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1 Introduction

This paper describes a method to estimate quantile treatment effects
of a binary treatment variable on censored durations. Using the frame-
work of econometric evaluation methods, the effects of interest are the
differences between quantiles of the counterfactual outcomes in both
treatment states. Identification is based on the conditional indepen-
dence assumption. The proposed model extends the model of Firpo
(2007) by allowing censored outcomes.

Most approaches for analyzing durations are based on the concept
of the hazard rate. Kiefer (1988) and van den Berg (2001) give eco-
nomic examples and review numerous methods for estimating the haz-
ard rates in a variety of different contexts. To derive causal effects in
the presence of self-selected individuals, the general model of Abbring
and van den Berg (2003a) examines the effect of a treatment at some
point in time on an outcome duration. Abbring and van den Berg
(2004) compare this approach to alternatives like basic (nondynamic)
binary treatment effect models and panel data models. A method for
implementation is proposed by Abbring and van den Berg (2003b),
whereas Abbring (2003, 2006) give overviews and generalizations of
the underlying basic dynamic approach. Abbring (2007) introduces
a general framework where durations are defined by the crossing of a
threshold by certain stochastic processes. In an instrumental variables
setting, Abbring and van den Berg (2005) define treatment effects
concerning hazard rates and consider identification and estimation in
various situations with respect to time of treatment and compliance
of the individuals to the instrumental variable.

The present paper uses a different approach to analyze treatment
effects on durations. Instead of modelling hazard rates, the focus di-
rectly lies on durations. The influence of the treatment variable on
the outcome duration is investigated by using the censored quantile re-
gression model of Powell (1986), which adapts the quantile regression
estimator of Koenker and Bassett (1978) to censored dependent vari-
ables. The applicability of quantile regressions for duration analyses is
adressed by Koenker and Bilias (2001) and Koenker and Geling (2001)
for the uncensored case. Empirical analyses of censored durations us-
ing quantile (or median) regressions are carried out by Horowitz and
Neumann (1987) and Fitzenberger and Wilke (2005), for example.

The treatment effects may differ for each individual. Therefore,
an evaluation approach based on the assumption of independence of
the latent outcomes and the treatment conditional on the covariates
is used. This is implemented by using the reweighting approach intro-
duced in the econometric evaluation literature by Hirano, Imbens, and
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Ridder (2003). In the following, the weighting scheme is applied to
the censored quantile regression objective function of Powell (1986).
This extends the quantile treatment effect model of Firpo (2007) by al-
lowing censored outcomes. The propensity score necessary for this ap-
proach is estimated by the nonparametric series estimator of Horowitz
and Mammen (2004), which avoids the strong differentiability assump-
tion of the series estimator proposed by Hirano, Imbens, and Ridder
(2003).

In contrast to the general timing-of-events approach (see Abbring
and van den Berg (2003a), for example), the present approach does not
make use of the exact time of the realization of a treatment. It con-
siders whether a treatment occured in some time period and evaluates
its impact on some subsequent outcome duration. In this respect, the
present approach resembles to the multiple treatment effects frame-
work, which considers how many treatments an individual choose in a
certain time period and compares the outcomes to those of individuals
which chose a different number of treatments, but without taking into
account the exact position in time when treatments were taken (see
Lechner and Miquel (2001)).

In the following, estimators for quantile treatment effects for the
whole population and for the subgroup of participants are proposed.
Section 2.1 describes the approach of Horowitz and Mammen (2004),
which is used to estimate the propensity score. Section 2.2 describes
the quantile treatment estimators and shows consistency and asymp-
totic normality. It also contains a simple transformation which makes
a clear interpretation of the results possible. The transformation yields
an expression of the relative change of the counterfactual durations.
Variance estimators are defined and their consistency is shown in sec-
tion 2.3. Quantile regression models enable in principle to estimate a
continuum of quantile treatment effects. To test hypotheses for the
whole quantile treatment effect process, a test procedure following
Chernozhukov and Hansen (2006) and Chernozhukov and Fernandez-
Val (2005) is described in section 3. Section 4 concludes. All proofs
are given in the appendix.

2 Estimation Approach and Asymp-

totic Properties

2.1 Estimation of the Propensity Score

In this section, a short description of the series estimator of Horowitz
and Mammen (2004) is given. Li and Racine (2007, sec. 15.3.3)
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provide a textbook account of this approach. Its first step is similar
to the approach of Hirano, Imbens and Ridder (2003), but it avoids a
strong differentiability assumption with respect to the true propensity
score.

The treatment indicator D is is modelled as follows:

D = F (µ+m1(x1) + . . .+mk(xk)) + U. (1)

Here, F is a known function (for example, the logit transformation,
i.e., F (x) = 1/(1 + exp(−x))), xj is the jth element of X, which is
a k-dimensional random vector of (nonconstant) covariates, µ is an
unknown constant, mj(xj) is an unknown function of xj , j = 1, . . . , k,
and U is an error term. Set m(x) =

∑k
j=1mj(xj). The unknown

function µ + m(x) is approximated by a series of the elements of X.
To this end, define

Rκ(X) =
[1, r1(x1), . . . , rκ(x1), r1(x2), . . . , rκ(x2), . . . , r1(xk), . . . , rκ(xk)]′,

where κ ∈ N and rl(xj), l = 1, . . . , κ, j = 1, . . . , k, are elements of
a series with κk + 1 elements in total. The function µ + m(x) is
approximated by a linear combination of the elements of Rκ(x), i.e.,
by Rκ(x)′θ, where θ ∈ Rκk+1. The parameters θ of the approximation
are determined by the following minimization problem:

θ̂nκ = arg min
θ
Snκ = arg min

θ

1
n

n∑
i=1

(Di − F (Rκ(Xi)′θ))2. (2)

As a result, preliminary estimates µ̃ + m̃(X) = Rκ(X)′θ̂nκ are ob-
tained.

Until now, the procedure is basically identical to that of Hirano,
Imbens, and Ridder (2003). Horowitz and Mammen (2004) propose
to add a further step for the estimation of m(x). To this end, define
the following terms for j = 0, 1:

S′nj1(x1, m̃) = −2
n∑
i=1

(
Di − F

(
µ̃+ m̃1(x1) + m̃−1(X̃i)

))
×F ′

(
µ̃+ m̃1(x1) + m̃−1(X̃i)

)
(X1,i − x1)jKh(x1 −X1,i).

Here, X̃ ≡ (x2, . . . , xk), m̃−1(X̃i) = m̃2(x2,i) + . . . + m̃k(xk,i), xl,i is
observation i of element l of X. Kh(u) = K(u/h) is a kernel function
and h > 0 is a bandwidth. Further, define for j = 0, 1, 2:

S′′nj1(x1, m̃) =
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2
n∑
i=1

F
(
µ̃+ m̃1(x1) + m̃−1(X̃i)

)2
(X1,i − x1)jKh(x1 −X1,i)

−2
n∑
i=1

(
Di − F

(
µ̃+ m̃1(x1) + m̃−1(X̃i)

))
×F ′′

(
µ̃+ m̃1(x1) + m̃−1(X̃i)

)
(X1,i − x1)jKh(x1 −X1,i).

With these expressions, the second stage estimator of m1(x1) can be
defined by:

m̂1(x1) = m̃1(x1)− S
′′
n21(x1, m̃)S′n01(x1, m̃)− S′′n11(x1, m̃)S′n11(x1, m̃)

S′′n01(x1, m̃)S′′n21(x1, m̃)− S′′n11(x1, m̃)2
.

S′nj1(x1, m̃) and S′′nj1(x1, m̃) are formulated for the first nonconstant
covariate. Similar expressions can also be defined for the second stage
estimators of ml(xl), l = 2, . . . , k. With estimates for m̂1(·), . . . , m̂k(·)
at hand, a prediction of D (termed p̂(X) later on) can be obtained by
D̂ = F (µ̂+ m̂(X)), where µ̂ = µ̃.

To derive the asymptotic properties of the estimator, Horowitz and
Mammen (2004) state the following assumptions:

A1 The data {Di, Xi}ni=1 are iid and the true model of the data is
E[D|X = x] = F (µ+m(x)).

A2 The support of X is (rescaled to be) [−1, 1]k, the distribution
of X is absolutely continuous with respect to Lebesgue measure,
the density of X is finite, bounded away from zero and twice
differentiable. Define U = D − F (µ + m(X)). The variance of
U is bounded from below and above by cV and CV , respectively,
and E|U |j 6 Cj−2

U j!E[U2] < ∞ for all j > 2 and a constant
CU <∞.

A3 The unknown functions mj(·), j = 1, . . . , k, are bounded in ab-
solute value by a constant Cm and are twice differentiable. The
known transformation F is bounded from above, its derivative is
bounded from below and above. F is differentiable in a neighbor-
hood of µ, where the size of the environment depends linearly on
the number of covariates. The second derivative of F is Lipschitz
continuous with constant CF3.

A4 Define Qκ = E[F ′(µ + m(X))2Rκ(X)Rκ(X)′]. The absolute
value of all elements of Qκ is bounded from above, the small-
est eigenvalue of Qκ is bounded away from zero. The largest
eigenvalue of Q−1

κ E[F ′(µ+m(X))2Var(U |X)Rκ(X)Rκ(X)′]Q−1
κ

is finite.
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A5 The elements of the series rk are symmetric orthonormal func-
tions, i.e.,

∫ 1
−1 rk(v)dv = 0,

∫ 1
−1 rj(v)rk(v)dv = δj,k, where δj,k =

1{j = k}. Assume ζκ = supx∈supp(X) ||Rκ(x)|| > cκ for suffi-
ciently large κ and ζκ = O(

√
κ) for κ → ∞. For Cθ < ∞

and θκ0 ∈ [−Cθ, Cθ]kκ+1 it holds that supx∈supp(X) |µ + m(x) −
Rκ(x)′θκ0| = O(κ−2) for κ→∞. Finally, θκ ∈ int[−Cθ, Cθ]kκ+1.

A6 New elements are included in the series with rate κ = Cκn
4/15+ν

for 0 < Cκ <∞ and 0 < ν < 1/30. For the bandwidth h it holds
that h = Chn

−1/5 for 0 < Ch <∞.

A7 The kernel function is bounded, continuous, symmetric and in-
tegrates to one.

Assumption A1 is standard. Assumption A2 imposes no restrictions
on covariates with support larger than [−1, 1], as for any (finite) x ∈ R,
a value obtained by the monotone transformation T : R → [−1, 1],
defined as

T (x) = 2
x−mini{xi}

maxi{xi} −mini{xi}
− 1,

does not alter the estimation problem and fulfills the assumption.
Discrete covariates are more difficult to handle; if the sample is large
enough, the model can be estimated separately for all cells of combina-
tions of the values of the discrete covariates (for a review of adaptions
of nonparametric (kernel-based) methods to discrete variables, see sec-
tions 3 and 4 of Li and Racine (2007)). Assumption A3 requires the
true functions only to be two times differentiable. Note that this is
a considerably weaker assumption than that of Hirano, Imbens, and
Ridder (2003), who require a number of derivatives of the true propen-
sity score which is a multiple of the dimension of the covariates. As-
sumption A4 ensures regular properties of the covariance matrix of the
first-stage estimates. A5 concerns the approximation error of the se-
ries estimator and its convergence properties, A6 the rate of inclusion
of new elements in the series and the rate with which the bandwidth
h converges to zero. A7 contains standard assumptions on the ker-
nel function. For more discussion of the technical assumptions, see
Horowitz and Mammen (2004).

Under these assumptions, Horowitz and Mammen (2004) derive
the asymptotic properties of the estimator. They show consistency
and asymptotic normality and derive the speed of convergence of
the estimator. They also discuss bandwidth choice for the estima-
tor. Their proposed procedure for this purpose is not directly suited
for the framework of the present paper, since optimal estimation of
the propensity score does not necessarily imply optimal estimation of
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the quantile treatment effects with respect to some mean square er-
ror criterion. For an analysis of this problem in the context of mean
treatment effects, see Frölich (2005), Ichimura and Linton (2005), or
Imbens, Newey, and Ridder (2005).

2.2 Quantile Treatment Effect Estimators for
Censored Durations

Let T be a duration and D a binary indicator of treatment partici-
pation. Assume that for both treatment states latent values T1 and
T0 exist. Define qτ (T ) to be the τ -quantile of T and qj,τ = qτ (Tj),
j ∈ {0, 1}, as the τ -quantiles of the latent outcomes. The interest of
the present paper lies in estimating the quantile treatment effect ∆τ

of D on T , which is given by

∆τ = qτ (T1)− qτ (T0). (3)

Note that this is not the τ -quantile of the difference T1−T0, as long as
one is not willing to assume rank invariance, i.e., that all individuals
take the same ranks in both treatment states. See for example Cher-
nozhukov and Hansen (2005) or Firpo (2007) for a discussion of rank
invariance or, synonymously, rank preservation.

Eq. (3) is the quantile treatment effect for an average individual
of the population. Another effect of interest is the treatment effect
on the treated, which is the effect for an arbitrary individual of the
subpopulation of participants. Denote this treatment effect by

∆τ |D=1 = qτ |D=1(T1)− qτ |D=1(T0). (4)

Here, qτ |D=1(T ) is the τ -quantile of T for the subgroup of participants.
Firpo (2007) shows identification of the quantiles of T1 and T0 un-

der the conditional independence assumption by using the reweighting
approach of Hirano, Imbens, and Ridder (2003). Without censoring
of T , Firpos estimation approach would be directly applicable by us-
ing log T as outcome variable. The log-transformation is necessary for
the estimation procedure to handle outcomes which cannot become
negative. If T is censored, which is usually the case in duration anal-
ysis, this approach would lead to inconsistent estimates. Therefore,
the present paper combines the reweighting approach with results of
Powell (1986) for censored quantile regressions.

Let {T̃i, Ci, Di, Xi}ni=1 be a random sample. T̃i is the observed
(possibly censored) outcome, which is equal to Ti if T̃i 6 Ci and is
equal to Ci otherwise, where Ci is the censoring time. Note that
the censoring time has to be known also for uncensored observations.
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This requirement is necessary for application of the approach of Pow-
ell (1986). In the case of censoring due to the end of the survey, this
information is clearly available. This situation is frequently encoun-
tered when analyzing administrative data sets of active labour market
programs, for example. Di is the treatment participation indicator,
and Xi is a k-dimensional vector of covariates.

Extending the weighted quantile regression estimators of Firpo
(2007) by the objective function of censored quantile regressions, the
following estimators are suggested:

∆̂τ = arg min
q1,τ

1
n

n∑
i=1

Di

p̂(Xi)
ρτ (T̃i −min{q1,τ , Ci})

− arg min
q0,τ

1
n

n∑
i=1

1−Di

1− p̂(Xi)
ρτ (T̃i −min{q0,τ , Ci}),

∆̂τ |D=1 = arg min
q1,τ |D=1

1
n

n∑
i=1

Di

p̄
ρτ (T̃i −min{q1,τ |D=1, Ci})

− arg min
q0,τ |D=1

1
n

n∑
i=1

1−Di

p̄

p̂(Xi)
1− p̂(Xi)

ρτ (T̃i −min{q0,τ |D=1, Ci}),

where p̂(·) is a nonparametric estimate of the propensity score E[D|X],
p̄ is an estimator of the unconditional expectation of D, and ρτ (u) ≡
(τ−1{u < 0})u, τ ∈ (0, 1), is the usual quantile regression check func-
tion (see Koenker and Bassett (1978) or Koenker (2005)). The iden-
tification results of Firpo (2007) carry over to the present adaption,
as noninformative censoring is assumed. Estimation of the propen-
sity score is proposed to be carried out by the nonparametric series
estimator of Horowitz and Mammen (2004), which was described in
section 2.1. Asymptotic properties of the estimators are given by the
following theorem.

Theorem 1: In addition to assumptions A1 - A7, assume the follow-
ing:

A8 Conditional independence of D and the latent outcomes T1 and
T0: D ⊥⊥ (T1, T0)|X.

A9 The propensity score p(X) ≡ E[D|X] is bounded away from zero
and one.

A10 The latent quantiles qτ (Tj) and qτ |D=1(Tj), j ∈ {0, 1}, take val-
ues in a compact set Q ⊂ R.

Then the following holds:

1. ∆̂τ −∆τ = op(1) and ∆̂τ |D=1 −∆τ |D=1 = op(1).
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2.
√
n(∆̂τ−∆τ ) D−→ N (0,Ωτ ) and

√
n(∆̂τ |D=1−∆τ |D=1) D−→ N (0,

Ωτ |D=1).

Discussion of the variance expressions and their estimation is deferred
to section 2.3. For identification of ∆τ |D=1, assumptions A8 and A9
can be weakened to D ⊥⊥ T0|X and p(X) < 1 (see Imbens (2004), for
example).

Usually interest lies in the effect of D on the duration T as such.
To circumvent the need for an estimation procedure which handles the
nonnegativity of the outcome, however, the logarithm of T is used for
estimation. The quantile treatment effects are therefore the differences
of the quantiles of the logarithms of the considered durations, which
makes direct interpretation difficult. A simple transformation gives
an expression which is more easily to interpret:

exp(∆τ ) = exp(qτ (lnT1)− qτ (lnT0))
= exp(ln(qτ (T1))− ln(qτ (T0)))

= exp
(

ln
(
qτ (T1)
qτ (T0)

))
=

qτ (T1)
qτ (T0)

.

The second equality follows by the invariance of quantiles with re-
spect to monotone (rank-preserving) transformations (see for exam-
ple Koenker and Geling (2001, sec. 2.3)). Therefore, exp(∆̂τ ) is an
estimate of the relative increase or decline of the τ -quantile of the du-
ration due to the treatment. For example, exp(∆̂τ ) = .9 means that
the treatment decreases the τ -quantile of the outcome duration by ten
percent. Note that this is a causal effect only under the assumption of
rank invariance. The distribution of exp(∆̂τ ) follows directly by the
continuous mapping theorem and by the Delta method:

√
n(exp(∆̂τ )− exp(∆τ )) D−→ N (0, (∂ exp(∆τ )/∂∆τ )2Ωτ )

= N (0, exp(∆τ )2Ωτ ).

2.3 Variance Estimation

To derive asymptotic variances of the estimators, a number of terms
are defined. First, following Chen, Linton, and Van Keilegom (2003),
consider the following representations of the objective functions for
∆τ and ∆τ |D=1:

Mτ (qτ , p) = E

[
D

p(X)
1{q1,τ < C}(τ − 1{T̃ 6 q1,τ})
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− 1−D
1− p(X)

1{q0,τ < C}(τ − 1{T̃ 6 q0,τ})
]

Mτ |D=1(qτ |D=1, p)

= E

[
D

p̌
1{q1,τ |D=1 < C}(τ − 1{T̃ 6 q1,τ |D=1})

−1−D
p̌

p(X)
1− p(X)

1{q0,τ |D=1 < C}(τ − 1{T̃ 6 q0,τ |D=1})
]
.

Here, p̌ denotes E[D]. The objectives depend on the finite dimensional
parameters qτ = (q1,τ , q0,τ )′ or qτ |D=1 = (q1,τ |D=1, q0,τ |D=1, p̌)′ and the
infinite dimensional parameter p(X), which is partly abbreviated by
p in the following.

The derivatives of Mτ (qτ , p) and Mτ |D=1(qτ |D=1, p) with respect to
the finite dimensional parameters are given by Γ1,τ (q, p∗) and Γ1,τ |D=1

(q, p∗), respectively, those with respect to the infinite dimensional pa-
rameter in direction p−p∗ by Γ2,τ (q, p∗)[p−p∗] and Γ2,τ |D=1(q, p∗)[p−
p∗]:

Γ1,τ (q, p∗) =


−E

[
D

p∗(X)(fC(q1,τ )(τ − FT̃ |X(q1,τ ))

+(1− FC(q1,τ ))fT̃ |X(q1,τ ))
]

E
[

1−D
1−p∗(X)(fC(q0,τ )(τ − FT̃ |X(q0,τ ))

+(1− FC(q0,τ ))fT̃ |X(q0,τ ))
]


Γ1,τ |D=1(q, p∗)

=



−E
[
D
p̌ (fC(q1,τ |D=1)(τ − FT̃ |X(q1,τ |D=1))

+(1− FC(q1,τ |D=1))fT̃ |X(q1,τ |D=1))
]

E
[

1−D
p̌

p∗(X)
1−p∗(X)(fC(q0,τ |D=1)(τ − FT̃ |X(q0,τ |D=1))

+(1− FC(q0,τ |D=1))fT̃ |X(q0,τ |D=1))
]

−E
[
D
p̌2

(1− FC(q1,τ |D=1))(τ − FT̃ |X(q1,τ |D=1))

−1−D
p̌2

p∗(X)
1−p∗(X)(1− FC(q0,τ |D=1))(τ − FT̃ |X(q0,τ |D=1))

]


Γ2,τ (q, p∗)[p− p∗]

= −E
[
D(p(X)− p∗(X))

(p∗(X))2
(1− FC(q1,τ ))(τ − FT̃ |X(q1,τ ))

−(1−D)(p(X)− p∗(X))
(1− p∗(X))2

(1− FC(q0,τ ))(τ − FT̃ |X(q0,τ ))
]

Γ2,τ |D=1(q, p∗)[p− p∗]
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= −E
[

1−D
p̌

p(X)− p∗(X)
(1− p∗(X))2

(1− FC(q0,τ |D=1))

×(τ − FT̃ |X(q0,τ |D=1))
]
.

Here, q∗, p∗ and p̌ are the true values of q, p, and E[D], respectively.
FC and fC are the cumulative distribution function and the density of
the censoring time, FT̃ |X and fT̃ |X are those of the outcome duration.
For a note on the derivation of the above expressions, see part 2.2 of
the proof of Theorem 1.

Consider the following expression:

M(q∗, p∗) + Γ2(q∗, p∗)[p̂− p∗].

Condition 2.6 of Theorem 2 of Chen, Linton, and Van Keilegom (2003)
assumes the existence of an matrix V for which it holds that

√
n(M(q∗, p∗) + Γ2(q∗, p∗)[p̂− p∗]) D−→ N (0, V ).

Of course, separate expressions of V exist for both estimators ∆̂τ and
∆̂τ |D=1. Define

ξτ,i =
D

p∗(X)
1{q∗1,τ < C}(τ − 1{T̃ 6 q∗1,τ})

− 1−D
1− p∗(X)

1{q∗0,τ < C}(τ − 1{T̃ 6 q∗0,τ})

−E
[
D(p(X)− p∗(X))

(p∗(X))2
(1− FC(q∗1,τ ))(τ − FT̃ |X(q∗1,τ ))

+
(1−D)(p̂(X)− p∗(X))

(1− p∗(X))2
(1− FC(q∗0,τ ))(τ − FT̃ |X(q∗0,τ ))

]
.

The variance Vτ is then given by V ar(ξτ,i) = E[ξ2
τ,i]−(E[ξτ,i])2. Vτ |D=1

is equal to V ar(ξτ |D=1,i) = E[ξ2
τ |D=1,i]− (E[ξτ |D=1,i])2, where ξτ |D=1,i

is given by:

ξτ |D=1,i =
D

p̌∗
1{q∗1,τ |D=1 < C}(τ − 1{T̃ 6 q∗1,τ |D=1})

−1−D
p̌∗

p∗(X)
1− p∗(X)

1{q∗0,τ |D=1 < C}(τ − 1{T̃ 6 q∗0,τ |D=1})

−E
[

1−D
p̌∗

p(X)− p∗(X)
(1− p∗(X))2

(1− FC(q∗0,τ |D=1))(τ − FT̃ |X(q∗0,τ |D=1))
]
.

Then, following Theorem 2 of Chen, Linton, and Van Keilegom
(2003), the variances Ωτ and Ωτ |D=1 of ∆τ and ∆τ |D=1 are given by:

Ωτ =
(
Γ′1,τWΓ1,τ

)−1 Γ′1,τWVτWΓ1,τ

(
Γ′1,τWΓ1,τ

)−1
,
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Ωτ |D=1 =
(

Γ′1,τ |D=1WΓ1,τ |D=1

)−1
Γ′1,τ |D=1WVτ |D=1W

×Γ1,τ |D=1

(
Γ′1,τ |D=1WΓ1,τ |D=1

)−1
,

where W is some symmetric positive definite matrix.
To derive estimators of the variances Ωτ and Ωτ |D=1, estimators

of all components are needed. Define

ξ̂τ,i =
Di

p̂(Xi)
1{q̂1,τ < Ci}(τ − 1{T̃i 6 q̂1,τ})

− 1−Di

1− p̂(Xi)
1{q̂0,τ < Ci}(τ − 1{T̃i 6 q̂0,τ})

−Ê

[
Di(p̂(Xi)− Ê[p̂(Xi)])

p̂(Xi)2
(1− F̂C(q̂1,τ ))(τ − F̂T̃i|Xi(q̂1,τ ))

+
(1−Di)(p̂(Xi)− Ê[p̂(Xi)])

(1− p̂(Xi))2
(1− F̂C(q̂0,τ ))(τ − F̂T̃i|Xi(q̂0,τ ))

]
and

ξ̂τ,i|D=1 =
Di

p̄
1{q̂1,τ |D=1 < Ci}(τ − 1{T̃i 6 q̂1,τ |D=1})

−1−Di

p̄

p̂(Xi)
1− p̂(Xi)

1{q̂0,τ |D=1 < Ci}(τ − 1{T̃i 6 q̂0,τ |D=1})

−Ê

[
1−Di

p̄

p̂(Xi)− Ê[p̂(Xi)]
(1− p̂(Xi))2

(1− F̂C(q̂0,τ |D=1))(τ − F̂T̃ |X(q̂0,τ |D=1))

]
.

Using the mean as an estimator of the unconditional expectation, the
variances Vτ and Vτ |D=1 can be estimated by

V̂τ =
1
n

n∑
i=1

ξ̂2
τ,i −

(
1
n

n∑
i=1

ξ̂τ,i

)2

V̂τ |D=1 =
1
n

n∑
i=1

ξ̂2
τ,i|D=1 −

(
1
n

n∑
i=1

ξ̂τ,i|D=1

)2

.

For estimation of ξτ,i and ξτ,i|D=1, replace expectations by means,
estimate for example E[p(X)] by n−1

∑n
i=1 p̂(Xi) and p̄ by n−1

∑n
i=1Di.

The (unconditional) cumulative distribution function of the censoring
times may be estimated simply by F̂C(q) = n−1

∑n
i=1 1{Ci < q}.

The conditional cumulative distribution function of T̃ at some point t
given X may be estimated by some regression of 1{T̃ < t} on X. To
circumvent misspecification of the functional form, a nonparametric
approach is preferable. For example, the model used for estimat-
ing the propensity score can also be used here. Note that only two
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different regressions are necessary for each variance estimate, i.e. re-
gressions of 1{T̃ < q̂1,τ} and 1{T̃ < q̂0,τ} (or 1{T̃ < q̂1,τ |D=1} and
1{T̃ < q̂0,τ |D=1}) on X.

It remains to derive estimators for Γ1,τ (q, p) and Γ1,τ |D=1(q, p).
This can be done analogously to the estimators of Vτ and Vτ |D=1; for
example, an estimator of Γ1,τ (q, p) is given by

Γ̂1,τ (q̂, p̂) =


−Ê

[
Di
p̂(Xi)

(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

+(1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))
]

−Ê
[

1−Di
1−p̂(Xi)(f̂C(q̂0,τ )(τ − F̂T̃ |X(q̂0,τ ))

+(1− F̂C(q̂0,τ ))f̂T̃ |X(q̂0,τ ))
]

 .

The densities of the censoring times and of the outcome givenX can be
estimated by standard kernel estimators (for estimation of conditional
densities, see sec. 5 of Li and Racine (2007)).

Given all these estimators, the estimated variances of ∆τ and
∆τ |D=1 are given by:

Ω̂τ =
(

Γ̂′1,τW Γ̂1,τ

)−1
Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1
,

Ω̂τ |D=1 =
(

Γ̂′1,τ |D=1W Γ̂1,τ |D=1

)−1
Γ̂′1,τ |D=1WV̂τ |D=1W Γ̂1,τ |D=1

×
(

Γ̂′1,τ |D=1W Γ̂1,τ |D=1

)−1
,

Consistency of the variance estimators is addressed by the following
theorem.

Theorem 2: Ω̂τ − Ωτ = oP (1) and Ω̂τ |D=1 − Ωτ |D=1 = oP (1).

3 Hypothesis Tests for the Quantile

Treatment Effect Process

To judge on all quantile treatment effects simultaneously, hypotheses
on the quantile treatment effect process can be tested. A number of
hypotheses are of interest:

1. Zero effects: H0 : ∆τ = 0 ∀ τ vs. HA : ∃τ0 such that ∆τ0 6= 0.

2. Constant effects: H0 : ∆τ = ∆τ0 ∀ τ and some τ0 vs. HA : ∃τ0, τ1

such that ∆τ0 6= ∆τ1 .

3. Only positive effects: H0 : ∆τ > 0 ∀ τ vs. HA : ∃τ0 such that
∆τ0 < 0.
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4. No difference to conventional censored quantile regression: H0 :
∆τ = βτ ∀ τ vs. HA : ∃τ0 such that ∆τ0 6= βτ0 , where βτ is the
probability limit of the estimated parameter of D from an ususal
(unweighted) censored quantile regression of T̃ on D and X.

5. No difference between treatment effects for the whole population
and for the treated: H0 : ∆τ = ∆τ |D=1 ∀ τ vs. HA : ∃τ0 such
that ∆τ0 6= ∆τ0|D=1.

6. Larger effects for the treated as for the whole population: H0 :
∆τ |D=1 > ∆τ ∀ τ vs. HA : ∃τ0 such that ∆τ0|D=1 < ∆τ0 .

The first four hypotheses were proposed by Chernozhukov and Hansen
(2006) and Chernozhukov and Fernandez-Val (2005), the last two
emerge in the context of the present model. Of course, hypotheses
1 to 4 are also applicable to ∆τ |D=1. The last two hypotheses can
be used to consider whether the individuals of the population which
benefit most from the treatment are indeed selected to participate. If
H0 of hypothesis 6 is rejected, this is a hint that the selection is not
based solely on the extend of the expected treatment effect, or that
the expectations were incorrect. For a further discussion of the re-
lationship between overall treatment effects and treatment effects for
the treated, see for example Smith (2000).

All null hypotheses can be stated by the following expression:

υn(τ) ≡ ∆τ − a(τ) = 0 ∀ τ, (5)

where the scalar a(τ) might be unknown. In this case, it will be sub-
stituted by an estimate â(τ). Viewed as a function of τ ∈ (0, 1), eq.
(5) is called the quantile treatment effect process. Eq. (5) is a sim-
plified version of the expression of Chernozhukov and Hansen (2006).
Their estimation approach yields a vector of estimated coeffiecients,
for which hypotheses can be stated by more general expressions. As
the approach of the present paper only involves scalar estimates (i.e.,
the scalar treatment effects), a simplification is possible.

Hypotheses 1-6 may be fitted in this framework as follows: For
testing the hypothesis of a zero effect, let a(τ) ≡ 0. To test for
constant effects, set a(τ) = ∆τ0 for all τ and for some arbitrary τ0.
The dominance hypotheses may not be fitted directly in this frame-
work, consider here for hypothesis 3 directly the smallest value of
∆τ , or, for technical reasons of the definition of the test statistic,
the equivalent expression max{−∆τ , 0}. Hypothesis 6 can be based
on max{−(∆τ |D=1 − ∆τ ), 0}. To test whether the treatment effects
differ from conventional censored quantile regression estimates, let
a(τ) ≡ β̂τ , where β̂τ is the estimate of D from a usual censored
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quantile regression. Hypothesis 5 may be tested simply by setting
a(τ) = ∆τ |D=1.

To test the hypotheses, Kolmogorov–Smirnov tests are used (for
a description of these tests, see sec. 19.3 of van der Vaart (1998),
for example). Kolmogorov–Smirnov tests can be used for hypotheses
which are defined not for a countably finite set of values (for example,
for some coefficients like in the standard F-test), but for a continuum of
values like in the present case, where the hypotheses consider quantile
treatment effects for all τ ∈ (0, 1) ⊂ R. The Kolmogorov–Smirnov
test statistic is the scaled supremum of the test process υn(τ):

Sn =
√
n sup
τ∈(0,1)

||υn(τ)||.

To test the dominance hypothesis 3, use directly

Sn =
√
n sup
τ∈(0,1)

max{−∆τ , 0}

and, for hypothesis 6,

Sn =
√
n sup
τ∈(0,1)

max{−(∆τ |D=1 −∆τ ), 0}.

The distribution of the test statistics under the null hypothesis
is unknown (see van der Vaart (1998, sec. 19.3)). Therefore, Cher-
nozhukov and Hansen (2006) and Chernozhukov and Fernandez-Val
(2005) propose a resampling procedure (see also Abadie (2002) for
a similar problem). The critical value of the test statistic may be
obtained by the following algorithm:

1. Calculate the test statistics Sn of the various hypotheses using
the original dataset.

2. Draw a random sample with replacement. Compute the boot-
strap test statistics S̃n,j , where j denotes the number of the
resample. Repeat this step B times.

3. Compute the p-value as

1
B

B∑
j=1

1
{
S̃n,j > Sn

}
.

The bootstrapped critical value c̃ is the value of S̃n which is ex-
ceeded by (1−α)B realizations of S̃n, where α is the significance
level of the test.

15



Asymptotic properties of the test procedure are proven in the follow-
ing theorem. This corresponds to Theorem 4 of Chernozhukov and
Hansen (2006). As the optimization of the estimator of the present
paper does not involve time consuming grid searches, no score approx-
imations as in Chernozhukov and Hansen (2006) are used. Further-
more, no subsampling scheme is used, as the nonparametric estimation
of the propensity score should be based on as much observations as
possible (i.e., the bootstrap samples contain n observations).

Theorem 3: If
√
n(∆̂(·) − ∆(·)) ⇒ b(·) and

√
n(â(·) − a(·)) ⇒ d(·)

jointly in `∞, where b(·) and d(·) are mean zero Gaussian processes
with possibly different laws under the null and the alternative hypoth-
esis, then the following holds:

1. If ∆τ − a(τ) = 0 ∀ τ , then Sn
D−→ S ≡ f(υ(·)), where υ(·) =

b(·)− d(·) and f(·) is the Kolmogorov-Smirnov test statistic.

Let c̃ be the bootstrapped critical value. Then:

2. If furthermore υ has a nondegenerate covariance kernel, and for
α < 1/2, P (Sn > c̃1−α)→ α = P (f(υ(·)) > c1−α), where for the
critical value c1−α it holds that P (f(υ(·)) > c1−α) = α.

3. If ∆τ − a(τ) 6= 0 for some τ , then Sn
D−→ ∞ and P (Sn >

c̃1−α)→ 1.

The assumption that α < 1/2 is not restrictive, as the significanc
level of a test usually is choosen no larger than 10 per cent (i.e., α
is usually less than or equal 1/10). The assumption of a nondegen-
erate covariance kernel means that for two arbitrary scalar values τ0

and τ1, the joint (two-dimensional) distribution of υ(τ0) and υ(τ1) is
nondegenerate.

4 Discussion

From a theoretical point of view, distributions of durations and haz-
ard rates or survival functions are equivalent. Efron and Johnstone
(1990) and Ritov and Wellner (1988) show that a one-to-one mapping
between the set of distributions of durations and the set of hazard
functions exist. Therefore, the two representations contain the same
information.

For practical analyses, the ease of interpretation and the appropri-
ateness for the question at hand differ for the two approaches. The
hazard rate is a function of time, whereas the quantile treatment ef-
fects of durations may be well subsumed by a finite set of scalars. This
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might be advantageous for the presentation and the communication
of the results.

Summing up, the quantile treatment effect estimators for dura-
tions proposed in this paper are a simple way to evaluate heteroge-
neous effects of a treatment on censored durations. They only con-
sider whether or not a treatment was chosen, and do not use the exact
point in time of treatment realization as timing-of-events approaches
do. They yield, however, results which are easy to interpret and to
communicate.

The semiparametric efficiency of the estimators remains to be con-
sidered. A possible extension would be to derive results for random
instead of fixed censoring (see Honoré, Khan, and Powell (2002), for
example).

A Proofs

Proof of Theorem 1: First, consistency of the estimators is shown.
Due to the nonsmooth character of the objective function and the use
of an infinite dimensional parameter, consistency of ∆̂τ is shown by
checking the conditions of Theorem 1 of Chen, Linton, and Van Kei-
legom (2003). Define Zi ≡ (Ci, Di, Xi) and let qτ = (q1,τ , q0,τ )′

(∈ Q × Q) denote the vector of finite dimensional parameters, and
define also

Mn(qτ , p) =
1
n

n∑
i=1

(
Di

p(Xi)
1{q1,τ < Ci}(τ − 1{T̃i 6 q1,τ})

− 1−Di

1− p(Xi)
1{q0,τ < Ci}(τ − 1{T̃i 6 q0,τ})

)
≡ 1

n

n∑
i=1

m(Zi, qτ , p)

M(qτ , p) ≡ E[m(Zi, qτ , p)].

Chen, Linton, and Van Keilegom (2003) show that their Theorem 1 is
implied by the followig conditions:

1.1 ||Mn(q̂τ , p̂)|| 6 infqτ∈Q ||Mn(qτ , p̂)||+ op(1).
This condition follows for given p̂ directly by Theorem 1 of Powell
(1986).

1.2 ∀δ > 0 ∃ ε(δ) > 0 such that inf ||qτ−q∗τ ||>δ ||Mn(qτ , p∗)|| > ε(δ) > 0,
where q∗τ and p∗ denote the true values of qτ and p.
Again, for given p∗, this follows by Theorem 1 of Powell (1986).
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1.3 M(qτ , p) is continuous in p at p∗ uniformly for all qτ ∈ Q×Q.
This condition follows directly by the fact that p enters Mn(qτ , p)
as multiplicative factors 1/p and 1/(1− p).

1.4 ||p− p∗|| = oP (1).
Consistency of the estimator of the propensity score follows by
Theorem 2 of Horowitz and Mammen (2004).

1.5′ supqτ∈Q×Q,||p−p∗||6δn ||Mn(qτ , p)−M(qτ , p)|| = oP (1), where δn =
o(1).
This condition will be fulfilled if {m(Zi, qτ , p)|qτ ∈ Q×Q, p ∈ P}
is a Glivenko-Cantelli class, where P is the set of infinite di-
mensional parameters, i.e., the set of propensity scores. By the
preservation result for Glivenko-Cantelli classes in Theorem 3
of van der Vaart and Wellner (2000)1, it suffices to show that
p(X) and the censored quantile regression objective function
form Glivenko-Cantelli classes, because both terms are linked
continuously.
The propensity score belongs to the set of monotone functions
which is a Glivenko-Cantelli class by Theorem 2.4.1 in connection
with Theorem 2.7.5 of van der Vaart and Wellner (1996). The
objective function of the censored quantile regression may be
rewritten as product of indicator functions, which form classes
with finite covering numbers, see Example 19.6 of van der Vaart
(1998) or Example 2.4.2 of van der Vaart and Wellner (1996).
The desired result follows by Theorem 3 of van der Vaart and
Wellner (2000).

This shows consistency of ∆̂τ . Consistency of ∆̂τ |D=1 follows similarly.
Next, the asymptotic distributions of ∆̂τ and ∆̂τ |D=1 are consid-

ered. LetQδ ≡ {qτ ∈ Q×Q| ||qτ−q∗τ || 6 δ} and Pδ ≡ {p ∈ P| ||p−p∗|| 6
δ} with δ > 0. By Theorem 2 of Chen, Linton, and Van Keilegom
(2003), asymptotic normality follows by the following conditions2:

2.1 ||Mn(q̂τ , p̂)|| = infqτ∈Qδ ||Mn(qτ , p̂)||+ oP (n−1/2).
This condition follows directly by results of Powell (1984, 1986).

2.2 i. Let

Γ1 ≡ Γ1(qτ , p∗) =
∂M(qτ , p∗)

∂qτ
=
∂E[m(Zi, qτ , p∗)]

∂qτ
.

1Theorem 3 of van der Vaart and Wellner (2000) states that if F1, . . . ,Fk are Glivenko-
Cantelli classes and ϕ(f1, . . . , fk), f1 ∈ F1, . . . , fk ∈ Fk, is a continuous function from
Rk → R, then the set {ϕ(f1, . . . , fk)|f1 ∈ F1, . . . , fk ∈ Fk} is also a Glivenko-Cantelli
class.

2 Chen, Linton, and Van Keilegom (2002) give an extensive discussion of an example,
which shows how to verify the conditions of their approach.
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Assume that Γ1(qτ , p∗) exists for qτ ∈ Qδ and is continuous
at q∗τ .
To show that these assumptions hold in the present appli-
cation, express E[m(Zi, qτ , p∗)] as

E[m(Zi, qτ , p∗)]

= E

[
Di

p∗(Xi)
1{q1,τ < Ci}(τ − 1{T̃i 6 q1,τ})

− 1−Di

1− p∗(Xi)
1{q0,τ < Ci}(τ − 1{T̃i 6 q0,τ})

]
= E

[
E

[
Di

p∗(Xi)
1{q1,τ < Ci}(τ − 1{T̃i 6 q1,τ})

− 1−Di

1− p∗(Xi)
1{q0,τ < Ci}(τ − 1{T̃i 6 q0,τ})

∣∣∣∣Z]]
= E

[
Di

p∗(Xi)
(1− FC(q1,τ ))(τ − FT̃ |X(q1,τ ))

− 1−Di

1− p∗(Xi)
(1− FC(q0,τ ))(τ − FT̃ |X(q0,τ ))

]
.

The derivative Γ1 is therefore given as

∂M(qτ , p∗)
∂qτ

=



−E
[

Di
p∗(Xi)

(fC(q1,τ )(τ − FT̃ |X(q1,τ ))

+(1− FC(q1,τ ))fT̃ |X(q1,τ ))
]

E
[

1−Di
1−p∗(Xi)(fC(q0,τ )(τ − FT̃ |X(q0,τ ))

+(1− FC(q0,τ ))fT̃ |X(q0,τ ))
]


.

The derivative of the objective of ∆τ |D=1 is given in sec-
tion 2.3. Assuming sufficiently smooth distributions of the
censoring and outcome variables, the condition is shown to
hold in the present application.

ii. Γ1 is assumed to be of full column rank.
This is obvious, as the co-domain of M(qτ , p) is one-dimen-
sional.

2.3 Define the functional derivative of M(qτ , p) with respect to p ∈ P
as

Γ2(qτ , p)(p̃− p) = lim
θ→0

M(qτ , p+ θ(p̃− p))−M(qτ , p)
θ

.

For all qτ ∈ Qδ, it is assumed that the limit in all directions
(p̃−p) ∈ P exists. For all (qτ , p) ∈ Qδ×Pδ, it holds furthermore
that:
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i. ||M(qτ , p)−M(qτ , p∗)− Γ2(qτ , p∗)(p− p∗)|| 6 k||p− p∗||2 for
k > 0.
Rewrite the derivative as3

Γ2(qτ , p∗)(p− p∗)

= lim
θ→0

E[m(Zi, qτ , p∗ + θ(p− p∗))−m(Zi, qτ , p∗)]
θ

= lim
θ→0

1
θ
E

[(
Di

p∗(Xi) + θ(p(Xi)− p∗(Xi))
− Di

p∗(Xi)

)
×(1− FC(q1,τ ))(τ − FY |X(q1,τ ))

−
(

1−Di

1− (p∗(Xi) + θ(p(Xi)− p∗(Xi)))
− 1−Di

1− p∗(Xi)

)
×(1− FC(q0,τ ))(τ − FY |X(q0,τ ))

= E

[
∂

∂θ

(
Di

p∗(Xi) + θ(p(Xi)− p∗(Xi))

×(1− FC(q1,τ ))(τ − FY |X(q1,τ ))

− 1−Di

1− (p∗(Xi) + θ(p(Xi)− p∗(Xi)))

×(1− FC(q0,τ ))(τ − FY |X(q0,τ ))
)∣∣∣∣

θ=0

]
= −E

[
Di(p(Xi)− p∗(Xi))

(p∗(Xi))2
(1− FC(q1,τ ))(τ − FY |X(q1,τ ))

−(1−Di)(p(Xi)− p∗(Xi))
(1− p∗(Xi))2

×(1− FC(q0,τ ))(τ − FY |X(q0,τ ))
]

This shows the claimed existence of the derivative in all
directions under the assumptions of the theorem. To show
condition 2.3.i, consider a Taylor expansion ofM(qτ , p) around
p∗(Xi):

M(qτ , p) = M(qτ , p∗) + Γ2(qτ , p∗)(p(Xi)− p∗(Xi))
+M (2)(qτ , p∗)(p(Xi)− p∗(Xi))2 + R̃(Xi),

where M (2)(qτ , p∗) is the second derivative of M(qτ , p) with
respect to p(Xi) and R̃(Xi) is the remainder of the expan-
sion. Note that ||M(qτ , p) −M(qτ , p∗) − Γ2(qτ , p∗)(p − p∗)||
is equal to the quadratic term and the remainder. An in-
spection of Γ2(q, p∗) shows that its derivative (i.e., the sec-
ond derivative of M(q, p) with respect to p(Xi) at p∗(Xi)) is

3See the example in Chen, Linton, and Van Keilegom (2002) for similar calculations.
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bounded. Therefore, ||M(q, p)−M(q, p∗)−Γ2(q, p∗)(p−p∗)||
is bounded by K||p− p∗||2 for a suitable constant K (see the
proof of Proposition 1 of Chen, Linton, and Van Keilegom
(2002) for the same line of argument for a different estima-
tor.) That shows that condition 2.3.i holds for the present
estimator. It can be shown similarly that this condition also
holds for ∆τ |D=1.

ii. ||Γ2(qτ , p∗)(p− p∗)− Γ2(q∗τ , p
∗)(p− p∗)|| = o(1).

Rewrite this condition as follows:

||Γ2(q, p∗)(p− p∗)− Γ2(q∗, p∗)(p− p∗)||

=
∣∣∣∣∣∣∣∣E [Di(p(Xi)− p∗(Xi))

(p∗(Xi))2

×((1− FC(q∗1,τ ))(τ − FY |X(q∗1,τ ))
−((1− FC(q1,τ ))(τ − FY |X(q1,τ )))

+
(1−Di)(p(Xi)− p∗(Xi))

(1− p∗(Xi))2

×((1− FC(q∗0,τ ))(τ − FY |X(q∗0,τ ))

−(1− FC(q0,τ ))(τ − FY |X(q0,τ )))
]∣∣∣∣∣∣∣∣.

As (1 − FC(q∗))(τ − FY |X(q∗)) − (1 − FC(q))(τ − FY |X(q))
is bounded and p− p∗ is oP (1), condition 2.3.ii holds.

2.4 p̂ ∈ P with probability one for n→∞ and ||p̂−p∗|| = oP (n−1/4).
The first part follows by results of Horowitz and Mammen (2004)
and assumption A9, the second solely by results of Horowitz and
Mammen (2004).

2.5′ For δn = oP (1),

sup
||q−q∗||6δn,||p−p∗||6δn

||Mn(q, p)−M(q, p)−Mn(q∗, p∗)|| = oP (n−1/2).

Assume m(z, qτ , p) = mc(z, qτ , p) + mlc(z, qτ , p). Theorem 3 of
Chen, Linton, and Van Keilegom (2003) shows that condition
2.5′ is implied by their conditions 3.1 – 3.3 on mc(z, qτ , p) and
mlc(z, qτ , p):

3.1 mc(z, qτ , p) is Hölder continuous with respect to qτ and p,
i.e.

|mc(z, qτ , p)−mc(z, q′τ , p
′)| 6 bj(z)

(
||qτ − q′τ ||s1 + ||p− p′||s2

)
.

As mc(z, qτ , p) = 0 for all qτ ∈ Q × Q and p ∈ P in the
present application, this condition is trivially satisfied.
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3.2 mlc(z, qτ , p) is locally uniformly Lr(P ) continuous with re-
spect to qτ and p for r > 2, i.e.,

E

[
sup

||qτ−q′τ ||6δ,||p−p′||6δ
|mlc(Z, q′τ , p

′)−mlc(Z, qτ , p)|r
]1/r

6 Kδs2 ,

where in the bounds of conditions 3.1 and 3.2 b(z) is a mea-
surable function such that E[b(Z)]r <∞, s1, s2 ∈ (0, 1], and
δ = o(1).
In the following only the first term of mlc(z, qτ , p) will be
considered, i.e., the term concerning qτ (T1). It can be shown
by similar arguments that the condition holds for the quan-
tile estimator of T0, too. As both objective functions depend
multiplicatively on D and on 1 −D, respectively, the cross
product term emerging by multiplying out the squared dif-
ference vanishes, as D(1 − D) = 0. Therefore, a separate
analysis is possible. Abbreviate qτ (T1) in the following by
q.
Rewrite the squared difference mlc(Z, q′, p′) − mlc(Z, q, p)
of the first term of mlc(Z, q, p) by adding and subtracting
terms as

|mlc(Z, q′, p′)−mlc(Z, q, p)|2 =

=
∣∣∣∣ D

p(X)′
1{q′ < C}(τ − 1{T̃ 6 q′})

− D

p(X)
1{q < C}(τ − 1{T̃ 6 q})

∣∣∣∣2
=

∣∣∣∣ D

p′(X)
1{q′ < C}(τ − 1{T̃ 6 q′})

− D

p′(X)
1{q < C}(τ − 1{T̃ 6 q′})

+
D

p′(X)
1{q < C}(τ − 1{T̃ 6 q′})

− D

p′(X)
1{q < C}(τ − 1{T̃ 6 q})

+
D

p′(X)
1{q < C}(τ − 1{T̃ 6 q})

− D

p(X)
1{q < C}(τ − 1{T̃ 6 q})

∣∣∣∣2
=

∣∣∣∣ D

p′(X)
1{T̃ 6 q′}(1{q′ < C} − 1{q < C})

+
D

p′(X)
1{q < C}(1{T̃ 6 q})− 1{T̃ 6 q′})
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+
D(p(X)− p′(X))

p′(X)p(X)
1{q < C}(τ − 1{T̃ 6 q})

∣∣∣∣2
6 D|(K1(1{q′ < C} − 1{q < C})

+K2(1{T̃ 6 q} − 1{T̃ 6 q′}) +K3(p(X)− p′(X))|2

6 K4D(|1{q′ < C} − 1{q < C}|
+|1{T̃ 6 q} − 1{T̃ 6 q′}|+ |p(X)− p′(X)|)2

= K4D(|1{q′ < C} − 1{q < C}|2

+|1{T̃ 6 q} − 1{T̃ 6 q′}|2 + |p(X)− p′(X)|2

+2|1{q′ < C} − 1{q < C}||1{T̃ 6 q} − 1{T̃ 6 q′}|
+2|1{q′ < C} − 1{q < C}||p(X)− p′(X)|
+2|1{T̃ 6 q} − 1{T̃ 6 q′}||p(X)− p′(X)|)

6 K4D(|1{q′ < C} − 1{q < C}|2

+|1{T̃ 6 q} − 1{T̃ 6 q′}|2 + |p(X)− p′(X)|2)
+K5D(|1{T̃ 6 q} − 1{T̃ 6 q′}|

+|1{q′ < C} − 1{q < C}|+ |p(X)− p′(X)|)

Condition 3.2 will be fulfilled, if E[|1{q′ < C}− 1{q < C}|],
E[|1{T̃ 6 q} − 1{T̃ 6 q′}|], and E[|p(X) − p′(X)|] are
bounded by Kδ. This will be shown similar to examples
1 and 2 of Chen, Linton, and Van Keilegom (2003). First,
note that

q − δ < q < q + δ

⇒ 1{q − δ < C} > 1{q < C} > 1{q + δ < C},
q − δ < q′ < q + δ

⇒ 1{q − δ < C} > 1{q′ < C} > 1{q + δ < C}.

The second line follows by ||q − q′|| 6 δ 6 1, which implies
q−δ 6 q′ 6 q+δ. Furthermore, as 1{q′ < C} 6 1{q−δ < C}
and 1{q < C} > 1{q + δ < C} ⇔ −1{q < C} 6 −1{q + δ <
C}, it follows that

|1{q′ < C} − 1{q < C}| 6 |1{q − δ < C} − 1{q + δ < C}|
= 1{q − δ < C} − 1{q + δ < C},

where the last line follows by the fact that 1{q − δ 6 C} >
1{q+δ 6 C}. As this expression is equal to one or zero, the
square can be dropped. The expectation of this expression
is equal to the probability that C lies between q − δ and
q + δ:

E[1{q − δ < C} − 1{q + δ < C}]
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= 1− FC(q − δ)− (1− FC(q + δ))
= FC(q + δ)− FC(q − δ)
= Pr(q − δ < C < q + δ).

This expression is bounded by Kδ if the distribution of C
is Lipschitz continuous.
With these derivations, Lr(P ) continuity of mlc(Z, q, p) fol-
lows immediately. Taking the derivations above into ac-
count, the continuity condition for E[|1{q′ < C} − 1{q <
C}|] reads as:

E

[
sup

||q−q′||6δ
|1{q′ < C} − 1{q < C}|

]
6 E [1{q − δ < C} − 1{q + δ < C}]
= Pr(q − δ < C < q + δ)
= FC(q + δ)− FC(q − δ).

This expression is bounded by Kδ for some K > 0, if
the cumulative distribution function of C is assumed to
be Lipschitz continuous. By the law of iterated expecta-
tions, similar arguments show Lr(P ) continuity of E[|1{T̃ 6
q} − 1{T̃ 6 q′}|]. The condition for E[|p(X) − p′(X)|] fol-
lows directly. For the subpopulation of treated individuals,
analoguous derivations are valid. Therefore, condition 3.2
of Theorem 3 of Chen, Linton, and Van Keilegom (2003)
holds for the present application.

3.3 Q is a compact subset of R and P has a finite entropy inte-
gral.
Compactness of Q is assumed, the latter condition follows
by the fact that the propensity score is a bounded monotone
function (see example 2.6.21 of van der Vaart and Wellner
(1996, p. 149)).

2.6
√
n(Mn(q∗, p∗) + Γ2(q∗, p∗)(p̂− p∗)) D−→ N (0, V ) for a finite ma-

trix V .
For ∆τ , Mn(q∗, p∗) + Γ2(q∗, p∗)(p̂− p∗) is given by

1
n

n∑
i=1

(
Di

p∗(Xi)
1{q∗1,τ < Ci}(τ − 1{T̃i 6 q∗1,τ})

− 1−Di

1− p∗(Xi)
1{q∗0,τ < Ci}(τ − 1{T̃i 6 q∗0,τ})

)
−E

[
D(p̂(X)− p∗(X))

(p∗(X))2
(1− FC(q∗1,τ ))(τ − FT̃ |X(q∗1,τ ))
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+
(1−D)(p̂(X)− p∗(X))

(1− p∗(X))2
(1− FC(q∗0,τ ))(τ − FT̃ |X(q∗0,τ ))

]
.

The difference of the estimator p̂(X) and the true propensity
score p∗(X) can be rewritten by adding and subtracting as

(p̂(X)− E[p̂(X)]) + (E[p̂(X)]− p∗(X)).

The second term is the bias of p̂(X). Following a similar argu-
ment in Example 1 of Chen, Linton, and Van Keilegom (2003),
and using results of Horowitz and Mammen (2004), it follows
that (E[p̂(X)] − p∗(X)) is equal to a bounded function times a
term of order oP (n−1/2). Therefore, Mn(q∗, p∗) + Γ2(q∗, p∗)(p̂−
p∗) can be written as

1
n

n∑
i=1

(
Di

p∗(Xi)
1{q∗1,τ < Ci}(τ − 1{T̃i 6 q∗1,τ})

− 1−Di

1− p∗(Xi)
1{q∗0,τ < Ci}(τ − 1{T̃i 6 q∗0,τ})

)
−E

[
D(p̂(X)− E[p̂(X)])

(p∗(X))2
(1− FC(q∗1,τ ))(τ − FT̃ |X(q∗1,τ ))

+
(1−D)(p̂(X)− E[p̂(X)]

(1− p∗(X))2
(1− FC(q∗0,τ ))(τ − FT̃ |X(q∗0,τ ))

]
+oP (n−1/2)

≡ 1
n

n∑
i=1

ξτ,i + oP (n−1/2).

An inspection of these terms shows zero mean and boundedness
of ξτ,i. Therefore, the expression converges in distribution to
N (0, V ), where V = V ar(ξτ,i). For ∆τ |D=1, the condition is also
satisfied (for the expression in this case, see section 2.3). This
shows that condition 2.6 holds for the application of the present
paper.

Under these conditions asymptotic normality follows by Theorem 2 of
Chen, Linton, and Van Keilegom (2003). The asymptotic variances
are given in section 2.3. �

Proof of Theorem 2: The theorem is proved by adding and sub-
tracting some terms to Ω̂τ−Ωτ and showing that the resulting diffences
are oP (1).

Ω̂τ − Ωτ =
(

Γ̂′1,τW Γ̂1,τ

)−1
Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1
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−
(
Γ′1,τWΓ1,τ

)−1 Γ′1,τWVτWΓ1,τ

(
Γ′1,τWΓ1,τ

)−1

=
(

Γ̂′1,τW Γ̂1,τ

)−1
Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1

−
(
Γ′1,τWΓ1,τ

)−1 Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1

+
(
Γ′1,τWΓ1,τ

)−1 Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1

−
(
Γ′1,τWΓ1,τ

)−1 Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ′1,τWΓ1,τ

)−1

+
(
Γ′1,τWΓ1,τ

)−1 Γ̂′1,τWV̂τW Γ̂1,τ

(
Γ′1,τWΓ1,τ

)−1

−
(
Γ′1,τWΓ1,τ

)−1 Γ′1,τWVτWΓ1,τ

(
Γ′1,τWΓ1,τ

)−1

=
((

Γ̂′1,τW Γ̂1,τ

)−1
−
(
Γ′1,τWΓ1,τ

)−1
)

×Γ̂′1,τWV̂1,τW Γ̂1,τ

(
Γ̂′1,τW Γ̂1,τ

)−1
(6)

+
(

Γ̂′1,τW Γ̂1,τ

)−1
Γ̂′1,τWV̂τW Γ̂1,τ

×
((

Γ̂′1,τW Γ̂1,τ

)−1
−
(
Γ′1,τWΓ1,τ

)−1
)

(7)

+
(
Γ′1,τWΓ1,τ

)−1
(

Γ̂′1,τWV̂τW Γ̂1,τ

−Γ′1,τWVτWΓ1,τ

) (
Γ′1,τWΓ1,τ

)−1
. (8)

Consider eqs. (6) and (7) first. For these terms to be stochastically
negligible, it has to be shown that the following difference is oP (1):(

Γ̂′1,τW Γ̂1,τ

)−1
−
(
Γ′1,τWΓ1,τ

)−1
.

As it follows from An
P→ A that A−1

n
P→ A−1 (see Davidson (1994, p.

287), the difference in eqs. (6) and (7) is oP (1) if

Γ̂′1,τW Γ̂1,τ − Γ′1,τWΓ1,τ

is oP (1). By adding and subtracting, this is equivalent to

Γ̂′1,τW Γ̂1,τ − Γ′1,τWΓ1,τ

= Γ̂′1,τW Γ̂1,τ − Γ′1,τW Γ̂1,τ + Γ′1,τW Γ̂1,τ − Γ′1,τWΓ1,τ

=
(

Γ̂1,τ − Γ1,τ

)′
W Γ̂1,τ + Γ′1,τW

(
Γ̂1,τ − Γ1,τ

)
.
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The difference Γ̂1,τ − Γ1,τ is given by:

Γ̂1,τ − Γ1,τ =


−Ê

[
Di
p̂(Xi)

(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

+(1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))
]

−Ê
[

1−Di
1−p̂(Xi)(f̂C(q̂0,τ )(τ − F̂T̃ |X(q̂0,τ ))

+(1− F̂C(q̂0,τ ))f̂T̃ |X(q̂0,τ ))
]



−


−E

[
D

p∗(X)(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ ))

+(1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))
]

−E
[

1−D
1−p∗(X)(fC(q∗0,τ )(τ − FT̃ |X(q∗0,τ ))

+(1− FC(q∗0,τ ))fT̃ |X(q∗0,τ ))
]

 .

Only the first element of this vector will be considered in the follow-
ing, as the second can be bounded similarly. Again, the difference is
rewritten by adding and subtracting a number of terms:

E

[
D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

]
−Ê

[
Di

p̂(Xi)
(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ )) + (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))

]
= E

[
D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

]
−Ê

[
D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

]
+Ê

[
D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

]
−Ê

[
Di

p̂(Xi)
(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ )) + (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))

]
.

The first two equations of this expression are asymptotically equal to
zero in probability by convergence of the sample mean to the expecta-
tion, i.e., because E[A] = Ê[A] + oP (1). The difference of the last two
will be stochastically negligible if the terms within the brackets con-
verge to each other, which again can be shown by an add-and-subtract
strategy:

D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

− Di

p̂(Xi)
(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ )) + (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))

=
D

p∗(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))
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− D

p̂(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

+
D

p̂(X)
(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

− Di

p̂(Xi)
(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ )) + (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ )).

The first two lines are bounded by

K

(
D

p∗(X)
− D

p̂(X)

)
= K

D(p̂(X)− p∗(X))
p̂(X)

= oP (1).

To bound the second difference, consider:

(fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ )) + (1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))

−(f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ )) + (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ ))

= (fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ ))− (f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

+(1− FC(q∗1,τ ))fT̃ |X(q∗1,τ ))− (1− F̂C(q̂1,τ ))f̂T̃ |X(q̂1,τ )).

Only the first line will be considered in the following, as the second
can be bounded similarly:

fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ ))− f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

= fC(q∗1,τ )(τ − FT̃ |X(q∗1,τ ))− fC(q∗1,τ )(τ − FT̃ |X(q̂1,τ ))

+fC(q∗1,τ )(τ − FT̃ |X(q̂1,τ ))− fC(q∗1,τ )(τ − F̂T̃ |X(q̂1,τ ))

+fC(q∗1,τ )(τ − F̂T̃ |X(q̂1,τ ))− fC(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

+fC(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))− f̂C(q̂1,τ )(τ − F̂T̃ |X(q̂1,τ ))

= fC(q∗1,τ )(FT̃ |X(q̂1,τ )− FT̃ |X(q∗1,τ ))

+fC(q∗1,τ )(F̂T̃ |X(q̂1,τ )− FT̃ |X(q̂1,τ ))

+(fC(q∗1,τ )− fC(q̂1,τ ))(τ − F̂T̃ |X(q̂1,τ ))

+(fC(q̂1,τ )− f̂C(q̂1,τ ))(τ − F̂T̃ |X(q̂1,τ )).

The first line converges to zero by consistency of q̂1,τ and if the dis-
tribution of T̃ is sufficiently smooth, the second by consistency of the
estimator of the cumulative distribution function, the third by consis-
tency of q̂1,τ and smoothness of the density of the censoring time, and
the last by consistency of the kernel density estimators.

Finally, consider eq. (8). This will be asymptotically zero if the
middle term is oP (1). By the same strategy as above, this part can
be rewritten as

Γ̂′1,τWV̂τW Γ̂1,τ − Γ′1,τWVτWΓ1,τ
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= Γ̂′1,τWV̂τW Γ̂1,τ − Γ′1,τWV̂τW Γ̂1,τ

+Γ′1,τWV̂τW Γ̂1,τ − Γ′1,τWVτW Γ̂1,τ

+Γ′1,τWVτW Γ̂1,τ − Γ′1,τWVτWΓ1,τ

= (Γ̂1,τ − Γ1,τ )′WV̂τW Γ̂1,τ

+Γ′1,τW (V̂τ − Vτ )W Γ̂1,τ

+Γ′1,τWVτW (Γ̂1,τ − Γ1,τ ).

Convergence of Γ̂1,τ −Γ1,τ to zero was shown just above. Rewrite the
difference in the middle equation by inserting the definitions as

V̂τ − Vτ =
1
n

n∑
i=1

ξ2
i −

(
1
n

n∑
i=1

ξi

)2

−
(
E[ξ2]− E[ξ]2

)
=

1
n

n∑
i=1

ξ2
i − E[ξ2]−

( 1
n

n∑
i=1

ξi

)2

− E[ξ]2

 .

As ξ2
i < ∞, the first difference is oP (1) by a law of large numbers.

The second difference converges also stochastically to zero by a law of
large numbers together with the fact that for An

P→ A, it also holds
that g(An) P→ g(A) for a measurable function g(·) which is continuous
at the limit of the argument (see Theorem 18.10 of Davidson (1994,
p. 286)). This shows consistency of the variance estimator of ∆τ .
Similarly, consistency of Ωτ |D=1 can be shown, which completes the
proof of Theorem 2. �

Proof of Theorem 3: The first claim of Theorem 3 follows, if the
conditions of Theorem 4 of Chernozhukov and Hansen (2006) are met.
These conditions state that

√
n(∆̂(·) − ∆(·)) ⇒ b(·) and

√
n(â(·) −

a(·)) ⇒ d(·), where b(·) and d(·) are mean zero Gaussian processes.
This follows if ∆(·) and a(·) belong to Donsker classes.

∆τ consists of the reciprocal of the propensity score and a term
with an indicator function. The first term form a Donsker class by
Examples 2.6.21 (p. 149) and 2.10.9 (p. 192) of van der Vaart and
Wellner (1996). Similarly, the second term is a Donsker class. By
Theorem 2.10.6 of van der Vaart and Wellner (1996, p. 192), the
product of both terms is also a Donsker class. This shows the first part
of the condition of Theorem 4 of Chernozhukov and Hansen (2006)
holds in the present application. The second part (i.e., convergence
of a(·)) does not differ from Chernozhukov and Hansen (2006). For
the case a(·) = ∆(·)|D=1, the result follows by the Donsker property
of ∆τ |D=1. Therefore, the first claim of Theorem 3 is shown and
convergence of Sn to f(υ(·)) holds.
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Now, convergence of the bootstrap test statistics is shown. By the
Donsker property of the test statistic, the bootstapped test statistic
converges to the true test statistic (See van der Vaart (1998, Theorem
23.7, p. 333; see also van der Vaart and Wellner (1996, sec. 3.6)
and Kosorok (2006, sec. 10). Now, the claims of the theorem can
be shown as in the proof of Theorem 4 of Chernozhukov and Hansen
(2006). Therefore, Theorem 3 is proven. �
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