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Abstract
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lead to large movements of workers between occupations and industries.
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1 Introduction

Although the discussion on labor market consequences of automation technologies and the

induced automation anxiety are not new (Mokyr et al., 2015; Autor, 2015), recent advances in

the fields of robotics and artificial intelligence have revived the debate once more. For producing

firms, such technologies (“4.0 technologies”) include production facilities up to Smart Factories,

Cyber-Physical Systems and Internet of Things. For service providers, innovations have brought

forward analytic tools for Big Data, Cloud Computing systems, internet platforms, shop systems

or online marketplaces. All these advances have raised the question of whether machines and

algorithms will at some point make human labor obsolete (Brynjolfsson and McAfee, 2011). The

debate has been fuelled by a recent series of “future of work” studies according to which about

half of the workforce faces a high risk of automation in coming decades (Frey and Osborne, 2017).

Although other studies have put forward reasons to believe that these studies may be overstating

the risk of automation (Arntz et al., 2017), there does not yet seem to exist a clear view on how

modern technologies impact employment.

Existing empirical evidence on the industry level suggests that industrial robots had no

detrimental effect on aggregate employment in developed countries (Graetz and Michaels, 2015).

Studies on the firm-level suggest no employment losses in firms specialized in routine tasks

(Cortes and Salvatori, 2015). Further evidence on the level of US local labor markets suggest that

labor markets specialized in routine tasks did not experience employment declines (Autor et al.,

2015) or even experienced a positive impact on labor demand as for the case of European regions

(Gregory et al., 2016). A somewhat different result has recently been put forward for the US

suggesting that regions using more robots experienced a negative effect on employment (Acemoglu

and Restrepo, 2017). A recent study by Dauth et al. (2017) finds negative employment effects of

robots in the German manufacturing sector, which are off-set by induced positive employment

effects in the service sector. In line with this, Acemoglu and Restrepo (2017) highlight that the

employment effects of robots apparently differ strongly from those of other types of technology

as, e.g. computerization.

A major shortcoming of existing empirical assessments is that they use either indirect measures

of technology such as the degree of routinization of work tasks (Routine Replacing Technological

Change, RRTC) or specific technologies such as industrial robots. In case of routinization

measures, studies rely on the assumption that all jobs involving routine (non-routine) tasks
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actually become automated (are safe from automation), which might not be realistic, especially

in an era of technologies that increasingly enter domains previously preserved for human labor.

Using robot data provides a more direct approach in measuring technological adaption, although

the results are restricted to producing firms and neglect the important role of service providers

which use algorithms and data rather than robots. Besides, up to the authors knowledge, none of

the studies looks at the impact of “4.0 technologies” on employment, although they are attributed

to fundamental changes on the labor market compared to former technologies. Finally, the

underlying mechanisms through which technology affects employment are only partly understood.

Most studies focus on job destruction channels such as capital-labour substitution and neglect

beneficial channels of technology including positive product demand effects or capital-labour

complementarities. The aim of this study is to fill these research gaps by making at least three

major contributions.

First, to better understand the underlying mechanisms of technology impacting jobs, we set

up a labor demand model that is able to explain technology adaption. The model links technology

to occupational labor demand directly and explains the main job creation and job destruction

channels arising from technology including substitution and product demand effects. Substitution

effects arise as machines substitute (or complement) for certain work tasks. Product demand

effects arise as machines allow firms to operate more cost efficient, leading to lower product

prices and, hence, higher sales and labor demand. The model provides testable predictions for

total labor demand as well as its subsequent transmission channels. The effects thereby depend

on the substitution elasticity between job tasks as well as the elasticity of substitution between

goods bundles across industries. In addition, we also model wage and labor supply respones to a

changing labour demand in order to capture all relevant mechanisms through which technological

change affects employment.

Second, we conduct a representative “IAB-ZEW Labour Market 4.0” firm survey among

2032 producing firms and service providers in Germany. Within the survey, we ask firms about

their technology investments between 2011 and 2016. Among others, we gathered technology

use data for producers (production equipment) and service providers (electronic office and

communication equipment) and distinguish between different degrees of automation in order to

identify technologies of the “Industry 4.0” (fourth industrial revolution). We then link the survey

data to employment biographies from social security records (BeH) of all workers employed

in the surveyed firms. We thus establish a unique linked employer-employee panel data set
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among German firms in a recent period of rapid technology improvements which allows us to (1)

draw a first and detailed representative picture on the extent and change in modern automation

technologies and to (2) relate these changes to changes in the level and structure of employment

at the firm-level.

Third, based on the theoretical framework, we assess the impact of modern technology on total

employment as well as the contributions of the key transmission channels via a decomposition

by estimating the key parameters of the theoretical model: (1) task-specific labor demand

as a function of technology investment yields the elasticity of substitution between job tasks

and allows conclusions on whether modern technologies substitute (or complement) for certain

tasks/occupations; (2) product demand as a function of technology investments yields the

elasticity of substitution between goods bundles across industries which tells us to what extent

firm’s product demand profits from technology through lower product prices; (3) wages in a

particular occupation-industry-cell as a function of the cell-specific employment rate; (4) labor

supply shifts across industry-occupation cells in response to employment rates and wages. In

the demand-side estimates, the unique linked employer-employee panel data set allows holding

constant a rich set of firm characteristics and controlling for endogenous changes in capital, wages

and revenues within an instrumental variables (IV) approach. For the supply-side estimations,

we use rich administrative employment records and apply fixed effects and IV approaches to take

account of potential endogeneities.

Our preliminary results suggest that the net effects of these technologies is actually positive,

but small. We find that firms’ technology investments have raised aggregate employment by, on

average, 0.17% per year in Germany, which is less than half of the average yearly employment

growth rate (0.41%). Contrary to existing results for the effects of robots, this is driven by

positive labor demand effects. On net, complementarity dominates worker-machine substitution.

In addition, we find net positive technology-induced product demand effects. While the net

effects remain small, we do find huge reallocations of workers between industries and occupations.

Technologies have mostly substituted for routine manual and cognitive workers while raising

employment in interactive, abstract and non-routine manual jobs. Moreover, the technologies have

accelerated structural change towards service industries, although those manufacturing sectors

that produce the new technologies diverge from this picture and experience technology-induced

employment growth.

The rest of our paper is structured as follows. Section 2 introduces a theoretical framework that
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captures key adjustment channels of the economy to technology investments. Based on the model,

we derive a decomposition that allows us to study the contributions of several macroeconomic

mechanisms to the aggregate employment effects of technological change. Section 3 describes

our data sources. In Section 4, we present the empirical implementation of our theoretical

framework. Based on our estimated model, we estimate the aggregate employment effects of

technological change, as well as the contributions of the several macroeconomic mechanisms

using our decomposition in Section 5. Section 6 concludes.

2 Theoretical Framework

We model industries i = 1, ..., I located in country r which sell their products to the destinations

r′ = 1, ..., R′ (including the home country r). The firms are endowed with several types of

technological capital. We study the role of the composition of firms’ technological capital for

firms’ demand for different types of labor, the product demand responses to the changing cost

and prices, the wage responses as well as the labor supply responses. We derive a decomposition

from our framework which allows us to estimate the effect of technological change on aggregate

employment, unemployment and wages while distinguishing several adjustment mechanisms.

2.1 Labor Demand

The representative firm in industry i combines tasks-sets (occupations) Tj , j = 1, ..., J to produce

output Yi with a CES technology, Yi =
[∑J

j=1(βjTij)
η−1
η

] η
η−1

, where 0 < η < 1. η < 1 ensures

that firms cannot elastically substitute between tasks, so that price-changes in a task do not lead

to disproportionally large changes in task inputs. The optimum task composition is

Tij = Yfβ
η−1
j

(
cTj
ci

)−η
. (1)

Marginal costs ci are a CES aggregate of task-specific marginal costs cTij ,

ci =

 J∑
j=1

(
cTij
βj

)1−η 1
1−η

(2)

To produce one unit of task Tij , firms require Aij units of occupation-specific labor Nij

Nij = TijAij (3)
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Aij is thus the input-coefficient for labor. It depends on the endowment of the firms with the k

types of technological capital Ck and the relation of these capital types to workers’ productivity

αkj , Aij =
∏K
k=1C

−αkj
ik . Assume, for example, that Cik is a technology that substitutes for j-type

workers. In this case, αkj > 0, so that Aij declines in the size of technological capital Cik. The

technology reduces the number of workers required to produce that task, hence it substitutes

for these workers. Vice versa, technology k′ and workers j′ are complements if αk′j′ < 0. This

substitution or complementarity applies to any given level of task output Tij . However, note

that the technological endowment further affects the marginal costs of the tasks, thus inducing

changing task compositions of firms.

Task-specific marginal costs are

cTij = wij

K∏
k=1

C
−αkj
ik (4)

We approximate firm marginal costs with a Cobb-Douglas price index

ci ≈
J∏
j=1

cTj
κj|i (5)

where κj|i is the cost share of task j in the representative firm of industry i.

Occupation-specific labor demand is

Nij = YfAij

(
cTij
ci

)−η
βη−1
j (6)

Using the definitions of marginal costs and taking logs provides our labor demand equation

lnNij = lnYi − η

lnwj −
J ′∑
j′=1

κj′|i lnwj′

+ (η − 1)
K∑
k=1

αjk lnCik

+ (η − 1) ln βj − η
J ′∑
j′=1

K∑
k=1

κj′|iαj′k lnCik (7)

The elements in the first row of the equation are straight forward: real sales, relative occupational

wages and capital composition. The first element of the second row is an occupation-fixed effect,

the second element of the second row is constant across occupations and can thus be controlled

for using a time trend or time dummies.

Our model provides a flexible approach of routine replacing technological change: Instead of
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pre-defining the relationship between different occupations and capital, we directly estimate it

to let the data define which tasks/occupations are complements or substitutes to computerized

capital. This approach can be interpreted as a generalization of the approaches by Autor et al.

(2003), Goos et al. (2014) and Gregory et al. (2016) (see Appendix A for more details).

2.2 Transmission Channels of Technological Change on Labor Demand

We rewrite the labor demand equation (7) to study the different channels through which technology

choices affect labor demand:

lnNij = lnYi︸ ︷︷ ︸
(A)

−η

lnwj −
J ′∑
j′=1

κj′|i lnwj′

− K∑
k=1

αjk lnCik︸ ︷︷ ︸
(B)

+ η

 K∑
k=1

αjk lnCik −
J ′∑
j′=1

K∑
k=1

κj′|iαj′k lnCik


︸ ︷︷ ︸

(C)

+(η − 1) ln βj (8)

Assume that technology k is a substitute for j workers, αjk > 0. (The opposite holds true if the

two are complements, αjk < 0.) A rise of the technological capital Cik then has three effects

on demand for labor Nij : Firstly, the technology directly reduces Aij , the number of workers

required to produce the tasks Tfj , and labor demand Nij declines (B). Secondly, as the number

of workers required to produce tasks Tij declines, the marginal costs of producing task that

task (cTij) decline and it becomes profitable for the firm to use more of these tasks. This partly

compensates the negative effect on labor demand if 0 < η < 1 (C). Thirdly, as the task-specific

marginal costs decline, also overall marginal costs of the representative firm ci decline and the

firm reduces its prices, which leads to an increase of production Yi. This raises labor demand

(A).

2.3 Investments

We assume that the composition of firms’ technological capital is the result of optimal firm

behavior. We observe firms’ actual capital choices in our data and assume that these are optimal

to infer on the underlying capital price changes. Assume that firms minimize the costs of

obtaining their technological capital stock while taking into account that any change in capital

endowments affects the optimal labor composition from above. We take into account the latter
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constraint via the marginal costs that are the result of the optimum labor choice:

min
K∑
k=1

pkCk s.t. ci =

 J∑
j=1

(
cTij
βj

)1−η 1
1−η

=

 J∑
j=1

(∏K
k=1C

−αjk
k wj
βj

)1−η 1
1−η

(9)

We take the ratio of the first order condition of the optimatimization problem between two

types of capital and plug the result into the definition of total costs TC to get:

pk′Ck′

TC
=

∑J
j=1 αjk′∑J

j=1
∑K
k=1 αjk

(10)

The cost shares of the capital types correspond to the average productivity of the capital

types across all occupations, relative to all capital types. From this we can derive that the price

elasticity of demand for technological capital type k is −1:

∂ lnCik
∂ ln pk

=− 1 + ∂ ln
∑K′
k′=1 pk′Cik′

∂ ln pk

=1−+sTCk
∂ lnCik
∂ ln pk

+ sTCk

where sTCc = pkCik
TC

∂ lnCik
∂ ln pk

=− 1 (11)

Hence, there is an inverse relationship between changes in optimal capital choices and changes in

capital prices, ∆ ln pk ≈ −∆ lnCik.

2.4 Product Demand

Consumers in country r′ consume the aggregate final good Y D
r′ , which is a CES aggregate of the

varieties from the producer countries r = 1, 2, ..., R, Y D
r′ =

[∑R
r=1

(
βrY

D
r′r

) ε−1
ε

] ε
ε−1

. Exports from

home country r to any country r′ thus are

Y D
r′r =

(
τrr′pr
Pr′

)−ε
Ir′β

ε−1
r (12)

where Pr′ is the CES price index in location r′, Pr′ =
(∑R

r=1 (τrr′pr)1−ε
) 1

1−ε and pr is the

domestic producer price index. The home country r produces a CES aggregate of industry i

goods, Y D
r′r =

[∑I
i=1

(
βir′Y

D
ir′r

)σ−1
σ

] σ
σ−1

. Exports from home country r and industry i to any
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destination r′ thus are

Y D
ir′r =

(
pir
pr

)−σ
Y D
r′rβ

σ−1
ir′ (13)

where pr is a CES price index of the industry producer prices, pr =
(∑I

i=1 (pir)1−σ
) 1

1−σ . Industry

output is a CES aggregate of the firms’ outputs in that industry, Y D
ir′r =

[∑F
f=1

(
Y D
ir′rf

)σi−1
σi

] σi
σi−1

.

Firms’ sales to destination r′ thus are

Y D
ir′rf =

(
pirf
pir

)−σi
Y D
ir′r (14)

Aggregate demand for final goods produced by home country r and industry i across all destination

markets r′ thus is:

Y D
ir =

R′∑
r′=1

(
pir
pr

)−σ (τrr′pr
Pr′

)−ε
Ir′β

ε−1
r βσ−1

ir′ (15)

2.5 Capital Sector

A competitive sector produces the capital stock under real marginal resource costs rk using only

the national output from sectors i with technology

Ci′k = 1
rk
Y Ck
i′ = 1

rk

[
I∑
i=1

(
βCki Y Ck

i′i

)σ−1
σ

] σ
σ−1

(16)

where Ci′k is the stock of technological capital type k used by industry i′, Y Ck
i′ are the aggregate

inputs used for producing capital type k for industry i′ and Y Ck
i′i are the inputs produced by

industry i for producing capital type k to be used in industry i′. The capital sector optimally

chooses the composition of the inputs so that

Y Ck
i′i =

(
pir
pr

)−σ
βCki

σ−1
Y Ck
i′ (17)

pr =
(

I∑
i=1

p1−σ
ir

) 1
1−σ

(18)

Competition in the capital sector implies that capital prices correspond to marginal costs,

pk = prrk. Total sales of capital type k to sector i′ are pkCi′k = prY
Ck
i′ and the associated real

resource costs are Y Ck
i′ = rkCi′k.
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2.6 Aggregate Demand and Income

Aggregate demand for products produced by industry i and sold across all countries r′ for final

demand, or domestically as input in capital production for sectors i′, is

Yir =
(
pir
pr

)−σ

R′∑
r′=1

βσ−1
ir′

(
τr′rpr
Pr′

)−ε
Ir′β

ε−1
r︸ ︷︷ ︸

MRDir

+
I′∑
i′=1

K∑
k=1

βCki
σ−1

rkCi′k︸ ︷︷ ︸
MPCir

 (19)

Real income in country r is equal to real sales, lowered by the real resource costs for producing

the capital

Ir =
I∑
i=1

R′∑
r′=1

Y D
ir′r +

I∑
i=1

I′∑
i′=1

K∑
k=1

Y Ck
i′i −

I∑
i=1

K∑
k=1

rkCik (20)

Income corresponds to real sales for final demand across all markets, real sales of the output

to be used as input for capital production, lowered by the real resource cost of producing that

capital. Note that the real resource cost of producing the capital consists solely of the inputs in

capital production. Hence, summing across all industries and capital types, the latter two terms

sum to zero. Real income thus is Ir =
∑I
i=1

(
pir
pr

)−σ
MPDir

2.7 Labor Market Frictions

We rely on the wage-bargaining model of Blanchflower et al. (1996) to model wage responses and

apply it to each segment ij of our labor market individually, i.e. each industry-occupation has

its own union which bargains for segment-specific wages. In their model, the Nash-equilibrium of

unions bargaining with employers for wages with union bargaining power φ is

max φ log
[
(u(lnw)− u(ln w̄))Nij

Lij

]
+ (1− φ) log π (21)

If no agreement between the trade union and the employers is achieved, workers earn the

outside wage w̄ whereas firms’ outside profits are zero. Profits in case of an agreement are πij ,

wages in case of an agreement are wij and the objective function of the trade union is u(wij).

Following Blanchflower et al. (1996), the agreed-upon wages are:

lnwij = ln w̄ + φ

1− φπ
Nij

Lij
(22)

9



That is, wages depend on outside wages ln w̄ (e.g. unemployment benefits) and the employment

rate Nij
Lij

, where Nij is employment and Lij is the number of people searching for employment in

segment ij. We can approximately rewrite this equation as a Wage Curve

lnwij = β0 + β1 ln w̄ − β2
ū

1− ū ln uij (23)

where uij = 1−Nij/Lij is the unemployment rate, ū is the steady state unemployment rate and

β0 is a constant which depends on the steady state values of the unemployment rate.

2.8 Labor Supply

Assume that each worker n = 1, 2, ..., N supplies νijn efficiency units of labor in segment ij.

Workers receive utility from wages and expected employment chances,

logU = γ1 ln Nij

Lij
+ γ2 lnwijνijn (24)

If γ1 = γ2, workers focus on expected earnings, only. The probability of worker n to choose

labor market segment ij over another labor market segment then is

Pr
(
γ1 ln Nij

Lij
+ γ2 lnwij + γ2νijn > γ1 ln Ni′j′

Li′j′
+ γ2 lnwi′j′ + γ2νi′j′n

)
(25)

Assuming that ln νijn follows a type 1 extreme value distribution, we can estimate this as

a multinomial choice model based on McFadden (1973, 1981). Following Berry (1994), we can

further interpret this probability as the share sij = Lij/L̄ of workers who choose a specific labor

market segment:

ln sij − ln si′j′ =γ1 ln Nij

Lij
+ γ2 lnwij − γ1 ln Ni′j′

Li′j′
− γ2 lnwi′j′ + γ2 ln(νij − νi′j′) (26)

lnLij =γ1 ln Nij

Lij
+ γ2 lnwij − γ1 ln Ni′j′

Li′j′
− γ2 lnwi′j′ + lnLi′j′

+ γ2 ln(νij − νi′j′) (27)

We use the average of the labor market as the reference sector i′j′ and estimate:
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ln Lij
L̄

= γ1

(
ln Nij

Lij
− lnN/L

)
+ γ2(lnwij − ln w̄) + γ2(ln νij − ln ν̄) + εij (28)

where N/L is the average employment rate in all other segments and w̄ are average wages in

all other segments.

2.9 Decomposition

From our model, we can derive a decomposition of technology-induced aggregate employment

changes (see Appendix B for details):

∆N = n
(

I− 1
1 + ηβ2

B
)−1

︸ ︷︷ ︸
(5)

X︸︷︷︸
(1)−(3)

1− ηβ2
1 + ηβ2︸ ︷︷ ︸

(4)

 c (29)

Matrix X contains the additive labor demand effects (1)-(3) to be explained below, (4) reflects

the wage response to those labor demand effects, and (5) reflects the labor supply response.

We expect that a positive labor demand shock leads to rising wage, which reduce the positive

employment effects. Moreover, we expect that a positive labor demand shock leads to increasing

(decreasing) labor supply in that segment (all other segments), which raises (reduces) employment

in that segment (all other segments).

n is an ij column-vector of initial employment Lij , X is an ij × i∗k matrix that represents

the labor demand shocks, B is an ij × ij matrix which represents the labor supply responses,

and c is an i∗k row-vector of changes in capital endowments. i and j represent the industries and

occupations that are exposed to the shock, i∗ represents the investing industry and k represents

the capital type that industry i∗ invests into.

More specifically, the matrix X consists of the elements:

Xij,i∗k =−αjk︸ ︷︷ ︸
(1)

+ η

αjk − J ′∑
j′=1

αj′k


︸ ︷︷ ︸

(2)

+ ai

J ′∑
j′=1

κj′|i∗αj′k︸ ︷︷ ︸
(3)

∀ i = i∗ (30)

Xij,i∗k = bii∗
J ′∑
j′=1

κj′|i∗αj′k︸ ︷︷ ︸
(3)

∀ i 6= i∗ (31)

(32)
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where ai and bii∗ contain the product demand responses. Element (1) represents direct capital-

labor substitution, (2) represents substitution between tasks, and (3) represent product demand

effects that are induced by the capital investments.

We further use B = ηβ2ŜL +β2A−β2AŜL, where ŜL reflects wage effects induced by workers

movements between segments (see Appendix B for details) and matrix A consists of the elements

Aij,i′j′ =(η − air)κj′|i ∀ i = i′ (33)

Aij,i′j′ =(η − bii′)κj′|i′ ∀ i 6= i′ (34)

Note that we can compute the decomposition for each segment ij separately by transposing

the vector of initial employment n.

Based on equation (29), we can decompose the aggregate change in employment ∆N into the

labor demand effects ∆Ndemand, the wage response effect ∆Nwage, and the labor supply effect

∆N supply with

∆Ndemand =nXc (35)

∆Nwage =n
(

I− β2
1 + ηβ2

A
)−1

X
(

1− ηβ2
1 + ηβ2

)
c−∆Ndemand (36)

∆N supply =n
(

I− 1
1 + ηβ2

B
)−1

X
(

1− ηβ2
1 + ηβ2

)
c−∆Nwage −∆Ndemand (37)

As our model is based on constant aggregate labor supply, we can easily produce a decompo-

sition of changes in the unemployment rate based on the labor demand decomposition:

∆U = −∆N
L

(38)

Moreover, we can derive an analogous decomposition of average wage changes

∆w̄ =
[
(1 + β2)sw − sN − β2swŜL

] (
I− 1

1 + ηβ2
B
)−1

X
(

1− ηβ2
1 + ηβ2

)
c (39)

where sN is an ij vector of the initial employment share of the segments and sw is an ij

vector of wage-income shares of the segments.
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3 Data

3.1 IAB-ZEW Labour Market 4.0 Database

Our main data source is the IAB-ZEW Labour Market 4.0 database, a linked employer-employee

database. It combines a firm-survey with social-security records of the firms and their workers.

We construct the data from two main sources including (1) “IAB-ZEW Labour Market 4.0” firm

survey and (2) employment biographies from social security records (BeH). The data sources are

described in detail below.

Firm survey. In order to gather unique information on modern technology investments, we

conducted a representative “IAB-ZEW Labour Market 4.0” firm survey among 2032 firms between

March-May 2016. Firms were randomly chosen from a pool of all German firms with at least 1

employee subject to social security contributions. The firm survey was stratified by firm size

(4 categories), industrial sector (5 categories) and region (East/West Germany). For each cell,

we conducted about 50 CATI-based interviews with mostly production managers or the firms’

management. The response rate was 21 percent, although the reasons for non-participation were

not associated with technology usage for X percent of the non-participating firms. The interviews

lasted, on average, 30 minutes and covered questions around (1) the relevance of “new” digital

technologies (including 4.0 technologies) (2) the degree of automation of work equipment (3)

changes in firm labor demand regarding skills, tasks and competencies as well as (4) background

characteristics including sales and profits. The information was gathered for the presence, past

(before 5 years) and future (in 5 years).

The firm survey is the main data source for our technology (capital) measures. For this,

we asked production managers to assess the shares of their overall production and electronic

office and communication (O&C) equipment by degree of automation (compare Table 1). Note

that X% of the firms use only production equipment, whereas Z% use both. We conduct

regressions in two versions. In a first version, we distinguish between production and O&C

equipment. In a second version, we create an aggregated technology measure, where capital

is defined as production equipment for producers and O&C equipment for service providers.

For firms that use both, we calculate the average capital stock of firm i at time t as follows:

ki,s,t = δkO&C
i,s,t + (1 + δ)kprodi,s,t , where s represents the capital type s = 1, 2, 3 and where δj = 0.7

for service providers and δj = 0.3 for producers. Capital type shares add up to 100%, that is
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Table 1: Work equipment by automation degree

Production equipment (p) Electronic office and
communication equipment (d)

1. manually controlled (kprod1 ) 1. not IT-supported (kO&C
1 )

e.g. drilling machine, motor vehicles
or X-ray machine
→ humans are largely involved in work process

e.g. telephones, fax and copy machines
→ humans are largely involved in work process

2. indirectly controlled (kprod2 ) 2. IT-supported (kO&C
2 )

e.g. CnC machines, industrial robots
or process engineering systems
→ humans are only indirectly involved in work process

e.g. computers, terminals, electronic checkout
systems or CAD-systems
→ humans are only indirectly involved in work process

3. self-controlled (kprod3 ) 3. IT-integrated (kO&C
3 )

e.g. production facilities up to Smart Factories,
Cyber-Physical Systems and Internet of Things
→ work processes are largely performed automatically

e.g. analytic tools for Big Data, Cloud
Computing systems, internet platforms such as
Amazon, shop systems or Online-Markets
→ work processes are largely performed automatically

ki,s=1,t + ki,s=2,t + ki,s=3,t = 100. For each capital type, we then calculate the log capital type

share change as follows: ∆ki,s = ln(ki,s,t + 1)− ln(ki,s,t−5 + 1), where t=2016.

From the firm survey we further construct 5-year changes between 2011-2016 in log purchased

goods and services (in Euros), revenues (in Euros) as well as value added defined as revenues

minus purchased goods and services.

Employment histories (BeH) The survey data was linked to employment biographies from

social security records (BeH) of all workers employed in the surveyed firms between 2011-2015.

The data includes, among others, information on the employment status, earnings, occupation

and industry of workers. In total, we observe 282,130 employees in any of the years between

2011-2015. We restrict the data to employment spells overlapping june 30th of a year, which

leaves us with 950.795 worker-year observations. Based on the data, we calculate log changes

between 2011 and 2015 in the number of firm-level workers, the number of firm-level workers

by task domain, average log firm daily wages, average log firm occupation daily wages as well

as average log daily industry wages (2-digit WZ08).1 As employment biographies for the year

2016 are not yet available, we multiply our four-year changes with 5/4. If no data is available for

wij,t−4 we take wi,t−3 and multiply ∆ lnwij by (5/3) and so forth for t=2, t=1.

The task domain is defined based on a German expert data base BERUFENET of the Federal

Employment Agency including detailed information on work tasks by 5-digit occupation Dengler

and Matthes (2015). For each occupation, we calculate the share of tasks falling into the following

task domains: (1) analytic non-routine (2) interactive non-routine (3) cognitive routine (4) manual

routine (5) manual non-routine. We then calculate 5-year changes in the number of employed
1Wage imputation...
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workers as follows: ∆ lnNij =
(
ln(
∑K
k=1 δijktNijkt + 1)− ln(

∑K
k=1 δijkt−4Nijk,t−4 + 1)

)
∗ (5/4),

where δij is individual k’s share of task j at work and t=2015. We calculate wages in a similar

manner.

3.2 SIAB

As our second main data source, we use the Sample of Integrated Labor Market Biographies

(SIAB 7514) from the IAB. This is a sample of the social security records for the time period

1975 to 2014 for Germany. This data provides more information on employment, wages and

worker mobility than the “IAB-ZEW Labour Market 4.0” Database.

The first main indicator which we derive from this data is employment at the occupation- and

industry level Nijt for each year t. We differentiate between i = 1, . . . , 13 sectors and j = 1, . . . , 5

occupations. For the occupations, we classify each occupation according to the main task out

of five task domains as provided by Dengler and Matthes (2015). For merging the information

from Dengler and Matthes (2015), we use the KldB2010 on the 3-digit level as the occupational

classification. However, we have to deal with a relevant structural break in 2011/2012 because

employment spells ending after the 30th of Nov 2011 are classified according to KldB 2010 while

employment spells ending before that date are classified according to KldB 1988. Although the

KldB2010 time series has been extended before 2012 based on some recoding, there are much

more missings in the KldB2010 in 2011 (and to a lesser extent in 2012) than in any other year

due to the introduction of the new classification scheme (Ganzer et al., 2017, p. 9). We reduce

these missings by backward and forward extrapolation if people stayed in the same firm, i.e.

the firm counter remains unchanged for two consecutive employment spells. Similarly, we fill

in related missing for the part-time status of the worker. We analogously apply backward and

forward extrapolation, but extrapolate information only if in addition to staying in the same firm,

the daily gross wage changed less than 10% (up or down) between two consecutive observations.

Our second main indicator from this data are wages. The data provides reliable information

on daily gross wages. However, wages are reported only up to the social security contribution

limit. We therefore follow Card et al. (2013) and Dustmann et al. (2009) by applying Tobit

regressions to impute wages above this limit.2 Moreover, we only have gross daily wages, hence

always mixing a wage component and an hours of work component. Hence, in order to eliminate
2We would like to thank Johann Eppelsheimer and Wolfgang Dauth for providing us their code for the wage

imputation.
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the hours component and the corresponding bias for the estimation of some structural equations

(such as the wage curve, see 4.3), we also calculate cell-specific wage levels for full-time workers

only.

Our third main indicators is unemployment (or non-employment). While the social secu-

rity records provide very reliable information on employment and wages, they used to report

unemployment only if workers register as unemployed and receive unemployment benefits or

unemployment assistance. Hence, there exist spells where workers are neither employed, nor

reported as unemployed in the data despite being unemployed and seeking employment. Since

20073, however, the data includes additional spell information whenever people are registered

at the employment agency as seeking employment (ASU information). For the estimation of

the labour supply function, we hence rely on this information and apply a narrow definition of

non-employment (nNE) following implementation A of Kruppe et al. (2007). We define a period

of unemployment as each uninterrupted unemployment period as shown in the ASU information

(unemployed and looking for job). Minor jobs as well as internships parallel to ASU are being

ignored and still count as unemployment period, while all other forms of employment parallel to

ASU dominate ASU. In a more refined concept (concept 2/3), Kruppe et al. (2007) also ignore

employment spells if working hours is less than 15 hours/week, but working time information for

the relevant years is imprecise and has many missings in 2011. Hence, we exclude all ASU spells

with parallel employment spells from socially insured employment irrespective of working hours.

Based on this unemployment definition, we construct cell-specific labor supply as the sum of

employees and unemployed in each cell ij (industry-occupation). The key problem is that we do

not know where unemployed workers seek employment. To cope with this, we apply two different

approaches. In the first approach, we use the occupation and industry of the previous job of

each unemployed to define their occupational and sectoral affiliation during unemployment. In

the second approach, labor supply in cell ij is employment in that cell plus a weighted sum of

unemployed in all other cells. The weights correspond to the observed job mobility of workers

between cells, so that the resulting number reflects the number of unemployed workers who

likely seek employment in cell ij given their previous occupational and sectoral affiliation. In

order to ensure a sufficiently large sample, we calculate worker mobility by exploiting all job

transitions irrespective of whether its job-to-job or job-unemployment-job transition. Moreover,

we pool job transitions from two years and also pool some ij-cells in order to ensure statistically
3The informatoin was also available between 1999 and 2003/4.

16



reliable transition probabilities. Hence, unemployed job seekers with a certain cell-affiliation are

redistributed to other cells according to a (time varying) transition probability. Applying these

weights yields a weighted labor supply (wL).

3.3 Auxiliary Data

In addition to this, we use several auxiliary data sets:

World Input-Output Database (WIOD): We use the 2013 revision4 of the WIOD (Timmer

et al., 2015) to get international trade flows at the industry level between Germany and 39 other

countries, marginal costs (wages per value added) at the country and industry level, and local

income in the destination countries. Moreover, we derive several shares from the data that are

required for constructing other variables and for the decomposition: Shares of exporter-specific

imports in importers’ price index, shares of industries in the countries’ price index, share of final

demand in total sales by industry, share of intermediates demand in total sales by industry, share

of importer country in the total sales of the exporter country, and share of industries in total

income. We convert all values to Euros and deflate them to 1995 Euros using the exchange rate

and deflators available in the WIOD.

EU KLEMS: We use the EU KLEMS September 2017 release to get industry-specific depreti-

ation rates as well as industry-specific capital stock information.

4 Empirical Implementation

4.1 Labor Demand

Below, we present our preliminary estimates of our labor demand equation from Section 2.1.

Currently, we are preparing the data from our firm survey to implement the labor demand equation.

As this process is not finalized, we instead present a preliminary analysis which relies on the

classical Routine-Task-Intensity approach following Gregory et al. (2016). We will update this

section and apply our labor demand specification from Section 2.1 once the data preparation has

been finalized.
4The socio-economic accounts of the WIOD currently are only available for the 2013 revision, they will become

available for the 2016 revision not before December 2017. We will update the database once they are available.
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Our preliminary labor demand equation is

lnNijt = β1 lnYit + β2 ln pit + β3 lnwijt + β4t+ β5RTIij × t+ βi + βj + εijt (40)

where Nijt is employment in industry i and occupation j in year t, Yit is value added, wijt are

wages, pit are industry-level marginal costs, and RTI is the routine task intensity of occupation-

industry ij. Following Gregory et al. (2016), we thus approximate occupation-industry specific

capital price changes using the initial routine intensity of the cells. The idea of this approach is

that cells which more strongly rely on routine tasks, have larger potentials for automation via

algorithms and thus profit more from declining prices for processing power.

Estimation results are presented in Table 2. The first column is an OLS-estimation of

Equation (40) including industry and occupation dummies and a time trend. The second column

is as column (1), but uses an IV approach that takes account of potential endogeneity of value

added and marginal costs. Our IV for industry-level marginal costs are average industry marginal

costs of selected other countries. This IV captures common technology-driven trends in industry

costs. We use two alternative sets of countries for this IV.5 Our IV for industry-level value added

is the industry-specific capital stock as reported in the 2013 revision of the WIOD. Since the

corresponding capital data is available only until 2007 so far, the IV estimations are restricted to

a period of 1999 to 2007 whereas the OLS estimations capture the period from 1999 until 2011.6

The third column is a Fixed Effects Panel estimation of Equation (40), and the last column

an instrumented version of column (3) where the instruments are chosen as discussed above.

In all specifications, RTI has a negative effect on employment, as expected: The more routine

an occupation-industry cell, the lower the overall employment growth, since these cells face

stronger declines in capital prices so that they face stronger substitution of labor by capital.

The coefficient is -0.005 in our preferred specification (column 3), which suggests that labor

demand growth is lower by 0.5 percentage points in occupation-industry cells which have a

routine intensity that is higher by one standard deviation. Our coefficient on value added is

close to unity, as predicted by our theory. The coefficient on marginal costs corresponds to the

elasticity of substitution between tasks, η, and is 0.82 in our preferred specification (column 3).

This is close to comparable estimates by Gregory et al. (2016) and Goos et al. (2014). Moreover,
5Our first set of countries comprises India, Indonesia, Mexico and Brasil; our second set of countries comprises

Australia, Canada, Japan and Korea.
6We will update this as soon as the 2016 revision of the WIOD data becomes available. Moreover, once we

estimate labor demand based on the firm survey, we will focus on the more recent period from 2011 onwards.
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Table 2: Labor Demand Results

(1) (2) (3) (4)
ols_RTI2_P3 iv_cs_RTI2_P3 FE_RTI2_P3 IV3_RTI2_P3

VARIABLES ln_N_ij ln_N_ij ln_N_ij ln_N_ij

std_RTI2_t -0.0472*** -0.0585*** -0.00515* -0.000822
(-2.690) (-2.624) (-1.949) (-0.0990)
0.00910 0.00868 0.0557 0.921

ln_VA 0.785*** 0.969*** 0.828*** 0.657*
(4.085) (3.543) (8.020) (1.672)
0.000125 0.000396 0 0.0945

ln_P3_ir 0.761** 1.148** 0.816*** 4.239
(2.528) (1.992) (4.843) (0.892)
0.0139 0.0464 8.47e-06 0.372

ln_wft_ij -0.670 -0.672 -0.909*** -0.497
(-1.525) (-1.493) (-2.973) (-0.516)
0.132 0.135 0.00415 0.606

Constant 8.856*** 9.617*** 10.46*** 25.17
(4.619) (3.123) (7.352) (1.246)
1.92e-05 0.00179 4.47e-10 0.213

Observations 1,105 845 1,105 845
R-squared 0.590 0.591 0.476 0.978
N 1105 845 1105 845
Sector Dummies X X
Occupation Dummies X X
Number of Cells 65 65

Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

the coefficient on wages is negative, as expected: higher wage costs imply lower labor demand.

4.2 Product Demand

We separate the product demand equation from Section 2.4 into two parts, one at the country-

country-trade-flow level and one at the country-country-industry-trade-flow level to correctly

estimate the two parameters of interest: ε, the elasticity of substitution between countries’ goods

bundles in consumption is estimated at the first level whereas σ, the elasticity of substitution

between industries within those goods flows is estimated at the second level.

For the country-country-trade-flow level, we estimate

lnYr′r = −ε ln pr
Pr′
− ε ln τr′r + ln Ir + (ε− 1) ln βr (41)

where Yr′r are the sales of country r (Germany, only) to country r′ (all 40 countries including
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Table 3: Product Demand Equation - Results (1)

Variable FE FE IV Pooled Pooled IV
Ir′t coef. 1.035 1.119 0.875 0.965

t 60.700 44.360 10.180 7.920
p 0.000 0.000 0.000 0.000

ln prt
Pr′t

coef. -0.034 -0.204 0.008 -0.209
t -3.110 -6.100 0.320 -1.680
p 0.002 0.000 0.753 0.093

N 680 680 680 680
R2 0.862 0.990 0.985
Dummies/FE r′, t r′, t r′, t r′, t

Germany), pr are marginal costs, Pr′ is the consumer price, and Ir′ is local income. A main

threat to identification of ε is the potential endogeneity of relative prices (marginal costs). We

apply an instrumental variable approach and rely on a Bartik-type IV. Specifically, we use world

marginal costs at the industry level and reweight it using national industry shares in 1995 as a

measure for pr and we proceed analogously for Pr′ . We then calculate the log ratio of the two

and use it as an IV for ln pr
Pr′

. This IV is based on the idea that there exist world-wide shocks to

industry-specific marginal costs due to general technological developments, so that we can use

changes in other countries’ industry-specific cost structures as an IV for changes in Germany’s

cost structures.

Using these data, we estimate

lnYr′rt = −β1 ln Ir′t + β2 ln prt
Pr′t

+ βr′ + βt + ε (42)

for the time period 1995-2011 for the 13 SIAB-sectors using data for Germany and 39 trading

partners r′ of Germany. This serves as a preliminary implementation until the updated socio-

economic accounts of the WIOD’s 2016 revision with more recent data is available.

We implement the model as a Fixed Effects Panel Model and as a Pooled Panel Model, both

with and without IVs. Preliminary results are shown in Table 3. The results for β2 are close to

0.2 both IV approaches, whereas β1 is close to 1, as predicted by the theory. This implies that

the elasticity of substitution between countries’ goods bundles is ε ≈ 0.2.

For the second part, we estimate the shares of industries in Germany’s trade flows

ln Yir
′r

Yr′r
= −σ ln pir

pr
+ (σ − 1) ln βir′ (43)
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Table 4: Product Demand Equation - Results (2)

Variable FE FE IV Pooled Pooled IV
ln pirt

prt
coef. 0.064 -0.352 0.054 -0.469

t 1.520 -1.690 0.630 -1.080
p 0.128 0.091 0.533 0.281

N 20338 17946 20338 17946
R2 0.024 0.738 0.737
Dummies/FE r′ × i, t r′ × i, t r′, i, t r′, i, t

where Yir′r are the sales of industry i and Country r (Germany, only) to country r′ (all 40

countries including Germany), pir are marginal costs (wages per value added) in industry i and

country r, and the remaining variables are as before. To cope with the endogeneity of ln pir
pr

we apply an instrumental variable strategy, using a Bartik-type IV. specifically, we use relative

industry-to-national marginal costs in other countries as an IV for relative industry-to-national

marginal costs in Germany.7 To empirically implement the equation, we estimate

ln Yir
′r

Yr′r
= β1 ln pir

pr
+ βr′ + βi + βt + ε (44)

We implement the model as a Fixed Effects Panel Model and as a Pooled Panel Model,

both with and without IVs. Preliminary results are shown in Table 4. The results imply an

between-industry elasticity of substitution between σ = 0.35 in the FE IV Model and σ = 0.47

in the Pooled IV Model and thus are similar to comparable estimates by Goos et al. (2014) who

find an elasticity of substitution between industries of σ = 0.42 at the European level.

4.3 Wage Curve

We empirically implement our labor market frictions from Section 2.7 as a wage curve-type

estimation:

lnwijt = β1 + β2 ln Nijt

Lijt
+ εijt (45)

where wijt is the median wage in sector i and occupation j in year t, Nijt is the number of

workers, and Lijt is labor supply in that occupation-industry and year. Labor supply is defined as

described in section 3.2 as the number of workers in each occupation-industry plus the number of

unemployed Uijt in that cell. The number of unemployed in each cell results from those workers
7We use two different sets of countries, firstly we use Indonesia, India, Mexico and Basil; secondly, we use

Australia, Canada, Japan and Korea.
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who were previously employed in that cell but who are unemployed in the respective year.8

In addition, we rearrange the labor market frictions equation to estimate a classical wage

curve:

lnwijt = α1 + α2 ln Uijt
Lijt

+ εijt (46)

One can show that the relationship between β2 and α2 is

β2 = −1− ū
ū

α2 (47)

where ū is the steady state unemployment rate.

The preliminary results of these estimations are reported in Table 5. The first column reports

an OLS-implementation of Equation (45) with occupation, industry, and year dummies. The

second column reports results of the same model including a set of control variables in order to

control for cell-specific differences in worker characteristics. In column (3), we re-estimate the

model from the first column as an Instrumental Variable model. We do so to take into account

the potential endogeneity of the employment rate. Our IVs are the employment rate, lagged by

two, three and four years. Column (4) is an IV implementation of the model from the second

column, relying on the same IV. Column (5) implements equation (46) as an IV model, using

the 2-years lagged unemployment rate in the cell and applying the same control variables as in

column (4).

The estimate of β2 is quite stable across the equations, although it is generally smaller when

applying control variables. We prefer the specification including control variables, as these control

for differences between workers. Note that there are only little differences between the model

with and without IVs. Our preferred specification in column (4) reports an estimate of β̂2 = 1.655.

This is consistent with the corresponding estimate of the classical wage curve (column 5) if the

steady state unemployment rate is 12%. The estimate of the unemployment elasticity of wages

from the classical wage equation (column 5) are somewhat larger that the usual estimate of −0.1.

However, this is very plausible for our case of occupation-industry specific employment, where

workers have lower chances of finding employment elsewhere, so that their wages should indeed

respond more strongly to the unemployment rate compared to the classical estimation at the

regional level.
8We do not use the weighted labor supply for the estimation of the wage responses since wL already captures

responses to wage changes and employment changes which should thus be highly endogenous.
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Table 5: Wage Curve Results

(1) (2) (3) (4) (5)
Pooled Pooled Pooled IV Pooled IV Pooled IV

VARIABLES ln_wft_ij ln_wft_ij ln_wft_ij ln_wft_ij ln_wft_ij

ln_N_L 2.271*** 1.437*** 2.217*** 1.655***
(5.078) (3.886) (4.459) (4.660)
3.53e-06 0.000244 8.24e-06 3.16e-06

ln_U_L -0.230***
(-3.968)
7.25e-05

Constant 4.924*** 5.952*** 4.949*** 6.171*** 5.033***
(57.45) (21.82) (64.35) (17.92) (10.41)

0 0 0 0 0

Observations 325 325 195 195 195
R-squared 0.800 0.942 0.789 0.947 0.945
N 325 325 195 195 195
Year Dummies X X X X X
Sector Dummies X X X X X
Occupation Dummies X X X X X
Add. controls X X X

Robust t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1
Note: Additional controls comprise the cell-specific shares of females, foreigners, young workers,
old workers, low-educated workers, high-educated workers and part-time workers, as well as
average tenure.
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4.4 Labor Supply

We empirically implement our labor supply equation from Section 2.8 as:

lnwLijt = γ1 ln
(
Nijt

Lijt
/
N̄

L̄

)
+ γ2 ln wijt

w̄
+ ϕij + τt + εijt (48)

where wLijt is the weighted labor supply as described in section 3.2. It represents a measure of

how many workers seek employment in cell ij at time t according to the probability to experience

a transition between all cells as observed for job movers in the previous two years. Labor supply

is assumed to respond to differences across cells in the employment rate. Hence, Nijt
Lijt

is the

employment rate in cell ij and N̄
L̄

is the average employment rate across all cells. Note that on

the RHS we do not use the weighted labor supply, wL, but but the labour supply resulting from

the sum of employed and unemployed workers when unemployed are classified according to their

previous sectoral and occupational affiliation (L). This better reflects the employment chances

in a particular cell that may induce labor supply shifts across cells. wijt are cell-specific wages

and w̄ is the average wage rate. ϕij are cell-specific fixed effects and τt are year dummies.

Table 6 reports the preliminary results. We implement the equation as a pooled OLS model

(columns 1 and 2) and as a fixed effects model (columns 3 and 4). Columns 2 contains dummies

for occupations and industries, column 4 contains time trends for occupations and industries.

Both, columns 3 and 4 contain occupation-industry fixed effects. The coefficients are generally

smaller in the FE models compared to the OLS models. We prefer the FE models, as these

correspond most closely to our model. The results highlight that both the employment rate

as well as wages positively affect cell-specific labor supply, as expected. However, the effect of

wages is insignificant. Our preferred specification is column 3. The coefficient on the employment

rates highligts that an increase of the employment rate by 1% raises cell-specific labor supply by

roughly 1.2%.

5 Preliminary results

In this section, we use the parameter estimates from Section 4 to implement our employment

decomposition (Equation 29). We first implement the decomposition individually for each labor

market segment (occupation-industry), before performing the aggregate decomposition.

Figure 1 shows the four effects as well as the overall effect for two selected labor market
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Table 6: Labor Supply Results

(1) (2) (3) (4)
Pooled Pooled FE FE

VARIABLES ln_wL_ij ln_wL_ij ln_wL_ij ln_wL_ij

ln_N_L_rel 2.127 3.249 1.224** 2.100***
(0.466) (1.187) (2.141) (3.784)
0.643 0.240 0.0361 0.000342

ln_wft_rel -0.733 -0.686 0.584 0.734
(-0.701) (-0.892) (1.026) (1.480)
0.486 0.376 0.309 0.144

Constant -6.136*** -7.677*** -3.736*** -3.923***
(-2.996) (-2.735) (-4.466) (-5.931)
0.00388 0.00807 3.31e-05 1.33e-07

Observations 325 325 325 325
R-squared 0.490 0.819 0.571 0.717
N 325 325 325 325
Add. controls X X X X
Year Dummies X X X X
Sector Dummies X
Occupation Dummies X
Occ.-specific time trend X
Sector-specific time trend X
Number of cell 65 65

Robust t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1
Note: Additional controls comprise the cell-specific shares of females, foreigners, young workers,
old workers, low-educated workers, high-educated workers and part-time workers, as well as
average tenure.

25



Figure 1: Decomposition: Effects for Selected Segments
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segments, manual routine occupations in the metal industry and analytical occupations in the

electronics industry. The effects are measured in terms of the yearly growth rate of employment.

As expected, the Task Change effect is negative for manual routine jobs and positive for analytical

jobs, i.e. new technologies substitute for manual routine labor and reduce labor demand for these

jobs, while the opposite holds true for analytical labor. Moreover, we find a negative product

demand effect for the first labor market segment, whereas the effect is positive for the latter.

This suggests that the metal industry could not profit from declining costs and prices via demand

increases, as the technological change has led to a restructuring of capital endowments towards

digital tools. This is at the expense of classical technologies, produced by the metal industry,

and favors digital tools, produced by the electronics industry.

The first two effects represent the pure labor demand effect. The third effect – the wage

adjustments – has the opposite sign. Any increase in labor demand leads to rising employment and

declining unemployment, which triggers rising wages, which partly compensates for the increase

in employment, and vice versa for declining labor demand. This highlights that employment

effects would have been larger if wages didn’t rise. However, workers mobility counteracts these

adjustment processes, as highlighted by the fourth effect: As workers leave the declining and

move to the growing labor market segments, the wage decline in the declining and the wage

increase in the growing labor market segment is decelerated, which favors negative employment

effects for the former and positive employment effects for the latter segment. Overall, we find

that the sign of the overall effect is determined by the sign of the labor demand effects, although
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Figure 2: Decomposition by Occupations
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the wage adjustments limit the aggregate employment effects.

Figure 2 provides the overall effect by our five occupations. As expected, Cognitive- and

Manual-Routine occupations decline, whereas Analytical, Interactive, and Manual-Non-Routine

Occupations grow. Quite interestingly, the growth rate of Manual-Non-Routine occupations

exceeds the growth rates of Analytical and Interactive Occupations. This might be due to the

structural change towards service industries, which is triggered by the technological change: As

evident from Figure 3, most manufacturing sectors loose employment due to technological change,

whereas most service sectors grow. The only exception among the manufacturing sectors is the

Electronics and Automotive Industry. This is the industry that produces the new technologies

which other firms apply. Among the service industries, the Transport and Communication sector

experiences the largest growth induced by the technological change – this also is the industry

that is involved in producing and maintaining the new technologies.

While the movements at the occupation and industry level are quite large, the aggregate

effects at the national level are much smaller, as highlighted by Figure 4. The overall effect is

positive, albeit small. Quite interstingly, the sign of the overall effect is determined by the two

labor demand effects, which both are positive. That is, contrary to common fears, technological

change has raised labor demand, whereas the effects on actual employment are smaller due to the

sluggish labor supply adjustments. Even the Task Change effect, which captures capital-labor

substitution and complementarity, is positive, suggesting that on aggregate, capital complements

labor. Nevertheless, as we have seen before, this affects workers very heterogeneously depending
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Figure 3: Decomposition by Sectors
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Figure 4: Decomposition: Effects
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on their occupation and sector.

We therefore conclude that technological change has had overall positive effects on employment,

although the effect is quite small. This was, however, accompanied by hughe structural changes

between sectors and occupations. Moreover, technological change has not only substituted for

workers, but also complemented workers and the latter effect actually dominated. The labor

demand effects have been decelerated by sluggish labor supply adjustments.
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6 Conclusions

New digital and interconnected technologies provide ever-increasing opportunities for automating

tasks that previously only humans could do. There is a controversial public debate on the likely

consequences for employment, unemployment and wages. There is also growing scientific evidence

on the labor market consequences of these technologies. However, most studies focus only on the

structural effects of these technologies, such as changing task or occupational structures and are

silent on the aggregate employment effects which are at the core of the public debate. Other

papers focus on aggregate employment effects, but restrict their focus to only robots. While

the focus robots as a specific technology helps identifying their effects, this likely restricts the

focus to new technologies that substitute for workers while leaving out many potential other new

technologies that complement workers. Such studies thus provide only an incomplete picture

of the overall effects of the new digital and interconnected technologies (“Industry 4.0”) on the

labor market.

In this paper, we study the aggregate employment, unemployment and wage effects of cutting-

edge digital and interconnected technologies on the German labor market and decompose the

contributions of the underlying macroeconomic adjustment processes. We make three major

contributions. Firstly, we develop a theoretical framework that captures the key adjustment

mechanisms: (1) machine-labor substitution and complementarity, (2) product demand responses,

(3) wage responses and (4) labor supply responses via worker mobility. Secondly, we conduct

a representative survey among German firms to retrieve direct measures of the adoption of

cutting-edge digital and interconnected technologies at the firm level. We link the survey

information to the social security records of the firms to create a unique linked employer-employee

dataset to study the labor market consequences of “Industry 4.0” in Germany. Thirdly, we

empirically estimate the model and implement a decomposition that we directly derive from

our model in order to estimate the overall effect of firms’ investments in these technologies on

employment, unemployment and wages, as well as to disentangle the contributions of the several

macroeconomic adjustment mechanisms.

Our preliminary results suggest that the net employment effect of these technologies is

actually positive, but small. We find that the firms’ technology investments have raised aggregate

employment by on average 0.17% per year in Germany, which is less than half of the average

yearly employment growth rate (0.41%). Contrary to existing results for the effects of robots, this

29



is driven by positive labor demand effects. On net, complementarity dominates worker-machine

substitution. In addition, we find net positive technology-induced product demand effects. These

small net positive labor demand effects have been decelerated by limited worker mobility. While

the net effects remain small, we do find huge reallocations of workers between industries and

occupations. Technologies have mostly substituted for routine manual and cognitive workers

while raising employment in interactive, abstract and non-routine manual jobs. Moreover,

the technologies have accelerated structural change towards service industries, although those

manufacturing sectors that produce the new technologies diverge from this picture and experience

technology-induced employment growth.

Our preliminary results highlight – in contrast to common fears in the public debate – that

new technologies have not been a threat to aggregate employment. To the contrary, they have

even raised aggregate employment, although the effect was rather small. Nevertheless, these

technologies have induced a huge restructuring of occupations and industries, forcing workers to

adjust their careers. The likely challenge for the future thus is not how many jobs, but which

jobs we will have and whether workers will be able to fill these jobs while maintaining a fair

share of the gains from technological change.
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A Relation to other Models of RRTC

To understand the key differences of this model to other models of RRTC, let us fist summarize

the main features of other key models. The Autor et al. (2003) (ALM, hereafter) model has the

following features:

• Routine labor LR and computer capital C are always perfect substitutes.

• Non-routine labor LN and computer capital C are always (!) p-substitutes, i.e. a price

decline in capital induces firms to substitute non-routine labor for routine capital for any

given level of output Q.

• Non-routine labor LN and computer capital C are gross-complements if the price elasticity

of demand exceeds unity (σ > 1). That is, if capital prices decline, firms grow fast enough

to overcompensate the initial substitution of non-routine labor for capital only if σ > 1.

The production technology of Goos et al. (2014) (GMS, hereafter) – or of Gregory et al. (2016)

(GSZ, hereafter) – is an approximate generalization9 of the ALM framework with comparable

features:

• Occupation-specific labor Nj and occupation-specific capital Cj are substitutes with a unit

elasticity.

• Occupation-specific labor Nj and capital Cj′ from other occupations are always (!) p-

substitutes, i.e. a price decline for capital Cj′ induces firms to substitute workers Nj for

capital Cj′ for any given level of output Y .

• Occupation-specific labor Nj and capital Cj′ from other occupations are gross-complements

if the price elasticity of demand exceeds the elasticity of substitution between tasks (σ > η).

That is, if capital prices decline, firms grow fast enough to overcompensate the initial

substitution of non-routine labor for capital only if σ > η.

The present framework is more flexible. Firstly, the technological capital of the firms is

used by all workers. Secondly, each type of technological capital has its own relationship to

occupation-specific labor, indicated by αjk. This enables us to model different types of capital
9Technically, it is not an exact generalization, as the task production function in ALM involves perfect

substitution between capital and labor, whereas the elasticity of substitution between capital and labor at the task
level is unity in GMS and GSZ.
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and labor as being either complements or substitutes. It is fundamentally different to the ALM,

GMS and GSZ frameworks, where capital and labor are always p-substitutes and where any

complementarity is solely via firm size (via a scale effect). The key advantage of this approach

thus is that we can estimate the relationship between capital types and labor types, rather than

imposing the assumptions that routine capital replaces routine workers. The downside of this is

that we have to estimate the relationship for all combinations of worker and capital types, which

requires good data.

The present framework can be interpreted as an approximate generalization of the GMS

and GSZ framework. It can reproduce the features of GMS, GSZ and ALM as a special case.

The framework would be an exact generalization of the GMS and GSZ framework, if the task

production function was Tij = NαN
ij /Aij . Under this assumption, the GSZ model is a special

case of this framework with αN = κ, αjj = (1− κ) ∀ j ∈ J and αjj′ = 0 ∀ j 6= j′ (where we have

replaced the index k with j, as capital types and job types correspond to each other in the GSZ

framework).

B Decomposition

... to be added
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