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1 Introduction

One of the most important tasks for any firm is to hire the right workers. A crucial part

of this process consists of screening applicants through job interviews.1 In this paper, we

are interested in the question how this screening process affects sorting patterns in the labor

market. Does the extent to which firms can interview workers affect the conditions under

which the labor market exhibits positive (PAM) or negative assortative matching (NAM)?

If technological innovations allow firms to screen more applicants with higher precision, does

that make sorting more or less likely?2

Unfortunately, the economic literature is silent on these questions as the work on sorting

has generally abstracted from modeling the screening of applicants. The earliest work on

assignment problems (Tinbergen, 1956; Shapley and Shubik, 1971; Becker, 1973; Rosen, 1974)

considers frictionless environments in which there is full information about types. More recent

work by Shimer and Smith (2000), Shimer (2005) and Eeckhout and Kircher (2010a) allows

for frictions but makes particular assumptions about the matching process and does not

explore how the results depend on these assumptions.3

In order to answer our question, we present a new search model of the labor market. In

line with recent evidence by Davis and Samaniego de la Parra (2017), we allow firms to meet

and interview multiple workers before making a job offer to the most profitable candidate. We

show how the extent to which firms can interview workers and the degree of complementarities

in production jointly affect the allocation of workers to jobs. Perhaps surprisingly, we find

that reducing search frictions by allowing firms to interview more workers is a force against

sorting: the easier it is for firms to rank applicants, the stronger the complementarities in

production that are required to obtain positive assortative matching (PAM).

Although our focus is on the labor market, our results are important for all markets

where two sides of the market must form a match, where heterogeneity matters and where

one side of the market can screen a subset of agents that contacted them, i.e the housing,

labor and marriage market. Also in trade, there is a growing interest in deriving patterns of

international specialization (i.e. under which conditions do exporters hire the most productive

workers) from fundamental properties of the production technology, see Costinot (2009).

To illustrate the importance of simultaneous interviews, we first briefly discuss the current

1See below for some empirical evidence regarding the recruiting process. Note that ‘screening’ in this
context has a different meaning than the homonymous game-theoretic concept. In addition to job interviews,
screening workers may involve other instruments like checking references, assessments, and job tests. We use
‘interview’ as shorthand for the entire collection of instruments.

2As an example of such a technological innovation, Hoffman et al. (2018) describe how some firms have
started to subject all applicants to an online job test. Based on their answers, every applicant is assigned
a score by a data firm, calculated from correlations between answers and job performance among existing
employees.

3Although Eeckhout and Kircher (2010a) use buyer/seller terminology, the same idea applies.
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state of the literature and then explain how allowing for simultaneous interviews alters the

conventional wisdom. Becker (1973) showed that in a frictionless economy, supermodularity

of the production function (or complementarities beween workers and jobs) is a sufficient

condition for PAM. Then, Shimer and Smith (2000) showed that when the matching process

is governed by random search frictions, we need a set of conditions which are even stronger

than log supermodularity for PAM to arise. The reason for this is that the opportunity cost of

remaining unmatched is higher for the high types and this makes them more eager to match

with a low type rather than running the risk to not match at all. To undo this effect, the

production function must exhibit stronger complementarities. Eeckhout and Kircher (2010a)

(EK) show that when search is directed rather than random, we need something weaker than

log-supermodularity (root-supermodularity) for PAM.4 This is because directed search allows

high types to avoid meeting low-type trading partners.

Both Shimer and Smith (2000) and Eeckhout and Kircher (2010a) are very general in

terms of the production technology but only allow firms to meet one worker at a time.We

allow firms to conduct simultaneous interviews and show that this creates an additional force

that goes against PAM. For our baseline description of the recruiting process, we prove that

the necessary and sufficient degree of supermodularity is linearly increasing in the expected

interview capacity, ranging from square-root-supermodularity when firms can screen only a

single worker to log supermodularity when firms can interview all their applicants.

To understand those results, start from a candidate equilibrium that has PAM and sup-

pose a high-skilled worker considers deviating by applying to a low-type firm in order to

increase his hiring probability. The smaller the screening capacity of firms, the more random

the hiring process at those firms becomes and the less attractive this deviation is. Therefore,

if firms do not screen much, then it is easier to sustain PAM and weaker complementarities

in production suffice.

Things are a bit more complicated than this because one could argue that if firms screen

less, low-skilled workers have more incentives to apply to high-type firms. However, high-

type firms have a tool to discourage low-skilled workers from applying. They could simply

offer them lower wages. This is profitable for them because it makes them more attractive for

high-skilled workers. Increasing the hiring probability for high-skilled workers is the cheapest

way to give them their market utility. To the contrary, low-type firms have no incentives

to discourage high-skilled workers from applying. So for a given production technology,

decreasing the interview capacity will make it less attractive for high-skilled workers to apply

to low-type firms while at the same time, high-type firms will discourage low-type workers

from applying there and this makes PAM a more likely outcome. When we increase the

screening capacity of firms, high-type firms will have less incentives to discourage low-killed

4Shi (2001) was the first to show that under directed search supermodularity is not enough for PAM.
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workers from applying because they do not have to select them and they do not crowd out

high-skilled workers. Moreover, low-type firms have no incentives to discourage high-skilled

workers from applying so it will be harder to sustain PAM. It is also more difficult to sustain

NAM the better the screening technology is because it gives high-type workers an incentive

to spread out and avoid each other’s company in the queues of applicants.

We consider two different frictions in the interview process. Besides the one described

above that firms can screen a limited amount of workers, we also consider the quality of the

screening process. Specifically, we allow for a pre-screening stage where the firm receives

noisy signals of their candidates. It then selects the most promising candidate and learns

this worker’s true type after which this worker starts producing at the promised wage. Those

frictions in the interview process do not only affect who gets hired at a particular firm

from a realized pool of candidates, they also affect the optimal wage mechanisms and the

application strategies of workers in equilibrium. For example, when low types negatively

affect the probability that a firm can hire a high type and when productivity differences

between types are large, firms will discourage low types from applying by offering them

relatively low wages. Similarly when interview frictions are low, firms prefer to screen ex

post by posting mechanisms that encourage all workers to apply. This gives incentives to

high-skilled workers, on turn to avoid each others company in the application pools. Our

model takes all of this into account.

Our results are also important for the growing empirical literature that aims to identify

the shape of the production function from observed matching patterns.5 The papers in

this literature discuss how parameters of the production function can be identified for a

given meeting technology.6 Our results imply that without information on the meeting and

screening process observed matches alone cannot identify the degree of complementarity in

the production technology. To facilitate the use of recruiting data in a sorting analysis, we

further derive conditions for sorting in the distribution of applicants and interviews (positive

assortative contacting).

Some papers have argued that increased sorting of high worker types at high wage firms

has contributed to the observed increased inequality from the mid-nineties onwards, see for

example Card et al. (2013) and Song et al. (2018).7 H̊akanson et al. (2018) argue that the

increased sorting patterns are mainly due to increasing complementaritries in production.

Our results suggest that if during the same period, new technologies like automated resume

5See Abowd et al. (1999), Gautier and Teulings (2006, 2015) , Eeckhout and Kircher (2011), Lise et al.
(2016), Hagedorn et al. (2017), Lopes de Melo (2018), Bartolucci et al. (2018), and Bagger and Lentz (2018).

6Gautier and Teulings (2006) and subsequent papers made the point that wages for a given worker type
are non-monotonic in firm types so the AKM-methodology of detecting sorting patterns from correlating
worker and firm fixed effects fails.

7Card et al. (2013) use education and occupational sorting.
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screening made it cheaper to screen workers, then this would require even stronger comple-

mentarities in the production technology.

The paper is organized as follows. Section 2 introduces the model where for ease of

exposition we will assume a two-point worker distribution. Section 3 considers the market

equilibrium. This section also derives our main results regarding sorting and shows that the

optimal mechanism can be implemented by wage menus. In Section 4, we presents results

for general production and recruiting technologies and an arbitrary number of worker types.

Finally, section 5 concludes.

2 Model

2.1 Environment

Agents. A static economy is populated by a continuum of risk-neutral firms and workers.

Both types of agents are heterogeneous. In particular, each firm is characterized by a type

y ∈ Y ≡ [y, y] ⊂ R+. The measure of firms with types less or equal to y is denoted by J(y),

which we assume to be continuous and strictly increasing on Y . Similarly, each worker is

characterized by a type x ∈ X ≡ [x, x] ⊂ R+. We initially assume that there are I = 2

types of workers, i.e. a low type x1 ∈ X and a high type x2 ∈ X .The aggregate measure of

workers with type xi is denoted by `i > 0. At the beginning of time, agents’ types are private

information, but firms can learn workers’ types by interviewing them, as we describe in more

detail below.

Search. Each firm demands and each worker supplies a single unit of indivisible labor. To

attract applicants, each firm commits to a mechanism c from a Borel-measurable mechanism

space C. In its most general form, a mechanism specifies an extensive form game that

determines i) whom the firm will hire and ii) what transfers will take place, as a function

of the firm’s applicant pool. We make two key assumptions about C. First, as common

in the literature (see e.g. Eeckhout and Kircher, 2010b), we restrict C by abstracting from

mechanisms that are contingent on either workers’ identities (as opposed to their types)

or other mechanisms that are present in the market.8 Second, we assume that C at least

includes the set of all wage menus w = (w1, . . . , wI), where the firm hires the most profitable

interviewee and pays him wi if his type is xi.

Workers observe these mechanisms and choose to which one they wish to apply, taking

into account that they may face larger competition from other workers at mechanisms that

8Mechanisms that condition on identities violate the frictional nature of our environment. Mechanisms
that condition on other mechanisms could introduce additional equilibria (see Epstein and Peters, 1999).
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offer better terms of trade.9 We capture the anonymity of the large market with the standard

assumption that identical workers must use symmetric strategies (see e.g. Shimer, 2005). All

firms and workers attempting to match at a particular mechanism c are said to form a

submarket.

Applications and Interviews. We initially focus on the following microfoundation of the

frictional interaction between workers and firms.10 Workers and firms in a given submarket

live on the boundary of a circle, where they are randomly positioned according to a uniform

distribution. Workers send their application to the firm that is nearest in a clockwise direc-

tion.11 After receiving all applications, firms start interviewing their applicants in a random

order.12 An interview reveals the type of the applicant. After every interview, and condi-

tional on applicants remaining, there is an exogenous probability σ ∈ [0, 1] that the firm can

conduct another interview; with complementary probability, the interviewing process stops.

This setup allows us to interpret σ as a measure of how easy it is for firms to interview

applicants: if σ = 0, each firm can interview only a single applicant, which is a special case

of the bilateral model of Eeckhout and Kircher (2010a), while a firm can interview all its

applicants if σ = 1.

Matching and Production. After the interviews have been concluded, matching takes

place and payoffs are realized as specified by the mechanism. We assume that interviewing

a worker is a necessary condition for hiring him.13 A match between a worker of type x and

a firm type of y produces output f(x, y), which we assume to be strictly positive, strictly

increasing, and twice continuously differentiable for all (x, y) ∈ X × Y . For our analysis, a

key characteristic of the production function is its elasticity of complementarity (Hicks, 1932,

1970), which is defined as

ρ(x, y) ≡ fxy(x, y)f(x, y)

fx(x, y)fy(x, y)
∈ R,

with extrema ρ = sup(x,y)∈X×Y ρ(x, y) and ρ = inf(x,y)∈X×Y ρ(x, y).

This elasticity is closely related to the degree of supermodularity of the production func-

tion, which we define in the same way as Eeckhout and Kircher (2010a).

9The assumption that workers have a single chance to match (per period) is standard in the literature and
captures the idea that (opportunity) costs are associated with applying to jobs. The limited work relaxing
this assumption has focused on environments with (ex ante) homogeneous agents (see e.g. Albrecht et al.,
2006; Galenianos and Kircher, 2009; Kircher, 2009; Wolthoff, 2018).

10We will consider a wide class of alternatives in section 4.
11As long as workers cannot keep track of the distance they have traveled, this application strategy is

merely a tie-breaking rule.
12In section 4.1, we describe an extension in which firms select interviewees based on noisy signals.
13This assumption can easily be rationalized by introducing a small chance that any given worker provides

the firm with a sufficiently negative payoff when hired.
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Definition 1. The function f(x, y) is n-root-supermodular on X × Y if and only if

ρ(x, y) ≥ 1− 1

n
, (1)

for all (x, y) ∈ X ×Y; special cases include supermodularity (n = 1) and log-supermodularity

(n → ∞). When the inequality in (1) is reversed, f(x, y) is said to be nowhere n-root-

supermodular.

In other words, n-root-supermodularity is equivalent to ρ ≥ 1− 1/n and nowhere n-root-

supermodularity is equivalent to ρ ≤ 1− 1/n.

We will sometimes illustrate our results with a CES production function, as it has a

constant elasticity of complementarity ρ(x, y) = ρ. That is, for x ∈ X and y ∈ Y ,

f(x, y) = (x1−ρ + y1−ρ)
1

1−ρ . (2)

It is straightforward to verify that this production function is submodular (i.e. nowhere

supermodular) when ρ ≤ 0, 1
1−ρ -root-supermodular when 0 < ρ < 1, and log-supermodular

when ρ ≥ 1.14

Queue Lengths and Expected Payoffs. An important role in our analysis is played by

the queue length qi (c), which we define as the ratio of the number of workers with type weakly

exceeding xi to the number of firms in a given submarket c. To formally derive the queue

lengths q(c) ≡ (q1(c), q2(c)), let G(C, y) denote the probability that a firm with type y offers

a mechanism in the set C ⊆ C, where C is the set of all potential mechanisms. Define Hf (C)

to be the measure of firms that post mechanisms in the set C. An accounting identity implies

that Hf (C) =
∫
Y G(C, y) dJ(y) for each C ⊆ C. Similarly, let Hw

i (C) denote the measure

of workers of type xi that visit a mechanism in the set C ⊆ C, satisfying Hw
i (C) ≤ `i.

15

To capture the idea that workers cannot visit mechanisms that are not actually offered, Hw
i

must be absolutely continuous with respect to Hf . For any mechanism c on the support of

14We will define sorting in terms of first-order stochastic dominance. Monotonic transformations of x or y
will therefore not change our results. That is, if we measure worker types by a new variable α(x) and firm
types by a new variable β(y), where α and β are strictly increasing functions, all conclusions remain the
same. This simple observation shows that (2) is less restrictive than it may appear at first. For example,
letting ρ→ 0 gives f(x, y) =

√
xy. Setting α(x) = x2 and β(y) = y2 delivers a new production function xy.

For our theory of sorting, the two production functions are equivalent.
15The inequality reflects the idea that workers may choose not to participate in the market.
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Hf , the queue length qi (c) is then defined by the following Radon-Nikodym derivative:16

qi(c) =
d
∑

j≥iH
w
j (c)

dHf (c)
. (3)

For a mechanism c that is not in the support of Hf , the Radon-Nikodym derivative is

arbitrary. Yet, a firm of type y has to form beliefs about the queue q(c) that such a mechanism

would attract in order to calculate its expected payoff, which we denote by π (c, q, y). We

follow the standard approach in the literature, which imposes restrictions on these beliefs in

the spirit of subgame perfection through what is known as the market utility condition (see

e.g. McAfee, 1993; Shimer, 2005; Eeckhout and Kircher, 2010a).

To formally state this condition, define Vi(c, q) as the expected payoff of a worker with

type xi who applies to a mechanism c with queue q. Further, define the market utility Ui

of a worker of type xi as the maximum expected payoff that he can obtain in equilibrium,

either by visiting one of the submarkets or by being inactive. That is,

Ui = max

{
max

c∈suppHf
Vi (c, q(c)) , 0

}
,

where q(c) is implied by equation (3). Worker optimality then requires that workers only

visit submarket(s) that yield(s) them their market utility. Formally, for each c ∈ suppHf , we

have Vi (c, q(c)) ≤ Ui, with equality if c is in the support of Hw
i . The market utility condition

extends this idea to mechanisms outside the support of Hf by imposing that firms’ beliefs

regarding the queue that such a mechanism would attract must satisfy

Vi(c, q) ≤ Ui with equality if qi − qi+1 > 0, for any i, (4)

where qI+1 = 0 by convention. In most cases, there is a unique queue q that satisfies

equation (4) for a given mechanism c (see Cai et al., 2018, for a detailed discussion). If the

solution to (4) is not unique, then the standard assumption in the literature is that firms

are optimistic and expect the solution that maximizes their expected payoff π (c, q, y). We

follow that approach when necessary.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 2. A directed search equilibrium is a pair (G, {Hw
i }) of strategies with the fol-

lowing properties:

16On the support ofHf , the Radon-Nikodym derivative is unique almost everywhere. In case of multiplicity,
we following Eeckhout and Kircher (2010a) and assume a rule that selects a unique Radon-Nikodym derivative
to have well-defined payoffs.
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1. Each mechanism c in the support of G (·, y) maximizes π (c, q(c), y), where q(c) is

determined by equation (4).

2. For each worker type xi, every c in the support of Hw
i maximizes Vi (c, q (c)). Workers

with type xi will choose inactivity if their expected payoff Vi (c, q(c)) is negative for any

c in the support of Hf .

3. Market clearing:
∫
C [qi(c)− qi+1(c)] dHf (c) ≤ `i, with equality if Ui > 0 for each i =

1, . . . , I.

3 Market Equilibrium

We start our equilibrium analysis by deriving an expression for the surplus created by a

firm as a function of its queue length. Subsequently, we consider a relaxed version of firms’

problem, in which firms can buy queues of low-type and high-type workers directly in a

competitive market at prices equal to their respective market utilities. Afterwards, we show

that this is without loss of generality since firms can achieve the same outcome by posting

wage menus. Throughout, we apply a change of notation and define λ = q1 as the firm’s

total queue length, and µ = q2 as its queue length of high-type applicants.

3.1 Surplus

Hiring Rule. To calculate the surplus created by a firm, we need to take a stance on its

hiring decisions. We initially assume that hiring decisions are socially optimal, i.e. firms give

priority to high-type workers over low-type workers. Later, we will show that this hiring rule

is also privately optimal.

Interviewing Probability. Next, we follow the approach of Cai et al. (2018) and calculate

φ (µ, λ), which represents the probability that a firm interviews at least one high-type worker,

if it has a queue µ of such workers and a queue λ− µ of low-type workers.

Lemma 1. Consider a firm with a queue µ of high-type workers and a queue λ−µ of low-type

workers. The probability that the firm interviews at least one high-type worker equals

φ (µ, λ) =
µ

1 + σµ+ (1− σ)λ
. (5)

Proof. See appendix A.1.

As shown by Cai et al. (2018), the function φ (µ, λ) is useful for multiple reasons. First,

it provides a convenient way of calculating firms’ matching probabilities. After all, under the
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socially optimal hiring rule, a firm hires a high-type worker as long as it interviews at least

one. Hence, φ (µ, λ) describes the probability that the firm will produce f (x2, y). Similarly,

evaluation of (5) in µ = λ gives the firm’s overall matching probability (regardless of the

hire’s type), which we denote by m (λ) ≡ φ (λ, λ).

Second, the partial derivatives of φ (µ, λ) have economically meaningful interpretations.

The partial derivative φλ (µ, λ) ≤ 0 captures externalities in the recruiting proces as it

describes how a firm’s chances to match with a high-type worker change if the queue of

low-type workers gets longer. Intuitively, the presence of low-type applicants does not affect

the chance of hiring a high type if and only if a firm can interview all its applicants (i.e.

σ = 1).17 In contrast, the partial derivative φµ (µ, λ) describes how a firm’s probability of

hiring a high-type worker changes if the queue of such workers increases, while the total queue

remains constant (i.e. changing the composition of the applicant pool). From the perspective

of a high-type applicant, this partial derivative represents the probability that he gets hired

and increases surplus because he was the only high-type worker that was interviewed.18

Surplus. Given φ (µ, λ), it is straightforward to calculate the surplus generated by a firm

of type y with queues (µ, λ). The following lemma presents the result.

Lemma 2. Under the socially optimal hiring rule, the surplus generated by a firm of type y

with queues (µ, λ) equals

S (µ, λ, y) = m (λ) f (x1, y) + φ (µ, λ) [f (x2, y)− f (x1, y)] . (6)

Proof. See below.

The interpretation of this expression is straightforward. The first term captures the

fact that surplus equals at least f (x1, y) if the firm matches. This is of course a lower

bound, because the worker’s type may exceed x1. The second term corrects for that: the

firm hires a high-type worker with probability φ (µ, λ), in which case an additional surplus

f (x2, y)− f (x1, y) is created.

For given queue lengths, m(λ) is independent of σ. The extent to which firms can interview

applicants therefore affects S (µ, λ, y) only through φ (µ, λ), which is a strictly increasing

function of σ. If σ = 0, as in most of the literature, then each applicant has the same

probability of being hired, such that a match produces f (xi, y) with probability equal to the

fraction of applicants that has type xi. As σ increases, a firm becomes more likely to identify

17This property is known as invariance (see Lester et al., 2015; Cai et al., 2018).
18To see this, note that φµ (µ, λ) ∆µ = φ(µ+ ∆µ, λ)−φ(µ, λ), where the right-hand side is the probability

that additional surplus is generated when we replace ∆µ low-type workers with high-types. Naturally,
additional surplus is generated if and only if these ∆µ workers are the only high types that are interviewed.
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a high-type worker among its applicants, which shifts probability mass towards producing

f (x2, y).19

Concavity. A complication in our analysis is that the surplus function S(µ, λ, y) is not

necessarily strictly concave at a point (µ, λ). To see this, consider its Hessian H(µ, λ, y),

which is given by

H(µ, λ, y) =

(
φµµ∆f φµλ∆f

φµλ∆f m′′f 1 + φλλ∆f

)
,

where we write f 1 ≡ f(x1, y), ∆f = f(x2, y) − f(x1, y) and omit the arguments of the

derivatives of φ(µ, λ) and m(λ) to simplify exposition.

In the bilateral case (i.e. σ = 0), we have φµµ = 0, which means that the Hessian is

never negative definite and surplus is never strictly concave. In our analysis below, we will

therefore focus on cases in which σ > 0, such that φµµ < 0; the results will extend to the

bilateral case by continuity. Given φµµ < 0, the Hessian is negative definite if and only if its

determinant is positive. Before we derive the relevant condition, first define a new variable

which characterizes productivity dispersion, i.e.

κ(y) =
∆f

f 1
. (7)

We can then establish the following result.

Lemma 3. The surplus function S(µ, λ, y) is strictly concave at a point (µ, λ) with 0 < µ < λ

if and only if

κ(y) <
−m′′

φλλ − φ2
µλ/φµµ

. (8)

Hence, if S(µ, λ, y) is strictly concave at any point (µ, λ) with 0 < µ < λ, then

κ(y) < κ ≡ sup
0<µ<λ

−m′′

φλλ − φ2
µλ/φµµ

=
4σ

(1− σ)2
. (9)

Proof. See appendix A.2.

Since m(λ) is always strictly concave in λ, the numerator in (8) is strictly positive.

Further, it is easy to verify that the denominator is zero if and only if σ = 1 and strictly

positive otherwise.20 Hence, the concavity condition in (8) is always satisfied when either

19A change in σ will of course affect the equilibrium applicant pool itself, as we analyze in detail below.
20See the proof of the lemma for an explicit expression.
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σ = 1 (firms can interview all workers) or κ(y) → 0 (i.e. worker heterogeneity disappears).

In contrast, the condition is violated for σ < 1 and large enough κ(y); in fact, if κ(y) exceeds

the threshold κ defined in (9), concavity is violated for any (µ, λ). As discussed above, in

the bilateral limit σ = 0, no positive κ(y) can satisfy the concavity condition.

3.2 Firms’ Relaxed Problem

After deriving surplus, we now begin our analysis of firms’ relaxed problem, in which they

buy queues of low-type and high-type workers directly in a competitive market at prices

equal to their respective market utilities.

Firms’ Payoff. This formulation of firms’ problem implies that the payment of workers is

sunk at the time of matching. As a result, firms give priority in hiring to high-type workers

over low-type workers, which means that their privately optimal hiring rule coincides with the

socially optimal one. Firms’ payoff therefore equals the difference between surplus S (ζλ, λ, y)

as given by equation (6) and the cost of the queues. Rather than specifying firms’ choice of

queues in terms of (µ, λ), it will prove convenient to reformulate the problem in the following

way: first, firms choose the fraction of high-type workers in their pool of applicants, which

we denote by ζ ≡ µ/λ ∈ [0, 1], and second, they choose the total queue length λ. In other

words, the firm’s problem is to select (ζ, λ) rather than (µ, λ). That is,

max
ζ,λ

Π(ζ, λ, y) = S (ζλ, λ, y)− λU1 − ζλ (U2 − U1) . (10)

Optimal Queue Length. Working backwards, we first consider the choice of the queue

length λ. For a given ζ ∈ [0, 1], the payoff Π(ζ, λ, y) is strictly concave in λ. Thus, assuming

an interior solution, the following first-order condition with respect to λ determines a unique

optimal queue length as a function of ζ and y, which we denote by λo(ζ, y):

U1 + ζ(U2 − U1) = m′ (λ) f 1 +
∂φ (ζλ, λ)

∂λ
∆f. (11)

To understand (11), note that the first term denotes the marginal contribution to surplus

of a low-type applicant when all applicants are low-type. The second term corrects for the

fact that a fraction ζ of workers are high-productivity workers. For future use, differentiating

equation (11) with respect to y while fixing ζ gives

λoy(ζ, y) =
∂λo(ζ, y)

∂y
= −

m′f 1
y + ∂φ

∂λ
∆fy

m′′f 1 + ∂2φ
∂λ2

∆f
, (12)
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where we have suppressed arguments from m(λo(ζ, y)) and φ(ζλo(ζ, y), λo(ζ, y)). An impor-

tant observation is that (12) only depends on f(x, y) and φ(µ, λ), and not on the market

utilities. Since φ(ζλ, λ) is strictly increasing and concave for ζ > 0, we have ∂φ(ζλ, λ)/∂λ =

ζφµ(ζλ, λ) + φλ(ζλ, λ) > 0 and similarly ∂2φ(ζλ, λ)/∂λ2 = ζ2φµµ + 2ζφµλ + φλλ < 0. It is

easy to see that the denominator on the right-hand side of the above is negative. Moreover,

the numerator is positive if ∆fy ≥ 0, which then implies ∂λo(ζ, y)/∂y > 0. In other words,

when the opportunity costs of remaining unmatched are larger for more productive firms (i.e.

supermodularity of the production function), those firms are more willing to invest in longer

queues.

Optimal Composition. Assuming that firms have solved for the optimal queue length

λo(ζ, y), we next consider their choice of ζ. Define Π∗(ζ, y) as the payoff of a firm if it

chooses ζ, taking into account how it affects λo(ζ, y). That is,

Π∗(ζ, y) ≡ Π(ζλo(ζ, y), λo(ζ, y), y) = max
λ

Π(ζλ, λ, y). (13)

In general, Π∗(ζ, y) is not necessarily concave in ζ, so firms’ maximization problem may

admit multiple solutions of ζ. Moreover, a solution may not be interior, i.e., ζ = 0 or ζ = 1.

However, suppose that for a firm of type y, there is an interior solution (ζ(y), λ(y)) where

0 < ζ(y) < 1 and λ(y) = λo(ζ(y), y). This solution must then satisfy the following first-order

condition with respect to ζ.

∂Π∗(ζ, y)

∂ζ

∣∣
ζ=ζ(y)

= 0 ⇔ φµ(ζ(y)λ(y), λ(y))∆f − (U2 − U1) = 0, (14)

where we used the envelope theorem and treated the total queue λ as constant in this exercise.

Hence, the only effect of an increase in ζ is that the firm’s probability of matching with a

high-type worker goes up, which increases surplus.21 Finally, recall that by Lemma 3, an

interior solution ζ which satisfies the first-order condition (11) also satisfies the second-order

condition if equation (8) holds.

For the corner solutions, i.e. ζ(y) = 0 or ζ = 1, the following first-order conditions must

be satisfied:

ζ(y) = 0⇒ ∂Π∗(ζ, y)

∂ζ

∣∣
ζ=ζ(y)

≤ 0 (15)

ζ(y) = 1⇒ ∂Π∗(ζ, y)

∂ζ

∣∣
ζ=ζ(y)

≥ 0 (16)

21The firm can increase ζ by ∆ζ while keeping λ the same by increasing the queue length of high-type
workers by λ∆ζ and decreasing the queue length of low-type workers by λ∆ζ.
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where in equation (15), λ(y) = λo(0, y), which is implicitly defined by the equation m′(λ)f 1 =

U1, and similarly, in equation (16), λ(y) = λo(1, y), which is implicitly defined by the equation

m′(λ)f 2 = U2,

For future use, notice that differentiating equation (11) with respect to ζ and evaluating

the result at ζ = ζ(y) gives

λoζ(ζ(y), y) =
∂λo(ζ, y)

∂ζ

∣∣
ζ=ζ(y)

= −
λ(y)∂φµ

∂λ
∆f

m′′f 1 + ∂2φ
∂λ2

∆f
, if ζ(y) ∈ (0, 1) (17)

where we have used equation (14) to substitute out U2 −U1 and suppressed arguments from

m(λ(y)) and φ(ζ(y)λ(y), λ(y)). The above equation shows that along the equilibrium path,

λoζ(ζ(y), y) is negative since with a higher fraction of high-type workers, firms will reduce the

total queue length to reduce negative hiring spillovers from low-productivity workers.

Limit Case. In general, the first-order condition—i.e. equation (14), (15) or (16)—is nec-

essary but not sufficient for the optimum. However, in the limit case in which worker hetero-

geneity disappears, i.e. x1, x2 → x, the firms’ problem becomes concave and the first-order

condition becomes sufficient for the optimum. More precisely, in the proof of proposition 1,

we show that there exists a large number λ such that when x2 → x1, the Hessian matrix of

all firms will be negative definitive in the set {(µ, λ) | 0 < µ < λ < λ} and firms’ choice of

queue will also lie in the set.

Proposition 1. Fix x1 = x, let x2 → x, and hold the endowments of workers and firms

constant. Then for sufficiently small x2 − x1, each firm has a unique queue (µ(y), λ(y)).

Furthermore, both µ(y) and λ(y) are continuous in y, and if for some point y0, 0 < µ(y0) <

λ(y0), then both µ(y) and λ(y) and hence ζ(y) ≡ µ(y)/λ(y) are differentiable at point y0.

Proof. See appendix A.3.

The above proposition, although simple and intuitive, provides a useful tool for con-

structing examples of equilibrium allocations which exhibit positive or negative assortative

contacting and matching later.

3.3 Sorting

In this subsection, we analyze whether the market equilibrium exhibits sorting. After pre-

senting two inequalities on the production function and introducing two useful elasticities, we

first provide our definitions of positive and negative sorting and then derive conditions on the

production function that are necessary and sufficient for these outcomes. In the following,

we focus on firms’ optimal choice of ζ, since for each ζ, there will be a unique optimal queue
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length λ, which is determined by the first-order condition equation (11). We represent by

Z(y) the set of optimal choices of ζ for a firm of type y. For the moment we assume that

Z(y) contains only one element and as before, denote it by ζ(y). Later we will prove that

with assortative contacting/matching this is the case for all y except at most one.

Elasticity of Complementarity Revisited. The elasticity of complementarity ρ(x, y)

measures the elasticity of relative marginal product with respect to relative product. To see

this, note that

fy(x+ ∆x, y)

fy(x, y)
≈ 1 +

fxy(x, y)

fy(x, y)
∆x = 1 + ρ(x, y)

fx(x, y)

f(x, y)
∆x ≈

(
1 +

fx(x, y)

f(x, y)
∆x

)ρ(x,y)

=

(
f(x+ ∆x, y)

f(x, y)

)ρ(x,y)

where we used the approximation sign “≈” twice because when ∆x is small, the first-order

approximation is justified. In general, when x is discrete and ρ(x, y) is not necessarily con-

stant, we have the upper and the lower bound estimates for the elasticity of the relative

marginal product with respect to the relative product. The result is given by the following.

Proposition 2. For a given y, fy(x, y)/f(x, y)ρ is increasing in x, and f(x, y)/fy(x, y)ρ is

decreasing in x. That is,

fy(x2, y)

fy(x1, y)
≥
(
f(x2, y)

f(x1, y)

)ρ
and

fy(x2, y)

fy(x1, y)
≤
(
f(x2, y)

f(x1, y)

)ρ
(18)

Proof. See appendix A.4.

From the proof of Proposition 2 we can see that for the two inequalities in (18) to hold,

we need ρ = ρ(x, y) for all x ∈ [x1, x2] for the former and ρ = ρ(x, y) for all x ∈ [x1, x2] for

the latter.

Two Key Elasticities. For our analysis, it is useful to define the following two elasticities.

εf (µ, λ) ≡ ∂φ(ζλ, λ)

∂λ

λ

φ(ζλ, λ)
=
µφµ(µ, λ) + λφλ(µ, λ)

φ(µ, λ)
(19)

εw(µ, λ) ≡ ∂φµ(ζλ, λ)

∂λ

λ

φµ(ζλ, λ)
=
µφµµ(µ, λ) + λφµλ(µ, λ)

φµ(µ, λ)
(20)

where ζ ≡ µ/λ. The first elasticity is from the firm’s perspective and measures how the

probability that a firm meets a high-type worker is affected by a change in the queue length,
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holding the fraction of high types ζ constant. The second elasticity is from the workers’

perspective and describes how the probability that all other applicants have lower types

responds to a change in (a composition preserving) queue length λ.

Definition of Sorting. Much of the literature (see e.g. Becker, 1973; Shi, 2001; Eeckhout

and Kircher, 2010a) defines sorting in terms of a monotonic matching function which maps

a worker type x to a firm type y.22 As demonstrated above, this definition is not suitable in

our environment, because there is not a unique worker type that firms hire. In other words,

we require a set-based notion of sorting. Following Shimer and Smith (2000) and Shimer

(2005), we therefore define sorting as first-order stochastic dominance in firms’ distributions

of hires.23 In the context of our environment with two types of workers, this definition can

be expressed in terms of the probability that a firm hires a high-type worker, conditional on

hiring someone, which is given by

h(ζ(y), λ(y)) ≡ φ(ζ(y)λ(y), λ(y))

m(λ(y))
(21)

We therefore obtain the following definition.

Definition 3. The market equilibrium exhibits positive assortative matching (PAM) if and

only if h(ζ(y), λ(y)) is (weakly) increasing in y. If h(ζ(y), λ(y)) is (weakly) decreasing in y,

the equilibrium is said to exhibit negative assortative matching (NAM).

While the literature has traditionally restricted attention to sorting patterns in matches,

our environment yields additional predictions. After all, given that firms with multiple candi-

dates select the most desirable one, there is a meaningful distinction between an application

or an interview (a “contact”) on the one hand and a match on the other hand.24 Hence, in ad-

dition to considering the assortativeness of matches, we can also analyze the assortativeness

of contacts, for which we use the following definition.

Definition 4. The market equilibrium exhibits positive assortative contacting (PAC) if and

only if ζ(y) is weakly increasing in y. If ζ(y) is weakly decreasing in y, the equilibrium is

said to exhibit negative assortative contacting (NAC).

22See Lindenlaub (2017) for a generalization to multidimensional types.
23Strictly speaking, Shimer and Smith (2000) use a weaker notion of sorting which is based on the bounds

of the support of the distribution of hires; however, their definition is equivalent to first-order stochastic
dominance of this distribution in the random-search environment that they consider. In contrast, Shimer
(2005) proves a stronger sorting result (high-type workers are more likely to be employed in high-type
jobs than in low-type jobs) for a special case (multiplicatively separable production function and urn-ball
meetings); however, he acknowledges that the data demands to test this result “may be unrealistic” and
suggests first-order stochastic dominance of the distribution of hires as a “more easily testable” alternative.

24In our model, applications and interviews necessarily exhibit the same sorting patterns, so we analyze
them together.
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In words, PAC occurs if we observe weakly more high-type workers in the pool of appli-

cants or interviewees as we increase y. If the reverse occurs, we have NAC.

Relation. To understand the relation between assortative contacting and matching, assume

that ζ(y) is differentiable. Equation (11) and the implicit function theorem then imply that

λ(y) is differentiable as well. The chain rule of differentiation therefore yields

d

dy
h(ζ(y), λ(y)) = ζ ′(y)

∂

∂ζ
h(ζ(y), λ(y))︸ ︷︷ ︸

>0

+λ′(y)
∂

∂λ
h(ζ(y), λ(y))︸ ︷︷ ︸

>0

. (22)

The term over the first brace is positive because it is simply λφµ/m; the term over the

second brace is also positive.25 We are thus led to consider λ′(y). Along the equilibrium

path, λ(y) = λo(ζ(y), y), which implies

λ′(y) = ζ ′(y)λoζ + λoy. (23)

By equation (12), λoy is positive along the equilibrium path if ∆fy is positive, which occurs

if the production function f is supermodular.26 That is, holding constant the fraction of

high-type applicants ζ, firms with higher y will demand longer queues. However, from equa-

tion (17) , it follows that λoζ is negative. Thus, it is not a priori clear whether relatively more

applications from high-type workers will lead to a higher relative probability of matching

with high-type workers, i.e., whether PAC leads to PAM. However, we will show if PAC or

PAM are to hold for any distributions of worker and firm types, then we obtain the exact

same condition. The same is true for NAC and NAM.

Sorting Conditions. To derive necessary conditions for sorting, we first assume that the

equilibrium solution (ζ(y), λ(y)) is differentiable around a point y and ζ(y) ∈ (0, 1) so that

we can use standard tools from calculus to derive the relevant conditions for sorting (again,

this assumption will be relaxed later). Differentiating equation (14) with respect to y gives

ζ ′(y) = − φµ
∂φµ/∂ζ

∆fy
∆f
− ∂φµ/∂λ

∂φµ/∂ζ
λ′(y) (24)

When ζ(y) is differentiable at a point y, PAC implies that ζ ′(y) ≥ 0. Of course, a necessary

condition for NAC is obtained by reversing the inequality. By equation (24), ζ ′(y) ≥ 0 if and

25To see this, note that d
dλ (log φ(ζλ, λ)−logm(λ)) = ∂φ(ζλ,λ)

∂λ
λ

φ(ζλ,λ)−m
′(λ) λ

m(λ) = (εf (ζλ, λ)−εf (λ, λ))/λ.

Given (5), it is easy to verify that εf (µ, λ) is strictly decreasing in µ.
26We will later show that the equilibrium allocation must exhibit both NAC and NAM if f is submodular.
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only if

∆fy
∆f
≥ −∂φµ/∂λ

φµ
λ′(y) = −εw(ζ(y)λ(y), λ(y))

λ′(y)

λ(y)
(25)

where for the equality we used the definition of εw from equation (20). The effect of a higher

y is captured by ∆fy/∆f . A firm with a higher y can affect the likelihood of a good match

by changing the queue length and or composition. If the inequality in (25) holds, then the

firm wants a high fraction of high-type applicants in its pool to increase the expected match

value.

The analysis for PAM follows a similar path. Differentiating the function h(ζ(y), λ(y))

with respect to y (along the equilibrium path) shows that dh/dy ≥ 0 if and only if (see

equation (22))

dh(ζ(y), λ(y))

dy
≥ 0⇔ ζ ′(y) ≥ −∂h/∂λ

∂h/∂ζ
λ′(y).

Next, we use equation (24) to substitute out ζ ′(y) from the above equation, which yields

∆fy
∆f
≥ −εw(ζ(y)λ(y), λ(y))

λ′(y)

λ(y)
·
(

1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ

)
. (26)

The interpretation of (26) is similar to that of the PAC case. Firms can invest in the expected

match quality by choosing an appropriate expected pool of applicants. If we fix h(ζ(y), λ(y))

around some y, then the firm must choose its queue composition and queue length according

to, dζ(y) = −∂h/∂λ
∂h/∂ζ

dλ(y), which induces the following percentage change of φµ,

1

φµ

(
∂φµ
∂ζ

dζ(y) +
∂φµ
∂λ

dλ(y)

)
=
∂φµ/∂λ

φµ
dλ(y) ·

(
1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ

)
.

This explains the additional term appearing in (26) compared to the condition for PAC.

Again by equation (14), if (26) holds then a firm with a higher y will take advantage of its

type by choosing a higher h(ζ(y), λ(y)).

In the above conditions for PAC/PAM, (25) and (26), λ′(y) is unknown. We then use

equation (24) to substitute out ζ ′(y) from equation (23), which implies

λ′(y) =
m′f 1

y +
(
φλ − φµ φµλφµµ

)
∆fy

−m′′f 1 +
(
φ2µλ
φµµ
− φλλ

)
∆f

. (27)

The derivation of the above equation is quite tedious and relegated to the appendix A.5.
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Before presenting the conditions for PAC and PAM, we must first define two new vari-

ables which are determined by the search technology only and which enable us to write the

conditions for PAC and PAM in a uniform way. Define

ac(ζλ, λ) = εw(ζλ, λ)
m′(λ)

λm′′(λ)
(28)

am(ζλ, λ) = εw(ζλ, λ)
m′(λ)

λm′′(λ)

(
1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ

)
(29)

Furthermore, define

ai ≡ sup
0≤µ≤λ

ai(µ, λ), ai ≡ inf
0≤µ≤λ

ai(µ, λ) (30)

When ζ = 0, then φ(0, λ) = 0 for any λ, which then implies that ∂(φ/m)/∂λ = 0; similarly,

when ζ = 1, then by definition φ(λ, λ) = m(λ), which then implies that ∂(φ/m)/∂λ = 0 since

φ/m = 1. Therefore, the more complicated expression for am(ζλ, λ) reduces to ac(ζλ, λ) when

ζ = 0, or 1. That is,

ac(0, λ) = am(0, λ) and ac(λ, λ) = am(λ, λ). (31)

Lemma 4. Assume ζ(y) is both interior and differentiable at a point y. Then ζ ′(y) ≥
0 (dh(ζ(y), λ(y))/dy ≥ 0 respectively) holds at point y if and only if for i = c (i = m

respectively)

f 1∆fy
f 1
y∆f

≥ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

(32)

where we have suppressed the arguments from the functions φ(ζ(y)λ(y), λ(y)) and m(λ(y)),

and ai(ζ(y)λ(y), λ(y)).

Proof. Plugging equation (27) into equations (25) and (26) gives the desired result, where we

also used the definitions of ac(ζλ, λ) and am(ζλ, λ) from equations (28) and (29), respectively.

In general, it is difficult to completely solve the model and characterize the region where

ζ(y) is interior and differentiable. However, the limit case considered by Proposition 1 where

worker heterogeneity disappears is particularly simple and it can be used to derive necessary

conditions for assortative contacting and matching. The result is given as follows.
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Proposition 3. A necessary condition for PAC/PAM to hold for any firm and worker dis-

tributions is

ρ ≡ inf
x,y

ρ(x, y) ≥ sup
0≤µ≤λ

ai(µ, λ) ≡ ai (33)

where for PAC we have i = c and for PAM we have i = m. Similarly, a necessary condition

for NAC/NAM to hold for any firm and worker distribution is that at each x and y

ρ ≡ sup
x,y

ρ(x, y) ≤ inf
0≤µ≤λ

ai(µ, λ) ≡ ai (34)

where again for NAC we have i = c and for NAM we have i = m.

Proof. See appendix A.6.

So far, our results regarding sorting have not depended on the functional form of φ(µ, λ)

derived in Lemma 1. These results therefore hold for different microfoundations of the recruit-

ment process as well. Our specific microfoundation allows for more progress, as we discuss

next. In particular, the following lemma establishes that the right-hand side of equations (33)

and (34) takes a simple form when φ(µ, λ) is given by (5).

Lemma 5. When φ(µ, λ) satisfies (5), we have, for i = c and m,

ai =
1 + σ

2
and ai =

1− σ
2

. (35)

Proof. See appendix A.7.

The necessary conditions in Proposition 3 are derived by letting worker heterogeneity

disappear. Our result shows that when the condition holds, then it is also sufficient for

assortative contacting and matching to hold locally.

Lemma 6. Assume that (8), the second-order condition of a firm of type y, holds. If ρ ≥
(1 + σ)/2, then (32) holds with the strict inequality “>”. If ρ ≤ (1− σ)/2, then the reverse

inequality holds (“>” replaced by “<”).

Proof. See appendix A.8.

So far we have showed that for PAC/PAM to hold for any worker and firm endowments,

then ρ ≥ (1 + σ)/2. Similarly, for NAC/NAM we need ρ ≤ (1 − σ)/2. For the sufficiency

side, we proved that if ζ(y) is interior and differentiable at some point y0, then the same

conditions will lead to assortative contacting and matching to hold locally: ζ ′(y0) > 0 and
d
dy
h(ζ(y0), λ(y0)) > 0 in the case of PAC/PAM. If Z(y) is unique and continuous for all y, then
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the global version also holds.27 To see this, consider the PAC/PAM case. Whenever ζ(y)

and h(ζ(y), λ(y)) are interior, they must be strictly increasing at the point. So it can never

happen that the two functions are decreasing in y. The same logic applies to the NAC/NAM

case. The following result shows that multiplicity and discontinuity of Z(y) do not affect our

conclusions on positive or negative sorting.

Proposition 4. If ρ ≥ (1+σ)/2, then in equilibrium ζ(y) is unique except at most one point

y∗. For y < y∗, ζ(y) = 0; for y > y∗, ζ(y) is continuous and increasing. Furthermore, if

ζ(y) ∈ (0, 1) at some point y0, then ζ ′(y0) > 0 and d
dy
h(ζ(y0), λ(y0)) > 0.

If ρ ≤ (1 − σ)/2, then in equilibrium ζ(y) is unique except at most one point y∗. For

y > y∗, ζ(y) = 0; for y < y∗, ζ(y) is continuous and decreasing. Furthermore, if ζ(y) ∈ (0, 1)

at some point y0, then ζ ′(y0) < 0 and d
dy
h(ζ(y0), λ(y0)) < 0.

Proof. See Appendix A.9.

Of course, in equilibrium the point y∗ described in the above proposition may not exist:

ζ(y) is unique and strictly positive for all y, in which case we simply set y∗ = y for the case

ρ ≥ (1 + σ)/2 and y∗ = y for the case ρ ≤ (1− σ)/2.

Since the parameters ρ and ρ describe the degree of complementaries in production, we

can alternatively state the proposition in terms of supermodularity. The following corollary

presents this formulation of the result.

Corollary 1. The market equilibrium exhibits PAC/PAM for any distribution of types if and

only if the production function (2) is 2/ (1− σ)-root-supermodular. In contrast, the market

equilibrium exhibits NAC/NAM for any distribution of types if and only if the production

function (2) is nowhere 2/ (1 + σ)-root-supermodular.

As the corollary indicates, the degree of complementarity required for PAC/PAM is in-

creasing in the expected number of interviews that a firm can conduct. When σ → 0 and

meetings are bilateral, PAC/PAM requires square-root-supermodularity, in line with the

results in Eeckhout and Kircher (2010a). At the other extreme, log-supermodularity is re-

quired for PAC/PAM when σ = 1 and firms can interview all their applicants. In contrast,

for NAC/NAM, a stronger degree of substitutability is required as the expected number of

interviews goes up: the production function should be nowhere square-root-supermodular

if σ = 0 and submodular when σ = 1. Figure 1 plots these results for the case of CES

production.

27By the theorem of maximum, Z(y) is an upper hemiconintuous correspondence. Thus if Z(y) is unique
for each y, it is a continuous function.
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Figure 1: Combinations of ρ and σ that give rise to PAC/PAM (blue) or NAC/NAM (red)
for any distribution of types, assuming a CES production function.

3.4 Wage Menus

We now show that firms can attract their most desired queue—i.e. the solution to their

relaxed problem—by posting wage menus w = (w1, w2). We do so in two steps. First, we

assume that firms post extended wage menus w+, which include a commitment to use the

socially optimal hiring policy, i.e. a commitment to hire the most productive interviewee,

even if a less productive interviewee yields a higher payoff. Subsequently, we show that this

commitment is redundant, because in any equilibrium, a firm of type y will choose a wage

menu satisfying f(x2, y) − w2 > f(x1, y) − w1, meaning that more productive workers are

always more profitable.

Payoffs. Given the hiring priority for high-type workers, a firm that posts a wage menu

w+ and accordingly attracts queues (µ, λ) has an expected payoff that equals

π (w+, ζ, λ, y) = S(ζλ, λ, y)− φ (ζλ, λ)w2 − (m(λ)− φ(ζλ, λ))w1, (36)

where S(µ, λ, y) is given by equation (6). Intuitively, the firm hires a high-type worker if it

interviews at least one such worker, which happens with probability φ(ζλ, λ). Similarly, the

firm hires a low-type worker if it interviews no high-type workers but at least one low-type

workers, which happens with probability φ(λ, λ)− φ(ζλ, λ).

By an accounting identity, the probability ψi (ζ, λ) that a worker of type xi is hired by
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the firm satisfies

ψ1 (ζ, λ) =
φ(λ, λ)− φ(ζλ, λ))

λ− ζλ
and ψ2 (ζ, λ) =

φ(ζλ, λ)

ζλ
.

Note that these expressions are also valid for ζ = 0 or 1, in which case we take the corre-

sponding limit. Given these matching probabilities, a worker’s expected payoff from applying

to the firm equals

Vi(w+, ζλ, λ) = ψi (ζ, λ)wi. (37)

In order to attract a worker of type xi, the firm needs to ensure that the worker’s expected

payoff Vi(w+, ζ, λ) equals his market utility Ui. This constraint can be used to substitute the

wage wi out of the firm’s expected payoff (36), which yields

Π(ζ, λ, y) = S(ζλ, λ, y)− λU1 − ζλ (U2 − U1) , (38)

i.e. the payoff in the firm’s relaxed problem.28

Uniqueness of Queues. Suppose that a solution to the relaxed problem of a given firm

of type y is (ζ∗λo, λo). To attract this queue, the firm can post a wage menu w∗+ in which

the wage for a worker of type xi equals w∗i = Ui/ψi (ζ
∗, λo). However, there is an issue of

uniqueness: is it possible that a firm posting w∗+ may end up with queues different from the

desired one (ζ∗λo, λo)? The answer is not trivial because one could imagine two different

queues giving workers the same expected payoffs, e.g. i) a long queue with only low-type

workers, where high-type workers do not apply because of negative meeting externalities,

and ii) a queue of medium length where both types of workers apply, but the number of low-

type workers is limited because they are discouraged by the presence of high-type workers.

However, the following proposition shows that such a multiplicity does not actually arise: for

any wage menu that firms post, there will be exactly one queue that is compatible with the

market utilities. Thus, firms can indeed solve their relaxed problem by posting a wage menu

w+.

Proposition 5. For any wage menu w+, there exists exactly one solution (µ, λ) to the market

utility condition.

Proof. See Appendix A.10.

28We have implicitly assumed that 0 < ζ < 1 so that both types of workers are present and both mar-
ket utility conditions hold with equality. However, it is easy to see that equation (38)—or equivalently,
equation (10)—holds for the cases ζ = 0 or ζ = 1 as well.
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Productivity vs Profitability. We have showed that firms can achieve the same outcome

as their relaxed problem by posting wage menus w+. We now turn to the case in which

firms post wage menus w = {w1, w2} that do not include any commitment to hire the

most productive interviewee; instead, firms will hire their most profitable interviewee, which

depends on the ranking of f(x1, y)−w1 versus f(x2, y)−w2. Note that the cost of attracting

queues (µ, λ) remains µU2 + (λ − µ)U1 in this case, since workers must always receive their

market utility. Conditional on attracting this queue, the surplus created by a firm without

commitment is less or equal to that with commitment. Firms can therefore not obtain higher

payoffs without commitment. However, it turns out that they do not obtain lower payoffs

either: when a firm of type y chooses the optimal wage menu w∗+ = {w∗1, w∗2}, i.e., the wage

menu that attracts the most profitable queue (ζ∗λo, λo), then f(x2, y)− w∗2 > f(x1, y)− w∗1,

such that the firm will prefer x2 workers when both types of workers are available. The

following proposition formalizes this result.29

Lemma 7. If a wage menu w∗+ corresponds to an optimal solution (ζ∗λo, λo) to the relaxed

problem of a firm of type y with 0 < ζ∗ < 1, then f(x2, y)− w∗2 > f(x1, y)− w∗1.

Proof. See Appendix A.11.

In sum, we have showed that the directed search equilibrium with wage menus w coincides

with the directed search equilibrium with wage menus w+. Moreover, the latter equilibrium

is equivalent a competitive price equilibrium in which firms can buy queues directly from a

competitive market. Hence, by the first theorem of welfare economics, we obtain the following

efficiency result.

Proposition 6. The directed search equilibrium is constrained efficient.

4 Generalization

In this section, we show that our main results are robust to various extensions of our envi-

ronment. In particular, we allow for noisy signals as well as wide class of processes governing

workers’ applications and interviews.

4.1 Signals

In the setup that we have analyzed so far, firms have absolutely no information about appli-

cants’ types when selecting interviewees. In practice, there often exist relatively easy ways

29A similar result appears in Shimer (2005) for the case of urn-ball meetings. Our proof of Lemma 7 does
not depend on the specific microfoundation of the recruiting process and therefore generalizes his result.
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to obtain a signal, e.g. from a quick look at applicants’ resumes. Our baseline environment

can be extended quite easily to capture this idea.

Environment with Signals. Assume that firms costlessly observe a signal for every appli-

cant. For high-type applicants, the signal is positive with certainty. In contrast, a low-type

applicant generates a correct negative signal with probability τ ∈ [0, 1] and an incorrect pos-

itive signal with complementary probability. In other words, τ is a measure of the amount of

information contained by signals: they are worthless if τ = 0, but perfectly reveal applicants’

types when τ = 1. Using this information, firms will prioritize applicants with positive sig-

nals when selecting interviewees and only select applicants with negative signals if interview

capacity remains.

Isomorphism. It turns out that this environment is isomorphic to our baseline model,

as long as we transform the parameter σ to account for the fact that firms also obtain

information from signals. The following lemma formalizes this result.

Proposition 7. In the environment with signals, consider a firm with a queue µ of high-type

workers and a queue λ − µ of low-type workers. The probability that the firm interviews at

least one high-type worker equals

φ (µ, λ) =
µ

1 + σ̂µ+ (1− σ̂)λ
,

where σ̂ = 1− (1− τ) (1− σ) ∈ [0, 1].

Proof. See appendix A.12.

As a direct consequence of this proposition, all our earlier results carry over to the envi-

ronment with signals, except that they apply to σ̂ instead of σ.

4.2 Arbitrary Contact Technologies

So far, we have considered a specific micro-foundation of the contact technology, i.e. the

process that governs a firm’s number of interviews. However, many reasonable alternatives

exist; for example, workers may send their applications according to an urn-ball process as

in Shimer (2005), after which firms can interview a subset of their applicants.30 Our analysis

can easily be extended to such alternatives as they simply imply a different functional form

for φ (µ, λ) but do not otherwise affect the derivation of our results.

30See Lester et al. (2015) and Cai et al. (2017) for other examples.
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Bilateral Contact Technologies. Within this broader class of contact technologies, there

exist natural generalizations of the cases σ = 0 and σ = 1 that we have considered above.

First, σ = 0 describes minimal screening in the sense that each firm interviews only a single

applicant. That is, contacts are bilateral (a firm can be at contact with at most one worker)

and a firm’s probability φ (µ, λ) of interviewing a high-type worker is simply the product of

the probability φ (λ, λ) that it has any applicant and the conditional probability µ/λ that

this applicant is a high type. Sorting patterns under bilateral contacts have been analyzed

in detail by Eeckhout and Kircher (2010a). They define

aEK(λ) =
m′(λ)(m′(λ)λ−m(λ))

λm(λ)m′′(λ)
, aEK = sup

λ
aEK(λ), aEK = inf

λ
aEK(λ) (39)

It is easy to see that when contacts are bilateral, our definition of ac(µ, λ) and am(µ, λ) are

constant in µ and both coincide with aEK(λ). Furthermore, the sorting results in (Eeckhout

and Kircher, 2010a) (their Theorem 1) can be easily obtained as a limit result by our analysis.

Proposition 8. [Eeckhout and Kircher, 2010a] Suppose contacts are bilateral, i.e. φ(µ, λ) =
µ
λ
φ (λ, λ). The market equilibrium then exhibits PAM for any distribution of types if and

only if f (x, y) is n-root-supermodular, where n = (1− aEK)−1 In contract, the market equi-

librium exhibits NAM for any distribution of types if and only if f (x, y) is nowhere n-root-

supermodular, where n = (1− aEK)−1.

Proof. To be added.

Invariant Contact Technologies. In contrast, σ = 1 means that screening is perfect in

the sense that the presence of low-type applicants does not make it harder for a firm to

identify a high-type applicant. That is, φλ (µ, λ) = 0 for all µ and λ. As shown by Cai

et al. (2018), this condition is the defining characteristic of the class of invariant contact

technologies, first introduced by Lester et al. (2015).

For invariant contact technologies, the two elasticities εf (µ, λ) and εf (µ, λ) defined by

equations (19) and (20) will depend on the first argument only and hence can be simply

written as εf (µ) and εw(µ). The explicit expressions for the two elasticities are now given by

εf (µ) =
µm′(µ)

m(µ)
and εw(µ) =

µm′′(µ)

m′(µ)
(40)

Thus εf (µ) is always positive and εw(µ) is always negative since m(µ) is concave. Further-

more, the two functions ac(µ, λ) and am(µ, λ), which are defined by equations (28) and (29)
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and are crucial for our sorting results, now can be rewritten as31

ac(µ, λ) =
εw(µ)

εw(λ)
and am(µ, λ) =

εw(µ)

εw(λ)

εf (λ)

εf (µ)
(41)

As the previous results suggest, our condition on sorting depends on ai and ai for i = c and

m. Our next result shows that for invariant contact technologies, ac and am are always 0.

Lemma 8. Suppose contacts are invariant, i.e. φλ(µ, λ) = 0. We have limµ→0 εf (µ) = 1 and

limµ→0 εw(µ) = 0. Thus ac = am = 0.

Proof. See appendix A.13.

Next we consider ac and am. By setting µ = λ in (41), we can see that ac, am ≥ 1. For

common invariant contact technologies such as urn-ball or geometric technologies, one can

prove that ac = am = 1. However, this is not always the case.32

We have seen from Proposition 4 and 8 that ρ ≥ ai is necessary and sufficient for positive

assortative contacting (i = c) and matching (i = m), and ρ ≤ ai is necessary and sufficient

for negative assortative contacting (i = c) and matching (i = m). Our next result shows that

this condition continues to hold for invariant contact technologies.

Proposition 9. Suppose contacts are invariant, i.e. φλ(µ, λ) = 0. The market equilibrium

then exhibits PAM (PAC resp.) for any distribution of types if and only if ρ ≥ am (ρ ≥ ac

resp.). In contrast, the market equilibrium exhibits NAM for any distribution of types if and

only if f (x, y) is submodular.

Proof. See appendix A.14.

Our results so far also suggest that if we are willing to make the following two assumptions,

which are satisfied by common invariant contact technologies, the sorting results become

particularly simple.

Assumption INV-1. εw(µ) is decreasing in µ.

Assumption INV-2. εw(µ)/εf (µ) is decreasing in µ.

31The expression of am(µ, λ) is derived as follows. φµ(ζλ, λ) = m′(ζλ) and h(ζ, λ) = m(ζλ)/m(λ). There-
fore, the following term in equation (29) can be rewritten as

1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ
= 1− λm′′(ζλ)

ζm′′(ζλ)

ζm′(ζλ)m(λ)−m(ζλ)m′(λ)
m(λ)2

λm′(ζλ)/m(λ)
=

m(ζλ)m′(λ)

ζm′(ζλ)m(λ)
=

εf (λ)

εf (ζλ)
.

32 Consider, for example, a mixture between the urn-ball and the geometric contact technologies: m(µ) =
t(1 − e−µ) + (1 − t)(1 − 1/(1 + µ)). Numerically one can see that: when t = 0.2, ac > 1 and am = 1; when
t = 0.98, both ac and am are strictly bigger than 1.
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With the above assumptions, one can easily see that ac = am = 1. The conditions for

PAC/PAM then become ρ ≥ 1. That is, for any x and y we have ρ(x, y) ≥ 1, which is

equivalent to ∂2

∂x∂y
log f(x, y) ≥ 1, i.e., f(x, y) is log-supermodular.

Corollary 2. Suppose contacts are invariant, i.e. φλ(µ, λ) = 0 and satisfy Assumption

INV-1 and INV-2. The market equilibrium then exhibits PAC/PAM for any distribution of

types if and only if f (x, y) is log-supermodular. In contract, the market equilibrium exhibits

NAC/NAM for any distribution of types if and only if f (x, y) is submodular.

5 Conclusion

[to be completed]

Appendix A Proofs

A.1 Proof of Lemma 1

The firm’s potential number of interviews nI follows a geometric distribution with support

N1 and mean (1− σ)−1. That is: P(nI = n) = (1 − σ)σn−1 for n = 1, 2, . . . . However,

interviewing might be constrained by the firm’s number of applicants nA, which also follows

a geometric distribution but with support N0 and mean λ, i.e., P(nA = n) = 1
1+λ

( λ
1+λ

)n for

n = 0, 1, 2, . . . . Hence, the firm’s actual number of interviews, n, is min{nI , nA} ∈ N0. Since

the potential number of interview nI is at least one, P0(λ) = 1
1+λ

. For n ≥ 1, things are more

complicated and we have the following: for n ≥ 1,

Pn(λ) = (1− σ)σn−1

∞∑
j=n

1

1 + λ

(
λ

1 + λ

)j
+

1

1 + λ

(
λ

1 + λ

)n ∞∑
j=n+1

(1− σ)σj−1

where the first term on the right-hand side denotes the case where the number of applicants

is (weakly) larger than n while the number of interviews equals n; the second term denotes

the case where the number of applicants equals n while the number of interviews is strictly

larger than n. Hence, the firm’s actual number of interviews n has the following probability

distribution:

Pn(λ) ≡ P [min{nI , nA} = n|λ] =

 1
1+λ

for n = 0,

σn−1 1
1+λ

(
λ

1+λ

)n
(1 + (1− σ)λ) for n ∈ N1.

(42)

28



The probability that n interviews reveal at least one high-type worker is 1 − (1 − µ/λ)n.

Taking expectations with respect to n gives

φ (µ, λ) = 1−
∞∑
n=0

Pn (λ)
(

1− µ

λ

)n
.

Substituting (42) and simplifying the result yields equation (5).

A.2 Proof of Lemma 3

Given φµµ < 0, the Hessian is negative definite if and only if its determinant is positive, i.e.

∆f
[
m′′φµµf

1 +
(
φµµφλλ − φ2

µλ

)
∆f
]
> 0.

Using ∆f > 0 and the definition of κ(y), this readily gives condition (8).

Since φ is given by equation (5), direct computation yields

φλλ −
φ2
µλ

φµµ
=

(1− σ)2

2σ(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)

which is strictly positive if and only if σ < 1. Note that m′′(λ) = −2/(1 + λ)3. Hence,

κ̂(µ, λ) ≡ −m′′

φλλ − φ2
µλ/φµµ

=
4σ(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)

(1− σ)2(1 + λ)3

It is easy to see that for a given λ, the right-hand side is increasing in µ and reaches its

maximum at µ = λ. Furthermore, we differentiate this maximum with respect to λ, and find

it is strictly decreasing in λ. That is,

∂

∂λ

(
4σ(1 + (1− σ)λ)

(1− σ)2(1 + λ)2

)
= −4σ(1 + σ + (1− σ)λ)

(1− σ)2(1 + λ)3
< 0.

Therefore, κ = sup0<µ<λ κ̂(µ, λ) = 4σ/(1− σ)2.

A.3 Proof of Proposition 1

As x2 → x1 = x, U2 and U1 will approach to the same value and both will be strictly larger

than U > 0, which is the market utility of workers if all workers are the same and have

type x and all firms are the same and have type y, the infimum of firm types. Next, as

x2 → x1, the total queue length of each firm’s choice will be bounded from above. The

marginal contribution of surplus of a worker will be m′(λ)f(x, y) for a firm of type y. Define
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λ by m′(λ)f(x, y) = U , where y is the supremum of firm types. therefore, we can restrict

each firm’s choice of queues to be in the convex set {(µ, λ) | 0 ≤ µ ≤ λ ≤ λ}.
Since the above set is compact, for sufficiently small x2− x1, equation (8) will be strictly

positive, which implies that for each firm type y, the surplus function will be strictly concave

in this set. Therefore, by the theorem of the maximum, firms’ solution (µ(y), λ(y)) will be

unique and continuous. Furthermore, when 0 < µ(y) < λ(y), µ(y) and λ(y), or equivalently

ζ(y) and λ(y), are jointly determined by the first-order conditions: equation (11) and (14).

Hence by the implicit function theorem, they are both differentiable at the point.

A.4 Proof of Proposition 2

Recall that ρ = sup(x,y)∈X×Y ρ(x, y) and ρ = inf(x,y)∈X×Y ρ(x, y), where ρ(x, y) = f(x,y)fxy(x,y)

fx(x,y)fy(x,y)
.

Consider the case with ρ first. Taking the derivative of log fy(x, y) − ρ log f(x, y) with

respect to x gives

∂

∂x

(
log fy(x, y)− ρ log f(x, y)

)
=
fxy
fy
− ρfx

f
=
fxyf − ρfxfy

ffy
≥ 0

where on the right-hand side we suppressed the arguments of f(x, y).

The case with ρ follows a similar logic.

∂

∂x
(log fy(x, y)− ρ log f(x, y)) =

fxy
fy
− ρfx

f
=
fxyf − ρfxfy

ffy
≤ 0

A.5 Derivation of Equation (27)

Combining equations (23) and (24) gives ,

λ′(y) =
− φµ
∂φµ/∂ζ

∆fy
∆f
λoζ + λoy

1 + ∂φµ/∂λ

∂φµ/∂ζ
λoζ

.

Next we plug in the expressions of λoy and λoζ from equations (12) and (17), respectively. The

numerator of the right-hand side of the above equation becomes

φµ
λφµµ

∆fy
∆f

λ∂φµ
∂λ

∆f

m′′f 1 + ∂2φ
∂λ2

∆f
−

m′f 1
y + ∂φ

∂λ
∆fy

m′′f 1 + ∂2φ
∂λ2

∆f
=

φµ
φµµ

∂φµ
∂λ

∆fy −
(
m′f 1

y + ∂φ
∂λ

)
∆fy

m′′f 1 + ∂2φ
∂λ2

∆f

=
−m′f 1

y −
(
φλ − φµ φµλφµµ

)
∆fy

m′′f 1 + ∂2φ
∂λ2

∆f
.
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Similarly, the denominator becomes

1− ∂φµ/∂λ

λφµµ

λ∂φµ
∂λ

∆f

m′′f 1 + ∂2φ
∂λ2

∆f
=
m′′f 1 + ∂2φ

∂λ2
∆f − 1

φµµ

(
∂φµ
∂λ

)2

∆f

m′′f 1 + ∂2φ
∂λ2

∆f

=
m′′f 1 + (ζ2φµµ + 2ζφµλ + φλλ)∆f − 1

φµµ

(
ζ2φ2

µµ + 2ζφµµφµλ + φ2
µλ

)
∆f

m′′f 1 + ∂2φ
∂λ2

∆f

=
m′′f 1 −

(
φ2µλ
φµµ
− φλλ

)
∆f

m′′f 1 + ∂2φ
∂λ2

∆f
.

Combining the expressions for the numerator and the denominator gives equation (27).

A.6 Proof of Proposition 3

We first consider the case of PAC. The other cases (PAM, NAC, and NAM) follow the same

logic.

Suppose that equation (33) does not hold for i = c and there exists x′, y′, µ′, and λo such

that

ρ(x′, y′) < ac(µ′, λ′)

Then by continuity, we can assume that 0 < µ′ < λ′ (note the strict inequality). Furthermore,

by continuity there exists ε0 > 0 such that the above inequality will hold for all x ∈ [x′ −
ε0, x

′ + ε0], y ∈ [y′ − ε0, y′ + ε0], µ ∈ [µ′ − ε0, µ′ + ε0], and λ ∈ [λ′ − ε0, λ′ + ε0].

We set x1 = x′, and `2 = µ′ and `1 = λ′ − µ′, where `i is the total measure of xi workers,

i = 1, 2. Next, we pick x2, y, and y such that x2 − x′ = y′ − y = y − y′. We denote

this difference by ε1 and let ε1 → 0. Then for sufficiently small ε1, by Proposition 1 the

equilibrium λ(y) is unique, continuous, and will belong to the set [λ′ − ε0, λ′ + ε0] for all y

(note in the proof of Proposition 1, we only let x2 → x1 and keep the firm value distribution

constant, but it is easy to see the whole arguments carry to the case where we let x2 → x1,

y ↑ y′ and y ↓ y′ simultaneously). Furthermore, µ(y) is continuous and
∫ y
y
µ(y)dJ(y) = µ′,

where J(y) is the distribution of firms types. Therefore, by continuity there exists some y0

such that µ(y0) = µ′. In sum, at point y0 we have µ′ = µ(y0) < λ(y0) ∈ (λ′ − ε0, λ′ + ε0).

Also by Proposition 1, ζ(y) is differentiable at point y0. Hence the assumptions of Lemma 4

are satisfied at point y0.

It is easy to see that when ε1 → 0 (x2 → x1 = x′), the left-hand side of equation (32) ap-

proaches to ρ(x′, y′) = f(x′, y′)fxy(x
′, y′)/fx(x

′, y′)fy(x
′, y′). For the right-hand side, ac(µ(y0), λ(y0))→
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ac(µ′, λ′) (note the choice of y0 depends on the value of ε1. Furthermore,

1− 1

m′

(
φµ
φµλ
φµµ
− φλ

)
∆fy
f 1
y

≈ 1− 1

m′

(
φµ
φµλ
φµµ
− φλ

)
fxy(x

′, y′)

fy(x′, y′)
ε1 → 1

where on the right-hand side we have suppressed arguments of m(λ′) and φ(µ′, λ′). Similarly,

the denominator on the right-hand side of equation (32) also approaches to 1. Therefore,

for equation (32) to hold at point y0, we need ρ(x′, y′) ≥ ac(µ′, λ′). We have thus reached a

contradiction, and for PAC to hold for all worker and firm endowments, ρ(x, y) ≥ ac(µ, λ)

for all (x, y) and (µ, λ).

A.7 Proof of Lemma 5

We first consider ac(µ, λ). Since φ(µ, λ) is given by equation (5) and ac(µ, λ) is defined by

equation (28), by direct calculation we have

ac(µ, λ) =
1 + λ

2λ

(
1 +

1

1 + (1− σ)λ
− 2

1 + σµ+ (1− σ)λ

)
(43)

It is easy to see that ac(µ, λ) is strictly increasing in µ. Thus for a given λ, we have

max
µ

ac(µ, λ) = ac(λ, λ) =
1

2

1 + σ + (1− σ)λ

1 + (1− σ)λ
(44)

min
µ

ac(µ, λ) = ac(0, λ) =
1

2

(1− σ)(1 + λ)

1 + (1− σ)λ
(45)

Notice that ac(0, λ) + ac(λ, λ) = 1 and

dac(λ, λ)

λ
= − σ(1− σ)

2(1 + (1− σ)λ)2

dac(0, λ)

λ
=

σ(1− σ)

2(1 + (1− σ)λ)2

Therefore, ac(λ, λ) approaches its supreme when λ → 0 and ac(0, λ) approaches its in-

fimum when λ → 0. Therefore, sup0≤µ≤λ a
i(µ, λ) = limλ→0 a

c(λ, λ) = (1 + σ)/2 and

inf0≤µ≤λ a
i(µ, λ) = limλ→0 a

c(0, λ) = (1 − σ)/2. Note that both the infimum and the supre-

mem can not be reached because we require λ > 0.

Next we consider am(µ, λ). Similar as above, by direct computation we have

am(µ, λ) =
λ(1 + λ)(1− σ) + 2σµ

2λ1 + (1− σ)λ
(46)
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It is easy to see that am(µ, λ) is strictly increasing in µ. For a given λ, am(µ, λ) reaches its

maximum at µ = λ and its minimum at µ = 0. Because of equation (31), the rest of the

proof is the same as the case of ac(µ, λ).

A.8 Proof of Lemma 6

First we consider the case ρ ≥ (1 + σ)/2. Since f is strictly supermodular, ∆fy > 0 and the

left-hand side of (32) is strictly positive. We will prove a slightly stronger version of (32):

f 1∆fy
f 1
y∆f

≥ 1 + σ

2

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

where we have replaced ai(µ, λ) with its supreme (1 + σ)/2. This is justified because if

the second term on the right-hand side is negative, then we have nothing to prove; if it is

positive, then we have a stronger version of the original inequality. Also note that the supreme

of ai(µ, λ) is never reached as a maximum for i = c and m. So the above weak inequality

implies a strong inequality of (32). Since the denominator on the right-hand side is positive

because of firms’ second-order condition, multiplying it on both sides and rearranging terms

gives

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(
1 + σ

2

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

))
≥ 1 + σ

2

Since φ(µ, λ) is given by equation (5), plug it into the above equation and we have

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(1− σ)(2 + (1− σ)λ)(1 + λ)2

4(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)
≥ 1 + σ

2

It is easy to see that the left-hand side is decreasing in µ and reaches its minimum at µ = λ,

at which the above inequality becomes

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(1− σ)(2 + (1− σ)λ)(1 + λ)

4(1 + (1− σ)λ)
≥ 1 + σ

2

⇔ f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(1− σ)

4

(
1 + λ+

1 + λ

1 + (1− σ)λ

)
≥ 1 + σ

2
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It is easy to see that the left-hand side is increasing in λ and approaches its infimum as

λ→ 0. Therefore, a sufficient condition for the inequality that we want to prove is

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

(1− σ)

2
− 1 + σ

2
≥ 0

By equation (18), we know that ∆fy/f
1
y ≥ (1 + κ(y))ρ − 1. We then replace the above

inequality with a stronger one:

(1 + κ)ρ − 1

κ
+ ((1 + κ)ρ − 1)

(1− σ)

2
− 1 + σ

2
≥ 0,

where we have suppressed the argument of κ(y). If ρ ≥ 1, then the above inequality holds

trivially because the first term on the left-hand side is (weakly) larger than 1. If (1 +σ)/2 ≤
ρ < 1, then note that the left-hand side is decreasing in σ and reaches its maximum at

(1 + σ)/2 = ρ. Hence we can replace the above inequality by the following.

(1 + κ)ρ − 1

κ
+ ((1 + κ)ρ − 1) (1− ρ)− ρ ≥ 0

⇔ (1 + κ)ρ − 1

κ
+ (1 + κ)ρ(1− ρ)− 1 ≥ 0

⇔ 1 + κ(1− ρ)− (1 + κ)1−ρ ≥ 0

The last inequality is straightforward since the left-hand side is increasing in κ and its infimum

is zero as κ→ 0. Hence we have proved our claim for the case ρ ≥ (1 + σ)/2.

Next we consider the case ρ ≤ (1− σ)/2. As before, by equation (18) we have

f 1∆fy
f 1
y∆f

≤ (1 + κ)ρ − 1

κ
≤ ρ ≤ 1− σ

2
(47)

The first inequality above holds because when ρ ≤ 0, the left-hand side is negative, and when

0 < ρ ≤ (1− σ)/2, the left-hand side is decreasing in κ and its supreme is ρ when κ = 0.

Next, we will first prove the following inequality.

1 ≤
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

(48)

Note that both 1
m′

(
φµ

φµλ
φµµ
− φλ

)
and 1

m′′

(
φ2µλ
φµµ
− φλλ

)
are positive and if the form is zero,

then the above inequality holds trivially. So in the following we only focus on the case where

it is strictly positive. Since the denominator is always positive because of (8), rewriting the
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above inequality gives

∆fy
f 1
y

f 1

∆f
≤

1
m′′

(
φ2µλ
φµµ
− φλλ

)
1
m′

(
φµ

φµλ
φµµ
− φλ

) =
1− σ

2

1 + λ

1 + (1− σ)λ

where the equality follows from direct computation. It is easy to see that

∆fy
f 1
y

f 1

∆f
<

1− σ
2

<
1− σ

2

1 + λ

1 + (1− σ)λ

where the first inequality follows from (47). Thus (48) holds and we have

f 1∆fy
f 1
y∆f

<
1− σ

2
≤ 1− σ

2

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

.

We have thus proved our claim for the case ρ ≤ (1− σ)/2.

A.9 Proof of Proposition 4

For the proof we need the following result from Cai et al. (2019), which analyzed the case

where all firms are homogeneous. For given market utility (U1, U2), there are at most two

optimal ζ which solve a firm’s relaxed problem. Furthermore, if there are two ζ for a firm,

then one of the two must equal zero. That is, |Z(y)| ≤ 2, and if |Z(y)| = 2, then 0 ∈ Z(y). In

the following, we divide our proof into three steps.

Step 1: By the theorem of maximum, Z(y) is an upper hemicontinuous correspondence.

If Z(y) is unique for all y, then Z(y) = ζ(y) is a continuous function. If at some point y0,

ζ(y0) ∈ (0, 1), then ζ(y0) satisfies equation (14). By the implicit function theorem, ζ(y) is

differentiable at point y0. Thus as we remarked before Proposition 4, in this case the local

result from Lemma 6 implies the global result stated in Proposition 4.

Step 2: Next consider the case where at some point y∗, Z(y) contains two elements: 0

and ζ∗ > 0. Since Z(y) is hemicontinuous, for firms with type y sufficiently close to y∗ there

are three scenarios: i) Z(y) all contain two elements ζa(y) and ζ∗(y) where ζa(y) is always

zero and ζ∗(y) is continuous; ii) Z(y) is unique for y 6= y∗, ζ(y) = 0 for y > y∗ and ζ(y)

is continuous and limy↗y∗ ζ(y) = ζ∗ for y < y∗; iii) Z(y) is unique for y 6= y∗, ζ(y) = 0 for

y < y∗ and ζ(y) is continuous and limy↘y∗ ζ(y) = ζ∗ for y > y∗. We will prove later that

when ρ ≥ (1 + σ)/2, case i) and ii) will not arise, and when when ρ ≤ (1− σ)/2, case i) and

iii) will not arise.

Step 3: Note that the claim in Step 2 implies that y∗ must be the only firm type with
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multiple optimal ζ’s, i.e., y∗ is the only y with |Z(y)| = 2. Consider the PAC/PAM case

(ρ ≥ (1 + σ)/2). If not, then let y∗∗ be the smallest y which is bigger than y∗ and has

two optimal ζ’s. Then for y ∈ (y∗, y∗∗), ζ(y) is unique, which, by the argument in Step 1,

implies that it is also continuous and increasing by the theorem of maximum. However, the

above claim implies that firms with y slightly below y∗∗ should pick ζ = 0, which leads to a

contradiction. Similarly, if there exists a largest y∗∗∗ which is smaller than y∗ and has two

optimal ζ’s, then again we have a contradiction. The NAC/NAM case (ρ ≤ (1−σ)/2) follows

the same logic.

Step 4: Therefore, Z(y) is unique for firms with either y < y∗ or y > y∗ and hence

continuous by the argument in Step 1. If ρ ≥ (1 + σ)/2, then ζ(y) and h(ζ(y), λ(y)) are

increasing whenever ζ(y) is interior. Therefore, Proposition 4 follows readily.

Proof Step 2. Recall that Π∗(ζ, y) is defined by equation (13) and λo(ζ, y) is given by

equation (11). Therefore, Π∗(ζ, y) can be rewritten as

Π∗(ζ, y) = (m(λo)− λom′(λo)) f 1 +

(
φ(ζλo, λo)− λo∂φ(ζλo, λo)

∂λo

)
∆f (49)

where we suppressed the arguments of λo(ζ, y).

Consider a firm with type y∗: maxζ Π∗(ζ, y) = Π∗(0, y∗) = Π∗(ζ∗, y∗). If ρ ≥ (1 + σ)/2,

we will show that for firms with y slightly above y∗, it is strictly better for them to choose ζ

close to ζ∗ instead of 0, and for firms with with y slightly below y∗, it is strictly better for

them to choose ζ = 0. This corresponds to case iii) in Step 2. In case i) mentioned in Step

2, firms with y close to y∗ will be indifferent between ζ = 0 and restricting their choice of ζ

close to ζ∗. In case ii), it is the other way around, firms with y slightly above y∗ will choose

ζ = 0 and firms with y slightly below y∗ will choose a ζ close to ζ∗.

For firms with y around y∗, if we restrict their choice of ζ to be close to ζ∗ then we

denote the maximum value of Π∗(ζ, y) by Π̃(y). Our claim is equivalent to the following: if

ρ ≥ (1 + σ)/2, we have

d

dy
Π∗(0, y) <

d

dy
Π̃(y)

By an envelope theorem, Theorem 3 of Milgrom and Segal (2002), the above inequality is

equivalent to

m(λ′)f 1
y < (m(λ∗)− λ∗m′(λ∗)) f 1

y +

(
φ(ζ∗λ∗, λ∗)− λo∂φ(ζ∗λ∗, λ∗)

∂λ

)
∆fy (50)

where λ′ = λo(0, y∗) and λ∗ = λo(ζ∗, y∗). Note that to apply the envelope theorem we
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need Π∗(ζ, y) be equidifferentiable in y, which is trivial because φ(ζλ, λ)−λ∂φ(ζλ,λ)
∂λ

is always

between 0 and 1, which follows from the fact that for a given ζ, φ(ζλ, λ) is strictly concave

in λ.

Note that m(λ) = λ/(1 + λ). By equation (49), Π∗(0, y∗) =
(

λ′

1+λ′

)2
f 1. Therefore,

equation (50) can be rewritten as√
Π∗(ζ∗, y∗)

f 1
f 1
y < Π∗y(ζ

∗, y∗) (51)

where we have used the fact Π∗(0, y∗) = Π∗(ζ∗, y∗) and Π∗y(ζ
∗, y∗) ≡ ∂

∂y
Π∗(ζ∗, y∗) is the right-

hand side of equation (50). Plugging the expression of φ(µ, λ) into the above inequality shows

that it is equivalent to

T (ζ∗) = −∆f(f 1
y )2(1− (1− ζ∗)σ) + ∆f 2

y ζf
1 + 2∆fyf

1f 1
y (1− (1− ζ∗)σ λ∗

1 + λ∗
) > 0

Note that the above expression is linear in ζ∗. To prove it is strictly positive or negative we

just need to prove that T (ζ∗ = 0) and T (ζ∗ = 1) are strictly positive or negative. For this,

we have

T (ζ∗ = 1) = ∆f 2
y f

1 + 2∆fyf
1f 1
y −∆f(f 1

y )2

T (ζ∗ = 0) = f 1
y (2∆fyf

1(1− σ λ∗

1 + λ∗
)−∆ff 1

y (1− σ))

In the following we will prove that if ρ ≥ (1 + σ)/2, T (ζ∗ = 0) and T (ζ∗ = 1) are strictly

positive, and if ρ ≤ (1 − σ)/2, then both are strictly negative. This then finished our proof

of Step 2 and hence Proposition 4.

We first consider T (ζ∗ = 1). It is easy to see that

∆f 2
y f

1 + 2∆fyf
1f 1
y −∆f(f 1

y )2 = f 1(f 1
y )2

((
∆fy
f 1
y

+ 1

)2

− ∆f

f 1
− 1

)

If ρ ≥ (1 + σ)/2, then by (18) we have

T (ζ∗ = 1) ≥ f 1(f 1
y )2((1 + κ)2ρ − 1− κ) > 0

where κ = κ(y∗) and the last inequality holds because ρ > 1/2.

If ρ ≤ (1− σ)/2, then

T (ζ∗ = 1) ≤ f 1(f 1
y )2((1 + κ)2ρ − 1− κ) < 0
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where the last inequality holds because ρ < 1/2.

Next, consider T (ζ∗ = 0). Since f is increasing in x and y, T (ζ∗ = 0) > 0 if and only if

2f 1∆fy
∆ff 1

y

>
1− σ

1− σ λ∗

1+λ∗

Note that the supreme of the right-hand side is 1 (when λ∗ → 0) and the infimum is 1 − σ
(when λ∗ →∞).

If ρ ≥ (1 + σ)/2, then by (18) a sufficient condition for the above inequality is

2
(1 + κ)

1+σ
2 − 1

κ
> 1

Since the left hand side of the above inequality is decreasing in κ and by equation (8),

κ < 4σ/(1− σ)2. Then by setting κ = 4σ/(1− σ)2, the above inequality becomes

(1 + σ)1+σ(1− σ)1−σ ≥ (1 + σ2)

At σ = 0, both sides equal 2. For σ > 0: the derivative of the logarithm of the left-hand side

is 2 + log(1 + σ)− log(1− σ), which is strictly bigger than 2σ/(1 + σ2), the derivative of the

logarithm of the right-hand side.

If ρ ≤ (1− σ)/2, then by similar logic, a sufficient condition for T (ζ∗ = 0) < 0 is

2
(1 + κ)

1−σ
2 − 1

κ
≤ 1− σ

As before, the left-hand side is decreasing in κ, and at κ = 0 reaches its supreme 1−σ. Thus

the above inequality holds.

A.10 Proof of Proposition 5

If w1 ≤ U1 and w2 ≤ U2, then apparently the only queue that is attracted is (0, 0). If w1 ≤ U1

and w2 > U2, then no x1 workers will apply and x2 workers will apply till the queue length

is such that w2m(λ)/λ = U2. Note that m(λ)/λ = 1/(1 + λ), which implies that the queue

length is determined uniquely. The case w1 > U1 and w2 ≤ U2 follows the same logic.

We are then led to consider the only case left: w1 > U1 and w2 > U2. We first consider

necessary conditions if the wage menu attracts i) both x1 and x2 workers; ii) x1 workers only;

iii) x2 workers only.

Consider case i) first. By equation (5) and (37), the market utility condition can be
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written as

1 + (1− σ)λ

(1 + λ)(1 + (1− σ + σζ)λ)
w1 = U1 (52)

1

1 + (1− σ + σζ)λ
w2 = U2 (53)

From the second equation, we can solve λ in terms of ζ and then plug the value of λ into the

first equation, which gives

w1

U1

=
w2

U2

1 +

(
w2

U2
− 1
)
σ

(1− σ)w2

U2
+ ζσ

 (54)

Thus it is easy to see that the right-hand side of the above equation is strictly increasing in

ζ, which then implies a unique solution for ζ and λ. Furthermore, it also implies that

(w2

U2
)2

(1− σ)w2

U2
+ σ

<
w1

U1

<
w2

U2
− σ

1− σ
(55)

where the term on the left (right) is obtained by setting ζ = 1 (ζ = 0) on the right-hand side

of equation (54).

For case ii), we have ζ = 0. Setting ζ = 0 in equations (52) and (53) gives

1

1 + λ
w1 = U1

1

1 + (1− σ)λ
w2 ≤ U2

where we have replaced “=” in equation (53) with “≤” since x2 workers choose not to visit

the firm. We can solve the first equation for λ and then plug it into the second equation,

which implies

w2

U2
− σ

1− σ
≤ w1

U1

(56)

For case iii), ζ = 1 and we have

1 + (1− σ)λ

(1 + λ)2
w1 ≤ U1

1

1 + λ
w2 = U2
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Follow the same logic as above and we have

(w2

U2
)2

(1− σ)w2

U2
+ σ
≥ w1

U1

(57)

Therefore, cases i), ii), iii) imply a mutually exclusive relation between w1/U1 and w2/U2.

For a given (w1, w2) with w1 > U1 and w2 > U2, there will be exactly one that holds. And

within each case, the solution (ζλ, λ) is also unique, as we have showed above.

A.11 Proof of Lemma 7

Our proof does not rely on the specific meeting technology that we consider. Below, we

consider a general meeting technology φ(µ, λ). The idea for this proof is from Shimer (2005)

and it can be easily extended to the case with any number of worker types.

Because φ(µ, λ) is concave in µ, we have

φµ(λo, λo) < ψ1 (ζ∗, λo) < φµ(ζ∗λo, λo) < ψ2 (ζ∗, λo) < φµ(0, λo).

As a result, the wages must satisfy

w∗1 =
U1

ψ1 (ζ∗, λo)
≥ U1

φµ(ζ∗λo, λo)

w∗2 =
U2

ψ2 (ζ∗, λo)
<

U2

φµ(ζ∗λo, λo)
.

Moreover, by equation (14), we have

φµ(ζ∗λo, λo)(f(x2, y)− f(x1, y)) = U2 − U1

Therefore,

w∗2 − w∗1 <
U2 − U1

φµ(ζ∗λo, λo)
=
φµ(ζ∗λo, λo)(f(x2, y)− f(x1, y))

φµ(ζ∗λo, λo)

= f(x2, y)− f(x1, y).
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A.12 Proof of Lemma 7

First we consider the unconditional probability that an applicant has a good signal. It is

easy to see that

P(x̃2) =
µ

λ
+
λ− µ
λ

(1− τ)

If the applicant has a good signal ((x̃2)), then the probability that he is high-type (x2) is

P(x2 | x̃2) =
P(x2)P(x̃2 |x2)

P(x̃2)
=

µ

µ+ (1− τ)(λ− µ)

where the first equality is simply the Bayes rule. From the above analysis, the queue length

of applicants with a good signal is

λ̃ = µ+ (λ− µ)(1− τ).

Next, we consider the probability that the manager hires a high-type worker, φ(µ, λ). For

this we can ignore the existence of applicants with bad signals because they are low-type

workers for sure and they will not affect the meeting process between firms and workers with

good signals because geometric meeting technology is invariant. Now firms face a queue of

length λ̃, of which high-type workers have queue length µ. Therefore, by Lemma 1, the

probability that firms hire a type-type worker is

φ(µ, λ) =
µ

1 + σµ+ (1− σ)λ̃
,

which is exactly the equation given in proposition 7.

Alternatively, we can prove the same claim by using equation 42. In this case, we have

φ(µ, λ) = 1−
∞∑
n=0

Pn(λ̃)

(
1− µ

λ̃

)n
,

where Pn(λ̃) is given by equation (42).

A.13 Proof of Lemma 8

Since m(µ) is concave and increasing, εf (µ) is always positive and εw(µ) is always negative,

which implies that both ac(µ, λ) and am(µ, λ) are positive.

We first prove that m′(0) is strictly positive but finite. Since m(µ) is concave and in-

creasing, m′(µ) is positive and decreasing and reaches the maximum at µ = 0. If m′(0) = 0,

41



then m′(µ) = 0 for all µ and m(µ) = 0 for all µ. We have a contradiction. Next, m′(0) =

1−Q0(0) ≤ 1. So 0 < m′(0) ≤ 1. Since m(0) = 0, limµ→0 µ/m(µ) = 1/m′(0) by L’Hopital’s

rule. Thus, limµ→0 εf (µ) = limµ→0 µm
′(µ)/m(µ) = limµ→0 µ/m(µ) · limµ→0m

′(µ) = 1.

Before we prove that limµ→0 εw(µ) = 0, we need the following simple mathematical result:

(n+ 1)x(1− x)n ≤ 1 for any x ∈ [0, 1] and n ∈ N0. When n = 0 and 1, the result is trivially

true. For n ≥ 2, FOC implies that for a given n, the maximum is reached when x = 1/(n+1).

The corresponding maximum is (1− 1
n+1

)n ≤ 1.

Next we prove that for general contact technologies (not necessarily invariant), limµ→0 µφµµ(µ, λ) =

0. Since for a given λ, φ(µ, λ) is analytic in µ, by equation (??) we have φµµ(µ, λ) =

−
∑∞

n=2Qn(λ)(n− 1) 1
λ
(1− µ

λ
)n−2. Therefore, µφµµ(µ, λ) = −

∑∞
n=2Qn(λ)(n− 1)µ

λ
(1− µ

λ
)n−2.

By the above result, Qn(λ)(n− 1)µ
λ
(1− µ

λ
)n−2 ≤ Qn(λ). Since

∑∞
2 Qn(λ) ≤ 1 and as µ→ 0,

(n − 1)µ
λ
(1 − µ

λ
)n−2 → 0 for any given n and λ, limµ→0 µφµµ(µ, λ) = 0 by the dominated

convergence theorem.

Since for invariant contact technologies, m(µ) = φ(µ, λ), we have limµ→0−µm′′(µ) = 0.

As shown above, m′(0) ∈ (0, 1]. Thus we have limµ→0 εw(µ) = limµ→0 µm
′′(µ)/m′(µ) = 0.

A.14 Proof of Proposition 9

The necessity follows directly from Proposition 3. We only need to consider the sufficiency

part.

When the contact technology is invariant, φ(µ, λ) depends only on µ, which implies that

S(µ, λ, y) defined in equation (6) is strictly concave in (µ, λ). Thus for each firm y, the optimal

choice of (µ, λ) must be unique. Therefore, (µ(y), λ(y)) or equivalently (ζ(y), λ(y)) must be

continuous and whenever ζ(y) is interior, they must be differentiable too. Thus the local

condition in (32) is also sufficient. Since for invariant contact technologies, φλ(µ, λ) = 0 for

any µ and λ, (32) becomes

f 1∆fy
f 1
y∆f

≥ ai

We first consider the PAC (PAM resp.) case, where by assumption ρ ≥ ac (am resp.).

Note that for invariant contact technologies, ac, am ≥ 1 by setting µ = λ in equation (41).

By (18), we have

f 1∆fy
f 1
y∆f

≥ (1 + κ)ρ − 1

κ
≥ ρ ≥ ai ≥ ai

where the second inequality is because of ρ ≥ 1.

Next, consider the NAC/NAM case, where we have assumed that ρ ≤ 0 = ac = am. Again
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by (18), we have

f 1∆fy
f 1
y∆f

≤ (1 + κ)ρ − 1

κ
≤ 0 < ai

Thus we have proved our claim.
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