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Abstract
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cal version of their approach. However, identification hinges on the same monotonicity
assumption that is fundamentally untestable. We investigate the sensitivity of respective
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1 Introduction

1.1 Monotonicity

A fundamental identification problem in program evaluation arises if the treatment decision

depends on the idiosyncratic gain from participation even if we condition on observables. This

selection into treatments on unobservables precludes the use of the usual econometric tools

such as matching type estimators, conventional instrumental variables analysis, and standard

simultaneous equations models because their respective estimates of treatment effect parameters

are generally biased.

Imbens and Angrist (1994) were the first to exploit monotonicity of the treatment decision

in instrumental variables in order to identify a local average treatment effect parameter. These

instrumental variables are assumed to be independent of the pair of potential outcomes condi-

tional on covariates in the outcome equation. They have identifying power if, conditional on

these covariates, they have an impact on the treatment probability. The monotonicity assump-

tion is that a hypothetical change in the instruments either has no impact on a unit’s treatment

status, or changes its treatment status in the same direction as it does for all other units for which

it has an impact.

More recently, Heckman and Vytlacil (1999, 2000, 2005, HV in the remainder) suggested

estimation of a variety of treatment effect parameters using a local version of their approach.

Both approaches are in principle able to cope with unobserved dependence between the

treatment decision and the outcome. They are intuitive, elegant, and easy to implement. Their

generality consists of the fact that neither a parametric specification of the joint distribution of

unobservables and observables, nor peculiarities of the data set or the economic question of in-

terest are of need. However, identification in both approaches hinges on the same monotonicity

assumption. In general, estimates of treatment effects will be biased if it does not hold.

A violation of the monotonicity assumption is nicely motivated in Example 2 of Imbens

and Angrist (1994). When we think of two officials screening applicants for a social program,
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we would expect that for every set of characteristics of the applicants (the covariates in the

outcome equation) the admission rate differs between the two officials. When it is unlikely

that the identity of the official affects the outcome of participation or nonparticipation in the

program, then, conditional on the characteristics of the applicant, this identity qualifies as an

instrument. Suppose the admission rate for official A was higher than for official B. Then,

in this setup monotonicity holds whenever any applicant who would have been accepted by

official B is accepted by official A. Imbens and Angrist (1994) note that “this is unlikely to hold

if admission is based on a number of criteria.” In this case, monotonicity is violated.1

In this paper, we aim at quantifying the degree of violation of the monotonicity assumption

in order to investigate the consequences of a violation when we unjustifiably rely on this as-

sumption. In particular, we study the effect of reasonable departures from monotonicity, that

are likely to be encountered in practice, on estimates of the marginal, average and local average

treatment effect. Importantly, highly sensitive estimates would question the suitability of mo-

notonicity based estimates for applied work as the monotonicity assumption is fundamentally

untestable since it is identifying.2

The identification strategies for the (local) average treatment effect that are proposed by Im-

bens and Angrist (1994) and HV differ with respect to the requirements on the support of the

treatment probability conditional on the instruments, the so-called propensity score. In partic-

ular, conditional on covariates in the outcome equation, HV require derivatives of the expected

outcomes with respect to the propensity score at infinitely many values of the propensity score

to be identified whereas Imbens and Angrist (1994) base their analysis on a finite set of level

estimates.
1It has been noted in the literature that there are cases in which monotonicity holds naturally, e.g. if it is known

for a subset of units that the treatment probability is either zero or one (Battistin and Rettore, forthcoming, for a
discussion). This can occur if there are eligibility rules for participation in a program. In this case, by construction,
units can only be induced (not) to take the treatment by changes in eligibility.

2HV propose a joint test for monotonicity and the existence of instruments. By itself, monotonicity is funda-
mentally untestable.
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1.2 Local Departures From Monotonicity

The approach in this paper is to study the impact of local departures from monotonicity on our

estimates. Taylor series approximations to the bias terms are derived. This is in the tradition

of local specification error analysis suggested by Kiefer and Skoog (1984).3 It has also been

successfully applied by Chesher (1991), Chesher and Schluter (2002) and Battistin and Chesher

(2004) in the context of measurement error. Lately, Chesher and Santos Silva (2002) studied the

impact of uncontrolled taste variation in discrete choice models by modelling local departures

from a multinomial logit model.

The virtue of this approach is that it allows us to keep in touch with the original structure

which implies monotonicity. At the same time, we are able to explore what the sensitivity of

monotonicity based estimates depends on when monotonicity is in fact violated. In our case,

the original structure consists of selection models of the form

D = 1I{Q̃(P̃(Z, σU)) ≥ Ṽ}

where 1I{·} is the indicator function, P̃ : Rk → R is a function (an index) of a k-vector of

instrumental variables, Z, σ ≥ 0 is a constant, U and Ṽ are continuously distributed scalar

random variables, and Q̃ : R2 → R. Z, U and Ṽ are assumed to be independently distributed.

For σ = 0 these selection models imply monotonicity. To see this let w and z be two

values of Z with Q̃(P̃(w), 0) < Q̃(P̃(z), 0).4 Then, given Ṽ , D can never change from 1 to 0 if

Z changes from w to z. This is the original monotonicity assumption of Imbens and Angrist

(1994). Vytlacil (2002) shows that a representation of their set of assumptions in terms of such

a selection model does not impose any additional restrictions on the data generating process.

3Angrist, Imbens, and Rubin (1996) take a different approach and relate the bias in conventional IV estimates
to the proportion of non-compliers, i.e. the units for which monotonicity is violated, and the treatment effect
heterogeneity. We feel that our approach is fruitful because it allows us, up to an approximation error, to express
the treatment effect of non-compliers in terms of possibly identifiable quantities.

4For any random variable A and any vector of random variables B we denote realizations thereof by lowercase
letters, the c.d.f. of A evaluated at A = a by FA(a), the conditional c.d.f. of A given B = b evaluated at A = a by
FA|B=b(a), and the respective p.d.f.’s by fA(a) and fA|B=b(a).
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Therefore, without loss of generality, from now on, we represent monotonicity in this form.

Central to our generalization of the conventional selection model is an additional scalar

random component σU which gives rise to additional individual heterogeneity by perturbing

the nonparametric index P̃(Z). This perturbation, under appropriate conditions, directly leads

to a violation of the monotonicity assumption whenever σU is non-degenerate. For degenerate

σU, however, the model is constructed so that it is equivalent to a canonical selection model. A

local departure from monotonicity is given by a change from σ = 0 to σ > 0.

The following example illustrates this point.

E 1 (Random Coeffcients): Consider the index selection model

D = 1I{Zγ̃ ≥ Ṽ}.

The canonical index selection model would postulate that γ̃ = γ, a k-vector of parameters. In

a probit model, e.g., the additional assumption is made that Ṽ is standard normally distributed.

Then, given Ṽ , if P̃(Z) = Zγ changes from wγ to zγ > wγ, D can only change from 0 to 1, remain

0, or remain 1, but can never change from 1 to 0. Now, let γ̃ be a vector of random coefficients

γ̃ = γ(1 + σU), σ ≥ 0 with U non-degenerate and independent of Z. This is an example for the

generalized selection model motivated above. If σ > 0, given Ṽ , D is no longer monotone in Z

because now, under fairly general conditions on the distribution of U, there exist realizations u

and u′ of U such that wγ(1+σu) > zγ(1+σu) while wγ(1+σu′) < zγ(1+σu′). Consequently,

monotonicity is violated. Observe that this model nests the canonical index selection model as

the special case in which σ = 0. A local departure from monotonicity is hence given by an

external change from σ = 0 to a small σ > 0. �

In this paper, we are interested in the bias of treatment effect parameter estimates that can

be attributed to such a violation of the monotonicity assumption. We derive a second order ap-



H T E: I V M? 6

proximation to respective bias terms in σ about σ = 0 that can be used to assess the accuracy of

monotonicity based estimates without monotonicity. We show that the respective bias depends

primarily on the dependence between the individual gains from participation in the program,

Y1 − Y0, and the normalized selection threshold V = FṼ(Ṽ) from the selection model, which is

normalized to be uniformly distributed. Our results can be expressed in terms of a structural

parameter, the so-called marginal treatment effect, m(v) ≡ E[Y1 − Y0|V = v]. It was introduced

by Björklund and Moffitt (1987) and is the average treatment effect conditional on the selection

threshold being equal to a certain value v.

We show that under appropriate assumptions, the bias of monotonicity based estimates is

related to the curvature of m(v) and the variance of Q̃ conditional on P̃. A bias correction

procedure is available if this variance can be estimated.5 In case no such prior information is

available and one is not willing to make additional assumptions, a sensitivity analysis can still be

undertaken by evaluating the obtained expressions—under varying additional assumptions—at

different values of this variance.

Example 2 is meant to give the intuition behind the main result.

E 2 (Example 1 continued): For the ease of the exposition let FṼ be known. An equiva-

lent representation of the index selection model in Example 1 is

D = 1I{FṼ(Zγ̃) ≥ V}

with V = FṼ(Ṽ). By the independence between Z, Ṽ and U and the law of total probability

Pr(D = 1|Z) = Pr
(

V ≤ FṼ(Zγ̃)|Z
)

= E
[

FṼ(Zγ̃)
∣

∣

∣Z
]

. Notice that, since only the left hand side

of this equation is identified from observations, only E
[

FṼ(Zγ̃)
∣

∣

∣Z
]

is known and in general,

5Ichimura and Thompson (1998) consider selection models of the form D = 1I{Zγ̃ ≥ Ṽ} with Z being indepen-
dent of (γ̃, Ṽ) and provide conditions under which the joint distribution of (γ̃, Ṽ) is identified up to normalizations.
These conditions do not involve finite dimensional functional form restrictions. They show that the model can
consistently be estimated by maximum likelihood. Following up on Example 1, if γ̃ is independent of Ṽ and
γ̃ = γ(1 + σU), σ is the standard deviation of Zγ̃ conditional on Zγ if we normalize the variance of U to be 1.
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Figure 1: Intuition behind the main result.

FṼ(Zγ̃) is not. Suppose we wanted to obtain an estimate of m(0.4). In Section 2, we will

show that m(0.4) can be estimated from observations for which FṼ(Zγ̃) takes on values in a

neighborhood around 0.4. Under monotonicity, σ = 0 and hence F Ṽ(Zγ̃) is known because

it is equal to FṼ(Zγ) which in turn is equal to Pr(D = 1|Z), recalling that FṼ is known by

assumption. Consequently, m(0.4) is identified because in this case, we can select observations

for which FṼ(Zγ̃) = FṼ(Zγ) = 0.4. Now suppose σ and U are such that with respective

probability one half either FṼ(Zγ̃) = 0.2 or FṼ(Zγ̃) = 0.6 whenever E
[

FṼ(Zγ̃)
∣

∣

∣Z
]

= 0.4. Then,

monotonicity is violated and from observations with E
[

FṼ(Zγ̃)
∣

∣

∣Z
]

taking on values around 0.4

we would estimate 0.5m(0.2) + 0.5m(0.6), the convex combination of points A and B in Figure

1. This corresponds to point C only if the marginal treatment effect is linear in V . Only then,

our estimate of m(0.4) would still be unbiased even if monotonicity failed to hold. �



H T E: I V M? 8

1.3 Related Results

Heckman, Urzua, and Vytlacil (2006) discuss in detail that in the framework considered here, if

σ = 0, outcomes of choices are allowed to be heterogeneous in a very general way, but choices

itself are not. They therefore advocate the denomination “uniformity” instead of “monotonicity”

for this central identifying condition.

Formal representation results have been derived by Vytlacil (2002) who shows that mono-

tonicity can equivalently be expressed in terms of a selection model. Vytlacil (2006) provides

a class of nonseparable latent index functions which will have equivalent representations as ad-

ditively separable or linear index functions. Monotonicity holds for all elements of this class.

Central to this representation result is that the impact of instrumental variables on the treatment

decision can be separated from the impact of unobservables. Heckman, Urzua, and Vytlacil

(2006) discuss this result and relate it to the notion of index sufficiency.

Consequences of a violation of monotonicity have informally been discussed in Angrist,

Imbens, and Rubin (1996) who relate the bias in estimates of the local average treatment effect

to the proportion of units for which monotonicity does not hold and the difference in local

average treatment effects between those units and the ones for which monotonicity holds. In

this paper, we try to relate those quantities to structural features of the model, namely σ and

properties of the marginal treatment effect.

1.4 Plan of the Paper

Section 2 lays out the formal framework. Section 3 contains the main theoretical results. We

illustrate our findings and assess the accuracy of the approximation to the bias term in a Monte

Carlo study which is carried out in Section 4. Section 5 concludes.



H T E: I V M? 9

2 Formal Framework and Identification under Monotonicity

We adopt the usual convention in program evaluation and say that if a unit is not treated, we

observe an indicator variable D being equal to zero and a realization of Y0, and if it is treated,

we observe D being equal to one and a realization of Y1. Usually, Y0 and Y1 are referred to as

potential outcomes. They are real valued scalar random variables. We write Y ≡ (1−D)Y0+DY1.

Our analysis can be thought of as being conditional on exogenous covariates as, e.g., in Vytlacil

(2002).

As we have argued in the introduction we focus on the class of models in which identifying

power is derived from exogenous variation in instrumental variables. We denote the k-vector

of instrumental variables by Z and express their impact on the treatment decision in terms of a

selection model. A conventional selection model is of the form

D = 1I{P̃(Z) ≥ Ṽ}

with a nonparametric index P̃(Z), P̃ : Rk → R and scalar Ṽ . Instead, we consider models where

the nonparametric index is perturbed:

D = 1I{Q̃(P̃(Z), σU) ≥ Ṽ}. (1)

Q̃ : R2 → R is a nontrivial function of the nonparametric index P̃(Z), σ ≥ 0 is a scalar and U

is an additional scalar random variable. Under appropriate conditions on Q̃ and the distribution

of U monotonicity is violated in these models if σ > 0.

We make the following assumptions.

A 1 (Existence of Instruments): Z is independent of (Y0,Y1, Ṽ).

A 2 (Random Noise): (i) U is independent of Z and (Y0,Y1, Ṽ), (ii) the distribution
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of U is absolutely continuous with respect to Lebesgue measure, and (iii) the support of U is

equal to the real line.

A 3 (Regularity Conditions I): (i) Y0 and Y1 have finite first moments and (ii) the

distribution of Ṽ is absolutely continuous with respect to Lebesgue measure.

Assumption 1 presumes (i) that the instruments can be excluded from the outcome equation

and (ii) that they are independent of the selection threshold. This is a considerably weaker con-

dition than conditional independence in matching (Rosenbaum and Rubin, 1983), for example,

which precludes the dependence of the pair of potential outcomes, (Y0,Y1), on unobservables

Ṽ . This dependence is sometimes called selection on unobservables and is allowed for here.

Assumption 2(i) formalizes the pure randomness of U. Assumption 3(i) states regularity condi-

tions which ensure that the parameters of interest are well defined. Part (ii) is for convenience

and can be relaxed at some notational cost.6

(1) along with Assumptions 1 through 3 constitute a simple framework in which viola-

tions of monotonicity can occur. This is possible even in cases in which U is purely random.

Notably, Vytlacil (2006) shows that an equivalent representation of the model, in which mono-

tonicity holds, exists if Q̃ is strictly monotonic in its first argument and the distribution of Ṽ is

degenerate. This will not be assumed here.

W.l.o.g. we can apply a monotone transformation to the expression in curly brackets of (1).

By Assumption 3(ii), FṼ(ṽ) is strictly increasing in ṽ so that an equivalent representation of the

model is given by

D = 1I{Q(P̃(Z), σU) ≥ V}

with Q(P̃(Z), σU) = FṼ(Q̃(P̃(Z), σU)) and uniformly distributed V = FṼ(Ṽ). Observe that this

6See HV.
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implies that

Pr(D = 1|Z = z,U = u) = Pr(V ≤ Q(P̃(Z), σU)|Z = z,U = u) = Q(P̃(z), σu)),

where the last equality follows from V being uniformly distributed. This demonstrates that Q is

a probability measure. Moreover, under Assumption 2(i) V is independent of U so that by the

law of total probability

Pr(D = 1|Z = z) = Pr(V ≤ Q(P̃(Z), σU)|Z = z) = Pr(V ≤ Q(P̃(z), σU)) = E[Q(P̃(z), σU)].

The left hand side of this equation is the so-called propensity score, which we denote by P(Z).

Last, we normalize P̃(Z) and Q̃ so that P(Z) = E[Q(P(Z), σU)|Z], noting that now P(Z) enters

Q instead of P̃(Z). Moreover, we normalize U to have mean zero and variance 1. Then, σ is the

standard deviation of σU. The normalizations are summarized below.

N 1: Normalize (i) Ṽ to be uniformly distributed, (ii) P̃ and Q̃ so that E[Q(P(z), σU)] =

P(z) for any z in the support of Z, and (iii) U so that E[U] = 0, E[U 2] = 1.

For ease of the exposition, from now on we write P for P(Z). Throughout the paper we

will think of P as being a single scalar instrument that can be constructed from the k-vector of

instruments as P = Pr(D = 1|Z). Given the structure of the model and the assumptions, this is

innocuous for our purposes.7 To summarize, under Normalization 1 we can write the selection

model as

D = 1I{Q(P, σU) ≥ V}. (2)
7See also the discussion in Heckman, Urzua, and Vytlacil (2006) for this interpretation.
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2.1 Properties of the Selection Model

In general, Q(P, σU) is not identified from observations since U and V are not observed and the

indicator function that is central to the selection model is not invertible in its argument.

However, if σ = 0, under Normalization 1(ii) and Assumption 2(i) we have that for any

value p of P

p = E[Q(p, 0)] = Q(p, 0) (3)

so that in this case we get the trivial result that Q is (locally) identified at P = p and σU = 0.

Finally, we shall demonstrate in an example that monotonicity is easily violated in this

model.

E 3: Let

Q(P, σU) = P + b(P)σU.

Then, if the support of U is equal to the real line and b(p) , b(p′) monotonicity is violated

for σ > 0 as there exist realizations u and u′ in the support of U so that Q(p, σu) > Q(p′, σu)

while Q(p, σu′) < Q(p′, σu′). Let, w.l.o.g., p′ > p. Then, the probability that monotonicity is

violated is given by

Pr(Q(p, σU) > Q(p′σU)) = Pr(p + b(p)σU > p′ + b(p′)σU).

If σ = 0 this is equal to 0 as p < p′. If σ > 0 it is

Pr
(

U >
p′ − p

σ(b(p) − b(p′))

)

.

If the distribution of U is symmetric about 0 this tends to 0.5 as σ tends to infinity. In the

terminology of Angrist, Imbens, and Rubin (1996) this is the fraction of defiars. Finally, observe

that the bigger p′ − p the “stronger” the instrument and the more likely monotonicity is to hold
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in this example. �

2.2 Structural Parameters of Interest

A variety of structural parameters of interest can be expressed in terms of the marginal treatment

effect8

m(v) ≡ E[Y1 − Y0|V = v]. (4)

The marginal treatment effect by itself is of economic interest in many applications.9 In this

paper, we focus on the bias in estimates of the marginal treatment effect, the population average

treatment effect,

∆ATE ≡ E[Y1 − Y0] =
∫ 1

0
m(v) dv, (5)

and the local average treatment effect, for vl < vh,

∆LATE(vl, vh) ≡ E[Y1 − Y0|vl ≤ V ≤ vh] =
1

vh − vl

∫ vh

vl

m(v) dv. (6)

Our results extend easily to other average treatment effect parameters of interest because they

can be expressed in terms of the marginal treatment effect, as it is discussed by HV.

Note that by Assumption 3(i) all parameters that are considered here exist.

2.3 Identification of Structural Parameters under Monotonicity

In this subsection we briefly review the identification results by HV and Imbens and Angrist

(1994). In both of them structural parameters of interest are related to the expected value of

8See HV as well as Heckman, Urzua, and Vytlacil (2006) for a detailed discussion. Angrist, Graddy, and
Imbens (2000) derive the marginal treatment effect as the limit form of the local average treatment effect and
show that, conversely, the local average treatment effect is an average marginal treatment effect, though not the
population average.

9For empirical studies of the returns to college education see Björklund and Moffitt (1987), Carneiro, Heckman,
and Vytlacil (2005), Carneiro and Lee (2005), and Klein (2006). In this context, V has the interpretation of
unobserved ability which both has an impact on the decision of whether to attend college and the return from
doing so. The dependence of this return on unobserved ability is of central interest to policy makers.
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the outcome conditional on the propensity score. We first turn to the former which is based on

derivatives of this conditional expectation with respect to the propensity score. We then present

the latter which is based on the conditional expectation itself.

2.3.1 Derivative Based Approach

We show that under monotonicity, i.e. σ = 0, the marginal treatment effect is identified at

values of V which are limit points of the support of P.

D 1: For any random variable A we call ã a limit point of the support of A if A has a

continuous density in a neighborhood around ã which is bounded away from zero.

Note that at A = ã, if they exist, derivatives of expectations conditional on A are identified

from observations.

Under Assumption 1 and 3 and Normalization 1(i) and 1(ii) the marginal treatment effect

is identified at V = p if σ = 0 and p is a limit point of the support of Q(P, 0). This, by (3), is

equivalent to the requirement that p is a limit point of the support of P since Q(p, 0) = p. To

see that under this condition the marginal treatment effect is identified write

E[Y |Q(P, 0) = p] = E[Y0] +
∫ p

0
m(v) dv, (7)

where the integral is equal to

p · E[Y1 − Y0|D = 1,Q(P, 0) = p] = p · E[Y1 − Y0|V ≤ p] = p ·
∫ p

0
m(v)/p dv

noting that the density of V conditional on V ≤ p is 1/p.

E[Y |Q(P, 0) = p] is differentiable with respect to p since, by Assumption 3 (i), m is inte-
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grable with respect to V . Differentiating both sides of (7) with respect to p yields

∂E[Y |Q(P, 0) = p]
∂p

= m(p) (8)

by Leibnitz’ rule. By (3), the left hand side is equal to ∂E[Y |P = p]/∂p and is identified from

observations at limit points p of P so that m(p) is identified.

If all p in the open interval (0, 1) are limit points of the support of P the average treatment

effect is identified via (5) because it is given by the integral over marginal treatment effects,

noting that the probability of V being either 0 or 1 is equal to zero and first moments are finite.

This might be the case if a strong continuously distributed instrument is available. Similarly, by

(6) the local average treatment effect between pl and ph is identified if all p in the open interval

(pl, ph) are limit points of the support of P.

2.3.2 Level Based Approach

The (local) average treatment effect can also be identified from observations under weaker sup-

port conditions. Specifically, let pl and ph be two points of support of P with pl < ph. Imbens

and Angrist (1994) show that under Assumption 1 and 3(i), if σ = 0,

E[Y |Q(P, 0) = ph] − E[Y |Q(P, 0) = pl]
ph − pl

= ∆LATE(pl, ph). (9)

Taking limits for pl → ph shows that (9) directly corresponds to (8).

Finally, observe that for the average treatment effect, which is the local average treatment

effect for pl = 0 and ph = 1, to be identified from levels we need that 0 and 1 are in the support

of P. This might be a reasonable assumption in the presence of eligibility rules (Battistin and

Rettore, forthcoming) and mandatory participation.
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3 The Impact of Deviations from Monotonicity

In this section we study the impact of local departures from monotonicity on derivative and level

based estimates of structural parameters. The generalized selection model that was developed

above is central to this analysis. In particular, monotonicity holds if σ = 0. A local departure

from monotonicity is given by a change from σ = 0 to a small σ > 0.

We derive approximations to the bias terms by performing second order Taylor series ex-

pansions in σ about σ = 0.

As for notation, partial derivatives of a function f (a) with respect to its argument evalu-

ated at a = 0 are denoted by ∂ f (0)/∂a. Second and third partial derivatives as well as cross

derivatives are denoted accordingly. The approximations will be derived under the following

differentiability condition.

A 4 (Differentiability): (i) Q(P, σU) and ∂Q(P, σU)/∂P are twice continuously dif-

ferentiable in σU around σU = 0 and (ii) m(V) is three times continuously differentiable.

The approximation involves a second order approximation of Q(P, σU) at P = p in σ about

σ = 0,

Q(p, σU) = Q(p, 0) + (σU) ·
∂Q(p, 0)
∂(σU)

+ (σU)2/2 ·
∂2Q(p, 0)
∂(σU)2 + o(σ2). (10)

Proposition 1 provides conditions on Q under which monotonicity is violated in the absence

of an approximation error and relates the fraction of observations for which monotonicity is

violated to σ.

P 1: Let Normalization 1(ii), Assumption 2 and 4(i) hold. Moreover, let

Q(P, σU) = Q(P, 0) + (σU) ·
∂Q(P, 0)
∂(σU)

+ (σU)2/2 ·
∂2Q(P, 0)
∂(σU)2 .
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(i) Then, for two values p < p′ of P with ∂
2Q(p,0)
∂(σU)2 ,

∂2Q(p′,0)
∂(σU)2 monotonicity is violated if σ > 0 and

(

∂Q(p′, 0)
∂σU

−
∂Q(p, 0)
∂σU

)2

− 2 ·
(

p′ − p
)

·

(

∂2Q(p′, 0)
∂(σU)2 −

∂2Q(p, 0)
∂(σU)2

)

> 0. (11)

(ii) Under this condition, the fraction of observations with Q(p, σU) > Q(p′, σU) approaches

1 as σ tends to infinity. (iii) If U is uniformly distributed this fraction is strictly increasing in σ.

Observe from (11) that for a givenσ, if ∂Q(P, σU)/∂(σU) depends on P while ∂2Q(P, σU)/∂(σU)2

is sufficiently small, monotonicity is violated. This is similar to the observation in Example 3,

namely that for ∂2Q(P, σU)/∂(σU)2 = 0 monotonicity is always violated. The second and third

part of the proposition show that it is reasonable to use σ as a measure for the degree of the

violation of monotonicity.

Under Normalization 1(iii)10,

Var(Q(P, σU |P = p)) = σ2 ·

(

∂Q(p, 0)
∂(σU)

)2

+ o(σ2).

For the ease of the exposition we denote the approximation to the left hand side by

σ2
p ≡ σ

2 ·

(

∂Q(p, 0)
∂(σU)

)2

. (12)

3.1 Bias of Derivative Based Estimates

The main result is summarized in the following proposition.

10Under Assumption 2, Var(Q(P, σU)|P = p) = Var(Q(p, σU)). From (10) we have

Var(Q(p, σU)) = Var(Q(p, 0) + ∂Q(p, 0)/∂(σU) · (σU) + ∂2Q(p, 0)/∂(σU)2 · (σU)2/2) + o(σ2)

= Var(∂Q(p, 0)/∂(σU) · (σU)) + o(σ2),

where for the second equality we perform a second order Taylor series expansion inσ about σ = 0 and let multiples
of σ3 and σ4 enter the remainder term.
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P 2: Let the selection model be given by (1) and let p be a limit point of the support of

P. Then, under Assumptions 1-4 and Normalization 1 the bias of the derivative based estimate

of m(p), ∂E[Y |P = p]/∂P, is given by

BMTE∗(p) =
1
2
· σ2

p ·
∂2m(p)
∂p2 +

1
2
·
∂σ2

p

∂p
·
∂m(p)
∂p

+ o(σ2). (13)

Proof. Appendix. �

The approximation to the bias term consists of two parts. The first part is given by the

product of the variance of Q(P, σU) conditional on P = p and the second derivative of the

marginal treatment effect at V = p. This shows that instead of the marginal treatment effect

at V = p, a weighted average of marginal treatment effects is estimated. The second part of

the bias term arises because the conditional variance of Q depends on p. From the formula in

Proposition 2 the bias in derivative based estimates of the average and local average treatment

effect can be obtained by integrating over values of p, as suggested by (5) and (6).

C 2.1: Let the selection model be given by (1) and let all p ∈ (pl, ph) be limit points of

the support of P. Then, under Assumptions 1-4 and Normalization 1 the bias of the derivative

based estimate of the local average treatment effect between pl and ph is given by

BLATE∗(pl, ph) =
1
2
·

1
ph − pl

·

(

σ2
ph
/2 ·
∂m(ph)
∂V

− σ2
pl
/2 ·
∂m(pl)
∂V

)

+ o(σ2). (14)

If pl = 0 and ph = 1 this is the bias in the derivative based estimate of the average treatment

effect, BATE∗
D .

Proof. Appendix. �
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3.2 Bias in Level Based Estimates

We can prove that the bias in level based estimates of treatment effect parameters is equal to the

bias in derivative based estimators.

P 3: Let the selection model be given by (1) and let pl and ph be in the support P.

Then, under Assumptions 1-4 and Normalization 1 the bias of the level based estimate of the

local average treatment effect between pl and ph,

E[Y |P = ph] − E[Y |P = pl]
ph − pl

,

is equal to the bias of the derivative based estimate in (14). If pl = 0 and ph = 1 this is again

the bias in level based estimates of the average treatment effect.

Proof. Appendix. �

3.3 Practical Relevance

Under appropriate conditions, the variance of Q conditional on P can be estimated (Ichimura

and Thompson, 1998). Then, a bias correction procedure in which we substitute biased esti-

mates for the first and second derivative of the marginal treatment effect is feasible in the sense

that the order of the approximation error remains unchanged. This is the case because the ap-

proximations to the bias terms are multiples of σ2 and the order of the approximation error is

o(σ2).

If the variance of Q conditional on P is unknown, a sensitivity analysis can be undertaken

by calculating the approximation to the bias term for different values of σ2
p and ∂σ2

p/∂p.

In general, our analysis has shown that the curvature of the marginal treatment effect deter-

mines the magnitude of the bias when monotonicity does not hold. As a rule of thumb, we have

that the less curved the marginal treatment effect is in its argument, the less biased estimates are
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when monotonicity does not hold. A particularly interesting result is that the bias is of order

o(σ2) if the marginal treatment effect is linear in V = v This is a testable condition on the data

generating process because it implies that E[Y |P = p] is quadratic in p.

In fact, this observation yields identifying conditions which do not involve monotonicity but

allow for selection on unoberservables. We summarize this finding in a proposition.11

P 4: Let the marginal treatment effect be linear in v so that

E[Y |Q(P, σU) = q] = α + βq + γq2 (15)

for some constants α, β, γ. Moreover, let Assumptions 1-3 hold and let the variance of Q(P, σU)

conditional on P be equal to σ̃. Then, the marginal, average, and local average treatment effect

are identified if the the support of the propensity score contains at least three points.

Proof. By (15),

E[Y |P = p] = α + βE[Q(P, σU)|P = p| + γE[Q(P, σU)2|P = p|

= α + βp + γ
(

σ̃ + p2
)

= α̃ + βp + γp2,

where α̃ = α+γσ̃. Thus, β and γ are identified from observations by the support condition. Con-

sequently, the marginal treatment effect, which is given by the derivative of (15) with respect to

q,

m(q) = β + 2γq,

is identified since it is a function of β and γ and can be evaluated at values q. Consequently, the

average and local average treatment effect are identified by the relationships (5) and (6). �

11As before, we can think of the exposition here as being conditional on exogenous covariates.
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Figure 2: One draw of generated data for ρ = 3.

4 Monte Carlo

We simulated data in order to characterize the bias that arises from a violation of the mono-

tonicity assumption as well as the accuracy of our analytical approximation to the bias term.

For R = 1.000 repetitions and values of a curvature parameter ρ we generated N = 2.000 data

points. Since biases of estimates of average treatment effect parameters are functions of biases

of estimates of the marginal treatment effect we focus on the respective mean bias in estimates

of the marginal treatment effect as a function of the curvature ρ.

Specifically, we drew values of P and V from a uniform distribution, with respective support

[0.2, 0.4] and [0, 1]. Values of U were drawn from a standard normal distribution and σ = 0.1.

We let Q = P + σU − P · σU. Next, we calculated D = 1I{Q ≥ V}. Notice that by construction,

monotonicity of the treatment decision in Q holds whereas monotonicity in P is violated. In the
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Figure 3: Distribution of estimates of m(0.3) based on P and Q. ρ = 3. The true value is 1.0145.

spirit of the empirical results in Carneiro, Heckman, and Vytlacil (2005) we let

Y = 2.2 + 0.5Q −
(1 − Q)ρ+1

ρ + 1
+ ε,

where ε was drawn from a normal distribution with mean 0 and variance 0.05. In their applica-

tion, the treatment decision is whether to attend college or not. For ρ = 2 our simulations yield

data similar to theirs. Since monotonicity in Q holds, we get by (8) that the marginal treatment

effect at V = q is given by the derivative of E[Y |Q] with respect to Q, evaluated at Q = q:

m(q) = 0.5 + 1.5(1 − q)ρ.

It is decreasing in q. The second and third derivative are ∂m(q)/∂V = −1.5ρ(1 − q)ρ−1 and

∂2m(q)/∂V2 = 1.5ρ(ρ−1)(1−q)ρ−2, respectively. Observe that for ρ = 1 the marginal treatment

effect is linear in q whereas for ρ > 1 it is a convex function of q. For low values of q, e.g.

q = 0.3 this function is the more convex the higher ρ.

For this Monte Carlo, estimates of the marginal treatment effect as well as its first and second
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Figure 4: The marginal treatment effect for different values of ρ on the left and the bias as well
as the accuracy of the approximation as a function of ρ, for V = 0.3, on the right. Respective
sample means across 1, 000 repetitions were calculated.

derivative were obtained by fitting a third order polynomial to the data.

Figure 2 shows one draw of generated data for ρ = 3. Solid lines are estimated means over

all repetitions. On the left, values of Y are plotted against values of P and Q. On the right, the

marginal treatment effect evaluated at values of Q, m(Q), is plotted against values of P and Q.

Obviously, when we plot m(Q) against Q we get the marginal treatment effect itself. However,

plotting m(Q) against P yields a distribution of marginal treatment effects for every P.

Figure 3 shows the distribution of estimates of m(0.3) that are based on P and Q. Monotoni-

city of D with respect to Q holds by construction, whereas monotonicity of D with respect to P

is violated. The figure shows that estimates based on P are in general upward biased and more

dispersed.

In Section 3 we have shown that the bias which arises from a violation of the monotonicity

assumption is the higher the more convex the marginal treatment effect is in v. Next, in Figure

4, we plot the dependence of the mean bias in estimates of the marginal treatment effect at

V = 0.3 against ρ. Additionally, we plot the analytical approximation to the bias term, where

we treat m(V) as known, and the estimated approximation, where we use an estimate of the
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second derivative of the marginal treatment effect at V = 0.3 that is based on P. In both cases,

the sample variance of Q conditional on P and the derivative thereof with respect to P have been

used. Figure 4 demonstrates that the approximation is reasonably accurate.

5 Concluding Remarks

This paper has provided a formal analysis of the consequences of a violation of the monotonicity

assumption. Approximations to respective bias terms have been derived. They are functions of

features of the underlying structure: a measure for the degree of violation of the monotonicity

assumption and the marginal treatment effect. In general, we find that estimates are the more

sensitive to violations of monotonicity the more curvature the marginal treatment effect exhibits

in V . This analytical result was illustrated in a Monte Carlo study.

The bias can be estimated from the data up to a parameter σp and ∂σp/∂p without changing

the order of the approximation error. Therefore, our results have practical relevance which

we summarize in the following three points. First, a bias correction procedure is available if

the researcher is willing to make additional assumptions in order to estimate σp and ∂σp/∂p.

Second, a sensitivity analysis can be carried out by calculating the bias for different values of

σp and ∂σp/∂p. Finally, whenever the marginal treatment effect is linear in V , the bias is of

order o(σ2) if the variance of Q conditional on P is constant across values of P. The former

condition is testable whereas, as before, the latter condition can be tested if the researcher is

willing to make additional assumptions.
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Appendix: Proofs

Proposition 1

Proof. We first prove (i). By Normalization 1(ii) and Assumption 2(i) we can, as in (3), replace

Q(p, 0) and Q(p′, 0) by p and p′, respectively. Monotonicity is violated if the sign of Q(p′, σu)−

Q(p, σu) depends on u. This is the case if the second order polynomial in u,

Q(p′, σu) − Q(p, σu) = p′ + (σu) ·
∂Q(p′, 0)
∂(σU)

+ (σu)2/2 ·
∂2Q(p′, 0)
∂(σU)2 (16)

−p − (σu) ·
∂Q(p, 0)
∂(σU)

− (σu)2/2 ·
∂2Q(p, 0)
∂(σU)2 ,

has more than 1 root. As ∂
2Q(p′,0)
∂(σU)2 ,

∂2Q(p,0)
∂(σU)2 the roots are given by the quadratic formula as

u1,2 = −σ

(

∂Q(p′, 0)
∂(σU)

−
∂Q(p, 0)
∂(σU)

)

(17)

±

√

(

∂Q(p′,0)
∂(σU) −

∂Q(p,0)
∂(σU)

)2
− 2 · (p′ − p) ·

(

∂2Q(p′,0)
∂(σU)2 −

∂2Q(p,0)
∂(σU)2

)

σ
(

∂2Q(p′,0)
∂(σU)2 −

∂2Q(p,0)
∂(σU)2

) .

There exists more than 1 root if the discriminant is positive, i.e.

(

∂Q(p′, 0)
∂σU

−
∂Q(p, 0)
∂σU

)2

− 2 ·
(

p′ − p
)

·

(

∂2Q(p′, 0)
∂(σU)2 −

∂2Q(p, 0)
∂(σU)2

)

> 0,

the desired result.

(ii) Relabel the roots so that u2 > u1. We look for values u for which the difference in (16) is

negative. Observe that it is positive for u = 0. Therefore, for u < u1 and u > u2 (16) is negative

if there exist two roots. Then, the fraction of observations for which monotonicity does not hold

is given by

1 − (FU(u2) − FU(u1)). (18)

As σ tends to infinity the distance between u1 and u2 approaches 1. By Assumption 2(ii) FU is
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continuous so that limσ→∞(FU(u2) − FU(u1)) = 0.

(iii) If U is uniformly distributed we have FU(u1) = u1 and FU(u2) = u2. Then, (18) becomes

1 − (u2 − u1) which, by (17), is increasing in σ. �

Proposition 2

We prove Proposition 2 using Lemma 1. Observe that all Taylor series expansions can be

performed by the differentiability conditions in Assumption 4.

L 1: Under Assumptions 1-4 and Normalization 1

∂

∂p
E[Y |P = p]

= m(Q(p, 0))

+ σ2/2 ·
∂2m(Q(p, 0))
∂V2 ·

(

∂Q(p, 0)
∂(σU)

)2

+ σ2/2 ·
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2

+ σ2 ·
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

·
∂2Q(p, 0)
∂(σU) ∂P

+ o(σ2).

Proof. The proof is in 5 steps.

First step: Recall from (10) that a second order Taylor series expansion of Q(p, σu) in σ

about σ = 0 yields

Q(p, σu) = Q(p, 0) + σu ·
∂Q(p, 0)
∂(σU)

+ (σu)2/2 ·
∂2Q(p, 0)
∂(σU)2 + o(σ2). (19)

Second step: By Assumption 2 and Normalization 1(ii) and 1(iii)

p = E[Q(P, σU)|P = p] = E[Q(p, σU)] = Q(p, 0) + σ2/2 ·
∂2Q(p, 0)
∂(σU)2 + o(σ2). (20)
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Combining this with (19) yields

Q(p, σu) = p + σu ·
∂Q(p, 0)
∂(σU)

+ σ2/2 · (u2 − 1) ·
∂2Q(p, 0)
∂(σU)2 + o(σ2) (21)

and
∂

∂p
Q(p, σu) = 1 + σu ·

∂2Q(p, 0)
∂(σU) ∂P

+ σ2/2 · (u2 − 1)
∂3Q(p, 0)
∂(σU)2 ∂P

+ o(σ2). (22)

Third step: A second order Taylor series expansion of ∂E[Y |Q(P, σU) = Q(p, σu)]/∂Q(P, σU)

in σ about σ = 0 yields

∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, σu)] (23)

= m(Q(p, σu))

= m(Q(p, 0))

+
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

· σu

+
∂2m(Q(p, 0))
∂V2 ·

(

∂Q(p, 0)
∂(σU)

)2

· (σu)2/2

+
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2 · (σu)2/2 + o(σ2),

where the first equality uses (8).

Fourth step: We have

∂

∂P
E[Y |P = p]

=
∂

∂P
E[E[Y |Q(P, σU)]|P = p]

=
∂

∂P
E[E[Y |Q(p, σU)]]
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=
∂

∂P

∫

E[Y |Q(P, σU) = Q(p, σu)] fU(u) du

=

∫

∂

∂P
E[Y |Q(P, σU) = Q(p, σu)] fU(u) du

=

∫

∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, σu)] ·

∂

∂P
Q(p, σu) fU(u) du

=

∫

∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, σu)] ·

{

1 + σu ·
∂2Q(p, 0)
∂(σU) ∂P

+σ2/2 · (u2 − 1) ·
∂3Q(p, 0)
∂(σU)2 ∂P

}

fU(u) du + o(σ2),

where the first equality is by iterated expectations, the second follows from Assumption 2(i),

the third from Assumption 2(ii), the fourth from the integrand being finite (Assumption 3(i)),

the fifth applies the chain rule, and the sixth uses (22).

Together with (23), this is

∂

∂P
E[Y |P = p]

=

∫ {

∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, 0)]

+
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

· σu

+
∂2m(Q(p, 0))
∂V2 ·

(

∂Q(p, 0)
∂(σU)

)2

· (σu)2/2

+
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2 · (σu)2/2

}

×

{

1 + σu ·
∂2Q(p, 0)
∂(σU) ∂P

+ σ2/2 · (u2 − 1) ·
∂3Q(p, 0)
∂(σU)2 ∂P

}

× fU(u) du + o(σ2)
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and this in turn is

=

∫ {

∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, 0)]

+
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

· σu

+
∂2m(Q(p, 0))
∂Q(P, σU)2 ·

(

∂Q(p, 0)
∂(σU)

)2

· (σu)2/2

+
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2 · (σu)2/2

+
∂E[Y |Q(P, σU) = Q(p, 0)]

∂Q(P, σU)
· σu ·

∂2Q(p, 0)
∂(σU) ∂P

+
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

· σu · σu ·
∂2Q(p, 0)
∂(σU) ∂P

+
∂E[Y |Q(P, σU) = Q(p, 0)]

∂Q(P, σU)
· σ2/2 · (u2 − 1) ·

∂3Q(p, 0)
∂(σU)2 ∂P

}

× fU(u) du + o(σ2),

where we already let multiples of σ2 enter the remainder term. By Normalization 1(iii), E[U] =

0 and E[U2] = 1, this is

∂

∂P
E[Y |P = p]

=
∂

∂Q(P, σU)
E[Y |Q(P, σU) = Q(p, 0)]

+ σ2/2 ·
∂2m(Q(p, 0))
∂V2 ·

(

∂Q(p, 0)
∂(σU)

)2

+ σ2/2 ·
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2

+ σ2 ·
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

·
∂2Q(p, 0)
∂(σU) ∂P

+ o(σ2).

This completes the proof of Lemma 1. �



H T E: I V M? 30

Proof of Proposition 2. (20) implies that

m(p) = m
(

Q(p, 0) + σ2/2 ·
∂2Q(p, 0)
∂(σU)2

)

+ o(σ2).

A second order Taylor series expansion thereof in σ about σ = 0 yields

m(p) = m(Q(p, 0)) + σ2/2 ·
∂m(Q(p, 0))
∂V

·
∂2Q(p, 0)
∂(σU)2 + o(σ2). (24)

Moreover, (12) implies
∂σ2

p

∂p
= 2σ2 ·

∂Q(p, 0)
∂(σU)

·
∂2Q(p, 0)
∂(σU) ∂p

. (25)

From (24) and Lemma 1 we have that

∂

∂p
E[Y |P = p] − m(p)

= σ2/2 ·
∂2m(Q(p, 0))
∂V2 ·

(

∂Q(p, 0)
∂(σU)

)2

+ σ2 ·
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

·
∂2Q(p, 0)
∂(σU) ∂P

+ o(σ2).

We get the result using (12) and (25). �

Proof of Corollary 2.1. By (6) and (13)

BLATE∗
D (pl, ph) =

1
ph − pl

∫ ph

pl

1
2
· σ2

p ·
∂2m(p)
∂p2 +

1
2
·
∂σ2

p

∂p
·
∂m(p)
∂p

dp + o(σ2)

=
1

ph − pl

[

1
2
· σ2

p ·
∂m(p)
∂V

]ph

p=pl

.

This yields the result. �
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Proposition 3

Proof of Proposition 3. The proof consists of 3 steps.

First step: We have

E[Y |P = p]

= E
[

E[Y |Q(P, σU)]
∣

∣

∣

∣

P = p
]

= E
[

E[Y |Q(P, σU) = Q(p, σU)]
]

=

∫

E[Y |Q(P, σU) = Q(p, σu)] fU(u) du

=

∫

E[Y |Q(P, σU) = Q(p, 0) + (σu) ·
∂Q(p, 0)
∂(σU)

+ (σu)2/2 ·
∂2Q(p, 0)
∂(σU)2 ] fU(u) du + o(σ2)

where the first equality is by iterated expectations, the second follows from Assumption 2(i),

the third from Assumption 2(ii), and the forth uses (10). A second order Taylor series expansion

in σ about σ = 0 yields that this is

∫

{

E[Y |Q(P, σU) = Q(p, 0)]

+ (σu) · m(Q(p, 0)) ·
∂Q(p, 0)
∂(σU)

+ (σu)2/2 · m(Q(p, 0)) ·
∂2Q(p, 0)
∂(σU)2

+ (σu)2/2 ·
∂m(Q(p, 0))
∂V

·

(

∂Q(p, 0)
∂(σU)

)2
}

× fU(u) du + o(σ2)

and by Normalization 1(iii) this is equal to

E[Y |Q(P, σU) = Q(p, 0)] + σ2/2 · m(Q(p, 0)) ·
(

∂Q(p, 0)
∂(σU)

)2

(26)

+ σ2/2 ·
∂m(Q(p, 0))
∂V

·
∂Q(p, 0)
∂(σU)

}

+ o(σ2).
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Second step: By Assumption 2 and Normalization 1(ii) and 1(iii) we get (20) which implies

that

E[Y |Q(p, σU) = p] = E
[

Y

∣

∣

∣

∣

∣

∣

Q(P, σU) = Q(p, 0) + σ2/2 ·
∂2Q(p, 0)
∂(σU)2

]

+ o(σ2).

A second order Taylor series expansion thereof in σ about σ = 0 yields

E[Y |Q(P, σU) = p] = E[Y |Q(P, σU) = Q(p, 0)] + σ2/2 · m(Q(p, 0)) ·
∂2Q(p, 0)
∂(σU)2 + o(σ2), (27)

Third step: Combining (3), (26) and (27) we get

E[Y |Q(P, σU) = p] − E[Y |P = p] = σ2/2 ·
∂m(p)
∂V

·

(

∂Q(p, 0)
∂(σU)

)2
}

. (28)

Using this with (9), (12) and (25) yields the result. �
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