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Abstract

The identification of average causal effects of a treatment in ob-
servational studies is typically based either on the unconfoundedness
assumption or on the availability of an instrument. When available,
instruments may also used to test for the unconfoundedness assump-
tion (exogeneity of the treatment). In this paper, we define variables
which we call quasi-instruments because they allow us to test for the
unconfoundedness assumption although they do not necessarily yield
nonparametric identification of the average causal effect. A quasi-
instrument is loosely an instrument whose relation to the treatment is
allowed to be confounded by unobservables. We propose a test for the
unconfoundedness assumption based on a quasi-instrument, and give
conditions under which the test has power. We perform a simulation
study and apply the results to an observational study of the effect of
job practice on employment. Quasi-instrument assumptions are wea-
ker than instrument assumptions, and the former should therefore be
available more often in applications.

Working paper: preliminary version.
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1 Introduction

Identification of the causal effect of T (treatment) on an outcome Y in ob-

servational studies is typically based either on the unconfounded assumption

(also called selection on observables, exogeneity, ignorability, see, e.g., de

Luna and Johansson, 2006) or on the availability of an instrument. The un-

confoundedness assumption says loosely that all the variables affecting both

the treatment T and the outcome Y are observed (we call them covariates)

and can be controlled for. An instrument is a variable affecting the tre-

atment T and related to the outcome Y only through T (and possibly the

observed covariates). Moreover, the effect of the instrument on the treatment

must be unconfounded (i.e. given the observed covariates the instrument can

be considered as randomized). When available instruments can be used to

identify causal effects in parametric situations and hence also to test the un-

confoundedness assumption. Such test is typically performed by comparing

the estimates of the causal effects obtained both under the unconfounded-

ness assumption, and by using the instrument. Nonparametric identification

is also possible with the help of instruments and, for instance, Angrist, Im-

bens and Rubin (1996) develop a theory for the nonparametric identification

and estimation of local average causal effects. Frölich (2007) extended their

results to the situation where the observed covariates are related to the in-

strument. Battistin and Retore (2008) and Dias, Ichimura and van den Berg

(2007) use (fuzzy) discontinuity designs to obtain identification which can be

considered as an instrumentation.

In this paper, we consider quasi-instruments, i.e. variables with the pro-

perties of an instrument except that their effect on the treatment T is allowed

to be confounded. Therefore, in general quasi-instruments will not yield iden-

tification of a causal effect when the the unconfoundedness assumption does

not hold, with the exception of parametric linear systems (Pearl, 2000, p.

2



248). On the other hand, we show that the availability of quasi-instruments

(which are based on weaker assumptions than instruments) allows us to gain

evidence for the validity of the unconfoundedness assumption, and we propose

a test statistic for this purpose. The procedure introduced can be interpreted

as testing whether the quasi-instrument (which must be dichotomized if not

binary) has no effect on the outcome. Indeed, under the quasi-instrumental

assumptions made, we show that such effect must be null if there are no unob-

served confounders. The proposed test is related to the use of two control

groups to test the unconfoundedness assumption, an idea previously used,

e.g., in Rosenbaum (1987), de Luna and Johansson (2006) and Dias, Ichimura

and van den Berg (2007). Rosenbaum (1987) was probably first to formalize

the idea that two control groups provide information on the unconfounded-

ness assumption and described actual observational studies where different

controls groups where available. Our main contribution in this context is

to introduce mild assumptions (defining quasi-instruments) under which one

control group can be split into two to test the unconfoundedness assumption

non-parametrically.

The paper is organized as follows. Section 2 presents the model, defines

quasi-instruments, and develops the theoretical results which allow us to then

introduce a test of the unconfoundedness assumption. Section 3 presents a

simulation study and Section 4 an illustrative case study on the estimation

of the effect of job practice for unemployed on employment.

2 Theory and method

2.1 Model

Assume that the variables (X, Z, T, Y ) are observed for all the units in an

observational study, where Y is an outcome of interest, T is a treatment (a
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variable one may intervene upon), the vector X is a set of pre-treatment va-

riables (typically characteristics describing the units and their context before

treatment), and Z is not post-treatment.

We use the Neyman-Rubin model for causal inference. Assume that T is

binary1, i.e. taking values in T = {0, 1}. Let us define Y (t), t ∈ T , such

that Y =
∑

t∈T
Y (t)I(T = t), where I(·) is the indicator function. If T is a

variable that one can intervene upon (thereby called treatment herein), Y (t)

(called potential outcome) is typically interpreted as the the outcome result of

the intervention T = t. For a given t, we consider (X, Z, T, Y (t)) as a random

vector variable with a given joint distribution (possibly one may consider

Y (t) as fixed), from which a random sample is drawn. Parameters that may

be identified are in this context population parameters and, for instance,

the average treatment effect E(Y (1)− Y (0)) or the average treatment effect

on the treated E(Y (1) − Y (0) | T = 1) are parameters often targeted in

applications.

In observational studies where treatment T is not randomized by defini-

tion, an identifying assumption (e.g., Rosenbaum and Rubin, 1983, Imbens,

2004) for the average treatment effect is:

(A.1) ∀t ∈ T ,

T ⊥⊥ Y (t)|X (unconfoundedness),
Pr(T = t | X) > 0 (common support).

The unconfoundedness assumption is often considered as realistic in si-

tuations where the set of characteristics X is rich enough, and when there is

subject-matter theory to support the assumption. However, this indentifia-

bility assumption is untestable without further assumptions and/or informa-

tion.

1The results of this paper are straightforward to generalize to situation where T takes
a finite set of values.
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2.2 Quasi-instrument, test and power

Let us now consider situations where we have more information than just the

unconfoundedness assumption discussed above. Let us thus assume that

(A.2) ∀t ∈ T ,
Z ⊥⊥ Y (t)|X,
Pr(Z = t | X) > 0).

Assumption (A.2) prohibits, e.g., a direct effect from Z to Y , i.e. an effect

not going through T , or unobserved variables affecting both Z and Y .

We further use a stability (Pearl, 2000, also called faithfulness in the

graphical model literature) assumption:

(A.3) (A.1-2) =⇒ (Z, T ) ⊥⊥ Y (t)|X, t ∈ T .

Because (Z, T ) ⊥⊥ Y (t)|X implies (A.1) and (A.2), (A.3) says that (A.1-2)

hold if and only if (Z, T ) ⊥⊥ Y (t)|X hold. Stability/faithfulness assumptions

are typically made to be able to perform inference on graphical models.

Situations where (A.3) does not hold are, for instance, such that there is

a deterministic relationship between some of the variables involved.

Let us now state a main result of this paper.

Proposition 1 Assume (A.1-3), then

Y (t) ⊥⊥ Z|T,X, t ∈ T . (1)

Proof. Direct consequence of Lemma ?? in Dawid (1979)/weak union

property.

The conditional independence statement obtained in Proposition 1 is tes-

table from the data given T = t (see next section). Finding evidence in the

data against (1) will imply that we reject the assumptions of the proposi-

tion. Thus, evidence against (1) can be interpreted as evidence against the
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unconfoundedness assumption (A.1) if (A.2) is known to hold from theoreti-

cal considerations (without the latter the test is rejecting either (A.1) and/or

(A.2)).

For the test proposed below to have power we further need to assume:

(A.4) Z and T are dependent conditional on X.

This assumption is typically also made for instrumental variables to be useful

for identification. Here we have the following result.

Proposition 2 Assume (A.2-3). Then,

{(1) =⇒ (A.1)} =⇒ (A.4).

Thus, (A.4) is a necessary condition for the test to have power. Sufficient

conditions (expressed graphically; see Lauritzen, 1996) are given in Figure

2.2.

Identification of the effect of T on Y is guaranteed under (A.2) and (A.3-

4) with linear models, see, e.g., Pearl (2000, p. 248), in which case Z may

be called instrument. This, however, is not true in general (even for non-

parametric identification of local average treatment effects, Angrist, Imbens

and Rubin, 1996) and we therefore call Z for which (A.2-4) hold a quasi-

instrument.

2.3 Method

For the sake of simplicity, we consider the situation where the parameter

of interest is the average treatment effect on the treated, θ = E(Y (1) −

Y (0)|T = 1). Hence, assumptions (A.1-3) need to hold only for t = 0.

Different strategies may be adopted to test the null hypothesis defined by

the conditional independence statement of Proposition 1 with t = 0, i.e.

H0 : Y (0) ⊥⊥ Z|T = 0,X
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Figure 1: All four examples are such that (A.4) holds although only cases a),
b) and c) are such that the test will have power, i.e. Y (t) ⊥⊥ Z | T,X does
not hold if (A.1) does not hold.

One strategy could be to use the concept of two independent control groups

(Rosenbaum, 1987). Under H0 we can use Z to obtain two independent

control groups (one defined by Z = 1 and one by Z = 0)2 for estimating

θ, yielding θ̂
z=0

and θ̂
z=1

. Under H0 the difference θ̂
z=0

− θ̂
z=1

should have

mean zero and this is the base for a test statistic. However, since we need

to compute two non-parametric estimators of θ, the resulting statistic has

poor finite sample properties, for instance, when the covariates have different

support in the two control groups created.3

In this paper we propose a testing strategy based on fact that under H0

we have δ(X) = 0, for all X, where

δ(X) = E(y(0) | T = 0,X, Z = 1)− E(y(0) | T = 0,X, Z = 0).

2If Z is continuous then it may be made binary using a threshold. As noted by Ro-
senbaum (1987), the availability of two control groups provides information on the uncon-
foundedness assumption. In our particular case, this was shown in the previous section.

3This has been confirmed in simulation experiments not presented here.
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Consider a non-parametric estimator for δ = E(δ(X))4

δ̂ =
∑

i:Z=1

[yi(0)− ŷi(0)] +
∑

i:Z=0

[yi(0)− ỹi(0)],

where ŷi(0) is a non-parametric estimator of E(yi(0) | Ti = 0,Xi, Zi = 0)

and ỹi(0) is a non-parametric estimator of E(yi(0) | Ti = 0,Xi, Zi = 1). The

two latter estimate may be obtained by nearest neighbour matching, or any

other smoothing technique. Since δ = 0 under H0, the test statistic

C =
δ̂

s
(2)

will, under the necessary regularity conditions, be normally distributed with

mean zero and variance one, where s is the standard error of δ̂. For instance, if

nearest neighbour matching estimator are used, then s was given in Abadie

and Imbens (2006, Theorems 6 and 7). A subsampling estimator is also

available in this case in de Luna, Johansson and Sjöstedt-de Luna (2010).

We call in the sequel the test based on W a Chow test since it is related in

nature to the tests developed in Chow (1960) and de Luna and Johansson

(2006).

3 Monte Carlo study

We use a Monte Carlo study to investigate the finite sample properties (empi-

rical size and power) of the Chow test (2). As a benchmark we also implement

a parametric Durbin-Wu-Hausman (DWH) test where we first regress T on

X and Z and then add the residuals from this fit as a covariate into the

outcome equation for Y (using correctly specified models). The test for the

unconfoundedness assumption is then a Wald test on the parameter for the

included residual covariate (see, e.g., Wooldridge, 2003, Chap. 6). We use a

robust covariance matrix (White, 1982).

4δ may be interpreted as the causal effect of Z on Y given T = 0.
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3.1 Design

We use the following data generating process for unit i

Zi = I(U1i + εZi > 0),

Ti = I(β
0
+Xi + 0.5Zi + β1U1i + β2U2i + εTi > 0),

and

Yi = 1 +Xi + δX
2

i
+ θiTi + U2i + εY i.

We let εY i, εZi, εTi, U1i, U2i be independently distributed as N(0, 0.25).

Moreover, we let also let Xi ∼ N(0, 2) and consider three cases for θi: θi = 1,

θi ∼ N(1, 0.25), and θi = 1 + Xi. Paramaters are varied in the study as

follows: β
0
∈ {−1.5,−1}, β

1
∈ {0, 0.5}, β

2
∈ {0, 0.1, 0.2, 0.3, 0.6, 0.9, 1.5, 2},

and δ ∈ {0, 1/3}. We consider sample sizes N = 500, 1500 and 3000. The

number of replicates are set throughout to 10000.

The treatment is confounded when β
1
�= 0. Note that Z is an instrument

when β
1
= 0, and only then is the nonparametric instrumental estimator

suggested by Frölich (2007) consistent for the estimation of the local average

treatment effect (Angrist et al., 1996).

3.2 Results

The results from the Monte Carlo study are displayed in Figures 2 to 5.

Each figure displays the size (β
2
= 0) and power. We start by discussing

the results for the “linear” model (δ = 0). Figures 2 and 3 display the

results for the situation when Z is an instrument (β
1
= 0) and a quasi-

instrument (β
1
= 0.5), respectively. We can see the same pattern in both

figures: both tests have the correct size when the heterogeneous treatment

effect is not depending on the covariate. Power for both tests is increasing

with the fraction of treated (β
0
). The power of the DWH test is, as expected,

larger than for the nonparametric Chow test, but the latter performs well
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considering its nonparametric nature. The results when the treatment effects

depend on X are displayed in the top panels. We see that the DWH test has

too large size.

Figures (4) and (5) display the same results for δ = 1/3. Note that

here, the DWH test is based on the estimation of the same model as above,

that is we erroneously assume that response Y is linear in X. Again the

pattern when Z is an instrument (4) and a quasi instrument (5) are similar.

Moreover, from both figures we can see that the DWH test has too large size,

and power decreasing with β
2
. The nonparametric Chow test has the correct

size in all situations. The power of the test is lower compared to the linear

setup.

4 Application: Effect of job practice

We consider a case study where the interest lies in estimating the effect of

job practice for unemployed on employment status. Job practice (JP) was

offered within two separate labor market training (LMT) programs in Sweden

in 1998. One program was run by the regular program provider in Sweden;

the Swedish National Labor Market Board (AMV). The other program was

offered by the Federation of Swedish Industries (Swit).

To be eligible to the programs the unemployed individuals must be at

least 20 years of age and enrolled at the public employment service. The

weekly cost for the Swit and the AMV programs were on average €273 and

€289, respectively (Näringsdepartementet, 1999; the Swit-yrkesutbildning,

2000). This cost does not include unemployment benefits which are received

when an individual is openly unemployed or in a LMT program. There was

no difference in benefits for the two groups of trainees.

The fundamental idea with the Swit program was to increase the contacts

between the unemployed individual and employers by providing job practice.
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and with a DGP that is linear in X (i.e. δ = 0).
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= 0.5) and with a DGP that is linear in X (i.e. δ = 0).
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Table 1: The frequency distribution of the courses within the two programs.

AMV (n = 796) Swit (n = 794)
Programmer 32 27
Computer technician 31 29
Application support 10 16
IT-pedagogue 2 6
IT-entrepreneur 1 3
Other 17 15
Missing 7 4

From a survey conducted in June 2000 on 1, 000 program participants from

either program it can be seen that 69.5 percent of the Swit participants

and 52 percent of the AMV participants stated that they participated in

JP.5 Except for the idea to provide more contacts with employers the two

programs are similar. Both programs tested the individual’s motivation and

ability before being recruited to the programs by similar selection procedures

(see Johansson, 2008, for a thorough description of the selection). The types

of courses given within the Swit and the AMV programs are displayed in

Table 1. The similarities of the two programs are apparent. Thus, despite

the differences in procurement between the two organizations (the Swit and

the AMV), there do not seem to be any large differences between the types

of labor market training courses which suggest that they can be used as a

quasi-instrument to test for if selection to job practice can be controlled for

by observed covariates.

Based on the survey one can see in Table 2 that there is a statistical

significant 18.1 percentage points difference in employment six months after

5A thorough description of the survey can be found Johansson and Martinson (2000).
The response rates were 79.4 and 79.6 percent for participants in the Swit and the AMV,
respectively. The survey contained a total of 19 questions. These concerned i) the in-
dividual’s background, ii) the individual’s labor market training and iii) the individual’s
present labor market situation.
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leaving the program (the two programs have same average length). In the

table we have some individual background variables: (i) education, (ii) work

handicap (see disabled), (iii) gender (1 if man and 0 if women) and (iv)

immigration status (1 if immigrant 0 else). Finally we have information on

the individuals region of residence. We have divided Sweden into four regions:

Stockholm, Skåne, Västra Götaland and the rest of the country. Stockholm,

Skåne and Västra Götaland are the tree regions with the largest population

and with, in general, the best labor market opportunities.

We can see some average differences between the two samples. Those with

job practice are: (i) less disabled and (ii) less likely to live in Stockholm. The

level of education also differs: they have on average more compulsory and

upper secondary education but also less college education than those with

no JP. Based on these average differences, it is difficult to argue that those

with JP have better labor market prospects without JP. The single factor

suggesting the JP population have better labor opportunities without JP is

that they are less likely disabled. In order to further study the selection into

JP we used the covariates from the table and estimated a logit regression

model. The results from this estimation (not displayed) are that individuals

who are: (i) from Stockholm or Västra Götaland, and (ii) disabled, are less

likely to receive JP. There is no statistical significant (5 percent) differences

in education between the two groups. In Figure 1 we display the propen-

sity score for the two samples, which give evidence for the common support

assumption.

In order to estimate the average treatment effect on the treated (ATT) of

JP we use the one to one matching (hence M = 1) estimator. The matching

is performed by using the minimum Mahalanobis distance using the covari-

ates displayed in Table 2 and the estimated propensity score. The ATT is

estimated to 24.3 percentage points with both estimators. Based on estima-
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Table 2: Descriptive statistics.

Job Practice Yes No Diff t-test
Employment 64.9 46.8 18.1 6.82

Education
Compulsory 5.1 7.6 -2.5 -1.9
Upper secondary 67.8 62.1 5.7 2.19
College 27.1 30.3 -3.2 -1.3

Disabled 7.5 11.5 -4.0 -2.5
Man 62.1 61.9 0.2 0.1
Immigrant 5.6 6.4 -0.9 -0.7
Stockholm 21.4 27.8 -6.5 -2.7
Skåne 10.6 8.3 2.3 1.5
Västra Götaland 13.8 16.5 -2.6 -1.3
Rest of the country 54.2 47.3 2.7 2.53
Sample size 969 528

tor of the unconditional variance given in Abadie and Imbens (2006) we also

find that this estimate is statistical significant for both estimators (t-ratio

4.9 and 4.8 using the covariates and propensity score, respectively). Hence,

the estimated effect is larger after matching than before.

4.1 Testing the unconfoundedness assumption

Here we test for (A.1) used in the estimation of the ATT above. We start by

displaying in Table 3 descriptive statistics where we have conditioned on the

quasi-instrument. From this table we can see some differences with respect to

Swit and AMV participants. The Swit participants with JP when compared

to AMV: (i) have a 5.8 (67.2 - 61.4) percentage points higher employment;

(ii) have more upper secondary education, (iii) have less individuals with a

college degrees, (iii) are less likely an immigrant and (iv) are more (less) li-

kely to live in Skåne and Västra Götaland (Stockholm). When we condition

on No JP there are less statistical significant differences than when conditio-
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Table 3: Descriptive statistics. Proportion in

Job Practice No Job Practice

Swit (Z) Yes No t-test yes no t-test
Employment 67.2 61.4 2.9 54.9 42.8 5.1

Education
Compulsory 4.1 8.2 -1.6 6.3 1.8 -0.8
Upper secondary 66.5 69.7 4.0 56.0 65.2 1.8
College 29.3 37.7 -3.2 23.8 26.6 -1.2

Disabled 4.3 2.9 1.4 12.5 15.9 -1.7
Man 59.7 58.9 0.3 65.8 63.5 0.9
Immigrant 5.1 8.0 -2.1 6.3 5.7 0.5
Stockholm 24.7 46.3 -8.3 16.2 18.7 -1.2
Skåne 12.6 7.4 3.3 7.6 8.8 -0.8
Västra Götaland 8.0 4.0 3.3 22.7 22.7 0.0
Rest of the country 54.6 53.5 0.3 42.2 49.9 -1.6
Sample size 586 383 175 353

ning on JP. A reason for this may be the smaller sample size. The general

pattern concerning education and gender distribution is the same as when

conditioning on JP however.

We use the selection into the two programs to test the unconfoundedness

assumption using the test statistic (2), resulting in a p-value of 0.32. We

also perform a DWH test by estimating a linear probability model with the

discrete covariates displayed in table 3, yielding a p-value of 0.09. Thus, none

of the test can reject the null hypothesis that the effect of job practice on

employment is not confounded at the 5% level, although the DWH test by

making stronger assumptions has a p-value under 10%.
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