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1 Introduction

Nonexperimental methods are widely used in economics and other disciplines to evalu-

ate government programs and many types of interventions. And, in the absence of an

experiment (or infeasibility of conducting one), nonexperimental methods are in many

situations the only alternative. Among them, those based on selection on observables

or unconfoundedness assumptions play an important role (e.g., Imbens, 2004, 2008;

Heckman et al., 1999). Most of the focus on nonexperimental methods in the previous

two decades has been on estimation of average treatment e¤ects of a binary treatment

or intervention on an outcome. In practice, however, individuals are usually exposed

to di¤erent doses of the treatment or to more than one treatment. As a result, the fo-

cus has recently shifted to developing methods to evaluate such programs. This paper

contributes to this literature by assessing the e¤ectiveness of nonexperimental estima-

tors of mean e¤ects for multiple or multivalued treatments in adjusting for observable

characteristics and eliminating di¤erences in average outcomes among multiple pop-

ulations. The data we use comes from the National Evaluation of Welfare-to-Work

Strategies (NEWWS), a social experiment conducted in the U.S. in the 1990s in which

individuals in seven locations were randomly assigned to a control group or to di¤er-

ent training programs emphasizing either human capital development or labor force

attachment.

Since the in�uential paper by Lalonde (1986) many studies have evaluated the per-

formance of di¤erent nonexperimental methods (e.g., Heckman and Hotz, 1989; Fried-

lander and Robins, 1995; Heckman et al., 1997, 1998; Dehejia and Wahba, 1999, 2002;

Michalopoulos et al., 2004; Smith and Todd, 2005; Dehejia, 2005). This literature has

advanced our understanding of nonexperimental evaluations by specifying conditions

under which nonexperimental estimators are more likely to replicate the outcome from

a randomized experiment. One of the main conclusions is the importance of com-

paring �comparable�individuals. For instance, Heckman et al. (1997, 1998ab) stress

the importance of comparing treatment and control groups from the same local labor

market to which the same questionnaire is administrated, as well as having data on

detailed labor market histories. This literature has also highlighted the importance of

the propensity score (i.e., the probability of receiving treatment conditional on covari-
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ates) to identify regions of the data where treatment and control units are comparable

in terms of observed characteristics.

A common characteristic of the current literature evaluating nonexperimental es-

timators based on a selection-on-observables assumption is its focus on binary treat-

ments: individuals either participate in a program or not. Recently, however, there has

been a growing interest in evaluating programs or interventions in which the treatment

is multivalued or there are more than one treatment (e.g.,Behrman et al., 2004; Frölich

et al., 2004; Flores-Lagunes et al., 2007; Kluve et al., 2007; Mitnik, 2008), and on dif-

ferent methods to evaluate such programs (e.g., Imbens, 2000; Lechner, 2001; Hirano

and Imbens, 2004; Cattaneo, 2007; Flores, 2007). Unfortunately, very little is known

about the performance of alternative estimation techniques in terms of reducing the

potential selection bias present in nonexperimental evaluation of multiple treatments.

To our knowledge, ours is the �rst study to address this issue.

When the treatment is multivalued or there are more than one treatment we have

more parameters of interest than the commonly used average treatment e¤ect (or av-

erage treatment e¤ect on the treated) in the binary-treatment case. For instance, one

may be interested on pairwise comparisons (e.g., Lechner, 2001), or on �nding the level

of the treatment (or the particular treatment) that gives the highest average outcome

(e.g., Flores, 2007). In this paper, we focus on estimators of what is some times called

the dose-response function (although this may not be the most appropriate denomina-

tion for non-ordered multi-valued treatments). It gives the average potential outcome

over all possible values of the treatment. In other words, it gives the expected poten-

tial outcome at all possible values of the treatment for someone randomly chosen from

the population. Since in a nonexperimental evaluation the population is selected into

di¤erent treatment levels, a major task for estimation of the dose-response function is

�nding individuals that are comparable simultaneously across all treatment levels.

The general approach to evaluate the performance of nonexperimental estimators

in the binary-treatment case consists on using data from a randomized experiment

and constructing a nonexperimental control group, for instance, from additional data

sets (e.g., Lalonde, 1986) or from di¤erent locations (e.g., Friedlander and Robins,

1995). The di¤erent nonexperimental estimators are then used on the nonexperimental

control group and the experimental treated group and, to asses the performance of the

estimators, the results are compared against those from the experiment. One could

also apply the estimators to the nonexperimental and experimental control groups, in

2



which case the benchmark is obtaining a zero treatment e¤ect. A special application of

this general approach is Heckman et al. (1997), in which their nonexperimental control

group consisted of individuals that (i) were eligible to the program being evaluated (the

National Job Training Partnership Act, JTPA) but that did not apply, (ii) resided in

the same narrowly de�ned area as the applicants; and, (iii) were administered the same

survey as those in the experiment. As stressed in their paper, having a nonexperimental

control group in the same local labor market as those receiving treatment, administering

the same questionnaire and having detailed labor market history seem to be key for

nonexperimental methods to work properly.

Extending the logic of the prior literature focused on binary treatments, an ideal

data for the purpose of evaluating nonexperimental methods of multiple treatments

would consist of an experiment in which units are randomized into s di¤erent treat-

ments, with s > 2. In addition, for each of s� 1 treatments there would be units that
self-select into these same treatments but that are otherwise representative of the pop-

ulation in which the experiment took place (e.g., welfare recipients in a given area and

time). These units would form the nonexperimental groups. The data would have to

contain detailed information on all units (e.g., background characteristics and previous

labor market history), and the same data gathering instrument would have been used

for all units. In this case, we could take the nonexperimental groups plus one of the

experimental groups and, applying (maybe alternative) nonexperimental methods we

could compare the results to those from the actual experiment. Unfortunately, such a

data is not available to the best of our knowledge, and we resort to a di¤erent strategy.

In this paper, we resort to the availability of several control groups in di¤erent

sites of the NEWWS experiment to evaluate alternative nonexperimental estimators

of multiple treatments. We use the methods to adjust for observable characteristics

in order to eliminate di¤erence in outcomes among members of the control groups in

di¤erent sites. Relying on individuals from an experiment has the advantages that i)

they may be relatively comparable (at least in this case they are all welfare recipients at

randomization); and ii) the data and survey instruments gathered for all the individuals

is the same. In the case of NEWWS the data available on each individual is extremely

rich. By focusing in di¤erent geographic locations, however, we have the disadvantage

of having to deal with the (potential) structural di¤erences in local labor market, an

issue that will be very important in this application.

Our strategy of comparing di¤erent control groups is similar to that previously used
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within a binary-treatment context by Friedlander and Robins (1995), Michalopoulos,

Bloom, and Hill (2004) and Hotz, Imbens and Mortimer (2005). The key di¤erence

in our approach, however, is that while they focus on pairwise comparisons between

controls in di¤erent locations, we focus on simultaneously comparing the individuals

across all locations. This allows us to move beyond binary-treatment methods and

evaluate nonexperimental estimators for multiple treatments because we need to adjust

for di¤erences in observed characteristics of several groups at the same time.

Finally, among the estimators we evaluate we pay particular attention to those

based on the generalized propensity score or GPS (i.e., the probability of receiving a

particular treatment conditional on covariates), such as weighting and partial-mean

estimators. In addition, we systematically analyze the role of the GPS in identifying

units across sites that are comparable in terms of observable characteristics, and pro-

vide guidance for its use in practice. We show the crucial role played by the GPS

in extending to the multiple-treatment setting the �common support condition� fre-

quently used in the binary-treatment setting.

The paper is organized as follows. Section 2 describes the data used in this paper.

In section 3 we present the general set up, and in the following section we present the

estimators to be used in the paper. The results are presented in Section 5, and Section

6 concludes.

2 Data

The data used in this paper comes from the National Evaluation of Welfare-to-Work

Strategies (NEWWS), which is a multi-year study conducted in the early nineties to

compare the e¤ects of two alternative strategies to helping welfare recipients (mostly

single mothers) to improve their labor market outcomes and leave public assistance.

The �rst strategy emphasized labor force attachment (LFA) by encouraging partici-

pants to �nd employment quickly, and the second focused on human capital develop-

ment (HCD) by o¤ering academic, vocational and employment-oriented skills training.

The programs evaluated in the NEWWS study were operated in seven sites across the

U.S.: Atlanta, GA; Columbus, OH; Detroit, MI; Grand Rapids, MI; Oklahoma City;

OK; Portland, OR; and Riverside, CA. In Atlanta, Grand Rapids and Riverside both

LFA and HCD programs were o¤ered, and individuals were randomly assigned to LFA,
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HCD or the control group.1 In the rest of the sites, individuals were randomized to one

of the programs (LFA, HCD or a combination of both) or to the control group, which

was denied access to the training services o¤ered by program, for a pre-set �embargo�

period.

The year in which random assignment took place di¤ers across sites, with the

earliest randomization starting in the second quarter of 1991 in Riverside, and the latest

in the fourth quarter of 1994 in Portland.2 The NEWWS data set contains information

on labor market outcomes up to 5 years after random assignment, information on

individual background characteristics, as well as individual welfare and labor market

history up to two years prior to random assignment. We use these characteristics,

further described in Section 5, to apply the nonexperimental estimators in which we

will focus our analysis.3

As it will be explained in detail in the following section, we employ nonexperimental

methods to eliminate di¤erences in control group outcomes across the di¤erent locations

in the NEWWS experiment. The total number of individuals in the control groups in

the seven sites is 17,521. From these, we exclude all men from our analysis (1,303),

and also all females with missing values on any of the variables used in the analysis

(805). From the remaining observations, we also drop those controls for which it is

unknown whether they were embargoed from the program services during the period

considered (404). Finally, we exclude two sites, Columbus and Oklahoma City, from

our analysis (5,658). Columbus has the problem of not having two years of labor

market history prior to random assignment. Given the documented importance of

controlling for such variables in nonexperimental settings (e.g., Heckman et al., 1997;

Hotz et al., 2005) and the fact that it is the only site with that issue, we decided to

exclude it from our analysis. We dropped Oklahoma City from the analysis because

there randomization was done to welfare applicants, as opposed to welfare recipients

as it was in the remaining sites. This implied that a big proportion (30%) of those

1One could use these sites to create alternative nonexperimental groups for those receiving LFA and
HCD training. However, as discussed below, since LFA and HCD programs are heterogeneous across
sites, this introduces additional biases. For this reason, we focus on comparing average outcomes for
control individuals across sites, where everyone is excluded from receiving treatment. This also helps
to increase the number of groups considered in our nonexperimental evaluation as the number of sites
is greater than the number of alternative treatments.

2The dates in which randomization took place in all seven sites are (month/year): Atlanta (01/92-
06/93), Columbus (09/92-07/94), Detroit (05/92-06/94), Grand Rapids (09/91-01/94), Oklahoma
City (09/91-05/93), Portland (02/93-12/94) and Riverside (06/91-06/93).

3For further details on the NEWWS study see Hamilton et al. (2001).
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individuals randomized actually did not qualify for welfare, and it is hard to believe

they would be a good comparison group for individuals that did qualify. There is

evidence in the literature that applicants and recipients are actually very di¤erent in

terms of their characteristics and outcomes (e.g., Friedlander, 1988). Hence, in order

to have groups across sites that are all formed by welfare recipients at randomization,

we dropped Oklahoma City from the analysis. The �nal sample size in our analysis is

9,351 women, with 1,372 women from Atlanta; 3,037 from Detroit; 1,374 from Grand

Rapids; 1,740 from Portland and 2,828 from Riverside.

The outcome we analyze in section 5 is the number of quarters employed during

the two years following randomization and some variation on this outcome, explained

below. We focus on an outcome measured two years after random assignment because

in some sites we cannot be sure that all individuals were embargoed from receiving

services from the program starting in year three.

3 General Framework

We base our general framework on the potential outcome approach developed by Ney-

man (1923) and extended by Rubin (1974) to non-experimental settings. Each unit i in

our sample, i = 1; 2; : : : ; N , comes from one of k possible sites. Let Di 2 f1; 2; : : : ; kg
be an indicator of the location of individual i. We denote the potential outcomes by

Yi (td; d), where td stands for the treatment and d for the location. Hence, Yi (td; d)

is the outcome unit i would obtain if she were located in site d and given treatment

td. Two di¤erences with respect to the commonly used potential outcomes in program

evaluation (e.g., Imbens, 2004) are worth mentioning. First, we let the potential out-

come Y (td; d) to depend on d for notational convenience. Although it may be di¢ cult

to think of the site as something we can manipulate (i.e., a �treatment�in Holland�s

(1986) sense), it is convenient for our purposes as our goal is to simultaneously use

individuals from one site as a comparison group for another site. Second, we let td
depend on d, as not all sites o¤ered LFA and HCD training. For all sites, a value of

t of zero denotes the control treatment, which prevents individuals from receiving any

program services.

In this paper we focus exclusively on the control groups, so we use only the potential

outcomes at zero, or Y (0; d). The reason we focus only on controls is that not every

site o¤ered the two programs based on LFA and HCD, and programs di¤ered across
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sites in terms of implementation, particular services o¤ered, administration, etc. By

focusing on the control treatment we try to minimize treatment heterogeneity across

sites, and it allow us to use more sites as they all have a control group.4

The data we observe for each unit is (Yi; Di; Xi), with Xi a set of pre-treatment

variables, and Yi = Y (0; Di). Our parameters of interest in this paper are

�d = E [Y (0; d)] , for d = 1; 2; : : : ; k (1)

The object in (1) gives the expected outcome under the control treatment in location

d for someone randomly selected from our entire sample. In cases where d represents

di¤erent levels of the treatment (and the zero is omitted from the potential outcome),

(1) is the dose-response function.

Even though the treatment is randomly assigned within each site, and therefore

E[Yi(0; d)jDi = d] is identi�ed from the data for every site, E [Yi (0; d)] is not identi�ed

without further assumptions. In general, it is not possible to use the controls from one

location as a comparison group from another because the distribution of the character-

istics in all k locations may di¤er. In order to evaluate nonexperimental methods that

adjust for observable characteristics with multiple treatments, we impose the following

unconfoundedness or selection-on-observables assumption.

Assumption 1 (Unconfounded site) The site an individual belongs to is uncon-
founded given pre-treatment variables Xi, or

Di?fYi (0; d)gd2f1;2;:::;kg jXi (2)

This assumption states that, conditional on a set of covariates, the site an individual

belongs to is independent of her potential outcomes. Assumption 1 is similar to that

in Hotz et al. (2005) in the binary treatment case.

In addition, we impose an overlap assumption that guarantees that in in�nite sam-

ples we are able to compare units across all k sites for all values of X.

Assumption 2 (Simultaneous Overlap) For all x and all d

0 < Pr (Di = djX = x) (3)

4As in Hotz et al. (2005), if one is able to adjust for control group outcomes across sites, the
comparison of adjusted outcomes for nominally equal treatments across sites (e.g., LFA programs in
di¤erent locations) may be interpreted as the e¤ect of program heterogeneity across sites.

7



By applying iterated expectations we can write �d = E[E [Yi (0; d) jX = x]], which

combined with assumptions 1 and 2 implies we can write �d as a function of observed

data as:

�d = E[E [YijDi = d;X = x]] (4)

The goal in this paper is to use the nonexperimental estimators described in the

following section to adjust for observable characteristics in order to eliminate di¤erences

in average outcomes for controls among the di¤erent locations in the NEWWS. As

mentioned before, the key in our approach, is that we want to compare all locations

simultaneously, as opposed to the focus in the prior literature of making pairwise

comparison between locations. Hence, the hypothesis we test in section 5 is that

�1 = �2 = : : : = �d (5)

The equalities in (5) form the basis of our analysis as they imply that once we

control for covariates and integrate over the appropriate distribution of those covariates,

the individuals in any of the k locations can be used as a comparison group for all

other locations. It is important to note that the outer expectation in (4) is over the

distribution of the covariates over all the population (i.e., over all locations), and not

over the distribution of the covariates for any given location. Hence, (5) does not

imply that the average potential outcome for controls in each location is the same

across locations �i.e., it does not imply that E[Yi (0; d) jDi = d] = E[Yi (0; d) jDi = f ]

for d 6= f .
In addition, it is important to note that the overlap assumption rules out the use

of local economic conditions as covariates. The reason is that with a �xed number of

sites, the probability of �nding another site with the same local economic conditions

is zero, so the overlap assumption is violated. Therefore, assumptions 1 and 2 imply

that controlling for pre-treatment variables is enough to make individuals comparable

across site, without the use of local economic conditions. Because of this reason, Hotz

et al. (2005) also call Assumption 1 the �no macro-e¤ects�assumption. Since local

economic conditions are likely to play an important role even after controlling for

observed characteristics, in the analysis in section 5 we also present results controlling

for them.
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4 Non-experimental Estimators

In this section we discuss the di¤erent estimators of �d we consider in this paper to

eliminate di¤erences in control outcomes across all sites. For comparison, we start with

the raw mean estimator. Let 1 (A) be the indicator function, which equals one if event

A is true and zero otherwise. This estimator is then given by:

b�rawd =

NP
i=1

Yi1 (Di = d)

NP
i=1

1 (Di = d)

(6)

This estimator would be an unbiased estimate of �d if the individuals were randomly

assigned across di¤erent locations. Since the characteristics of the individuals vary

between locations, this estimator is a biased estimate of �d. We use this estimator

as a starting point, and we aim at reducing this bias by adjusting for di¤erences in

observable characteristics across locations under assumptions 1 and 2.

The result in (4) suggests estimating �d using a partial mean, which is an average

of a regression function over some of its regressors while holding others �xed (Newey,

1994). The regression function of Y on d and X is estimated in a �rst step, and

then we average this function over the covariates holding the site (d) �xed. The most

straightforward model for the inner expectation in (4) is a linear regression of the form:

E [YijDi; Xi] =
kX
j=1

�j � 1 (Di = j) + �
0xi (7)

where � is the coe¢ cient vector for the covariates. Let the estimated coe¢ cients in (7)

be given by b�j and b�. Then, the OLS-based estimator of �d is given by:
b�pmXd = b�d + b�0 �N�1PN

i=1 xi

�
(8)

We also consider a more �exible model of (7) which contains polynomials of the

continuous covariates and various interactions. We denote this estimator by b�pmXflexd .

Recently, part of the program evaluation literature has focus on more �exible ways

to control for covariates. The main issue in controlling for the covariates without

imposing any structure in the model is that if the dimension of X is large, then non-

parametric methods become intractable because of the so-called curse of dimensionality.
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The same problem arises in the binary-treatment case. In a seminal paper, Rosenbaum

and Rubin (1983) showed that if the two potential outcomes from a binary treatment

are independent of the treatment assignment conditional on X, then they are also in-

dependent conditional on the propensity score, de�ned as the probability of being in

the treatment group conditional on X. This result implies that we only need to adjust

for a scalar variable, as opposed to adjusting for all pretreatment variables. Since the

propensity score is rarely known in practice, it is usually estimated using a logit model

with interactions and high order terms in X, which can provide a relatively good ap-

proximation to the true model (e.g., Rosenbaum and Rubin, 1983; Dehejia and Wahba,

1985).5

Imbens (2000) and Lechner (2001) extended the results in Rosenbaum and Rubin

(1983) to the multivalued and multiple treatment setting, and Hirano and Imbens

(2004) further extended them to the continuous treatment case. The main di¤erence

between the approaches in Imbens (2000) and Lechner (2001) is that, while the latter

reduces the dimension of the conditioning set from the dimension ofX to the dimension

of the treatment, Imbens (2000) reduces the dimension to one, just as in the binary

case.

Following Imbens (2000), de�ne the generalized propensity score or GPS as the

probability of receiving a particular treatment (in our case, belonging to a particular

site) conditional on the covariates:

r (d; x) = Pr (D = djX = x) (9)

For the discussion below, it is important to keep in mind the distinction between

two di¤erent random variables: the probability that an individual gets the treatment

she actually received, Ri = ri (Di; Xi), and the probability she receives a particular

treatment d conditional on her covariates, Rdi = ri (d;Xi). Clearly, Rdi = Ri for those

units with Di = d.

Imbens (2000) shows that under unconfoundedness (Assumption 1) we can estimate

the average potential outcomes by conditioning solely on the GPS. In particular, in our

5Note that, similar to the binary-treatment case, the problem of nonparametrically estimating the
regression function of the outcome on the treatment and the covariates is translated to nonparamet-
rically estimating the GPS. In practice, however, it may be preferable to impose restrictions (such as
linearity) on the GPS rather than directly on the outcome.
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context the result in Imbens (2000) can be written as:

(i) 
 (d; r) � E [Y (0; d) jr (d;X) = r] = E [YijD = d; r (D;X) = r] (10)

(ii) E [Y (0; d)] = E [
 (d; r (t;X))]

Therefore, the GPS can be used to estimate �d = E [Y (0; d)] by following the two

steps in (10). First, one estimates the conditional expectation of Y as a function of D

and R = r (D;X) (i.e., the probability an individual gets the treatment she actually

received). Second, to estimate �d, we average the conditional expectation 
 (d; r) over

Rd = r (d;X). Hence, the averaging takes place over the values of the propensity

score at the location corresponding to the parameter we want to estimate, in this case

site d. As stressed in Imbens (2000), note that the second averaging is done over Rd,

and not R. In addition, contrary to the binary-treatment case, in the multivalued or

multiple treatment setting the conditional expectation 
 (d; r) does not have a causal

interpretation.

The result in (10) suggests estimating �d using a partial mean. However, contrary

to the partial mean estimated using the covariates directly, we now use Ri in the

regression function in the �rst step, and integrate over the distribution of Rdi in the

second step. As before, the regressor that is �xed in the second step is the site.

Hirano and Imbens (2004) implement this approach by estimating the regression

function in the �rst step using a (�exible) parametric regression. Following their ap-

proach, we �rst estimate the regression function

E [YijDi; Ri] =
kX
j=1

�j � 1 (Di = j) +
kX
j=1

[�j � 1 (Di = j) �Ri + �j � 1 (Di = j) �R2i ]

Let the estimated coe¢ cients from this regression be denoted by a hat on top of the

coe¢ cient. Next, we estimate �d as:

b�pmGPSd = E [Y (0)] =
1

N

NX
i=1

[b�d �1 (Di = d)+b�d �1 (Di = d) �Rdi +b�j �1 (Di = d) � (Rdi )2]

Alternatively, following Newey (1994) and more recently Flores (2007), we consider

a more �exible speci�cation in which the �rst step estimator of the regression function

is based on a nonparametric kernel estimator. However, instead of employing the usual

Nadaraya-Watson estimator, we use a local polynomial of order one. This estimator

11



has the advantage that it does not have the boundary bias problem the former has.

Since in our case the treatment is not continuous as in Flores (2007), the nonpara-

metric regression function of Yi on Di and Ri in the �rst stage is equivalent to having

one nonparametric regression function of Yi on Ri for each site. To formalize the esti-

mator, let K (u) be a kernel function such that
R
K (u) du = 1; let h be a bandwidth

satisfying h ! 0 and Nh ! 1 as N ! 1; and, let Kh (u) = h
�1K (u=h). Then, the

nonparametric estimator of 
 (d; r) in (10), b
 (d; r;h) is given by:6
b
 (d; r;h) = 1

N

NP
i=1

fbs2 (r; h)� bs1 (r; h) (Ri � r)gKh (Ri � r) � Yi � 1 (Di = d)bs2 (r; h) bs0 (r; h)� bs1 (r; h)2 (11)

where bsv (r; h) = 1

N

NP
i=1

(Ri � r)vKh (Ri � r) � 1 (Di = d)

Based on (11), our nonparametric partial mean estimator of �d is given by:

b�pmNPRd =
1

N

NP
j=1

b
 �d;Rdj ;h�
In the next section, we implement this approach by using an Epanechnikov kernel

and select the bandwidth using Silverman�s rule: h = 1:06min fb�; I=1:34gN�1=5, whereb� is the standard deviation of Ri and I is the interquartile range (e.g., Härdle et al.,
2004).7

In addition to employing the GPS within a partial mean framework to estimate

�d, the GPS can also be used to control for covariates using a weighting approach.

Similar to the binary treatment case, in a multiple or multivalued treatment case

one can weight the observations receiving a given treatment level t by the probability

of receiving the treatment they actually received conditional on X (i.e., Ri). More

speci�cally, applying the results in Imbens (2000) to our context we can write �d as a

function of the observed data as

�d = E

�
Yi � 1 (Di = d)

Ri

�
where as before, Ri = r (Di; Xi). Based on this result, a possible estimator of �d

6See, for instance, Wand and Jones (1995).
7In the following section we analyze the sensitivity of our results to the choice of bandwidth by

looking at the di¤erent estimates we obtain by varying it.
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is its sample analogue given by replacing E [�] by the empirical average N�1PN
i=1 �.

However, similar to the binary case discussed in Imbens (2004), this estimator has the

undesirable property that its weights do not necessarily add to one. An alternative is

to normalize the weights to add to one. Thus, the estimator we use in this case is given

by

b�ipwd =

NX
i=1

�
Yi � 1 (Di = d)

Ri

�" NX
i=1

1 (Di = d)

Ri

#�1
,

where ipw stands for inverse probability weight estimator. Similar to the binary-

treatment case, note that b�ipwd for d = 1; : : : ; k can also be calculated from the weighted

linear regression

E [YijDi] =
kX
j=1

�ipwj � 1 (Di = j) , (12)

with weights equal to

wi =

r
1

Ri

Following Imbens (2004), we also consider an inverse probability weight estimator

that adds covariates to the weighted regression in (12).8 Hence, we �rst estimate

the weighted regression

E [YijDi; Xi] =
kX
j=1

�j � 1 (Di = j) + �
0Xi,

with weights wi. Next, we estimate �d using the estimated coe¢ cients of this weighted

regression as:9 b�ipwXd = b�d + b�0 �N�1PN
i=1 xi

�
(13)

So far we have ignored two important issues in the implementation of the approaches

based on GPS: estimation of the GPS and imposition of the overlap restriction. As in

the binary-treatment case, the correct model underlying the GPS is unknown, and a

nonparametric approach to its estimation becomes infeasible as the number of covari-

ates grows. In this paper we follow an analogous approach to the binary-treatment

8For a discussion of this estimator in the binary-treatment case see, for instance, Imbens and
Wooldridge (2008).

9In the binary-treatment case this second step is not needed since the weighted regression includes
a treatment indicator (and a constant), and the focus is on estimating the treatment e¤ect. Since
here the parameter of interest is the average potential outcome, this second step is needed.
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setting and estimate the GPS using a �exible multinomial logit that includes interac-

tions and higher order terms of the pretreatment variables.

The overlap condition in Assumption 2 is stronger than that of the binary-treatment

case, as it requires that we �nd comparable individuals across all sites for all values of

X. In practice, when working with a binary treatment the usual approach is to drop

units in the treatment or control group for which it is not possible to �nd a comparable

individual in the other treatment arm, i.e., drop those individuals whose propensity

score does not overlap with the propensity score of those in the other treatment arm.

Hence, by doing this one rede�nes the parameter of interest to be conditional on the

subpopulation with common overlap on the GPS.

The general idea of overlap in the multivalued case is similar to that for the binary

case, but since now we want to compare di¤erent treatments simultaneously, we need

to �nd comparable individuals across all treatment groups for all di¤erent treatments.

Let the overlap region with respect to treatment (in our case location) d be given by

the subsample

Overlapd =

�
i : Rdi 2

�
max
j=1;:::;k

�
min

fq:Dq=jg
Rdq

�
; min
j=1;:::;k

�
max

fq:Dq=jg
Rdq

���
(14)

Then, we de�ne the overlap or common support region as the subsample given by those

units that are in the overlap regions for all di¤erent sites

Overlap =
kT
d=1

Overlapd (15)

All the estimators based on the GPS are applied within the overlap region given

by (15). By restricting our attention to units within the overlap region, we guarantee

that we are able to �nd comparable units in all other locations. In order to analyze

the importance of comparing �comparable�units in the multivalued or multiple case,

we also implement the non-GPS-based estimators discussed in this section using the

entire sample as well as only those units in the overlap region.

In the next section we also incorporate local economic conditions into our analysis.

The variables we consider are several growth rates explained below. To control for these

variables, we �rst regress the outcomes on the local economic conditions and then we

apply the methods discussed in this section using the residual from this regression as

the outcome.
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5 Results

In this section we concentrate our analysis on the outcome �number of quarters em-

ployed in the �rst two years after randomization�, and a �di¤erences� version of it, in

which we subtract the number of quarters employed in the two years prior to random

assignment. As explained in Section 2, we concentrate on the control groups in �ve

locations: Atlanta, Detroit, Grand Rapids, Portland and Riverside. Table 1 shows

the descriptive statistics of the outcomes and covariates in each of these sites. The

covariates include information on demographic and family characteristics, education,

housing type and stability, welfare and food stamps use history, and earnings and em-

ployment history. In addition, at the end of the table we present the variables that we

use to control for local economic conditions, as explained above. These variables are

the rates of growth (expressed in logs as the log of the variable one year minus the log

of the same variable the previous year) of employment to population ratio, average real

earnings and unemployment rate in the metropolitan statistical area (MSA) of each

site. We use the information for years one and two after random assignment.

As expected, there are important and statistically signi�cant di¤erences across sites.

For instance, while the percentage of blacks in Atlanta is 95 percent, this percentage

is only 17 percent in Riverside. Also, individuals in Riverside appear to have better

employment attachment and earnings histories, higher education level and less history

of dependence on welfare and food stamps aid.

The second panel of Table 1 presents the same information, but after the overlap

or common support condition in (15) is applied. The bottom of the two panels in the

table show that 1,452 out of 9,351 units (over 15%) do not satisfy the conditions and

therefore are dropped from all analyses where overlap is imposed. In general, it can

be seen that for most variables the mean values of the covariates per site get closer

to each other after imposing overlap, but in most cases not enough to eliminate the

di¤erences across sites.

As mentioned in Section 4, we estimated the GPS using a multinomial logit model.

All individual level covariates presented in Table 1 were included in the estimation.

We use this estimated GPS to further study how well covariates are �balanced�across

sites. We follow two strategies. The �rst one, for which the results are presented in

panel A of Table 2, tests for each covariate if there is joint equality of means across all

sites. Clearly, imposing overlap by itself does not make a di¤erence, for literally in all

covariates the tests are rejected. However, when we perform the same test weighting
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each observation by the inverse of the GPS (inverse probability weighting), only 6 out

of 53 covariates appear as not balanced at the 5% signi�cance level. This suggests that

the GPS is (mostly) attaining the desired result.

The second approach, presented in panel B of Table 2, consists of a series of pairwise

comparisons of the means of each site versus all other sites. The two �raw means�

versions (before and after imposing the overlap condition) just test equality of means.

The third version consists of dividing (�blocking�) the units in each site by the decile

of the GPS in their site and calculating the di¤erence of means with all the units in

other sites for which their estimated GPS for that particular site is in the same decile.

For example, for individuals in Atlanta in the �rst decile of the estimated GPS for

individuals living in Atlanta, we chose as comparison group all the individuals living

in other sites for which their GPS of being in Atlanta is in the same �rst decile. The

weighted average (by the number of individuals) of these di¤erence of means (and the

corresponding standard error) are used to test the equality of means of each site versus

the other sites. Here, Table 2 shows that the results are mixed. On one hand, for most

sites the number of covariates with signi�cant di¤erences decreases with the application

of blocking. On the other hand, some issues remain, for example, with Detroit.

In summary, it appears that in general the GPS is helping in attaining balancing of

covariates, at least for a large number of them and for most sites. In Appendix Table 1

we present detailed information on the tests used to generate Table 2. For the blocking

estimator, we present the standardized (by the average and the standard deviation)

di¤erence of means, and indicate the signi�cance level of those di¤erences.

Next we calculate all the estimators presented in Section 4 on four outcomes. First,

we use the number of quarters employed in the two years after random assignment as

outcome. Second, we use the di¤erences outcome described above. The results for these

two outcomes are presented in Table 3 and in Figures 1a, 1b, 2a and 2b. The �nal two

outcomes considered are the residuals from the regression where we try to eliminate

the portion of the outcomes explained by just di¤erences in local economic conditions.

The regressions only include a constant and the six local economic conditions variables

presented at the bottom of Table 1. We refer to these residuals with the same name

as the original outcome, but with the su¢ x �adjusted by LEC�. The results for these

adjusted outcomes are presented in Table 4 and in �gures 3a, 3b, 4a and 4b.

In Tables 3 and 4 and all the �gures, the con�dence intervals were estimated by

bootstrapping with 500 replications. Also, in the tables and graphs we present the
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p-values of the joint test that the estimated expected value of the outcomes across

sites are equal.

We can observe from the �gures and Tables 3 and 4 that for the outcome in levels

all the estimators have trouble trying to make the expected values equal across sites.

The partial mean estimators, however, work reasonably well in adjusting outcomes in

most of the sites. For the di¤erences outcome the results are similar (see Figures 2a

and 2b), but clearly just the fact of taking the di¤erence improves the similarity of the

mean outcomes across sites.

Finally, when the outcomes are adjusted �rst by local economic conditions, then

equality of means is attained for many of the estimators, including all the GPS-based

ones. This implies that once the structural di¤erences in the labor markets for each

site are accounted for, then the estimators work very well in eliminating any remaining

di¤erences due to individual-level factors.

6 Conclusion

[To be completed]
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Table 1. Descriptive Statistics NEWWS Data   

ATL DET GRP POR RIV ATL DET GRP POR RIV
Outcomes

# qtrs employed in 2 years after RA 2.48 2.21 2.80 2.51 1.97 2.47 2.24 2.71 2.46 1.88
(2.82) (2.49) (2.62) (2.78) (2.71) (2.81) (2.49) (2.59) (2.76) (2.64)

# qtrs employed in 2 years after RA (Diff) 0.62 0.78 0.23 0.52 -0.17 0.69 0.80 0.31 0.56 -0.10
(2.64) (2.60) (2.87) (2.90) (2.91) (2.60) (2.60) (2.79) (2.83) (2.85)

Covariates
Demographic & Family Characteristics

Black 0.95 0.89 0.41 0.20 0.17 0.95 0.89 0.46 0.23 0.24
(0.22) (0.32) (0.49) (0.40) (0.38) (0.22) (0.32) (0.50) (0.42) (0.43)

Age 30-39 years old 0.51 0.35 0.29 0.40 0.45 0.50 0.35 0.31 0.40 0.44
(0.50) (0.48) (0.46) (0.49) (0.50) (0.50) (0.48) (0.46) (0.49) (0.50)

Age 40+ years old 0.14 0.11 0.09 0.08 0.13 0.13 0.11 0.09 0.08 0.13
(0.34) (0.32) (0.28) (0.27) (0.34) (0.34) (0.31) (0.29) (0.28) (0.34)

Teenage mother (at <=19 years) 0.45 0.45 0.51 0.34 0.35 0.46 0.46 0.51 0.35 0.37
(0.50) (0.50) (0.50) (0.47) (0.48) (0.50) (0.50) (0.50) (0.48) (0.48)

Never married 0.62 0.69 0.58 0.49 0.34 0.63 0.69 0.59 0.52 0.38
(0.48) (0.46) (0.49) (0.50) (0.47) (0.48) (0.46) (0.49) (0.50) (0.49)

Any child 0-5 years old 0.42 0.65 0.69 0.71 0.58 0.44 0.66 0.67 0.69 0.59
(0.49) (0.48) (0.46) (0.46) (0.49) (0.50) (0.47) (0.47) (0.46) (0.49)

Any child 6-12 years old 0.70 0.48 0.43 0.52 0.59 0.69 0.48 0.45 0.53 0.58
(0.46) (0.50) (0.49) (0.50) (0.49) (0.46) (0.50) (0.50) (0.50) (0.49)

Two children in household 0.34 0.30 0.36 0.33 0.32 0.34 0.30 0.36 0.34 0.33
(0.47) (0.46) (0.48) (0.47) (0.47) (0.47) (0.46) (0.48) (0.47) (0.47)

Three or more children in household 0.31 0.27 0.19 0.30 0.28 0.31 0.27 0.20 0.29 0.28
(0.46) (0.44) (0.39) (0.46) (0.45) (0.46) (0.45) (0.40) (0.45) (0.45)

Education Characteristics
10th grade 0.14 0.15 0.13 0.17 0.11 0.13 0.14 0.13 0.17 0.12

(0.35) (0.35) (0.34) (0.38) (0.31) (0.34) (0.35) (0.34) (0.38) (0.33)
11th grade 0.17 0.25 0.20 0.22 0.18 0.18 0.26 0.21 0.21 0.17

(0.38) (0.44) (0.40) (0.41) (0.38) (0.38) (0.44) (0.40) (0.40) (0.38)
Grade 12 or higher 0.57 0.50 0.54 0.45 0.57 0.58 0.50 0.53 0.45 0.55

(0.49) (0.50) (0.50) (0.50) (0.49) (0.49) (0.50) (0.50) (0.50) (0.50)
Highest degree = High School or GED 0.53 0.48 0.54 0.53 0.59 0.53 0.49 0.53 0.52 0.55

(0.50) (0.50) (0.50) (0.50) (0.49) (0.50) (0.50) (0.50) (0.50) (0.50)

(continues in next page)
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Table 1. Descriptive Statistics NEWWS Data (continuation)

ATL DET GRP POR RIV ATL DET GRP POR RIV
Housing Type & Housing Stability 

Lives in public/subsidized house 0.59 0.07 0.16 0.29 0.09 0.57 0.07 0.17 0.28 0.10
(0.49) (0.26) (0.37) (0.46) (0.29) (0.49) (0.26) (0.38) (0.45) (0.30)

One or two moves in past 2 years 0.49 0.48 0.51 0.47 0.54 0.49 0.49 0.53 0.48 0.53
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

3 or more moves in past 2 years 0.08 0.08 0.25 0.23 0.22 0.08 0.08 0.22 0.20 0.21
(0.27) (0.27) (0.43) (0.42) (0.41) (0.27) (0.27) (0.41) (0.40) (0.41)

Welfare Use History
On welfare for less than 2 years 0.26 0.23 0.38 0.32 0.44 0.24 0.23 0.34 0.31 0.40

(0.44) (0.42) (0.49) (0.47) (0.50) (0.43) (0.42) (0.48) (0.46) (0.49)
On welfare for 2-5 years 0.25 0.25 0.31 0.35 0.28 0.25 0.26 0.32 0.36 0.29

(0.43) (0.44) (0.46) (0.48) (0.45) (0.43) (0.44) (0.47) (0.48) (0.46)
On welfare 5-10 years 0.24 0.24 0.17 0.23 0.16 0.24 0.24 0.18 0.23 0.17

(0.43) (0.43) (0.38) (0.42) (0.37) (0.43) (0.43) (0.39) (0.42) (0.37)
Received Welfare in Q1 before RA 0.97 0.90 0.77 0.79 0.73 0.97 0.91 0.83 0.85 0.79

(0.18) (0.29) (0.42) (0.41) (0.44) (0.18) (0.29) (0.37) (0.36) (0.41)
Received Welfare in Q2 before RA 0.93 0.86 0.70 0.74 0.49 0.93 0.86 0.76 0.80 0.61

(0.26) (0.35) (0.46) (0.44) (0.50) (0.26) (0.35) (0.43) (0.40) (0.49)
Received Welfare in Q3 before RA 0.85 0.84 0.68 0.72 0.46 0.85 0.84 0.73 0.77 0.57

(0.36) (0.37) (0.47) (0.45) (0.50) (0.35) (0.37) (0.44) (0.42) (0.49)
Received Welfare in Q4 before RA 0.73 0.83 0.67 0.69 0.44 0.77 0.83 0.71 0.74 0.52

(0.44) (0.38) (0.47) (0.46) (0.50) (0.42) (0.38) (0.45) (0.44) (0.50)
Received Welfare in Q5 before RA 0.69 0.81 0.64 0.64 0.41 0.72 0.81 0.68 0.68 0.49

(0.46) (0.40) (0.48) (0.48) (0.49) (0.45) (0.40) (0.47) (0.47) (0.50)
Received Welfare in Q6 before RA 0.66 0.79 0.61 0.61 0.39 0.69 0.79 0.64 0.65 0.46

(0.47) (0.41) (0.49) (0.49) (0.49) (0.46) (0.41) (0.48) (0.48) (0.50)
Received Welfare in Q7 before RA 0.64 0.77 0.56 0.58 0.37 0.67 0.77 0.60 0.61 0.43

(0.48) (0.42) (0.50) (0.49) (0.48) (0.47) (0.42) (0.49) (0.49) (0.50)
Food Stamps Use History

Received FS in Q1 before RA 0.97 0.94 0.85 0.86 0.62 0.97 0.94 0.90 0.91 0.75
(0.17) (0.23) (0.36) (0.35) (0.48) (0.17) (0.23) (0.30) (0.28) (0.43)

Received FS in Q2 before RA 0.95 0.89 0.76 0.81 0.42 0.95 0.89 0.83 0.88 0.59
(0.22) (0.31) (0.43) (0.39) (0.49) (0.23) (0.31) (0.38) (0.33) (0.49)

Received FS in Q3 before RA 0.90 0.87 0.72 0.79 0.39 0.90 0.87 0.77 0.84 0.54
(0.30) (0.34) (0.45) (0.41) (0.49) (0.30) (0.34) (0.42) (0.36) (0.50)

(continues in next page)
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Table 1. Descriptive Statistics NEWWS Data (continuation)

ATL DET GRP POR RIV ATL DET GRP POR RIV
Food Stamps Use History (continued)

Received FS in Q4 before RA 0.83 0.86 0.72 0.76 0.36 0.83 0.86 0.76 0.82 0.49
(0.38) (0.35) (0.45) (0.43) (0.48) (0.37) (0.35) (0.43) (0.39) (0.50)

Received FS in Q5 before RA 0.78 0.83 0.67 0.72 0.33 0.79 0.83 0.71 0.77 0.45
(0.42) (0.38) (0.47) (0.45) (0.47) (0.41) (0.38) (0.45) (0.42) (0.50)

Received FS in Q6 before RA 0.75 0.81 0.64 0.70 0.31 0.76 0.80 0.68 0.74 0.42
(0.43) (0.40) (0.48) (0.46) (0.46) (0.43) (0.40) (0.47) (0.44) (0.49)

Received FS in Q7 before RA 0.72 0.78 0.60 0.66 0.29 0.73 0.78 0.63 0.70 0.39
(0.45) (0.41) (0.49) (0.47) (0.45) (0.45) (0.41) (0.48) (0.46) (0.49)

Year of Random Assignment
Random Assignment in year 1993 0.34 0.50 0.36 0.74 0.26 0.33 0.49 0.36 0.75 0.32

(0.47) (0.50) (0.48) (0.44) (0.44) (0.47) (0.50) (0.48) (0.43) (0.47)
Employment History

Employed in Q1 before RA 0.18 0.18 0.29 0.23 0.22 0.18 0.18 0.27 0.21 0.19
(0.39) (0.38) (0.45) (0.42) (0.41) (0.38) (0.39) (0.45) (0.41) (0.39)

Employed in Q2 before RA 0.18 0.18 0.30 0.25 0.25 0.18 0.18 0.28 0.23 0.22
(0.38) (0.38) (0.46) (0.43) (0.43) (0.38) (0.39) (0.45) (0.42) (0.41)

Employed in Q3 before RA 0.19 0.18 0.29 0.25 0.26 0.18 0.18 0.27 0.23 0.23
(0.39) (0.38) (0.46) (0.43) (0.44) (0.39) (0.38) (0.44) (0.42) (0.42)

Employed in Q4 before RA 0.22 0.17 0.30 0.24 0.28 0.21 0.18 0.27 0.22 0.25
(0.41) (0.38) (0.46) (0.42) (0.45) (0.41) (0.38) (0.45) (0.42) (0.43)

Employed in Q5 before RA 0.24 0.17 0.31 0.24 0.28 0.23 0.18 0.29 0.23 0.26
(0.43) (0.38) (0.46) (0.43) (0.45) (0.42) (0.38) (0.45) (0.42) (0.44)

Employed in Q6 before RA 0.27 0.18 0.34 0.25 0.29 0.25 0.18 0.31 0.24 0.27
(0.44) (0.38) (0.47) (0.43) (0.45) (0.43) (0.39) (0.46) (0.43) (0.44)

Employed in Q7 before RA 0.29 0.18 0.36 0.26 0.29 0.27 0.18 0.34 0.26 0.28
(0.45) (0.39) (0.48) (0.44) (0.45) (0.45) (0.39) (0.48) (0.44) (0.45)

Employed in Q8 before RA 0.30 0.18 0.39 0.27 0.30 0.28 0.18 0.36 0.27 0.29
(0.46) (0.38) (0.49) (0.45) (0.46) (0.45) (0.38) (0.48) (0.44) (0.45)

Employed at RA (self reported) 0.07 0.07 0.13 0.09 0.13 0.07 0.07 0.13 0.08 0.11
(0.26) (0.25) (0.34) (0.28) (0.33) (0.26) (0.26) (0.33) (0.27) (0.31)

Ever worked FT 6+ months at same job 0.72 0.46 0.64 0.77 0.71 0.71 0.47 0.63 0.75 0.69
(0.45) (0.50) (0.48) (0.42) (0.45) (0.45) (0.50) (0.48) (0.43) (0.46)

(continues in next page)

Variables Before Imposing Overlap Conditon After Imposing Overlap Conditon



Table 1. Descriptive Statistics NEWWS Data (continuation)

ATL DET GRP POR RIV ATL DET GRP POR RIV
Earnings History (real $ /1,000)

Earnings Q1 before RA 0.23 0.21 0.36 0.33 0.43 0.21 0.21 0.31 0.28 0.33
(0.82) (0.68) (1.06) (0.89) (1.23) (0.72) (0.68) (0.98) (0.79) (1.00)

Earnings Q2 before RA 0.26 0.25 0.52 0.41 0.63 0.25 0.25 0.45 0.34 0.46
(0.85) (0.82) (1.29) (1.04) (1.55) (0.77) (0.83) (1.20) (0.93) (1.19)

Earnings Q3 before RA 0.29 0.26 0.55 0.41 0.72 0.26 0.26 0.46 0.35 0.55
(0.92) (0.89) (1.33) (1.07) (1.73) (0.81) (0.90) (1.22) (0.98) (1.43)

Earnings Q4 before RA 0.41 0.25 0.53 0.43 0.74 0.37 0.25 0.47 0.38 0.58
(1.22) (0.82) (1.29) (1.14) (1.68) (1.12) (0.83) (1.23) (1.06) (1.40)

Earnings Q5 before RA 0.51 0.29 0.57 0.46 0.79 0.45 0.29 0.52 0.41 0.64
(1.27) (0.94) (1.32) (1.16) (1.82) (1.13) (0.94) (1.28) (1.09) (1.55)

Earnings Q6 before RA 0.62 0.31 0.62 0.51 0.80 0.55 0.31 0.57 0.46 0.69
(1.44) (1.01) (1.41) (1.26) (1.81) (1.32) (1.01) (1.39) (1.20) (1.60)

Earnings Q7 before RA 0.72 0.32 0.68 0.54 0.83 0.64 0.33 0.64 0.51 0.73
(1.65) (1.06) (1.44) (1.31) (1.89) (1.53) (1.07) (1.42) (1.30) (1.66)

Earnings Q8 before RA 0.74 0.33 0.69 0.57 0.85 0.66 0.34 0.65 0.55 0.76
(1.61) (1.09) (1.45) (1.35) (1.86) (1.46) (1.10) (1.45) (1.32) (1.73)

Any earnings year before RA (self-rep) 0.23 0.20 0.46 0.36 0.40 0.23 0.21 0.42 0.33 0.36
(0.42) (0.40) (0.50) (0.48) (0.49) (0.42) (0.40) (0.49) (0.47) (0.48)

Local Economic Conditions (growth rates)
Employment/Population year 1 after RA 0.02 0.02 0.02 0.02 -0.01 0.02 0.02 0.02 0.02 -0.01

(0.00) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)
Average Total earnings year 1 after RA -0.01 0.02 0.01 0.01 -0.01 -0.01 0.02 0.01 0.01 -0.01

(0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)
Unemployment Rate year 1 after RA -0.15 -0.21 -0.19 -0.23 0.01 -0.15 -0.21 -0.19 -0.23 0.00

(0.01) (0.05) (0.10) (0.05) (0.10) (0.01) (0.05) (0.10) (0.05) (0.10)
Employment/Population year 2 after RA 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.03 0.02 0.01

(0.00) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)
Average Total earnings year 2 after RA 0.00 0.01 0.01 0.02 -0.01 0.00 0.01 0.01 0.02 -0.01

(0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01)
Unemployment Rate year 2 after RA -0.13 -0.12 -0.21 -0.08 -0.10 -0.13 -0.12 -0.21 -0.08 -0.10

(0.04) (0.07) (0.02) (0.12) (0.06) (0.04) (0.07) (0.02) (0.12) (0.06)
Number of observations per site 1,372 2,037 1,374 1,740 2,828 1,290 1,976 1,189 1,496 1,948
Total number of observations 9,351 7,899

Variables Before Imposing Overlap Conditon After Imposing Overlap Conditon



Table 2. Summary Results from Balancing of Covariates Analysis   

A. Joint tests of equality of means of covariates across all sites

Method
P-Value ≤ 0.10 P-Value ≤ 0.05 P-Value ≤ 0.01

Raw Means Before Overlap 53 53 53
Raw Means After Overlap 53 53 52
GPS-based Inverse Probability Weighting 10 6 0
Total Number of Covariates

B. Tests of differences of means of covariates in one site vs all other sites pooled together

Method
P-Value ≤ 0.10 P-Value ≤ 0.05 P-Value ≤ 0.01

Raw Means Before Overlap
     Atlanta vs others 43 43 40
     Detroit vs others 50 50 49
     Grand Rapids vs others 38 35 31
     Portland vs others 38 37 30
     Riverside vs others 50 49 46
Raw Means After Overlap
     Atlanta vs others 41 41 36
     Detroit vs others 49 41 36
     Grand Rapids vs others 36 30 24
     Portland vs others 31 26 20
     Riverside vs others 48 48 44
Blocking on GPS
     Atlanta vs others 18 16 12
     Detroit vs others 35 30 14
     Grand Rapids vs others 16 9 5
     Portland vs others 16 12 7
     Riverside vs others 16 13 6
Total Number of Covariates

Number of covariates for which

53

Number of covariates for which

53



Table 3. Estimated Average Outcomes per Site and Bootstrap Confidence Intervals 
              Outcome: Number of Quarters Employed in Two Years after Random Assignment  

Estimator Joint Equality Joint Equality
ATL DET GRP POR RIV Test (p-value) ATL DET GRP POR RIV Test (p-value)

RAW_NO_OV 2.5 2.2 2.8 2.5 2.0 0.000 0.6 0.8 0.2 0.5 -0.2 0.000
[2.4,2.5] [2.2,2.3] [2.7,2.8] [2.5,2.6] [1.9,2.0] [0.6,0.7] [0.8,0.8] [0.2,0.3] [0.5,0.6] [-0.3,-0.1]

RAW_OV 2.6 2.3 2.6 2.4 1.8 0.000 0.8 0.8 0.5 0.8 0.1 0.000
[2.5,2.6] [2.3,2.3] [2.6,2.7] [2.4,2.6] [1.7,1.8] [0.7,0.8] [0.8,0.9] [0.5,0.5] [0.8,0.9] [0.0,0.3]

Covariates-Based
PM_X_NO_OV 2.5 2.3 2.5 2.5 1.8 0.000 0.8 0.6 0.7 0.7 0.1 0.000

[2.4,2.5] [2.3,2.4] [2.4,2.5] [2.5,2.6] [1.6,1.8] [0.8,0.8] [0.6,0.7] [0.6,0.7] [0.7,0.7] [-0.1,0.1]
PM_X_OV 4.0 3.8 3.8 4.0 3.2 0.000 2.2 1.9 1.9 2.0 1.4 0.000

[3.8,4.4] [3.6,4.2] [3.6,4.3] [3.8,4.4] [3.0,3.5] [2.2,2.4] [2.0,2.1] [1.9,2.1] [2.1,2.3] [1.4,1.5]
PM_X_FLEX_NO_OV 3.7 3.5 3.6 3.7 3.0 0.000 1.7 1.6 1.6 1.7 1.0 0.000

[3.5,4.0] [3.3,3.9] [3.3,3.9] [3.5,4.0] [2.7,3.1] [1.5,2.0] [1.4,1.9] [1.4,1.9] [1.5,2.0] [0.8,1.1]
PM_X_FLEX_OV 4.0 3.7 3.7 3.9 3.2 0.000 2.1 1.8 1.8 2.0 1.3 0.000

[3.9,4.4] [3.6,4.2] [3.6,4.1] [3.7,4.2] [3.0,3.5] [2.1,2.4] [1.8,2.2] [1.8,2.2] [1.9,2.3] [1.2,1.5]
GPS-Based
PM_GPS_PAR_OV 2.6 2.3 2.3 2.6 1.9 0.001 0.8 0.6 0.6 0.9 0.2 0.351

[2.6,2.7] [2.2,2.3] [2.3,2.4] [2.5,2.9] [1.7,1.8] [0.8,0.9] [0.6,0.7] [0.6,0.6] [0.7,1.1] [0.1,0.3]
PM_GPS_NPR_OV 2.3 2.6 2.2 2.5 1.9 0.805 0.7 0.6 0.5 1.0 0.3 0.256

[2.6,2.8] [2.3,2.6] [2.3,2.4] [2.2,2.7] [1.5,3.4] [0.6,0.8] [0.4,0.9] [0.4,0.5] [0.6,1.2] [0.1,0.5]
IPW_OV 2.5 2.4 2.2 2.4 1.8 0.774 0.7 0.7 0.6 0.9 0.1 0.499

[2.4,2.6] [2.2,2.4] [2.3,2.4] [2.3,2.8] [1.7,1.9] [0.7,0.7] [0.5,0.7] [0.5,0.6] [0.7,1.2] [0.0,0.1]
IPW_X_OV 2.5 2.1 2.8 2.5 1.9 0.000 0.5 0.7 0.4 0.8 0.1 0.000

[2.5,2.6] [2.0,2.2] [2.8,2.8] [2.4,2.7] [1.7,1.9] [0.5,0.7] [0.6,0.8] [0.4,0.5] [0.7,1.0] [-0.2,0.1]

Notes: Bootstrap Confidence Intervals between brackets (based on 500 replications).
The outcome in differences substracts the outcome in years 1 and 2 before Random Assignment from the outcome in levels

Outcome in Levels Outcome in Differences



Table 4. Estimated Average Outcomes per Site and Bootstrap Confidence Interval
              Outcome: Number of Quarters Employed in Two Years after Random Assignment Adjusted by Local Economic Conditions After RA   

Estimator Joint Equality Joint Equality
ATL DET GRP POR RIV Test (p-value) ATL DET GRP POR RIV Test (p-value)

RAW_NO_OV 0.1 -0.2 0.2 0.0 -0.1 0.008 0.1 0.2 -0.1 -0.1 -0.1 0.186
[0.1,0.2] [-0.1,-0.1] [0.1,0.3] [-0.1,0.0] [-0.2,-0.1] [0.0,0.1] [0.2,0.3] [-0.1,0.0] [-0.1,0.0] [-0.2,0.0]

RAW_OV 0.2 -0.1 0.0 -0.1 -0.2 0.000 0.2 0.2 0.2 0.1 0.2 0.992
[0.2,0.3] [-0.1,0.0] [0.0,0.1] [-0.2,0.0] [-0.3,-0.2] [0.2,0.3] [0.2,0.3] [0.2,0.2] [0.2,0.3] [0.1,0.4]

Covariates-Based
PM_X_NO_OV 0.1 0.0 -0.1 0.0 -0.3 0.000 0.2 0.1 0.3 0.2 0.1 0.109

[0.1,0.1] [0.0,0.0] [-0.2,-0.1] [0.0,0.1] [-0.4,-0.2] [0.2,0.3] [0.1,0.1] [0.3,0.3] [0.2,0.3] [0.0,0.2]
PM_X_OV -0.6 -0.9 -1.1 -0.9 -1.2 0.000 1.4 1.1 1.3 1.2 1.2 0.000

[-0.9,-0.2] [-1.1,-0.4] [-1.3,-0.6] [-1.1,-0.5] [-1.4,-0.8] [1.4,1.5] [1.2,1.3] [1.3,1.5] [1.3,1.5] [1.2,1.3]
PM_X_FLEX_NO_OV -1.0 -1.2 -1.3 -1.2 -1.4 0.000 0.9 0.7 1.0 0.9 0.8 0.068

[-1.2,-0.7] [-1.4,-0.8] [-1.6,-0.9] [-1.4,-0.9] [-1.6,-1.2] [0.7,1.2] [0.6,1.1] [0.8,1.3] [0.7,1.2] [0.6,0.9]
PM_X_FLEX_OV -0.7 -1.0 -1.1 -1.0 -1.2 0.000 1.3 1.0 1.2 1.2 1.1 0.001

[-0.8,-0.3] [-1.1,-0.5] [-1.3,-0.7] [-1.2,-0.6] [-1.4,-0.9] [1.2,1.6] [1.0,1.4] [1.2,1.6] [1.1,1.5] [1.0,1.3]
GPS-Based
PM_GPS_PAR_OV 0.3 -0.1 -0.2 -0.1 -0.1 0.000 0.3 0.1 0.3 0.3 0.3 0.200

[0.3,0.4] [-0.2,0.0] [-0.3,-0.2] [-0.2,0.2] [-0.4,-0.2] [0.2,0.3] [0.1,0.2] [0.2,0.3] [0.0,0.4] [0.2,0.3]
PM_GPS_NPR_OV 0.0 0.2 -0.4 -0.2 -0.2 0.772 0.2 0.0 0.2 0.3 0.4 0.757

[0.2,0.5] [-0.1,0.3] [-0.3,-0.2] [-0.4,0.1] [-0.6,1.4] [0.1,0.2] [-0.1,0.3] [0.0,0.2] [0.0,0.6] [0.1,0.6]
IPW_OV 0.1 0.0 -0.4 -0.2 -0.2 0.001 0.1 0.1 0.2 0.2 0.1 0.290

[0.1,0.3] [-0.1,0.1] [-0.3,-0.2] [-0.4,0.2] [-0.4,-0.2] [0.1,0.2] [0.0,0.2] [0.2,0.2] [0.0,0.5] [0.1,0.2]
IPW_X_OV 0.2 -0.2 0.2 -0.2 -0.1 0.000 0.0 0.2 0.1 0.0 0.2 0.199

[0.2,0.3] [-0.4,-0.1] [0.2,0.2] [-0.3,0.0] [-0.4,-0.2] [0.0,0.2] [0.0,0.3] [0.0,0.1] [0.0,0.2] [-0.1,0.2]

Notes: Bootstrap Confidence Intervals between brackets (based on 500 replications).
The outcome in differences substracts the outcome in years 1 and 2 before Random Assignment from the outcome in levels

Outcome in Levels Outcome in Differences
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Figure 1a: Comparison of Covariates−Based Estimators
Outcome: Number qtrs employed in 2 years after RA
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Outcome: Number qtrs employed in 2 years after RA
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Figure 3a: Comparison of Covariates−Based Estimators
Outcome: Number qtrs employed in 2 years after RA (adjusted by LEC)
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Figure 3b: Comparison of GPS−Based Estimators
Outcome: Number qtrs employed in 2 years after RA (adjusted by LEC)
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Figure 4a: Comparison of Covariates−Based Estimators
Outcome: Number qtrs employed in 2 years after RA − DID (adjusted by LEC)
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Figure 4b: Comparison of GPS−Based Estimators
Outcome: Number qtrs employed in 2 years after RA − DID (adjusted by LEC)



Appendix Table 1. Balancing of Covariates Analysis  

Variable
Raw Raw w/Ovlp GPS IPW ATL DET GRP POR RIV ATL DET GRP POR RIV ATL DET GRP POR RIV

Black 0.000 0.000 0.040  1.10***  1.04*** -0.17   -0.70   -0.89    0.96***  0.90*** -0.21   -0.80   -0.81    0.43***  0.21*** -0.09   -0.15   -0.16   
Age 30-39 years old 0.000 0.000 0.101  0.24*** -0.14   -0.26   -0.02    0.14***  0.25*** -0.14   -0.21    0.00    0.10*** 0.00   -0.05   -0.04    0.06   0.00   
Age 40+ years old 0.000 0.000 0.903  0.09***  0.01   -0.10   -0.12    0.09***  0.07** -0.01   -0.07   -0.11    0.09***  0.01   -0.01   -0.01   -0.03   -0.03   
Teenage mother 0.000 0.000 0.513  0.11***  0.10***  0.24*** -0.17   -0.17    0.08***  0.10***  0.20*** -0.18   -0.15    0.03    0.02    0.04   -0.11   0.00   
Never married 0.000 0.000 0.169  0.24***  0.44***  0.14*** -0.07   -0.53    0.17***  0.37***  0.08*** -0.10   -0.47    0.10*   0.10** -0.01   -0.07   -0.10   
Any child 0-5 years old 0.000 0.000 0.028 -0.47    0.11***  0.19***  0.24*** -0.09   -0.43    0.12***  0.14***  0.20*** -0.06   -0.01    0.03    0.00    0.04    0.05   
Any child 6-12 years old 0.000 0.000 0.129  0.37*** -0.18   -0.28   -0.06    0.13***  0.36*** -0.16   -0.23   -0.04    0.09***  0.01   -0.09   -0.04   -0.02   -0.02   
2 children in household 0.004 0.011 0.709  0.03   -0.08    0.08***  0.02   -0.01    0.02   -0.08    0.08**  0.02   -0.01    0.05   -0.01    0.01   0.00   0.00   
3+ children in household 0.000 0.000 0.235  0.10*** -0.01   -0.23    0.07**  0.04*   0.11***  0.00   -0.19    0.05    0.01   -0.05    0.01   -0.05    0.04    0.01   
10th grade 0.000 0.001 0.851  0.01    0.03   -0.01    0.13*** -0.12   -0.02    0.01   -0.02    0.11*** -0.08   -0.05    0.03   -0.01   -0.01   -0.03   
11th grade 0.000 0.000 0.868 -0.09    0.16*** -0.01    0.04   -0.10   -0.08    0.16***  0.00   0.00   -0.11   -0.02    0.01   -0.01    0.01   -0.03   
Grade 12 or higher 0.000 0.000 0.539  0.10*** -0.08    0.03   -0.20    0.13***  0.14*** -0.05    0.02   -0.17    0.07***  0.12** -0.01    0.01    0.01    0.07*  
Highest degree = HS/GED 0.000 0.002 0.477 -0.03   -0.15    0.01   -0.01    0.14***  0.02   -0.10    0.01    0.00    0.07***  0.02   -0.06   0.00   -0.02    0.04   
Lives public/subss house 0.000 0.000 0.163  1.12*** -0.43   -0.14    0.26*** -0.42    1.06*** -0.47   -0.13    0.19*** -0.37    0.00    0.09*  -0.03    0.00   -0.09   
1-2 moves in past 2 years 0.000 0.008 0.891 -0.03   -0.05    0.02   -0.07    0.10*** -0.03   -0.03    0.05*  -0.07    0.07***  0.02    0.06    0.01    0.04    0.05   
3+ moves in past 2 years 0.000 0.000 0.072 -0.29   -0.33    0.24***  0.17***  0.18*** -0.24   -0.27    0.19***  0.14***  0.20*** -0.11   -0.07    0.02    0.09**  0.06*  
On welfare < 2 years 0.000 0.000 0.011 -0.19   -0.29    0.12*** -0.03    0.30*** -0.16   -0.21    0.09***  0.00    0.26*** -0.06   -0.01    0.03    0.04    0.07** 
On welfare for 2-5 years 0.000 0.000 0.206 -0.09   -0.10    0.05*   0.17*** -0.02   -0.11   -0.11    0.08**  0.17***  0.00   -0.06    0.01    0.01    0.02    0.03   
On welfare 5-10 years 0.000 0.000 0.979  0.11***  0.11*** -0.09    0.07** -0.15    0.10***  0.09*** -0.09    0.05*  -0.15    0.07   -0.01   -0.03   -0.04   -0.03   
On Welfare Q1 before RA 0.000 0.000 0.454  0.45***  0.28*** -0.16   -0.10   -0.33    0.31***  0.14*** -0.10   -0.06   -0.26    0.08    0.08*  -0.07   -0.10   -0.02   
On Welfare Q2 before RA 0.000 0.000 0.623  0.56***  0.41*** -0.04    0.08*** -0.69    0.38***  0.21*** -0.07    0.05** -0.49    0.11**  0.13*** -0.10   -0.11   -0.04   
On Welfare Q3 before RA 0.000 0.000 0.798  0.42***  0.44***  0.01    0.09*** -0.67    0.27***  0.27*** -0.04    0.06** -0.49    0.16***  0.12*** -0.07   -0.11   -0.06   
On Welfare Q4 before RA 0.000 0.000 0.821  0.21***  0.48***  0.06**  0.11*** -0.63    0.15***  0.33***  0.00    0.07*** -0.51    0.13**  0.10** -0.05   -0.08   -0.07   
On Welfare Q5 before RA 0.000 0.000 0.807  0.18***  0.51***  0.07**  0.07*** -0.61    0.12***  0.37***  0.01    0.03   -0.50    0.15***  0.10** -0.05   -0.07   -0.06   
On Welfare Q6 before RA 0.000 0.000 0.498  0.17***  0.52***  0.05*   0.05*  -0.59    0.12***  0.40*** 0.00    0.01   -0.50    0.18***  0.09** -0.03   -0.06   -0.03   
On Welfare Q7 before RA 0.000 0.000 0.599  0.18***  0.53*** -0.01    0.04   -0.56    0.13***  0.42*** -0.04    0.00   -0.49    0.18***  0.10** -0.03   -0.04   -0.03   
Rec. FS in Q1 before RA 0.000 0.000 0.299  0.46***  0.40***  0.08***  0.13*** -0.74    0.25***  0.19***  0.03    0.08*** -0.47    0.14***  0.15*** -0.09   -0.13   -0.03   
Rec. FS in Q2 before RA 0.000 0.000 0.345  0.59***  0.47***  0.09***  0.25*** -0.97    0.36***  0.23***  0.04    0.18*** -0.67    0.18***  0.19*** -0.11   -0.13   -0.05   
Rec. FS in Q3 before RA 0.000 0.000 0.263  0.53***  0.49***  0.07**  0.25*** -0.93    0.33***  0.27***  0.01    0.19*** -0.68    0.20***  0.15*** -0.09   -0.13   -0.07   
Rec. FS in Q4 before RA 0.000 0.000 0.418  0.41***  0.53***  0.13***  0.26*** -0.93    0.24***  0.33***  0.05*   0.20*** -0.71    0.15***  0.16*** -0.07   -0.10   -0.08   
Rec. FS in Q5 before RA 0.000 0.000 0.480  0.36***  0.53***  0.10***  0.24*** -0.88    0.22***  0.36***  0.03    0.19*** -0.69    0.15***  0.11*** -0.06   -0.07   -0.08   
Rec. FS in Q6 before RA 0.000 0.000 0.138  0.34***  0.53***  0.09***  0.24*** -0.86    0.22***  0.36***  0.02    0.18*** -0.69    0.18***  0.11** -0.05   -0.06   -0.06   
Rec. FS in Q7 before RA 0.000 0.000 0.071  0.34***  0.54***  0.05*   0.22*** -0.82    0.22***  0.39*** -0.01    0.16*** -0.68    0.17***  0.12*** -0.04   -0.05   -0.09   
RA in year 1993 0.000 0.000 0.171 -0.21    0.19*** -0.15    0.77*** -0.49   -0.30    0.11*** -0.21    0.75*** -0.36    0.02    0.03   -0.06    0.11*** -0.04   
Employed Q1 before RA 0.000 0.000 0.037 -0.10   -0.11    0.20***  0.04    0.00   -0.07   -0.07    0.20***  0.02   -0.04   -0.03   -0.09    0.05    0.01   -0.04   
Employed Q2 before RA 0.000 0.000 0.209 -0.15   -0.15    0.19***  0.06**  0.06** -0.11   -0.10    0.17***  0.06**  0.01   -0.02   -0.09    0.03    0.01   -0.02   
Employed Q3 before RA 0.000 0.000 0.538 -0.12   -0.18    0.16***  0.04    0.09*** -0.10   -0.12    0.15***  0.05*   0.05**  0.01   -0.07    0.04    0.01   -0.01   
Employed Q4 before RA 0.000 0.000 0.260 -0.06   -0.20    0.15*** -0.02    0.12*** -0.04   -0.14    0.14*** 0.00    0.08***  0.01   -0.11    0.06*   0.01    0.01   
Employed Q5 before RA 0.000 0.000 0.202 -0.01   -0.22    0.16*** -0.02    0.10*** -0.01   -0.18    0.14*** -0.01    0.09***  0.00   -0.08    0.05    0.03    0.02   
Employed Q6 before RA 0.000 0.000 0.454  0.01   -0.24    0.21*** -0.03    0.08***  0.02   -0.19    0.19*** -0.02    0.07*** -0.01   -0.11    0.05    0.02    0.02   
Employed Q7 before RA 0.000 0.000 0.084  0.04   -0.25    0.24*** -0.02    0.05**  0.04   -0.23    0.23*** 0.00    0.05**  0.01   -0.08    0.06*  -0.04    0.04   
Employed Q8 before RA 0.000 0.000 0.120  0.04   -0.29    0.28*** -0.01    0.06**  0.04   -0.26    0.24***  0.01    0.06**  0.02   -0.09    0.04   -0.04    0.04   
Emply at RA (self reported) 0.000 0.000 0.013 -0.10   -0.13    0.12*** -0.06    0.13*** -0.07   -0.09    0.15*** -0.04    0.08*** -0.07   -0.02    0.06*   0.01    0.04   
Ever wrkd FT 6+ mths sm. job 0.000 0.000 0.726  0.15*** -0.52   -0.04    0.28***  0.16***  0.17*** -0.47   -0.03    0.29***  0.14*** -0.11   -0.05   -0.03    0.09**  0.07*  
Earnings Q1 before RA 0.000 0.000 0.148 -0.11   -0.15    0.05    0.01    0.15*** -0.07   -0.08    0.05*   0.02    0.08*** -0.02   -0.09    0.05    0.01    0.00   
Earnings Q2 before RA 0.000 0.000 0.195 -0.17   -0.20    0.08*** -0.03    0.23*** -0.10   -0.11    0.09*** -0.01    0.12*** -0.01   -0.09    0.05    0.01    0.02   
Earnings Q3 before RA 0.000 0.000 0.381 -0.17   -0.21    0.07** -0.06    0.27*** -0.11   -0.12    0.07** -0.03    0.17*** -0.01   -0.08    0.05    0.01    0.02   
Earnings Q4 before RA 0.000 0.000 0.617 -0.07   -0.24    0.03   -0.06    0.26*** -0.03   -0.16    0.06*  -0.03    0.17***  0.00   -0.09    0.05    0.02    0.01   
Earnings Q5 before RA 0.000 0.000 0.104 -0.03   -0.23    0.02   -0.07    0.24*** -0.01   -0.16    0.05*  -0.04    0.17***  0.01   -0.11    0.06*   0.00    0.03   
Earnings Q6 before RA 0.000 0.000 0.208  0.03   -0.24    0.03   -0.06    0.21***  0.03   -0.18    0.05   -0.04    0.16*** -0.01   -0.09    0.05    0.02    0.05   
Earnings Q7 before RA 0.000 0.000 0.106  0.07** -0.25    0.04   -0.07    0.19***  0.06** -0.20    0.06** -0.04    0.15*** -0.02   -0.07    0.05   -0.01    0.06   
Earnings Q8 before RA 0.000 0.000 0.063  0.07** -0.26    0.04   -0.06    0.19***  0.06** -0.21    0.06*  -0.03    0.16*** 0.00   -0.09    0.04   -0.03    0.05   
Any earns yr before RA (slf-rep) 0.000 0.000 0.015 -0.26   -0.36    0.31***  0.08***  0.20*** -0.18   -0.28    0.30***  0.07**  0.15*** -0.07   -0.17    0.07**  0.08*   0.05   

Means after Blocking on GPS
Standardized differences of means of covariates in one site vs all other sites pooled togetherP-Values Joint tests of equality of means 

of covariates across all sites Means Before Overlap Means After Overlap
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