machine learning.

In these papers, the level of noise, random variation, or experimentation in the training data
is not a criteria for “suitability for machine learning.” Noisiness or quasi-experimental variation
is not a major component of the theoretical aspects in either paper. In Brynjolfsson and Mitchell
(2017); Brynjolfsson et al. (2018), noise is a negative predictor of “suitability for machine learning.”

Instead, both analyses appear to focus mostly on settings in which human decision-making pro-
cess can easily be mimicked rather than improved upon through learning. This is consistent with
the goal of maximizing goodness of fit to historical data (as characterized above) rather than re-
ducing bias. Proposition 2 suggests that applying machine learning in low noise environments
will yield mimicking, cost savings, high goodness-of-fit measures and possible entrenchment of
bias – rather than better, less-biased decision-making.

If the goal is learning and improving, noisiness should be positively correlated with adoption.
Future empirical work in the spirit of (Frey and Osborne, 2017; Brynjolfsson and Mitchell, 2017;
Brynjolfsson et al., 2018) may be able to separately characterize jobs or tasks where machine learn-
ing yields cost-reduction, mimicking benefits from those where benefits arise from learning and
optimizing using experiments.

Researchers in some areas of machine learning – particularly active learning, online learning, and
multi-armed bandits – embrace randomization as a tool for learning. In many settings researchers
enjoy the benefits of randomization for free because of noise in the environment.

By promoting consistent decision-making, adopting algorithms may actually eliminate useful
experimental variation this paper has argued is so useful. Ongoing experimentation can be partic-
ularly valuable if the data-generating environment is changing. However, the experiments arising
from environmental noise are inefficient and poorly targeted. Methods from the bandit and online
learning contain much more statistically efficient use of noise than human psychology’s behavioral
quirks.

The setup described above may not apply well to all settings. In particular, there may be settings
in which variables observable to humans (but unobservable in training data) could play a larger
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role as they do not in the model above. We may live biased world featuring lots of noise – but still
not enough to use in debiasing. For some variables (such as college major or GPA) we may have
enough noise to facilitate debiasing, while for others (such as race or gender), historical bias may
be too entrenched and consistent for algorithms to learn their way out. In addition, there are other
ways that machine learning could reduce bias besides the mechanisms in this paper.

In many settings, however, these and other assumptions of the model are realistic. The small
number of empirical papers featuring clean comparisons between human and algorithmic judg-
ment (Kleinberg et al., 2017; Cowgill, 2017; Stern et al., 2018) demonstrate reduction of bias.

One interpretation of this paper is that it makes optimistic predictions about the impact of ma-
chine learning on bias, even without extensive adjustments for fairness. Prior research cited through-
out this paper suggests that noise and bias are abundant in human decision-making, and thus ripe
for learning and debiasing through the theoretical mechanisms in the model. Proposition 7 may
have particularly optimistic implications – if we are in a world with lots of bias, we need only
a little bit of noise for simple machines to correct it. If we are in a world with lots of noise (as
psychology researchers suggest), simple algorithms should be able to correct even small biases.

Given this, why have so many commentators raised alarms about algorithmic bias? One possible
reason is the choice of benchmark. The results of this paper suggest that completely eliminating
bias – a benchmark of zero-bias algorithmic perfection – may be extremely difficult to realize from
naturally occurring datasets (Proposition 6). However, reducing bias of an existing noisy process
may be more feasible. Clean, well-identified comparisons of human and algorithmic judgment are
rare in this literature, but the few available (Kleinberg et al., 2017; Cowgill, 2017; Stern et al., 2018)
suggest a reduction of bias. These results may come perhaps for the theoretical reasons motivated
by this model.

The impact of algorithms compared to a counterfactual decision process may be an important
component of how algorithms are evaluated for adoption and legal/social compliance. However,
standard machine learning quality metrics – goodness of fit on historical outcomes – do not capture
these counterfactual comparisons. This paper suggests that to maximize counterfactual impact,
researchers should pick settings in which traditional goodness-of-fit measures may be lower (i.e.,
those featuring lots of bias and noise).

Relative comparisons are sometimes feasible only after a model has been deployed and tested.
One attractive property of the model in this paper is that many of the pivotal features could plau-
sibly be measured in advance – at the beginning of a project, before the deployment and model
building – to estimate the eventual comparative effect vs a status quo. (Kahneman et al., 2016)
described simple methods for “noise audits” to estimate the extent of noise in a decision process.
Levels of bias could be estimated or calibrated through historical observation data, which may
suggest an upper or lower bound for bias.

Eliminating bias may be difficult or impossible using “datasets of convenience.” Machine learn-
ing theory should give practitioners guidance about when to expect practical, relative performance
gains, based on observable inferences about the training data. This paper – which makes predic-
tions about relative performance depending on the bias and noisiness of the training data gener-
ated by the status quo – is one attempt to do this.
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3 Empirical Setting

The setting from this study is a single multinational conglomerate multiple products and services.
The job openings in this paper are technical staff such as programmers, hardware engineers and
software-oriented technical scientists and specialists. The jobs in question are full-time employees
with benefits and typically work more than forty-hours per week. Workers in this labor market
are involved in multi-person teams that design and implement technical products. The sample in
this paper is only for one job opening (software engineer), and for one geographic location where
the company has a presence.11

3.1 Status Quo Hiring Process: Professional Screeners

The application process for jobs in this market proceeds as follows. First, candidates apply to the
company through a website.12 Next, a human screener reviews the applications of the candidate.
This paper includes a field experiment in replacing these decisions with an algorithm.

The next stage of screening is bilateral interviews with a subset of the firm’s incumbent workers.
The first interview often takes place over the phone. If this interview is successful, a series of in-
person interviews are scheduled with incumbent workers, lasting about an hour. The interviews
in this industry are mostly unstructured, with the interviewer deciding his or her own questions.
Firms offer some guidance about interview content but don’t strictly regulate the interview content
(for example, by giving interviewers a script).

After the meetings, the employees who met the candidate communicate the content of the in-
terview discussion, impressions and a recommendation. During the course of this experiment,
the firm also asked interviewers to complete a survey about the candidate evaluating his or her
general aptitude, cultural fit and leadership ability. With the input from this group, the employer
decides to make an offer.

Next, the candidate can then negotiate terms of the offer not. Typically, employers in this market
engages in negotiation only in order to respond to competing job offers. The candidate eventually
accepts or rejects the offer. Those who accept the offer begin working. At any time the candidate
could withdraw his application if he or she accepts a job elsewhere or declines further interest.

A few details inform the econometric specifications in this experiment. In this talent market,
firms commonly desire as many qualified workers as it can recruit. Firms often do not have a
quota of openings for these roles; insofar as they do they are never filled. “Talent shortage” is a
common complaint by employers regarding workers with technical skills. The economic problem
of the firms is to identify and select well-matched candidates, and not to select the best candidates
for a limited set of openings. Applicants are thus not competing against each other, but against the
hiring criteria.

In addition, the hiring company does not decline to pursue applications of qualified candidates
on the belief that certain candidates “would never come here [even if we liked him/her].” For

11In this industry, candidates are typically aware of the geographic requirements upon applying.
12Some candidates are also recruited or solicited; the applications in this study are only the unsolicited ones.
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these jobs, the employer in this paper believes it can offer reasonably competitive terms; it does not
terminate applications unless a) the candidate fails some aspect of screening, or b) the candidate
withdraws interest.

3.2 Selection Algorithm

3.2.1 Background

Firms offering products and consulting in HR analytics have exploded in recent years, as a result
of several trends. On the supply side of applications, several factors have caused an increase in ap-
plication volumes for posted jobs throughout the economy. The digitization of job applications has
lowered the marginal cost of applying. In addition, the Great Recession (and subsequent recovery)
caused a greater number of applicants to be looking for work. On the demand side, information
technology improvements enable firms to handle the volume of online applications. Firms are mo-
tivated to adopt these algorithms in part of the volume/costs, and to address potential mistakes in
human screeners’ judgements.

How common is the use of algorithms for screening? The public appears to believe it is already
very common. The author conducted a survey of ⇡3,000 US Internet users, asking “Do you believe
that most large corporations in the US use computer algorithms to sort through job applications?”13

About two-thirds (67.5%) answered “yes.”14 Younger and more wealthy respondents were more
likely to answer affirmatively, as were those in urban and suburban areas.

A 2012 Wall Street Journal article15 estimates that the proportion of large companies using resume-
filtering technology as “in the high 90% range,” and claims “it would be very rare to find a Fortune
500 company without [this technology].”16 The coverage of this technology is sometimes negative.
The aforementioned WSJ article suggests that someone applying for a statistician job could be re-
jected for using the term “numeric modeler” (rather than statistician). However, the counterfactual
human decisions mostly left unstudied. Recruiters’ attention is necessarily limited, and human
screeners are also capable of mistakes which may be more egregious than the above example. One
contribution of this paper is to use exogenous variation to observe counterfactual outcomes.

3.2.2 Selection Algorithm: Implementation Details

The technology in this paper uses standard text-mining and machine learning techniques that are
common in this industry. The first step of the process is broadly described in a 2011 LifeHacker

13The phrasing of this question may include both “pure” algorithmic screening techniques such as the one studied in
this paper, as well as “hybrid” methods, where a human designs a multiple-choice survey instrument, and responses
are weighted and aggregated by formula. An example of the latter is studied in Hoffman, Kahn and Li (2016).

14Responses were reweighed to match the demographics of the American Community Survey. Without the reweigh-
ing, 65% answered yes.

15http://www.wsj.com/articles/SB10001424052970204624204577178941034941330, accessed June 16, 2016.
16As with the earlier survey, this may include technological applications that differen than the one in this paper.
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article17 about resume-filtering technology:18 “[First, y]our resume is run through a parser, which
removes the styling from the resume and breaks the text down into recognized words or phrases.
[Second, t]he parser then sorts that content into different categories: Education, contact info, skills,
and work experience.”

In this setting, the predictor variables fall into four types.19 The first set of covariates was about
the candidate’s education such as institutions, degrees, majors, awards and GPAs. The second
set of covariates is about work experience including former employers and job titles. The third
contains self-reported skill keywords that appear in the resume.

The final set of covariates were about the other keywords used in in the resume text. The key-
words on the resumes were first merged together based on common linguistic stems (for example,
“swimmer” and “swimming” were counted towards the “swim” stem). Then, resume covariates
were created to represent how many times each stem was used on each resume.20

Although many of these keywords do not directly describe an educational or career accomplish-
ment, they nonetheless have some predictive power over outcomes. For example: Resumes often
use adjectives and verbs to describe the candidate’s experience in ways that may indicate his or her
cultural fit or leadership style. For example: Verbs such as “served” and “directed” may indicate
distinct leadership styles that may fit into some companies’ better than others. Such verbs would
be represented in the linguistic covariates – each resume would be coded by the number of times
it used “serve” and “direct” (along with any other word appearing in the training corpus). If the
machine learning algorithm discovered a correlation between one of these words and outcomes, it
would be kept in the model.

For each resume, there were millions of such linguistic variables. Most were excluded by the
variable selection process described below. The training data for this algorithm contained histor-
ical resumes from previous four years of applications for this position. The final training data
dataset contained over one million explanatory variables per job application and several hundred
thousand successful (and unsuccessful) job applications.

The algorithms used in this experiment machine learning methods – in particular, LASSO (Tib-
shirani, 1996) and support vector machines (Vapnik, 1979; Cortes and Vapnik, 1995) – to weigh
covariates in order to predict success of the historical applications for this position. Applications
were coded as successful if the candidate was extended an offer. A standard set of machine learn-
ing techniques – regularization, cross-validation, separating training and test data – were used to
select and weigh variables.21 These techniques (and others) were ment to ensure that the weights
were not overfit to the training data, and that the algorithm accurately predicted which candidates
would succeed in new, non-training samples.

17http://lifehacker.com/5866630/how-can-i-make-sure-my-resume-gets-past-resume-robots-and-into-
a-humans-hand

18Within economics, this approach to codifying text is similar to Gentzkow and Shapiro (2010)’s codification of polit-
ical speech.

19Demographic data are generally not included in these models and neither are names.
20The same procedure was used for two-word phrases on the resumes.
21See Friedman et al. (2013) for a comprehensive overview of these techniques. Athey and Imbens (2015) has an

excellent surveys for economists.
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3.2.3 Economic Features of the Algorithm

A few observations about the algorithm. First: Although the algorithm in this paper is computa-
tionally complex, it is econometrically naive. The designers sought to predict who would receive
an offer using historical data. As discussed in the theoretical section of this paper (2), this approach
could plausibly codify historical biases directly into the model. Relatedly, the algorithm designers
ignored the two-stage, selected nature of the historical screening process. In economics, these is-
sues were raised in Heckman (1979), but the programmers in this setting did not integrate these
ideas into its algorithms. Lastly, the designers were also uninterested in interpreting the model
causally and chose engineering approaches that neglected this possibility.

A few other features of the algorithm are worth mentioning. The algorithm introduced no new
data into the decision-making process. In theory, all of the covariates on the resume above can also
be observed by human resume screeners. The human screeners could also view an extensive list
of historical outcomes on candidates through the company’s HR database of historical candidates,
which was available to be browsed (the algorithm’s training data came from this database). In a
sense, any comparisons between humans and this algorithm is inherently unfair to the machine. A
human can quickly consult the Internet or a friend’s advice to examine an unknown’ school’s repu-
tation. The algorithm was given no method to consult outside sources or bring in new information
that the human couldn’t.

In addition, this modeling approach imposes no constraints on the job applicant’s message space.
The algorithm in this paper imposed no constraints on what mix of information, persuasion, fram-
ing and presentation a candidate could use in her presentation of self. The candidate can fill the
content of her resume with whatever words she chooses. The candidate’s experience was un-
changed by the algorithm and his/her actions were not required to be different than the status quo
human process.

This differs from other studies of hiring in which job testing interventions alter the candidate’s
message space. For example, the job tests studied by Hoffman, Kahn and Li (2016) are multiple-
choice responses to human-designed, multiple-choice survey instrument. The answers are later
weighted by an algorithm. This intervention not only changes how variables are weighed, but also
the message space between candidates and screeners. Part of the benefit of such tests may come
from the introduction of new variables from a human organizational psychologist, rather than
the re-weighting of previously known variables. In addition, the multiple-choice format vastly
constrains the message space, which simplifies the algorithm’s weighing.

In this experiment, the algorithm introduces no new variables. For both arms of the experiment,
the input is a text document with an enormous potential message space. The curation of the mes-
sage space was performed by candidates (who act independently of each other and adversarially
to screening). This setup facilitates a clean comparison of human and machine judgment based on
common inputs.

Changes to the message space not only affect the interpretation of results. They may could also in
theory affect downstream outcomes. The experience of answering an organizational psychologist’s
survey questions could affect how a candidate feels about the employer, performs in interviews
or views a job offer. The questions may signal a employers’ type, and make certain features of
employee experience salient. These considerations are off the table in this experiment because the
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algorithm left the candidate experience unaltered. As discussed in Section 4, this experiment was
double-blind; candidates as well as screeners were unaware of the experiment’s existence, as well
as which specific candidates’ treatment status.

3.3 Data

In the next section, I describe experimental design and specifications. However first I describe the
variables in the analysis.

Characteristics For each candidate,

Outcomes. For the analysis in this paper, I code an applicant as being interviewed if he/she passed
the resume screen and was interviewed in any way (including the phone interview). I code candi-
dates as passing the interview if they were subsequently extended a job offer.

Table 1 contains descriptive statistics and average success rates at the critical stages above. As
described in the next section, the firm used a machine learning algorithm to rank candidates. Table
1 reports separate results for candidates more than 10% likely to be offered a job – the subjects of
the experiment in this study – and the remainder of applicants.

Table 1 shows that the candidates above the machine’s threshold are positively selected on a
number of traits. They also tend to pass rounds of screening at much higher rates even without
any intervention from the machine. One notable exception is the offer acceptance rate, which is
lower for the candidate that the machine ranks highly. One possible explanation for this is that the
algorithms’ model is similar to the broader market’s, and highly ranked candidates may attract
competitive offers.

4 Experimental Specifications

As Oyer and Schaefer (2011) discuss, field experiments varying hiring criteria are relatively rare
(“What manager, after all, would allow an academic economist to experiment with the firm’s
screening, interviewing or hiring decisions?”). In this section, I outline some simple economet-
ric specifications to introduce the experiment and clarify what measurement it enables. The goal
of the experiment is to measure the causal effect of changing hiring criteria on characteristics (in-
cluding the productivity) of selected workers.

There are three major measurement challenges. First, many outcomes (for example, interview
performance or on-the-job productivity) are observable only for selected workers. Second, new
selection criteria may partially overlap with the old criteria. Candidates identified by a new mech-
anism might have been selected anyway, and their outcomes should not be fully attributed to the
new policy.

Finally, the information environment may contaminate measurement. If algorithms’ suggestions
are not hidden from human screeners, they may influence human judgements. Unless information
flow is controlled, performance from one selection methodology could be misattributed.

Contamination is particularly difficult in candidate-level hiring experiment inside a firm. In
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most HR departments, a recruiter has access to a database containing the status of all job applica-
tions. The recruiter can see if a candidate he/she rejected was nonetheless interviewed or hired,
and may investigate why. The resulting information could affect the recruiter’s future assess-
ments. If shared more broadly, this information could also contaminate downstream evaluations
by interviewers or by managers. Controlling the information environment is therefore critical for
the assessment.

A experiment helps overcome these three challenges. To make the identification strategy trans-
parent, below I present a stylized potential outcomes framework. The framework has been adapted
to the hiring setting, and my empirical section mimics this setup. As I will show, the experiment is
a form of an encouragement design that can be analyzed through an instrumental variable strategy.

I will begin with notation. Each observation is a job applicant, indexed by i. Each candidate
applying to the employer has a true, underlying “type” of qi 2 {0, 1}, representing whether i
can pass the test if administered. The potential outcomes for any candidate are Yi = 1 (passed
the test) or Yi = 0 (did not pass the test, possibly because the test was not given). Because this
empirical strategy is oriented around the firm’s strategy, candidates outcomes are coded as zero
for candidates are rejected or work elsewhere.22 For each candidate i, the researcher observes
either Yi|T = 1 (whether the test was passed if it occurred) or Yi|T = 0 (whether the test was passed
if it didn’t occur, which is zero). The missing or unobserved variable is how an untested candidate
would have performed on the test, if it had been given.

This framework – and the subsequent experiment – is about the causal effects of adopting a
new selection criteria. Suppose we want to compare the effects of adopting a new testing criteria,
called Criteria B, against a status quo testing criteria called Criteria A. Criterion A and B can be
a “black box” – I will not be relying on the details of how either criteria are constructed as part of
the empirical strategy.23 For any given candidate, Ai = 1 means that Criteria A suggests selecting
candidate i and Ai = 0 means Criteria A suggests not selecting i (and similarly for B = 1 and B = 0).
I will refer to A = 1 candidates as “A candidates” and B = 1 candidates as “B candidates.” I’ll refer
to A = 1 & B = 0 candidates as “A \ B candidates,” and A = 1 & B = 1 as “A \ B candidates.” The
Venn diagram in Figure 1 visualizes the scenario.

For many candidates, Criterion A and B will agree. As such, the most informative observations
in the data for comparing A and B are where they disagree. If the researcher’s data contains A
and B labels for all candidates, it would suffice to test randomly selected candidates in B \ A and
A \ B and compare the outcomes. Candidates who are rejected (or accepted) by both methods are
irrelevant for determining which strategy is better.24

22q represents a generic measure of match quality from the employer’s perspective. It may reflect both vertical and
horizontal measures of quality. The tests in question may evaluate a candidate in a highly firm-specific manner (Jo-
vanovic, 1979). Y reflects the performance of the candidate on a single firm’s private evaluation, which may not nec-
essarily be correlated with the wider labor market’s assessment. It is possible that the candidate applied and/or took
another test through a different employer, possibly with a different outcome. These outcomes are not used in this pro-
cedure for two reasons. First, firms typically cannot access data about evaluations by other companies. Second: Even if
they could, the other firm’s evaluation may not be correlated with the focal firm’s.

23In this paper, A is human discretion and B is machine learning. However, A could also be “the CEO’s opinion” and
B could be “the Director of HR’s opinion.” One Criteria could be “the status quo,” which may represent the combination
of methods currently used in a given firm.

24Unless there is a SUTVA-violating interaction between candidates in testing outcomes, discussed later.
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In many settings, researchers do not know the full extent of disagreement between A and B. This
problem is widespread, including the empirical setting of this paper. In HR departments with lots
of open information about candidates, the act of measuring B may contaminate evaluation by A.
As a result, measuring the amount of intersection and disagreements requires a strategy.

I propose a strategy for addressing this problem below using an instrument (such as a field
experiment) for causal inference.25

The framework proceeds in two steps. First, I estimate the test success rate of B \ A candidates
– that is, candidates who would be hired if and only if Criteria B were being used and who would
be rejected if A were used.

Next, I will then compare the above estimate to a series of benchmarks. For most questions
about Criteria A versus B, the relevant baseline is the A \ B candidates (ones that A approves and
B doesn’t). However, other benchmarks may be interesting or relevant as well. In my empirical
section, I also compare the estimand to the uccess rate of A \ B candidates (“intersection” candi-
dates that both criteria approve) and for all A candidates.

To measure the success rate of “B only” candidates (E[Y|T = 1, A = 0, B = 1], or outcomes of
candidates who would be rejected by Criteria A, but tested by Criteria B), the researcher needs an
instrument, Zi, which selects B candidates in a way that is uncorrelated with the each candidate’s
assessment on A. Because the status quo selects only A candidates, the effect of the instrument is
to select candidates who would otherwise not be tested.26

For exposition, suppose the instrument Zi is a binary variable at the candidate level. It varies
randomly between one and zero with probability 0.5; it could be a 50/50 coin flip for all candi-
dates for whom Bi = 1. In order to measure the marginal yield of Criteria B, we need variation
in Zi within Bi = 1.27 The instrument Zi within Bi = 1 is “local” in that that it only varies for
candidates approved by Criteria B. The instrument Zi must affect probability that each candidate
is interviewed or tested. For the experiment in this paper, the firm tests all candidates for whom
Zi = 1, irrespective of Ai.

We can now think of all candidates as being in one of four types: a) “Always tested” – these are
candidates for whom Ti = 1 irrespective of whether Criterion A or B are used (Ai = Bi = 1), b)
“Never tested,” for which Ti = 0 irrespective of Criteria A or B (Ai = Bi = 0). The instrument does
not effect whether these two groups are treated. Next, we have c) “Z-compliers,” who are tested
only if Zi = 1, and d) “Z-defiers,” who are tested only if Zi = 0.

Identification of this “local average testing yield” requires the typical five IV conditions. I outline
each condition in theory in Appendix C, with some interpretation of these assumptions in a hiring
setting. In the following section (4.1), I show that each condition is met for my empirical setting.

Under these assumptions, we can estimate the average yield of A = 0 & B = 1 candidates as:

25Aside from the restrictions above, no additional assumptions about the distribution of q are required, nor are as-
sumptions about the correlation between A, B and q.

26One cannot test all B candidates or a random sample of them, because some of the B candidates are also A candi-
dates.

27Additional random variation in Zi beyond B = 1 is not problematic, but isn’t necessary for identifying E[Y|T =
1, A = 0, B = 1]. Zi can be constant everywhere B = 0.
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E[Y|T = 1, A = 0, B = 1] =
E[Yi|Zi = 1, Bi = 1] � E[Yi|Zi = 0, Bi = 1]
E[Ti|Zi = 1, Bi = 1] � E[Ti|Zi = 0, Bi = 1]

(1)

The value above can be estimated through two-stage least-squares in a procedure akin to instru-
mental variables (Angrist et al., 1996). The first stage is the instrument on the binary decision to
test, and the second stage is the testing decision on the test outcome (success/failure). The result-
ing estimand is a success rate of the candidates tested by B but not A. This estimand has units of
“new successful tests over new administered tests.”28

Next, I show how the IV conditions are met in my empirical setting. Then, I show how to extend
this framework into other downstream outcomes after screening performance (such as on-the-job
performance).

4.1 Application to Empirical Setting via Field Experiment

In my empirical setting, all incoming applications (about 40K candidates) were scored and ranked
by the algorithm shortly after each application was submitted. For the contamination issues men-
tioned above, the algorithm worked behind the scenes and without the knowledge of rank-and-file
recruiting staff or future interviewers and managers.29 The algorithm was calibrated to intervene
on candidates with an estimated probability of 10% (or greater) of getting a job offer were flagged
as “machine approved.”30 This group comprised about 800 applicants over roughly one year.
While this seems like a small number of candidates, this group comprised about 30% of the firm’s
hires from this applicant pool over the same time period.

After these candidates were identified, a random variable Z 2 {0, 1} was drawn for all machine-
picked candidates (50% probability of each). Candidates randomly assigned a “1” were automat-
ically granted an interview. Those randomly assigned “0” – along with the algorithm-rejected
candidates – proceeded through the status quo channels (assessment by humans process)

To avoid contamination, the algorithm’s role in selecting or rejecting candidates was hidden from
other HR workers, interviewers or future co-workers. For Z = 1 candidates who the algorithm ap-
proved and nudged to get an interview, a normal database entry suggested that a human screener
selected the candidate. For all other candidates, no “algorithmic approval/rejection” notice was
appended to the HR file. This practice – paired with the conditional randomization – allows the HR
staff to examine the resume as they normally would (independently and without contamination
from the machine). As mentioned above, the existence of the machine selection was hidden from

28b2SLS is the ratio of the “reduced form” coefficient to the “first stage” coefficient. In this setup, the “reduced form”
comes from a regression of Y on Z, and the “first stage” comes from a regression of T on Z. Applied in this setting, the
numerator measures new successful tests caused by the instrument, and the denominator estimates new administered
tests caused by the instrument. The ratio is thus the marginal success rate – new successful tests per new tests taken.

29Hiding similar information is normal. Most workers are not told all the details of who are how they are selected.
30The threshold of 10% was chosen in this experiment for capacity reasons. The experiment required the firm to spend

more resources on interviewing in order to examine counterfactual outcomes in disagreements between the algorithm
and human. Thus the experiment required an expansion of the firm’s interviewing capacity. The ⇡10% threshold was
selected in part because the firm’s interviewing capacity could accommodate this amount of extra interviews without
overly distracting employees from productive work.
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rank-and-file recruiting staff and line managers (for contamination reasons). The human screeners
no choice than to evaluate the candidates independently.

This obfuscation is common; most workers are spared the exact details of how they wound up
getting an offer. For example, they are not told whether they were a top choice or a backup candi-
date; or which managers liked or disliked the candidate during the interview process; or whether
the candidate was hired as part of a normal program or a special outreach to diversity candidates.
Knowing this information could affect relationships for candidates eventually hired. Many firms
compartmentalize information about how candidates are assessed to promote independent assess-
ments and avoid information cascades.

The random binary variable Z acts as an instrument for interviewing that can be used with the
potential outcomes framework above. Candidates selected for an interview (from either method)
were sent blindly into an interview process. Neither the interviewers nor the candidates were told
about the experiment or which candidates (if anyone) came from which selection process. The IV
conditions mentioned previously (in Appendix C) are met as follows:

1. SUTVA: SUTVA would be violated if the treatment group’s outcomes interact with the con-
trol group’s. This would be problematic if an employer had an inelastic quota of hiring slots.
In my empirical setting and many others, the employer’s policy is to make an offer to anyone
who passes the test. “Passing” depends on performance on the test relative to an objective
standard, and not by a relative comparison between candidates on a “curve.”31

2. Ignorable assignment of Z. Covariate balance tests in Table 2 appear to validate the ran-
domization.

3. Exclusion restriction, or Y(Z, T) = Y(Z0, T), 8Z, Z0, T. In my empirical setting, the instru-
ment is a randomized binary variable Zi. This variable was hidden from subsequent screen-
ers. Graders of the test did not know which candidates were approved (or disapproved) by
Criteria A or B, or which candidates (if any) were affected by an instrument. The existence
of the experiment and instrument were never disclosed to test graders or candidates – the
evaluation by interviewers was double-blind.

4. Inclusion restriction. The instrument must have a non-zero effect on who is tested. In my
empirical setting, this is clearly met. The experiment strongly affected who was interviewed.
B candidates were +30% more likely to be interviewed if when Zi = 1.

5. Monotonicity. The instrument here was used to guarantee certain candidates an interview,
and not to deny anyone an interview (or make one less likely to be interviewed).

The econometric setup above does not require that the two methods test the same quantity of
candidates. This is a useful feature that makes the approach more generic: Many changes in testing
or hiring policy may involve tradeoffs between the quantity and quality of examined candidates.

31This policy is common in many industries where hiring constraints are not binding – for example, when there are
few qualified workers, or workers who are interested in joining the firm, compared to openings. As Lazear et al. (2016)
discuss, much classical economic theory does not model employers face an inelastic quota of “slots.” Instead it models
employers featuring a continuous production function where tradeoffs are feasible between worker quantity, quality
and cost.
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In my empirical setting, the machine learning algorithm identified 800 candidates, and the hu-
man screeners identified a larger number (TODO). It’s possible that the higher success rate is the
result of extending offers to fewer, higher quality people. To address this, I will compare the out-
comes of machine-only candidates not only to the average human-only candidate, but also to the
average candidate selected by both mechanisms (of which there were much fewer). Then, I will fix
the quantities of interviews available to both mechanisms to measure differences in yield, condi-
tional on an identical “budget” of interviews.

4.2 Offer accepts, on-the-job productivity and other “downstream” outcomes

In some cases, firms may care about downstream outcomes after the job test or interview. For
example: They may care about who accepts extended job offeres, or who performs well as an em-
ployee after testing and hiring. It’s possible that a new interviewing criteria identifies candidates
who pass, but do not accept offers (perhaps because many other firms have simultaneously re-
cruited these candidates). The framework above can be extended to measure how these outcomes
are affected by changes to screening.

For these empirical questions, a research can use a different Y (the outcome variable measuring
test success). Suppose that Y0

i = 1 if the candidate was tested, passed and accepted the offer. This
differs from the original Y, which only measures if the test was passed. Using this new variable,
the same 2SLS procedure can be used to measure the effects of changing Criteria A to B on offer-
acceptance or other downstream outcomes. Such a change would estimate a local average testing
yield whose units are new accepted offers / new tests, rather than new tests passed (offers extended) / new
tests.

In some cases, a researcher may want to estimate the offer acceptance rate, whose units are
“offer accepts” / “offer extends.” The same procedure can be used for this estimation as well,
with an additional modification. In addition changing Y to Y0, the researcher would also have
to change the endogenous variable T to T0 (where T0 = 1 refers to being extended an offer). In
this setup, the instrument Zi is an instrument for receiving an offer rather than being tested. This
can potentially be the same instrument as previously used. The resulting 2SLS coefficient would
deliver an estimand whose units are “offer accepts” / “offer extends” for the marginal candidate.

Accepting offers is one of many “downstream” outcomes that researchers may care about. We
may also care about how downstream outcomes such as productivity and retention once on the
job, as well as the characteristics of productivity (innovativeness, efficiency, effort, etc). This would
requiring using an outcome variable Y0 representing “total output at the firm” (assuming this can
be measured), whose value is zero for those who aren’t hired. T0 would represent being hired, and
Zi would need to instrument for T (being hired). This procedure would estimate the change in
downstream output under the new selection scheme.32

We can think of these extensions as a form of imperfect compliance with the instrument. As the
econometrician studies outcomes at increasingly downstream stages, the results become increas-
ingly “local,” and conditional on the selection process up to that stage. For example, results about
accepted job offers may be conditional on the process process for testing, interviewing, persuasion,

32In some cases, such as the setting in this paper, it could make more sense to study output per day of work.
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compensation and bargaining with candidates in the setting being studied. The net effectiveness
of A vs B ultimately depends on how these early criteria interact with downstream assessments.

The analysis of downstream outcomes requires the IV assumptions to be revisited. Even if the
IV assumptions are met for the initial phase, they may not for the later outcomes. In Appendix
D, we revisit the IV assumptions for important downstream outcomes after hiring, including the
main ones analyzed in the empirical section of this paper.

5 Results

I begin by analyzing the strength of the intervention. Table ?? shows how the randomization
influenced who is interviewed. Approximately 50% of the machine-approved candidates were
interviewed, even without the machine’s encouragement. The randomized intervention added an
additional +30% of candidates who were approved by the algorithm, and rejected by the humans.33

The most common reason cited for the human rejection in this group is lack of qualifications.

I next examine the performance of the 30% of candidates that the machine liked, and the humans
rejected in interviews. Table ?? shows that the marginal candidate passes interviews in 37% of cases
– about X% more than the candidates picked by humans only, and X% more than the candidates
selected both by the human and the machine.

Table ??. The marginal candidate accepts a job offer extended about 87% of cases, which is
about 15% higher than the average in the control group. Tests of statistical significance of theses
differences are reported in the bottom of Panel C, Table 3. In Table 5, I show that the machine
candidates are are less likely to negotiate their offer terms.

In the above analysis, the machine was permitted to interview more candidates than the human.
A separate question is whether the machine candidates would perform better if its capacity was
constrained to equal the human’s. In Table 4, I repeat the above exercise but limit the machine’s
quantity to match the human’s. In this case, the results are sharper. The machine selected candi-
dates improve upon the human passthrough rates.

5.1 Job Performance

The candidates who are hired go on to begin careers at their firm, where their career outcomes can
be measured. I examine variables relating to technical productivity. The jobs in this paper involve
developing software. As with many companies, this code is stored in a centralized repository
(similar to http://github.com) that facilitates tracking programmer’s contributions to the base of
code.

This system permits reporting about each programmer’s lines of code added and deleted. I use
these as rudimentary productivity measures. Later, I use these variables as surrogate outcomes
(Prentice, 1989; Begg and Leung, 2000) for subjective performance reviews and promotion using

33In both treatment and control groups the remaining ⇡20% withdrew their applications prior to the choice to inter-
view, usually because they already accepted another job.

28

http://github.com


the Athey et al. (2016) framework.

The firm doesn’t create performance incentives on these metrics, in part because it would en-
courage deliberately inefficient coding. The firm also uses a system of peer reviews for each new
contribution of code.34 These peer reviews cover both the logical structure, formatting and read-
ability of the code as outlined in company guidelines.35 These peer reviews and guidelines bring
uniformity and quality requirements to the definitions of “lines of code” used in this study.

Despite the quality control protocols above, one may still worry about these outcome metrics.
Perhaps the firm would prefer fewer lines of elegant and efficient code. A great programmer
should thus have fewer lines of code and perhaps delete code more often. As such, I examine both
lines of code added and deleted in Table 7. These are adjusted to a per-day basis and standard-
ized. The conclusions are qualitatively similar irrespective of using adding or deleting lines: The
marginal candidate interviewed by the machine both adds and deletes more lines of code than
those picked by humans from the same pool.

5.2 Cultural Fit and Leadership Skills

During the sample period of the experiment, the employer in this experiment began asking in-
terviewers for additional quantitative feedback about candidates. The additional questions asked
interviewers to assess the candidate separately on multiple dimensions. In particular, they asked
interviewers for an assessment of the candidate’s “general aptitude,” “cultural fit” and “leadership
ability.” The interviewers were permitted to assess on a 1-5 scale. These questions were introduced
to the interviewers gradually and orthogonally to the experiment.

Because of the gradual introduction, do not have assessments for all of the candidates in the
experiment. In order to expand the sample size, I combine the variation from the experiment
with regression discontinuity around the 10% threshold. For the regression discontinuity, I use
the Imbens and Kalyanaraman (2011) bandwidth. The machine picked candidates aren’t different
from the human picked ones in general aptitude, but are more highly rated in soft dimensions
such as cultural fit and leadership.

5.3 Benefit driven by better weighting of a small number of variables.

• Benefit driven by better weighting of a small number of variables.

• Rather than utilizing more non-obvious variables.

• Theoretically possible to reverse-engineer a low-dimensional linear model that delivers 70-
90% of benefits of the full ML model.

• Cognitive limitations and “attending to more variables” is more important for learning and less
for scoring (Hanna et al., 2014; Schwartzstein, 2014)

34For a description of this process, see https://en.wikipedia.org/wiki/Code_review.
35See descriptions of these conventions at https://en.wikipedia.org/wiki/Coding_conventions and https://en.

wikipedia.org/wiki/Programming_style.
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5.4 Combining Human and Machine Signals

In the “treatment” branch of the experiment, all machine-approved candidates were automatically
given an interview. Before these candidates’ were interviewed, they were shown to human screen-
ers who were informed that the algorithm had suggested interviewing this candidate. The human
screeners were next asked if they agreed with the machine’s decision to interview. This is a similar
setup to the control group, except that in the control group the machine’s preference was blind.

After learning the machine’s choice, the human screeners agreed on 85% of non-withdrawn ap-
plications (70% of total applications). By contrast, in the control group – where human screeners
were asked for independent evaluations without knowing the machine’s choice – the humans agreed
on only 60% of non-withdrawn applications (50% of total applications).

This large difference suggests that the human screeners substantially change their minds after
learning the machine’s choice. The humans’ propensity to agree with the algorithm speaks to how
much the human screeners themselves place faith in their own private signals of quality. We observe
this difference, even though the screeners were not told details of how the algorithm worked or
about its performance.

After recording their agreement (or disagreement), the screeners were also asked to assess the
treatment candidate on a 1-5 scale. In Table 12, I measure whether these human provided signals
contain information using “horserace” regressions (Fair and Shiller, 1989).

I find that in isolation, the human evaluations contain some predictive information. That is,
they can predict which candidates among the machine-selected candidates will successfully pass
interviews. However, when both signals can be combined, nearly all weight should be placed
on the machine’s score of the candidates. Once the algorithm’s ranking enters the regression, the
human evaluation offers no additional predictive power.

Regarding candidates’ acceptance of extended offers, I show in Panel B of Table 12 the human’s
assessment has no predictive power, even in isolation. The machine’s ranking does.

5.5 Heterogeneity

5.6 Role of Noise

6 Conclusion

Implications for management?

6.1 Coefficients versus Treatment Effects
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