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Abstract 
 
This paper addresses the selection of smoothing parameters for estimating the average treatment 
effect on the treated using matching methods. Because precise estimation of the expected 
counterfactual is particularly important in regions containing the mass of the treated units, we 
define and implement weighted cross-validation approaches that improve over conventional 
methods by considering the location of the treated units in the selection of the smoothing 
parameters. We also implement a locally varying bandwidth method that uses larger bandwidths 
in areas where the mass of the treated units is located. A Monte Carlo study compares our 
proposed methods to the conventional unweighted method and to a related method inspired by 
Bergemann et al. (2005).  The Monte Carlo analysis indicates efficiency gains from all methods 
that take account of the location of the treated units. We also apply all five methods to bandwidth 
selection in the context of the data from LaLonde’s (1986) study of the performance of non-
experimental estimators using the experimental data from the National Supported Work (NSW) 
Demonstration program as a benchmark. Overall, both the Monte Carlo analysis and the 
empirical application show feasible precision gains for the weighted cross-validation and the 
locally varying bandwidth approaches.   
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1. Introduction 

One of the fundamental contributions arising from the use of matching estimators in 

program evaluation over the last 15 years has been a better understanding of how 

disparate the distribution of covariates may be between treatment and comparison groups.  

Because many social programs select on criteria such as income, assets, past program 

participation, or past interaction with the criminal justice system, comparison groups 

drawn from the population at large, or even from crudely matched sub-populations, may 

contain an overwhelming number of observations that have virtually no use in an 

evaluation.  Thus, despite a large total number of observations, a comparison group may 

contain only a few observations relevant to evaluating the program. 

In this paper, we examine how the disparate distributions of covariates in the 

treatment and comparison groups affect the proper choice of the smoothing parameter.1  

Bandwidth selection has always posed a problem for evaluation methods that rely on 

kernel regression.  The broader statistical literature offers some guidance by suggesting 

the minimization of quadratic loss functions such as the mean integrated squared error 

(MISE) through cross-validation methods.  These data driven methods have the 

considerable advantage of allowing researchers to avoid arbitrary selection of 

bandwidths, and they converge to the optimal bandwidth, albeit at a slow rate.  At the 

same time, the conventional cross-validation approach selects the bandwidth using only 

the distribution of the untreated units while completely neglecting the location of the 

treated ones. As Figure 1 illustrates, this approach may be inappropriate in the context of 

estimating the average treatment effect on the treated because the shape of the regression 

function and distribution of covariates in regions with few treated observations may 
                                                 
1 Throughout this study we use the terms smoothing parameter and bandwidth interchangeably.     
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substantially affect the chosen bandwidth.  Although this general insight applies to a 

variety of different econometric estimators applied to the evaluation problem, we focus 

on propensity score matching estimators that rely on local constant and local linear 

regression to estimate the counterfactual outcome regression function because of their 

wide use in the applied literature.  

To account for the location of the treated units, we define and implement two 

weighted versions of the usual cross-validation bandwidth selection method.  In the first 

version, the weighting function gives to untreated units the same weight they receive in 

the estimation of the counterfactual outcomes.  This implies a different set of weights for 

each bandwidth considered in the bandwidth search grid, which may impose a 

computational burden.  In the second version, the weighting function consists of an 

estimated density function for the propensity scores of the treated units. Both versions 

reweight the data to reflect differences in the distributions of propensity scores between 

the treated and untreated observations.  

We also evaluate two alternative procedures.  The first one, inspired by 

Bergemann, Fitzenberger, and Speckesser (2005), we call the “nearest neighbor” method.  

This procedure accounts for the location of the treated units by using standard cross-

validation methods but counting the prediction errors only for the sub-sample of 

untreated units that are nearest neighbors of the treated units.  In the second, we 

implement a locally varying bandwidth approach that selects a bandwidth for each treated 

unit according to the local density of the untreated units, with narrower bandwidths in 

regions dense in untreated units and wider bandwidths in regions with few untreated 

units.   
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To the best of our knowledge, Frölich’s (2004) study represents the first to 

address the problem of bandwidth selection in the context of local polynomial matching 

estimators.2 He finds that conventional cross-validation bandwidth choice, which does 

not account for the location of the treated units, performs well in small samples.   

We study the finite-sample performance of the various bandwidth selection 

methods using a Monte Carlo analysis that combines three pairs of propensity score 

densities with four different regression functions for the untreated outcome.  This 

analysis yields four main conclusions.  First, conventional unweighted cross-validation 

consistently yields larger MSE than any of the four methods that take account of the 

location of the treated units.  Second, of the two weighted cross-validation methods we 

propose here, the variable weight method does better for local linear rather than local 

constant kernel matching.  Third, the locally varying bandwidth method and the nearest-

neighbor approach generally perform better than the other methods, particularly in the 

most difficult density designs and when using the Epanechnikov kernel.  Fourth, the 

shape of the regression function does not consistently determine the performance of the 

alternative bandwidth selection procedures. 

We also apply the various bandwidth selection methods to the data from 

LaLonde’s (1986) analysis that compares experimental and non-experimental estimates 

of the impact of the U.S. National Supported Work (NSW) Demonstration program. 

These data, also analyzed by Dehejia and Wahba (1999, 2002), and Smith and Todd 

(2005a,b) (and many others) include two different comparison group samples in addition 

to the experimental treatment and control groups.  Three main results emerge from this 

                                                 
2 Ichimura and Linton (2001) also study the problem of selecting optimal smoothing parameters when 
estimating average treatment effects.  However, they focus on the non-parametric series estimator proposed 
by Hirano, Imbens, and Ridder (2003). 
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analysis.  First, the variable weight approach and the fixed weights approach based on the 

density of the treated units both yield non-trivial efficiency gains relative to conventional 

cross-validation.  Second, the nearest neighbor approach generates a lot of variability in 

the estimated impacts and displays a lot of sensitivity to the choice of kernel function. 

Third, the locally varying bandwidths do not do as well as in the Monte Carlo analysis.  

 The remainder of the paper proceeds as follows.  Section 2 discusses 

identification and estimation while Section 3 lays out the general problem of optimal 

bandwidth selection as well as the conventional solution.  Section 4 lays out the various 

bandwidth selection schemes we examine.  Section 5 describes the Monte Carlo analysis 

and its findings while Section 6 describes our application of the various bandwidth 

selection methods to the National Supported Work data.  Section 7 concludes. 

 

2. Identification and Estimation 

2.1 Identification 

In recent years, matching estimators have received a lot of attention in economics as a 

flexible alternative to traditional parametric regression methods when the data contain a 

sufficiently rich set of observable determinants of treatment and outcomes to justify a 

“selection on observables” assumption.  See, for instance, Heckman, Ichimura and Todd 

(1997, 1998), Heckman, Ichimura, Smith and Todd (1998), Hirano, Imbens and Ridder 

(2003), Imbens (2004), and Smith and Todd (2005a, b).  This section discusses 

identification and estimation in the context of the potential outcomes framework 

commonly used in this literature, with a special focus on matching estimators that rely on 



 5

local polynomial regression to estimate the expected counterfactual outcome for each 

treated unit. 

 Let 1Y  and 0Y  denote the potential outcomes conditional on participation and non-

participation, respectively.  Let {0,1}iT ∈  indicate participation.  In many (if not most) 

evaluation contexts, interest centers on the mean impact of treatment on the treated, given 

by 1 0( | 1) ( | 1)TT E Y T E Y TΔ = = − = ; we focus our analysis on this parameter.   

 Data on program participants identify 1( | 1)E Y T = . The mean counterfactual 

outcome 0( | 1)E Y T = , however, is missing and cannot be directly identified from the 

data.  Matching proceeds by invoking the Conditional Independence Assumption (CIA),  

 0 | .Y T X⊥        (1)  

Under (1), 0 | 1 | 1( | 1) ( ( | , 1)) ( ( | , 0))X T X TE Y T E E Y X T E E Y X T= == = = = =  for all values of 

X that satisfy the common support condition Pr( 1| ) 1T X= < .  This latter condition 

guarantees the existence (at least in the population) of non-participants with the same 

values of X as all of the participants.3   

 We can think of matching as using predicted values from a regression of 0Y  on X 

to form the expected counterfactual outcome for each treated unit.  More formally, 

0( | 1)E Y T = = ( ) ( | 1)xm x f x T dx=∫ , where 0( ) ( | )m x E Y X=  denotes the conditional 

mean function given non-participation and ( | 1)xf X T =  denotes the density of X 

conditional on participation.  

                                                 
3 As noted in Heckman, Ichimura and Todd (1997), Assumption (1) can be weakened to conditional mean 
independence.  
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As discussed in, e.g., Pagan and Ullah (1999), the number of covariates included 

in X generally determines the rate of convergence for nonparametric estimators of the 

regression function.  Thus, including a rich covariate set X in the hope of satisfying the 

CIA can lead to extremely slow convergence rates.  Rosenbaum and Rubin (1983) show 

that if the CIA holds for X then it also holds for the conditional probability of 

participation ( ) Pr( 1| )P X T X= =  or propensity score.  Replacing X with ( )P X , the CIA 

becomes 0 | ( ).Y T P X⊥   Matching on the scalar propensity score reduces the 

dimensionality of the problem of estimating the conditional mean function for the 

untreated outcome from dimension of X  to one.  Of course, this does not really solve the 

problem, but instead pushes it back to the level of estimating the probability of 

participation.4  

2.1 Estimation 

The sample analog to the integral above constitutes the estimator for the counterfactual 

mean given matching on the propensity score, 

0
ˆ ( | 1)E Y T = = 1

1 1
ˆ(1/ ) ( )n

ii
n m ρ

=∑ ,     

where ˆ( )i iP x ρ= , ˆ ( )im ρ  indicates a regression estimator of ( )m ρ  evaluated at the 

covariate values of participant i, and 1n  denotes the size of the participant sample.  The 

literature suggests a wide variety of ways to estimate the conditional mean function non-

parametrically.  We focus our attention on local constant and local linear matching 

                                                 
4 In the matching context, researchers typically adopt a flexible parametric specification for the propensity 
score, thus changing the overall procedure from a non-parametric to a semi-parametric one. Balancing tests, 
as described in, e.g., Smith and Todd (2005b) and Lee (2006), then guide the selection of the flexible 
parametric specification for a given set of conditioning variables thought to satisfy the CIA. Todd (2002) 
and Kordas and Lehrer (2004) examine semi-parametric estimation of the propensity score.  Hirano, 
Imbens and Ridder (2003) propose a non-parametric series estimator for the propensity score. 
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estimators of the conditional mean function (Heckman et al. 1997) but, as noted in the 

introduction, our general point applies to all non-parametric and semi-parametric 

estimators that require a bandwidth choice or its equivalent, as with the number of terms 

in an expansion, the number of strata or the number of nearest neighbors. 

The general form of the matching estimator for the impact of treatment on the 

treated is given by 

{ }1 1 0
1 1

1 1ˆ ( ) ( , )M
TT i i i h i j j

i C i C j C
Y m Y W Y

n n
ρ ρ ρ

∈ ∈ ∈

⎧ ⎫⎧ ⎫⎪ ⎪Δ = − = −⎨ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭⎩ ⎭

∑ ∑ ∑ ,  (2) 

where iY1  and 0 jY  indicate the outcome for treated unit “i” and untreated unit “j”, C 

denotes the region of common support, 1n and 0n  denote the number of treated and 

untreated units, respectively, and ( , )h i jW ρ ρ  indicates the weight that untreated 

observation “j” receives in the construction of the estimated expected counterfactual 

outcome for treated unit “i”.5  The weights depend on the particular kernel function 

employed, the smoothing parameter h, and the choice of local constant or local linear 

regression. 

 The local polynomial regression estimator of the conditional mean function equals 

0β̂  from the solution to the optimization problem 

0

0,

2
0... 1 0

ˆmin ( ( ) ) ( )
p

n p
j im

j m j i
j m

Y K
hβ β

ρ ρ
β ρ ρ

= =

−
− −∑ ∑ ,    

where 0, 1
ˆ ˆ ˆ( ,..., )pβ β β denotes a vector of regression coefficients, p denotes the order of the  

                                                 
5 The literature typically distinguishes only casually between the region of common support in the 
population and that in the sample at hand.  We assume full common support in the population and then 
impose a more restrictive common support condition in the sample as described below. 
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local polynomial, and ( )K ⋅  denotes a symmetric kernel function satisfying some 

assumptions. Fan, Gasser, Gijbels, Brockmann, and Engel (1997), present the general 

solution to this problem. When 0=p , the resulting estimator corresponds to local 

constant kernel regression (called the Nadaraya-Watson estimator in statistics), with the 

implied weights,   

0

( , ) ij
h i j

igg T

K
W

K
ρ ρ

∈ =

=
∑

,   (3) 

where (( ) / )ij j iK K hρ ρ= − .  The corresponding weights for the local linear regression 

are given in equations (2.2)-(2.4) of Fan (1992). 

 As discussed in Fan (1992), several issues arise in choosing between the local 

linear and local constant kernel regression estimators.  The local linear estimator 

converges faster near boundary points (a potentially important property in contexts 

with many estimated propensity scores near zero or one) and appears more robust to 

different data designs.  Intuitively, the local linear estimator should perform better in 

contexts with the untreated units distributed asymmetrically around the treated units 

and a relatively steep conditional mean function.  At the same time, the local linear 

estimator demands more of the data because it estimates one additional parameter in 

every local regression.  This suggests the possibility that the local constant estimator 

might have lower mean squared error in finite samples. Given the lack of a clear 

choice between the two in many applied contexts, we consider both estimators in our 

Monte Carlo and empirical analyses later on. 
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3. Optimal Bandwidths for Average Treatment Effects   

3.1 The standard approach 

The greater flexibility associated with non-parametric estimation of the conditional mean 

function comes with a price: bandwidth selection.  Choosing too narrow a bandwidth 

leads to under-smoothing.  This means an unstable estimated function that confuses noise 

in the data for features of the population regression function.  In contrast, choosing too 

wide a bandwidth leads to over-smoothing.  This means that potentially interesting and 

important features of the population regression function get smoothed away in the 

estimation.  In the particular case of matching, the bandwidth affects the number of 

untreated units used to estimate the expected counterfactual outcome for each treated 

unit.  Too large a bandwidth means including untreated units quite different from each 

treated unit in the estimation while too small a bandwidth means using only one or two 

untreated units for each treated unit, with noisy estimates the result. 

 To avoid the excesses of bias or variance associated with a poor bandwidth 

choice, the standard approach chooses the bandwidth based on some measure of fit, 

typically the Mean Integrated Squared Error (MISE), given by 

 2ˆMISE ( [ ( ) ( , )] )E m m h dρ ρ ρ= −∫ 2 ˆ ˆ[bias ( ( )) var( ( ))]m m dρ ρ ρ= +∫ .   

The MISE criterion embodies a particular trade-off between bias and variance; Pagan and 

Ullah (1999) discuss alternative fit criteria.  Calculation of the MISE requires the 

pointwise bias and variance of the regression function.  The derivation of analytical 

formulae for these quantities builds on the following standard assumptions,  

(A-1) Sampling of { , }i iX Y  is i.i.d., with Var( )iY < ∞ ;   

(A-2) 0→= nhh  and ∞→nh  as n →∞ ; 
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(A-3) ( )m ρ  has a bounded and continuous second derivative and | 0 ( )Tfρ ρ= is 

continuous and bounded away from zero in the neighborhood of ρ where ρ  is a 

point in the interior of the support; 

(A-4) ( )K ⋅  is symmetric density function satisfying the following properties: 

(i) ∫ =1)( dzzK , (ii) ( ) 0zK z dz=∫ , (iii) 2
2( )z K z dz κ= <∞∫ , (iv) 2 2( )i iK z dz κ=∫ , 

where 2κ  refers to the second-order kernel and 2κ  refers to the square of the 

kernel function. 

Assumptions (A-1) through (A-2) guarantee consistency of the MISE for both the local 

constant and local linear estimators.  Assumption (A-3) allows us to evaluate the 

formulae for the bias and variance given below.  Assumption (A-4) assumes a second 

order kernel with bounded and nonzero first and second moments.  We can easily 

generalize this assumption to the multivariate case through higher order kernels, with the 

order determined by the largest nonzero moment.  Assumption (A-4) also implies 

symmetry around zero for the kernel functions; a large class of kernel functions, 

including the normal and Epanechnikov kernels, satisfies (A-4).  

 Fan (1992) proves that under assumptions (A-1) to (A-4) the (asymptotic) 

pointwise bias and variance of the local constant and local linear regressions estimators 

are approximated by  

{ }
2

LCR | 0 2 | 0 2
| 0

ˆbias ( ( )) ( ( ) ( ) 2 ( ) ( )
2 ( ) T T

T

hm m f m f d
f ρ ρ
ρ

ρ ρ ρ κ ρ ρ κ ρ
ρ = =

=

′′ ′ ′≈ +∫ ,   

{ }
2

LLR 2ˆbias ( ( )) ( ( )
2
hm m dρ ρ κ ρ′′≈ ∫ ,     

2 2
0

LCR LLR
0 | 0

( )1ˆ ˆvar ( ( )) var ( ( ))
( )T

m m d
n h fρ

κ σ ρ
ρ ρ ρ

ρ=

≈ = ∫ ,    
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where 2
0 ( )σ ρ  denotes the conditional variance of the untreated outcome.6 In conventional  

nonparametric regression, cross-validation methods are often used to minimize the MISE 

criterion.  Hall (1983) and Stone (1984), among others, have shown that bandwidths 

selected by cross-validation converge to the MISE-minimizing bandwidth.7    

3.2 Problems with the standard approach 

The standard approach has problems in the context of matching estimators.  First, and 

most obviously, the object of interest in the matching case consists of the estimated 

average treatment effect rather than the regression function for the untreated outcome. 

Therefore, we are interested in minimizing the mean squared error (MSE) of the 

matching estimator rather than the MISE of the regression function.8 Given the additional 

averaging involved in constructing the matching estimate, we should not expect that a 

bandwidth that minimizes the MISE for the regression function also minimize the MSE 

of the matching estimator.  

Second, the chosen bandwidth does not depend on the location of the treated 

units.  As illustrated in Figure 1 and discussed in the introduction, when using 

observational data, imbalance in the distributions of conditioning variables between the 

treated and untreated samples may lead to poor bandwidth choice.  Intuitively, things will 

go wrong if the optimal bandwidth in the region of low propensity scores, where most 

untreated units lie, differs from the optimal bandwidth in the region of high propensity 
                                                 
6 Fan’s (1992) proofs also require a known propensity score.  Given a parametric propensity score model, 
the variance component from the propensity score estimation converges faster than the variance component 
from the non-parametric regression, and so does not matter for the (asymptotic) results. 
7 The rate of convergence of cross-validation is glacial, of the order of 1/10n−  (Pagan and Ullah 1999).  See 
the related discussion, references and simulation results in Loader (1999). 
8 As discussed in detail in, e.g., Li and Racine (2007), MSE and MISE represent different, but closely 
related, concepts.  MSE applies to a specific point (as in our variable bandwidth scheme) or estimator (as 
when minimizing the MSE of the matching estimator of the treatment effect.  MISE constitutes a global 
criterion defined over an entire regression function; the standard approach uses cross-validation in an 
attempt to minimize the MISE of the estimated regression function for the untreated outcome. 
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scores where most of the treated units lie.  The more numerous untreated units with low 

propensity scores will dominate the bandwidth choice under the standard approach, 

which may lead to substantively important pointwise biases where it matters – in the 

region of high propensity scores.   

To address both problems in the context of matching estimators, Frölich (2005) 

derives an asymptotic linear approximation to the MSE of the expected counterfactual 

outcome (the part of the matching estimator that relies on the non-parametric estimate of 

the conditional mean function) and then uses the approximation to guide bandwidth 

selection.  Frölich (2005) demonstrates that under assumptions (A-1) to (A-4) above the 

second-order linear approximations to the bias and variance of the expected 

counterfactual outcome for the local constant and local linear estimators depends on the 

location of the treated units.  

 Though potentially promising, this approach has (at least) three problems.  First, 

Frölich’s (2005) own Monte Carlo analysis suggests a lack of sensitivity of the 

approximate MSE, which turns out to be quite flat, to the bandwidth choice.  In 

particular, he finds that his approach tends to pick bandwidths that substantially under-

smooth the conditional mean function.  Second, from a practical standpoint, the 

approximate bias and variance depend on several unknowns, such as the population 

regression and density functions.  Estimating these unknowns notably increases both 

required research time and the computational burden of the overall estimation.  Third, 

estimation of these unknowns involves the selection of additional smoothing parameters.  
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4. Weighted Cross-Validation 

4.1 Basic idea 

We propose a weighted leave-one-out cross-validation bandwidth selection approach that 

accounts for the location of the treated units, and thus may improve over the 

conventional cross-validation algorithm.   As outlined in Stone (1974), the conventional 

approach estimates the MISE associated with any given candidate bandwidth using 

leave-one-out cross-validation.  See, e.g. Black and Smith (2004) for an application.  

 Formally, the standard approach chooses the bandwidth h to minimize the 

approximation to the MISE (of the estimated counterfactual mean regression function) 

associated with a particular bandwidth given by 

 
0

2
C 0

10

1 ˆMISE ( ) arg min ( ( ), ))
n

j j j
h j

h Y m h
n

ρ−
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ,   (4) 

where ˆ ( , )j jm hρ−  denotes the estimated conditional mean function for the untreated 

outcome evaluated at jρ  using all of the untreated units except unit “j”.  The omission of 

unit “j” avoids a minimum of zero at a bandwidth small enough that only observation “j” 

receives positive weight in estimating the conditional mean function at jρ .  The cost of 

omitting unit “j” is that the cross-validation proceeds with a sample size one smaller than 

the sample actually used in the estimation of the treatment effect.  The benefit comes 

from using out-of-sample forecasts rather than in-sample fit to guide the bandwidth 

choice.  This approach implicitly weights the MISE calculation by the distribution of 

estimated propensity scores in the untreated sample.  Operationally, the traditional 

approach proceeds via a grid search. 
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 Our method proceeds along the same path as the conventional method just 

described, but instead weights the MISE criterion using the distribution of estimated 

propensity scores in the treated sample rather than the distribution in the untreated 

sample.  In this way, the selected bandwidth should provide a lower local mean squared 

error for the regression function in the regions dense with treated units, typically regions 

of relatively high propensity scores, rather than in regions dense with untreated units.  

While our scheme is not fully efficient (relative to selecting the bandwidth by 

minimizing the MSE at each point) at the usual task of minimizing the MISE of the 

regression function, it should lead to a lower MSE for the matching estimator than naïve 

cross-validation.9 

 In notation, we replace the MISE criterion given in equation (4) above with the 

alternative MISE criterion 

  
0

2
W 0

10

1 ˆMISE arg min ( ( , )) ( , )
n

j j j j j
h j

Y m h W h
n

ρ ρ−
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ,   (5) 

where ( )jW ⋅  denotes a weighting function that depends on the relative density of treated 

units in the vicinity of jρ .  In this paper, we implement three alternative definitions of 

( )jW ⋅ , which we define in the next two sub-sections. 

4.2 Variable Weights 

Under the first definition of the weighting function, each untreated unit receives the same 

weight (i.e. that given in equation (2) for the local constant case and that given in Fan 

(1992) for the local linear case) that it receives in the estimation of the expected 
                                                 
9 Intuitively, choosing a single bandwidth by minimizing the MISE via conventional cross-validation will 
be less efficient than pointwise bandwidth selection.   We expect the conventional approach to pick a 
bandwidth that oversmooths in the region of low propensity scores and undersmooths in the region of high 
propensity scores.  Our method works against this tendency in the region of high propensity scores and so, 
while not fully efficient, should yield a lower MSE for the matching estimand.  
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counterfactual outcome, a quantity that clearly varies with h.  For instance, in the local 

constant case with bandwidth h, observation “j” receives the following total weight in 

constructing the counterfactual mean from the 1n  treated observations: 

1

0
1

1

(( ) / )
( )

(( ) / )

n
j i

j n
i

j l
l

K h
W

K h

ρ ρ

ρ ρ=

=

−
⋅ =

−
∑
∑

.      

Each term in the sum represents the weight on untreated observation “j” in constructing 

the estimated expected counterfactual for treated observation “i”.  For kernel functions 

like the Epanechnikov, which has compact support, if any treated unit falls outside the 

support region spanned by h, the corresponding term equals zero.  This feature of the 

weights can lead to odd behavior in finite samples; in particular, it can lead to 

discontinuous jumps in the estimated MISE of the regression function (and MSE of the 

matching estimator) as treated units move in and out of the support region as the 

bandwidth changes. 

A quick inspection of the equation reveals that untreated units located near the 

mass of the treated units (typically those with higher scores) receive on average higher 

weights in the construction of the estimated MISE than untreated units located at a 

distance from the mass of the treated units. 

4.3 Fixed Weights 

The second definition of the weighting function defines the weights as proportional to the 

estimated density of the propensity scores among the treated units.  Under this definition, 

the weights do not vary with the bandwidth.  We propose estimating this density using 

standard non-parametric estimators as in Silverman (1986).  Doing so requires an 
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additional bandwidth choice (which, of course, the first definition of the weights does 

not).  We use least squares cross-validation as in Hall, Racine and Li (2004). 

 More formally, we estimate the density as  

1
{ 1}1

1ˆ ( | 1, ) (( ) / )T j i j d
i T

f T K h
n

ρ ρ ρ ρ=
∈ =

= = −∑     

for each value of jρ  present in the untreated sample, where dh  denotes the bandwidth 

(different, in general, from h) used in the density estimation.  We then define the weights 

by dividing each density estimate by the sum of the density estimates so that the weights 

sum to one.  Like the first definition of the weighting function, this one implies a larger 

weight on the mean squared error associated with untreated units near the mass of the 

treated units when constructing the MISE of the regression function than does the 

conventional approach. 

 The third definition avoids the estimation of the density function by weighting 

comparison group observation “i” by the re-scaled odds ratio, given by 

1

{ 0}
( )

(1 ) (1 )
j l

j
l Tj l

W
ρ ρ
ρ ρ

−

∈ =

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

∑i . 

This weighting scheme causes the comparison group have the same distribution of 

profiling scores as the treatment group.  Those familiar with propensity score weighting 

methods will recognize this as the same weights used to estimate the impact of treatment 

on the treated in Hirano, Imbens, and Ridder (2003); see also Horvitz and Thompson 

(1952), DiNardo, Fortin and Lemiexu (1996) and Imbens (2004).  Under this weighting 

scheme, small deviations in the estimates of 0Y  for values of ρ  near one get penalized 

much more heavily than those for values of ρ  near zero. 



 17

 

4.4 A nearest-neighbor approach 

Bergemann et al. (2005) propose an alternative weighted bandwidth selection scheme 

similar in spirit to our own.10  Their approach minimizes the MSE of the matching 

estimator by selecting the smoothing parameter by cross-validation on the sample of 

nearest-neighbor untreated units.  More specifically, their scheme minimizes  
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( ) ( ) ( )1
1

1 ˆ ( ), )n
nn i nn i nn ii
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⎝ ⎠
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where ( )nn i  denotes the index of the untreated nearest neighbor of treated unit “i”.  We 

do not adopt their method as they define it because their version allows positive and 

negative prediction errors to cancel out – a very unattractive feature in our view.11  

Instead, we square the prediction errors but retain the idea of counting the prediction 

errors only for the sub-sample of untreated nearest neighbors to the treated observations.  

 Our variant of their method starts by finding the nearest neighbor untreated unit 

for each treated unit based on absolute distances in propensity scores.  A given untreated 

unit may get selected more than once if it represents the nearest neighbor to multiple 

treated units.  It then chooses the bandwidth by minimizing the MISE based on the sum 

of squared prediction errors from leave-one-out cross-validation for the set of nearest 

neighbor untreated units.  Formally, the selected bandwidth minimizes 

1 20
( ) ( ) ( )
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10 Flossmann (2006) suggests a bandwidth choice algorithm that builds on Ruppert’s (1997) Empirical Bias 
Bandwidth Selection (EBBS) method.  His ongoing work show efficiency gains and increased stability 
relative to conventional cross-validation approaches.   We do not study his method here as it remains in 
development. 
11 A limited Monte Carlo analysis using the Bergemann, et al. (2005) method as defined in their paper 
confirms that it yields larger MSE for the matching estimator than our variant of it. 
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The main difference between this selection method and the other three proposed directly 

above lies in how they respond to increases in the size of the comparison group, holding 

the size of the treatment group fixed.  The nearest neighbor method continues to evaluate 

the prediction errors only for the nearest neighbor observations, though these will get 

closer, on average, to the treated observations as the size of the comparison sample 

increases.  In contrast, the three methods we propose evaluate the prediction error at all of 

the comparison observations (with some, of course, receiving more weight than others).  

As a result, we expect the relative performance of our methods to improve as the number 

of comparison observations increases.  

 

4.5 Locally varying bandwidths  

It is well known – see, e.g., Herrmann (1997) – that nonparametric kernel regression 

estimators exhibit increased bias around peaks in the regression curve and increased 

variance in regions with a low density of the explanatory variable.  Bandwidth selection 

schemes that select a separate bandwidth for each point attempt to overcome these 

problems with the standard fixed bandwidth estimator.  Employing such locally varying 

bandwidths in the context of sparse and/or rough data has generated a large literature in 

statistics; see e.g. Müller and Stadtmüller (1987), Fan and Gijbels (1995), and Fan, Hall, 

Martin, Patil (1996).12   

In this paper, we implement locally varying bandwidths using a method inspired 

by the standard “plug-in” approach in the literature.  As described in, e.g., Song et al. 

(1995) and Loader (1999) the “plug-in” arises by solving for the bandwidth that 

                                                 
12 Nearest-neighbor matching can be thought of as a kernel smoother with the uniform kernel and a data-
dependent bandwidth.  
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minimizes a second-order Taylor series expansion of the asymptotic MSE of a regression 

function for a generic data generating process at a given point as a function of the sample 

size and some parameters.  In particular, the bandwidth that solves this problem is given 

by 
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and ( )K ⋅  is a kth order kernel, 2
0 ( )σ ρ is the conditional variance, 0n is the size of the 

comparison sample, ( )km ρ is the kth derivative of ( )m ρ , and 0 ( )Tf ρ= is the density of the 

propensity scores for the untreated units. 

 We avoid the computational burden of calculating the densities and the 

derivatives by using the (admittedly somewhat atheoretic) approximation  
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where CVh  denotes the bandwidth from conventional cross-validation.  Our 

approximation draws inspiration from the (very) similar approximation in equation (2.7) 

of Song et al. (1995).  We add in reweighting based on the distribution of the propensity 

scores of the treated units, where the reweighting relies on the fact that, as noted in 

Heckman and Todd (1995),  
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 Using this method, we proceed to estimate the same parameter but with 

( , )h i iW ρ ρ  in equation (2) replaced with ( ) ( , )
ih i jW ρ ρ ρ .  In regions rich in comparison 

units (i.e. the low propensity score regions), the estimation of the expected counterfactual 

outcome in the matching estimator relies on relatively narrow bandwidths, whereas in 

regions with few comparison units (i.e. the high propensity score regions) the estimation 

relies on wider bandwidths. 

  

5. Monte Carlo Analysis 

5.1 Design of the Monte Carlo analysis 

In this section we examine the finite sample properties of local constant and local linear 

matching estimators when choosing bandwidths using the conventional method, our three 

proposed fixed bandwidth selection methods that weight the criterion function based on 

the distribution of treated units, the nearest neighbor method inspired by Bergemann et al. 

(2005), and our locally varying bandwidth approach.   

 Our Monte Carlo design consists of twelve different settings, where each setting 

corresponds to a combination of two propensity score densities, 1( )Tf ρ=  for the treated 

units and 0 ( )Tf ρ=  for the untreated units, and a conditional mean function 

0( | ) ( )E Y mρ ρ= .  We follow Frölich’s (2004) specification of the propensity score and 

use ˆ( )P X Xρ α β= = + , where α  is the parameter that controls the number of treated 

units relative to the number of untreated units, β  is the parameters that controls the 

spread of the propensity score values, and X the univariate covariate drawn from the 

Johnson SB distribution (Johnson, Kotz, and Balakrishnan, 1994).  Because the support of 
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the propensity scores is ( , )α α β+ , we re-scaled the scores by ( ) /ρ α β−  to ensure that 

its support lies always in (0,1) in all simulation designs.  As in Frölich (2004), we use 

known rather than estimated propensity scores. 

 Figure 2A displays three different density designs corresponding to three different 

combinations for (α ,β ): {(0,1), (0.25, 0.5), (0.1, 0.3)}. These parameter values generate 

combinations of density functions that differ in both the amount of separation between 

the treated and untreated distributions and the ratio of control to treated observations. The 

appendix provides the formulae for the densities. The first design, D1, has the strongest 

separation among the three, design D2 somewhat less separation and design D3 the least 

separation.  Both designs D1 and D2 have a ratio of treated to control units equal to 

approximately 1:1; in contrast, design D3 has a ratio of treated to control units of 

approximately 1:3.  The exact sample sizes equal 202 treated and 198 untreated for D1 

and D2, and 108 treated and 292 untreated for D3.  The represent small sample sizes 

indeed to what one would want when applying non-parametric methods; we use small 

sample sizes here to accentuate the performance differences between the different 

methods.  Regardless of the bandwidth selection method and estimator employed, we 

expect the third design to have the smallest MSE for the matching estimator. 

Figure 2B illustrates the four different conditional mean functions for the 

untreated outcome that we consider.  These differ in their monotonicity and their degree 

of non-linearity.    In particular, the first regression curve (M1) is linear, the second (M2)  

is concave and free of any local roughness, the third (M3)  is highly nonlinear and the 

fourth (M4) has a bimodal shape with the largest “bump” placed in a region with 

relatively high propensity scores and thus dense in treated units.  The appendix provides 
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the exact formulae for the regression functions.  The first and second conditional mean 

functions represent the most realistic cases in most contexts; the others serve to test the 

bandwidth selection methods under relatively extreme circumstances. 

 We sample observations from each one of the four regression curves and then add 

a lognormal error, which when transformed to a normal random variable has mean zero 

and standard deviation of 3.  This error distribution implies a large variance for the 

outcome variables, consistent with the usual situation when using earnings as a dependent 

variable in program evaluations.13 

 The estimation of the MSE proceeds as follows: First, we compute the population 

value of the counterfactual outcome for the given propensity score densities and 

conditional mean function.  Next, we simulate the bias and variance of the matching 

estimator using Monte Carlo samples of size 0 1k n n= + .  Within the simulation, the 

process for each Monte Carlo sample proceeds as follows.  First, we draw 1
0 1{ , }n

i i iYρ =  for 

the treated units, using the conditional mean impact function given in the appendix to 

obtain the corresponding values of 1iY .14  Then we draw 0
0 1{ , }n

j j jYρ =  for the untreated 

units.  Next we determine the bandwidth choice implied by each selection method for the 

current sample.15  Finally, we compute the matching estimates corresponding to each of 

the selected bandwidths and save them.  Once we have completed this process for all of 

the Monte Carlo samples, we compute the estimated bias and variance associated with 
                                                 
13 The non-zero mean of the error term, which equals about 90, has no effect on the results; in the 
parametric analogue to our non-parametric regressions it would get absorbed in the intercept. 
14 Given our focus on the mean effect of treatment on the treated parameter, the choice of fixed versus 
heterogeneous treatment effects and of the particular form of the treatment effects within these classes, has 
no effect on the relative performance of the alternative bandwidth selection methods, which depend only on 
the distributions of the untreated units used to estimate the expected counterfactual mean outcome of the 
treated units. 
15 The grid for the bandwidth search in the local constant case equals [0.01, 0.03,…, 0.51] while in the local 
linear case it equals [0.03,0.05,…,0.61].   
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each bandwidth selection algorithm by comparing the estimated expected counterfactual 

outcomes they produce to the true values (which we calculate using the known 

population regression function).  In the case of the locally varying bandwidth algorithm 

we use the mean (over the Monte Carlo simulation samples) of the bandwidths from 

conventional cross-validation as our value of CVh  in the formula for ˆ( )h ρ  when 

computing the matching estimates. We repeat the entire exercise for both the local 

constant and local linear matching estimators using both the Epanechnikov and Gaussian 

kernel functions.16 

   

5.2 Results from the Monte Carlo analysis   

Tables 1 and 2 present the estimated MSEs and the means of the selected bandwidths for 

Epanechnikov and Gaussian kernels, respectively.  Panel A of each table presents results 

using local constant kernel while Panel B of each table presents results using the local 

linear kernel. Within each panel, the first five rows correspond to the design D1, the 

second five rows correspond to the design D2, and the last five rows correspond to the 

design D3.  Because we want to compare the relative performance of alternative 

bandwidth selection methods rather than examining their performance relative to an ideal 

standard, we do not present MSE estimates based on the optimal bandwidth in the 

population. 

Four general patterns appear in the Monte Carlo results whether or not we take 

account of the location of the treated units in bandwidth selection.  First, the MSE of the 

matching estimators increases when the extent of the overlap between the treated and 

                                                 
16 As Silverman (1986) notes, both kernel functions are nonnegative everywhere and almost equally 
efficient on the basis of MISE. 
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untreated propensity score densities decreases.  To see this, compare the most difficult 

density design, D1, in which most of the mass of the treated units lies in the region with 

little mass for the comparison group, with the design with the greatest overlap, D3.  

Second, the Gaussian kernel performs better than the Epanechnikov kernel, 

particularly in the most difficult designs, D1 and D2. This result holds for local constant 

and local linear matching and all five bandwidth selection approaches.  Taking distant 

observations into account in the estimation helps with the small sample sizes. On the 

other hand, when the distribution of propensity scores between the treated and untreated 

units is not so disparate and the number of untreated units is much higher than the treated 

ones, as in D3, the difference between the Gaussian and the Epanechnikov kernel 

disappears. 

Third, local constant matching consistently performs better than local linear 

matching, particularly in the most difficult density designs with many treated and 

untreated observations near the boundary at zero. As discussed in Seifert and Gasser 

(1996), in regions of sparse data, the denominator of the weights implicit in the local 

linear estimator can end up quite small, leading to very large values of the ratio and 

thereby very large values of the MSE for particular observations.  As the simulations 

make clear, the Gaussian kernel partially ameliorates this problem by drawing on distant 

observations ruled out by the compact support implicit in the Epanechnikov kernel.17  As 

a result, the MSEs for the local linear estimator end up smaller with the Gaussian kernel 

than the Epanechnikov kernel, often substantially so.   

                                                 
17 Alternatively, one can modify the local linear estimator by adding a ridging term to its denominator.  The 
resulting ridge regression estimator represents a weighted average of the local constant and the local linear 
regression estimators. See Seifert and Gasser (1996) for the statistical details and Frölich (2004) for an 
application in a matching context.    
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Fourth, the mean bandwidths selected by all of the methods behave in expected 

ways.  The algorithms select, on average, larger bandwidths for the Epanechnikov kernel 

(due to its compactness) than for the Gaussian kernel.  They also select larger bandwidths 

for local linear regression than for local constant regression because the former requires 

the estimation of more local parameters.  Particularly in designs D1 and D2, we find that 

all of the methods generally select narrower bandwidths for the regression functions with 

the non-linearities located in regions with many treated units, such as M3 and M4.  In 

contrast, we tend to observe the largest bandwidths for the linear and convex regression 

functions, M1 and M2.  

 Now consider the relative performance of the various bandwidth selection 

methods.  In general, the methods that take account of the location of the treated units 

select larger bandwidths than conventional cross-validation.  This comes as no surprise; 

by focusing on regions with more treated units, these methods also focus on regions with 

fewer untreated units, and so select larger bandwidths.   

 In addition to this general pattern, we observe important differences in the mean 

bandwidths selected by the different methods.  The variable-weights method yields larger 

bandwidths than those emerging from the fixed-weight methods, where the latter 

typically differ only modestly from those selected by conventional cross-validation.  On 

the other hand, the nearest-neighbor approach yields the largest bandwidth values for 

most combinations of regression functions and density designs.  This tendency appears 

most strongly for local linear with the Epanechnikov kernel, where this method 

sometimes chooses a bandwidth almost twice as large as those selected by the fixed 

weight and variable weight methods.  
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Do these differences in selected bandwidths imply substantial efficiency 

differences among the alternative bandwidth selection models?  Four key patterns emerge 

from Tables 1 and 2.  First, in general we observe rather modest efficiency gains when 

accounting for the location of the treated units in the selection of the bandwidths.  This 

pattern appears most often for the most difficult density design, D1, where conventional 

cross-validation almost never has the lowest average MSE over our 500 simulations and 

when using the Epanechnikov kernel.   

Second, of the five methods that we implemented, the locally varying bandwidth 

selection method nearly always shows the lowest MSE. This result holds for local 

constant and local linear kernel matching, for all three density combinations and for both 

kernels. Using larger bandwidths in areas where the distribution of the untreated units has 

low density and smaller bandwidths in high-density areas show significant reductions in 

the MSE of the matching estimators.      

Third, the relative efficiency of the alternative bandwidth selection models 

depends strongly on the choice of kernel functions.  In both Table 1 and Table 2 the 

locally varying and nearest neighbor approaches almost always produces the lowest 

average MSE when using the Epanechnikov kernel but less frequently when using the 

Gaussian kernel.  The larger bandwidths selected (on average) by the nearest neighbor 

approach appear to provide a real benefit in the case of the Epanechnikov kernel, as it 

helps the matching estimator to avoid small denominators even when the kernel assigns 

zero weight to all relatively distant observations.  The Gaussian kernel avoids this 

problem by assigning a non-zero weight to distant observations; as a result, for this kernel 
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the large bandwidths the nearest neighbor method selects make its performance relatively 

worse.   

 Fourth, perhaps surprisingly, the relative performance of the various bandwidth 

selection estimators does not vary in any systematic way with the shape of the regression 

function, with the exception of the locally varying bandwidths, which have trouble with 

highly non-linear regression function M3.  This finding stands in sharp contrast to the 

result for the kernel functions just described.   

 Overall, the Monte Carlo evidence suggests value, in many contexts, of taking 

account of the location of the treated units when choosing a bandwidth for a local 

constant or local linear kernel matching estimator. In general, the largest benefits accrues 

when the data feature disparate propensity score (and thus covariate) distributions in the 

treatment and comparison samples.  In contrast, in contexts with little separation between 

the treated and untreated units, accounting for the location of the treated units in the 

selection of the bandwidth becomes less relevant.  

 

6. Empirical Application    

No paper on matching methods would be complete without an analysis of the data from 

LaLonde’s (1986) famous paper.  He combines experimental data from the U.S. National 

Supported Work Demonstration (hereafter NSW) with non-experimental comparison 

groups drawn from two major survey data sets – the Current Population Survey (CPS) 

and the Panel Study of Income Dynamics (PSID) – in order to examine the performance 

of alternative non-experimental evaluation estimators.  LaLonde shows that simply 
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conditioning on a handful of variables in a linear regression context, or doing differences-

in-differences, does not suffice to solve the selection problem in these data.18 

 Dehejia and Wahba (1999, 2002) apply propensity score matching methods to a 

subset of the data on one of the two demographic groups examined by LaLonde (1986) 

and find low biases (with large standard errors).  Smith and Todd (2005a,b) revisit the 

Dehejia and Wahba (1999, 2002) analyses and demonstrate a high level of sensitivity to 

the estimates obtained from matching in these data along many dimensions.  They find 

this sensitivity unsurprising given the application of semi-parametric methods to very 

small samples.  They also conclude that the CIA does not hold in this context; this 

conclusion also seems unsurprising when one realizes that the NSW program served ex-

convicts, ex-addicts, long-term welfare recipients and high school dropouts while the data 

at hand contain no measures of crime or punishment, no measures of welfare receipt, no 

measures of current or past drug use and no measure of ability. 

Despite the small number of treated units and the likely failure of the CIA, the 

ease of use of these data and the general familiarity with them among applied researchers 

has led to their wide use in papers, like this one, that examine methodological innovations 

in matching.  Thus, for comparability with the existing literature and because we want to 

consider a real data environment in addition to our Monte Carlo analysis, in this section 

we examine the performance of all bandwidth selection methods proposed here, using the 

data from Dehejia and Wahba (1999, 2002).   

                                                 
18 As noted in Smith and Todd (2005a) LaLonde (1986) also applies Heckman’s (1979) two-step estimator 
of the bivariate normal selection model.  Due to multiple issues of implementation, his study provides no 
information about the performance of that estimator.  See Heckman and Hotz (1986) for further analysis of 
the LaLonde data and Hollister et al. (1984) for an overview of the NSW experiment. 
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Their sub-sample, which we denote by “DW”, includes only individuals with a 

valid value for earnings in 1975 (just before the program) and only a zero value for 

earnings in “1974” (actually months 13-24 before random assignment).  We focus on 

their sample as the CIA has the greatest plausibility for this group.  For simplicity, we 

employ the same (logit) propensity score specifications as in Dehejia (2005); see the 

notes to Table 3 for details.  After estimating the scores, we impose the common support 

condition using the trimming method developed in Heckman, Ichimura, Smith and Todd 

(1998), which estimates separate densities for the scores in the treated and untreated 

samples and then drops all observations whose score implies a zero estimated density in 

either distribution as well as the observations with the lowest five percent of the non-zero 

estimated density values.  This procedure leads us to drop about 10 percent of the treated 

units, in addition to dropping a fraction of the comparison group sample similar to that 

dropped in Dehejia and Wahba (1999).  We apply the various bandwidth selection 

algorithms to this reduced sample.19 

Table 3 presents the MSE of the treatment effects over 100 bootstrap simulations 

of the DW data.  We obtain untreated outcomes for the treated units for use in calculating 

our MSEs by subtracting off the experimental impact estimate from the empirical 

common support region.  Panel A of Table 3 presents impact estimates obtained using 

local constant matching while Panel B presents estimates obtained using local linear 

matching.  The first column indicates the combination of treatment group and comparison 

                                                 
19 The bandwidths for the grid search equal [0.05, 0.10, …, 2.00] for the local constant kernel matching and 
[0.40, 0.45, …, 4.00] for the local linear kernel matching. 
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group, while the second column indicates the kernel function.  The corresponding 

experimental impact estimates appear in the notes to Table 3.20 

Three main patterns emerge from Table 3.  First, as in Smith and Todd (2005a,b) 

the details of the estimation procedure, in this case the bandwidth selection algorithm, 

matter for the obtained estimates in the NSW data because of the small sample size and 

the large variance of the earnings outcome variable. The estimated MSEs depict large 

variability across the bandwidth selection methods, matching estimators, and even kernel 

used.  Indeed, the Epanechnikov kernel for the local linear regression estimates using the 

simulated DW-CPS and DW-PSID data yields such bizarre results for all bandwidth 

selection approaches that we do not report these results.       

Second, the choice among the conventional, variable weights, fixed weights and 

locally varying bandwidth selection algorithms becomes much clearer in the simulated 

NSW data than it was in the simulations reported in Tables 1 and 2.  In general, the 

variable weights approach and the fixed weights approach based on the density of the 

treated units yield the lowest MSEs for both the DW-CPS and DW-PSID datasets.  In 

contrast, the conventional approach and the nearest neighbor approach imply the largest 

MSEs. Relative to the Monte Carlo simulations, the locally varying bandwidth does not 

do especially well compared to the other methods, as it falls in the middle of the five 

approaches. 

Third, Table 3 reveals that in the NSW data, the nearest neighbor method 

performs much less well than the other four bandwidth choice schemes in MSE terms.  In 

general, it substantially oversmooths relative to the other approaches, as a comparison of 

                                                 
20 We do not employ the second of the two fixed weights methods with the NSW data given that we match 
on the log-odds ratio. 
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the selected bandwidths clearly illustrates.  Thus, despite its reasonable performance in 

the simulations in Tables 1 and 2, we suggest avoiding the nearest neighbor approach in 

small data sets with high variable outcome measures.   

Overall, the lessons from our foray into the NSW data are similar to those of our 

Monte Carlo analysis.  Both the varying-weighting cross-validation and the locally 

varying bandwidths perform relatively well when applied to the NSW data and, at the 

same time, the conventional cross-validation approach do relatively poor. The analysis of 

the nearest neighbor approach is, however, ambiguous given its poor performance in the 

context of the NSW data.  

 

7. Conclusions 

In estimating the counterfactual mean regression function in an evaluation context, the 

choice of smoothing parameter should reflect the density of the untreated observations 

that look like the treated observations as well as the smoothness of the regression 

function in regions of high treated unit density.  Although this insight applies to a variety 

of estimators for the counterfactual mean, in this paper we focus on the use of local 

constant and local linear matching estimators, we propose three alternative methods for 

incorporating the location of the treated units into the bandwidth choice process.  We 

then compare among our three methods, a related alternative method inspired by 

Bergemann et al. (2005), a version of locally varying bandwidths, and conventional 

cross-validation by conducting a Monte Carlo analysis and by applying them to the oft-

examined NSW data. 
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 The Monte Carlo analysis suggests that taking account of the location of the 

treated units has enough of a payoff in terms of the MSE to make it worth doing in 

applied work as a general rule, particularly in contexts with dissimilar covariate 

distributions in the treatment and comparison groups.  The NSW data lead to largely 

similar conclusions, but cast doubt on the value of the nearest neighbor method and the 

locally varying bandwidths in small, highly variable samples.  Overall, the variable 

weight bandwidth selection method and (subject to the caveat just noted) the locally 

varying bandwidths display the best performance.  We thus recommend these methods 

along with the Gaussian kernel. 
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.                        Figure 1: Treated and Untreated Density Distributions  
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Figure 2A: Monte Carlo Density Distributions 
 

Design D1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

propensity score

f

fp|T=0 fp|T=1

Design D2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

propensity score

f

fp|T=0 fp|T=1

Design D3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

propensity score

f

fp|T=0 fp|T=1

  
 
 

Figure 2B: Monte Carlo Regression Curves 
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Table 1: Mean Squared Error of Estimated Counterfactual Outcomes (MSECTT /1000) 
 
Panel A: Local Constant – Epanechnikov Kernel 
 

  Conventional Variable Weights Fixed Weights  NN Locally varying 

          1( )Tf ρ=   (1 )
ρ

ρ−  
      

  h MSECTT h MSECTT h MSECTT h MSECTT h MSECTT MSECTT 
             

Design  M1 0.038 61 0.065 47 0.040 57 0.040 57 0.069 35 35 
D1 M2 0.035 241 0.041 236 0.036 241 0.034 251 0.047 192 153 

 M3 0.030 30 0.032 33 0.030 30 0.030 30 0.042 57 58 
 M4 0.030 39 0.032 41 0.029 43 0.031 37 0.039 35 30 

 Mean 0.033 93 0.043 89 0.034 93 0.034 94 0.049 80 69 
             

Design  M1 0.044 25 0.041 24 0.052 24 0.043 25 0.078 21 24 
D2 M2 0.035 52 0.038 50 0.035 52 0.033 55 0.048 37 31 

 M3 0.029 32 0.032 35 0.029 32 0.029 32 0.037 45 46 
 M4 0.029 34 0.031 33 0.028 34 0.031 33 0.041 24 31 

 Mean 0.034 36 0.036 36 0.036 36 0.034 36 0.051 32 33 
             

Design  M1 0.028 39 0.041 36 0.034 39 0.025 39 0.062 42 39 
D3 M2 0.017 43 0.034 41 0.018 43 0.012 43 0.047 43 46 

 M3 0.027 24 0.026 24 0.024 25 0.010 29 0.045 18 22 
 M4 0.026 45 0.028 45 0.024 46 0.017 47 0.048 45 44 

 Mean 0.025 38 0.032 37 0.025 38 0.016 40 0.051 37 38 
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Panel B: Local Linear – Epanechnikov Kernel 
 

  Conventional Variable Weights Fixed Weights  NN Locally Varying 

          1( )Tf ρ=   (1 )
ρ

ρ−  
      

  h MSECTT h MSECTT h MSECTT h MSECTT h MSECTT MSECTT 
             

Design  M1 0.065 156 0.106 90 0.069 152 0.073 50 0.126 23 23 
D1 M2 0.075 396 0.089 204 0.074 397 0.074 287 0.100 57 41 

 M3 0.085 515 0.091 840 0.084 520 0.091 659 0.120 457 459 
 M4 0.059 372 0.092 95 0.059 160 0.063 159 0.111 40 45 

 Mean 0.071 360 0.095 307 0.072 307 0.075 289 0.114 144 142 
             

Design  M1 0.087 280 0.081 25 0.092 280 0.096 280 0.152 31 23 
D2 M2 0.091 272 0.074 39 0.092 272 0.085 272 0.130 30 30 

 M3 0.074 89 0.059 62 0.075 92 0.064 74 0.101 144 126 
 M4 0.065 336 0.075 41 0.065 336 0.071 336 0.102 40 42 

 Mean 0.079 244 0.072 42 0.081 245 0.079 241 0.121 61 55 
             

Design  M1 0.072 39 0.094 38 0.080 40 0.077 40 0.132 45 36 
D3 M2 0.056 43 0.084 44 0.057 43 0.050 43 0.148 52 39 

 M3 0.063 38 0.108 37 0.071 36 0.055 38 0.101 44 41 
 M4 0.050 53 0.066 52 0.049 53 0.053 53 0.102 61 54 

 Mean 0.060 43 0.088 43 0.064 43 0.059 44 0.121 51 43 
 
Notes: The first two columns indicate the density and the regression curve.  In each column, the averages over the regression curves in each design appear in 
bold. 
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Table 2: Mean Squared Error of Estimated Counterfactual Outcomes (MSECTT /1000) 

 
Panel A: Local Constant – Gaussian Kernel 
 

  Conventional Variable Weights Fixed Weights  NN Locally Varying 

          1( )Tf ρ=   (1 )
ρ

ρ−  
      

  h MSECTT h MSECTT h MSECTT h MSECTT h MSECTT MSECTT 
             

Design  M1 0.013 21 0.026 24 0.015 21 0.015 21 0.029 23 20 
D1 M2 0.011 70 0.019 86 0.011 70 0.010 69 0.021 84 70 

 M3 0.010 96 0.021 95 0.010 96 0.010 96 0.010 107 96 
 M4 0.010 29 0.010 31 0.010 29 0.010 29 0.010 31 29 

 Mean 0.011 54 0.019 59 0.012 54 0.011 54 0.018 61 54 
             

Design  M1 0.017 23 0.015 23 0.021 23 0.017 23 0.033 21 23 
D2 M2 0.011 28 0.014 30 0.011 27 0.010 28 0.020 28 27 

 M3 0.010 56 0.010 56 0.010 56 0.010 56 0.010 55 52 
 M4 0.010 31 0.010 31 0.010 31 0.010 33 0.014 26 32 

 Mean 0.012 35 0.012 35 0.013 34 0.012 35 0.019 33 34 
             

Design  M1 0.028 39 0.041 36 0.034 39 0.014 38 0.025 42 39 
D3 M2 0.010 42 0.018 41 0.011 41 0.010 42 0.014 42 45 

 M3 0.010 23 0.010 23 0.010 23 0.010 23 0.010 23 24 
 M4 0.010 46 0.010 46 0.010 46 0.010 46 0.015 50 45 

 
 Mean 0.015 38 0.020 37 0.016 37 0.011 37 0.016 39 38 
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Panel B: Local Linear – Gaussian Kernel 
 

  Conventional Variable Weights Fixed Weights  NN Locally Varying 

          1( )Tf ρ=   (1 )
ρ

ρ−  
      

  h MSECTT h MSECTT h MSECTT h MSECTT h MSECTT MSECTT 
             

Design  M1 0.031 19 0.040 19 0.033 19 0.034 19 0.051 22 20 
D1 M2 0.034 30 0.036 32 0.034 30 0.034 30 0.045 34 37 

 M3 0.039 434 0.059 446 0.039 433 0.040 445 0.047 406 380 
 M4 0.031 38 0.034 38 0.031 38 0.031 38 0.044 37 36 

 Mean 0.034 130 0.042 134 0.034 130 0.035 133 0.047 125 118 
             

Design  M1 0.038 26 0.036 25 0.039 26 0.039 26 0.062 31 23 
D2 M2 0.037 33 0.036 35 0.038 33 0.036 33 0.053 29 29 

 M3 0.041 108 0.011 112 0.042 110 0.037 102 0.045 132 143 
 M4 0.032 39 0.036 39 0.032 39 0.033 39 0.042 39 41 

 Mean 0.037 52 0.030 53 0.038 52 0.036 50 0.051 58 59 
             

Design  M1 0.035 40 0.046 40 0.037 40 0.036 40 0.052 45 36 
D3 M2 0.033 46 0.043 46 0.033 46 0.033 46 0.060 51 41 

 M3 0.045 35 0.048 33 0.047 34 0.030 40 0.041 37 43 
 M4 0.032 53 0.036 52 0.033 53 0.033 53 0.047 59 53 

 Mean 0.036 44 0.043 43 0.038 43 0.033 45 0.050 48 43 
 
 Notes: The first two columns indicate the density and the regression curve.  In each column, the averages over the regression curves for each design appear in 
bold. 
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Table 3: Mean Squared Error for the National Support Work Demonstration Program  (MSETT/1000) 

 
 

Sample Kernel Conventional Variable Weights 
Fixed Weights  

(estimated density) NN 
Locally 
Varying 

  h MSETT h MSETT h MSETT h MSETT MSETT 
Panel A: Local Constant 
 
DW-PSID Epanechnikov 0.22 1351 0.68 812 0.67 1100 0.63 1304 931 

           
 Gaussian 0.14 798 0.20 698 0.31 847 1.60 6744 858 
           

DW-CPS Epanechnikov 0.15 1054 0.39 844 0.18 1038 1.43 1054 1038 
           
 Gaussian 0.11 774 0.19 715 0.12 781 1.42 3362 1066 
           

Panel B: Local linear 
           

DW-PSID Gaussian 0.41 2293 0.44 756 0.92 814 3.60 1464 876 
           

DW-CPS Gaussian 0.35 262 0.53 197 0.37 253 3.00 578 903 
 
Notes: The dependent variable is real earnings in 1978.  We match on the log odds ratio due to the choice based sampling; see the discussion in Heckman and 
Todd (1995).  Bandwidth selection takes place after imposing the common support condition using the five percent trimming method developed in Heckman, 
Ichimura and Todd (1998).  The experimental impact estimates equal $1864 for the DW sample with CPS common support and $2056 for the DW sample with 
PSID common support.  We estimate logit models of participation using the specifications in Dehejia (2005), the experimental treatment group and the 
comparison group.  The DW-PSID model includes married, black, Hispanic, age, education, real earnings in 1975 (RE75), real earnings in “1974” (RE74), 
married*1(RE75 = 0), and nodegree*1(RE74 = 0), and the DW-CPS model includes married, black, Hispanic, education, age, RE74, RE75, and black*age.  
Simulations are based on 100 replications.  The locally varying bandwidth is based on the rule 1/5

| 0
ˆ( ) [ ( )]cv Th h fρρ ρ −

== .  Ties are broken at random.



 43

Appendix 

 Details of the Monte Carlo Analysis 

 
The propensity score model is specified as ˆ( )P X Xρ α β= = + , where the univariate X 
is drawn from the Johnson SB distribution defined in Johnson et al. (1994), 
 

21 1( ) exp ln ( ) ,  0 1
4 12 (1 )x

xf x x
xxπ

⎡ ⎤= − < <⎢ ⎥−− ⎣ ⎦
.  

 
As discussed in Frölich (2004), the resulting density functions for the treatment and 
comparison groups are given by   
 

        | 1 | 0
1 0

1( ) . ( )   and    ( ) . ( )T x T xf f f f
s sρ ρ
ρ ρ α ρ ρ αρ ρ
β β β β= =

− − −
= = , 

where 1s  = ( )E ρ  is the share of treated units and 0 11s s= − . 
 
The first pair of density functions (design D1) is based on 0α =  and 1β = , the second 
pair (design D2) is based on 0.25α =  and 0.5β = , and the third pair (design D3) is 
based on 0.1α =  and 0.3β = . 
 
The outcome equations are as follows: 
 
M1: 0 ( ) 0.01 8000m ρ ρ= +  
 
M2: 0 ( ) 0.02 10exp(6 )(3 )m ρ ρ ρ= +  
 
M3: 0 ( ) 3900 3900 cos(35 )m ρ ρ ρ= +  
 
M4: 2

0 ( ) 1010 1000sin(8 5) 8000exp( 16(4 2.5) )m ρ ρ ρ= + − + − −  
 
The outcomes for the treated units are given by 
 

1 0( ) ( )+ ( )m m Tρ ρ ρ=  
 
where  ( ) (10 )exp(6 )T ρ ρ ρ= . 
 


