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Abstract:

This paper analyzes the nonparametric identi�cation of nonseparable models in the presence
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ity of the observed variables on the outcome distribution. In contrast, we allow for essential het-

erogeneity by assuming the outcome to be a nonparametric and nonseparable function of the ex-

planatory variables and the disturbance term. We impose a quantile restriction on the distur-

bance term to derive sharp bounds on the functions of interest such as the partial e¤ects. The

identi�ed set shrinks to a single point if separability holds or if some observations are observed

with probability one. We also provide a simple estimator for the identi�ed set in the linear quan-

tile regression model and apply it to female wage data.
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1 Introduction

The sample selection problem, which was discussed by Gronau (1974) and Heckman (1974), among

many others, arises whenever the outcome of interest is only observed for some subpopulation that

is non-randomly selected even conditional on observed factors. Sample selection is an ubiquitous

phenomenon in empirical research, e.g., when estimating the returns to schooling based on a

selective subpopulation of working or the e¤ect of a training on test scores where some individuals

abstain from the test in a non-random manner. It constitutes essentially the same identi�cation

problem as attrition in the outcome related to unobserved factors.

The sample selection literature controls for this issue by instrumenting selection (and

imposing a single index restriction), i.e., by exploiting a variable that shifts selection but does

supposedly not enter the outcome equation. in addition, the parametric, semiparametric and

nonparamteric contributions assume homogenous e¤ects of the explanatory variables on the

outcome, see Heckman (1979), Ahn & Powell (1993), Newey (1991), Das, Newey & Vella (2003)

among many others. Due to the additivity of the regression function and the disturbance term,

the e¤ects can be identi�ed for the whole population. While this eases identi�cation separability

is a very unattractive restriction given the importance of e¤ect heterogeneity in empirical

problems which has received much attention in particular in the �eld of treatment evaluation.

Newey (2007) discusses point identi�cation in nonparametric and nonseparable models and

is, therefore, more general in this respect. However, the price to pay is that the e¤ects are only

identi�ed for the selected population (with observed outcomes) which may not be of substantial

interest for various reasons. Firstly, results for a selective subpopulation generally appear to

be less interesting than for the whole population. Secondly, even for the selected population,

comparisons over time (e.g. of the returns to schooling) or across regions are not feasible in

general due to its time and location dependent constitution. Finally, if one assumes a particular

model (e.g., linearity) for the whole population it does not necessarily transfer to the selected

population.

For these reasons, our object of interest is the whole population. Trivially, we could assume

e¤ect homogeneity in the non-selected and selected populations. This would be in the spirit of the

classical sample selection literature mentioned above which invokes full independence (conditional

on the participation probability) between the regressors and the disturbances. On the other

side of the spectrum, allowing for arbitrary heterogeneity and nonseparability only identi�es the
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Manski (1989 and 1994) bounds of the e¤ects, which are sharp, but usually very wide in typical

applications.

The main contribution of this paper is the proposition of a third way between these two

extreme approaches. We essentially impose the same assumptions as in conventional sample

selection models, as in Das et al. (2003) and Ahn & Powell (1993) for the nonparametric and

semiparametric models, respectively, with the exception of separability. Put di¤erently, we only

invoke a particular quantile restriction on the disturbance term instead of full independence (which

also requires separability). This allows for heteroscedasticity and all other types of dependence

between the regressors and the outcome. Under these conditions, we obtain more informative

bounds than the worst case bounds of Manski. An appealing feature of our bounds is that

the identi�ed interval collapses to a single point in two special cases: if separability between

the disturbances and the regressors holds and/or if a subset of observations have a selection

probability of one.

The �rst case is obvious since we are back in the classical sample selection model. It is

nevertheless important as it implies that the upper and lower bounds will be quite close when

there is only limited dependence. The second case is an example of �identi�cation at in�nity�, see

Chamberlain (1986). This approach has been used by Heckman (1990) and Andrews & Schafgans

(1998) to identify the constant in the classical sample selection model. In an heterogenous outcome

model, it even identi�es the slope coe¢ cients. Our bounds also generalize this strategy to the

case where some observations are observed with a high, but below one, probability. In this case,

a narrow interval for the quantile coe¢ cients is identi�ed even when point identi�cation is not

feasible.

The bounds take the form of the smallest and largest coe¢ cients obtained from a family of

local quantile regressions over a range of quantiles. We derive the identi�cation results for a

general nonparametric model. To be more speci�c about estimation and inference, we consider

in details the parametric linear case. As an empirical illustration we apply our estimator to the

female wage data of Mulligan & Rubinstein (2008).

The remainder of this paper is organized as follows. Section 2 de�nes the model and gives the

sharp identi�ed set for the structural function and its derivatives. Section 3 o¤ers a new anatomy

of the sample selection model that nests many sample selection models considered in the literature.

Therefore, it o¤ers the possibility to assess the conditions required for point identi�cation in the
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whole population and in particular subpopulations. We also consider the similarities and the

di¤erences with the instrumental variable model. Section 4 discusses estimation and inference

under the linear regression model. Section 5 revisits an empirical application of sample selection

models. Section 6 concludes.

2 Identi�cation of nonseparable sample selection models

2.1 The model

This section introduces the model and the identifying assumptions. We consider a nonparametric,

nonseparable sample selection model. It is more general than the parametric and semiparametric

sample selection models considered by Heckman (1979), Powell (1987), Ahn & Powell (1993), and

Newey (1991), among others, as well as the nonparametric, but separable model of Das et al.

(2003). The outcome equation is the same as in Manski (2003) or Chesher (2003):

Assumption 1 (outcome equation)

Y � = m (X; ") (1)

where Y is the scalar dependent variable, X is the vector of regressors and " is the scalar distur-

bance term. m(�) denotes a general regression function that we restrict to be strictly increasing

in ". Sometimes, it will be useful to separately consider a particular regressor, X1 with support

X1, separately from the remaining observed variables X�1 with support X�1. Note that Y is only

observed conditional on selection, i.e.,

Y = Y � if S = 1 and is not observed otherwise, (2)

where S denotes the binary selection indicator.

Equation (1) nests the nonparametric separable model in in Das et al. (2003) where

m (X; ") = g (X) + "

and the separable parametric model

m (X; ") = X� + "
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as special cases. In Section 5 we consider in details the parametric nonseparable quantile model

m (X; ") = X� (") .

While most contributions are concerned with the the identi�cation of (conditional) mean

e¤ects, this paper focusses on the quantile function. The �rst reason is that in many applications,

distributional features appear to be particularly relevant. E.g., the returns to a training or

schooling are likely to di¤er at di¤erent parts of the outcome distribution. In fact, the earnings

e¤ects for disadvantaged individuals at lower ranks of the income distribution might bear more

policy relevance than the mean returns. Secondly, in our nonparametric nonseprable framework,

quantiles are naturally bounded while bounding mean functions requires bounding the support

of the outcome. Thirdly, quantile regression allows for (partial) identi�cation of the structural

function and not just its average.

In the presence of sample selection and in the absence of a fully parametric model, Chamber-

lain (1986) shows that the constant is ident�ed only by an �identi�cation at in�nity´ argument.

We will not make such an assumption.1 While we would prefer identifying the quantile function

of Y , identi�cation of the quantile function up to a constant is su¢ cient in many applications.

To this end, de�ne QA(�) as the �th quantile of some variable A and QA(� jB = b) as the �th

conditional quantile of A given that B = b, respectively, with � 2 (0; 1). F (�); F (�j�) denote the cdf

and the conditional cdf, respectively. We impose the following quantile insensitivity assumption

w.r.t. ":

Assumption 2 (quantile insensitivity)

Q" (� jX;Z) = Q" (�) = � (3)

where Z is observed with support Z. Note that Z is excluded from equation (1) which will be

crucial for identi�cation. The �rst equality implies that the �th quantile of " is independent

of X and Z. It is a selection on observable assumption. The second equality, if applied to all

quantiles � , imply that " is U(0; 1). This is not restrictive in the sense that the function m (�)

is identi�ed only up to a strictly increasing transformation. The normalization is convenient for

our subsequent discussion because it implies that, in the absence of sample selection, .we could

1Of course, we don�t exclude this possibility but our results hold generally.
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identify the structural function evaluated at " = � by the � conditional quantile regression:

QY (� jX = x) = m (x;Q" (� jX = x))

= m (x; �) .

Apart from m (x; �), we might also want to learn about the partial e¤ect of one particular

regressor, sayX1, on the quantile function of Y . IfX1 is continuous, this is the partial derivative of

the quantile function with respect to X1. If X1 is discrete, we are interested in the ceteris paribus

di¤erence between the quantile functions evaluated at distinct values X1 = x1 and X1 = x01. To

summarize, the parameters to be identi�ed are (for some � 2 (0; 1)):

m (x; �) ;

@m (x; �)

@x1
;

m (x1; x�1; �)�m
�
x01; x�1; �

�
:

In the absence of sample selection, the identi�cation of these estimands would be standard,

as discussed for instance in Manski (2003). However, Y is only observed conditional on S = 1.

For this reason, we need to impose further structure on the selection mechanism. As in Ahn

& Powell (1993), we don�t make any parametric assumption about the selection probability,

P = Pr (S = 1jX;Z) and p (x; z) = Pr (S = 1jX = x;Z = z). As in the conventional sample

selection literature our identi�cation strategy is based on an exclusion restriction for Z. For the

identi�cation of partial e¤ects, Z needs to have su¢ cient predictive power on S as it requires

observations with distinct X1 but equal P (conditional on X�1 and S = 1). Put di¤erently, Z

must shift the selection probability such that common support of P across di¤erent values of X1

holds (ceteris paribus) in the selected population. This is formally stated in Assumption 3.

Assumption 3 (�rst stage)

a) Continuous treatment e¤ects: m (x; �) is continuously di¤erentiable with respect to x1.

For any " > 0 and p 2 PS=1;X=x, X1 is a nondegenerate random variable conditionally on

jX1 � x1j < ";X�1 = x�1; P = p and S = 1.

b) Discrete treatment e¤ects

Support (P jX1 = x1; X�1 = x�1) \ Support
�
P jX1 = x01; X�1 = x�1

�
6= ?
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Furthermore, we impose the following single index restriction on the distribution of the distur-

bances in the selected population:

Assumption 4 (index restriction)

F" (� jS = 1; x; z) = F" (� jS = 1; P (x; z)) .

Assumption 4 requires the conditional quantile of the disturbance term in the selected popu-

lation to only depend on the conditional selection probability. This is the quantile equivalent of

an assumption invoked by Das et al. (2003), Newey (1991), and Powell (1987), among others, for

the estimation of mean e¤ects. Since this paper considers a nonseparable model, Assumption 4

does not imply that the distribution of Y given S and P is homoscedastic or independent of X.

Unrestricted outcome heterogeneity is still allowed by equation 1, e.g., through interaction of X

and ". However, Assumption 4 imposes restrictions on the way observations are (not) selected.

For instance, if there is positive selection w.r.t. the outcome at one value of X conditional on

P = p, there must be the same amount of positive selection at any other value of X given P = p.

This assumption is untestable because the outcome is never observed for non-selected units.

In contrast, the stronger full independence assumption in separable models is testable because it

restricts the distribution of Y in the selected sample. We propose such a test in our companion

paper, Melly & Huber (2010).

Finally, we assume that the outcome Y is a continuous random variable in the selected sample

to ensure that the observed quantiles are well-de�ned:

Assumption 5 (continuity) FY (m (x; �) jX = x; S = 1) is continuously di¤erentiable with

respect to y with density fY (m (x; �) jX = x; S = 1) which is bounded above and away from 0.

2.2 Sharp identi�ed sets

Most sample selection models considered in the literature are separable in the error term. This

crucial assumption allows for the point identi�cation of partial e¤ects. Identi�cation at in�nity

can then be used in addition to point identify the constant term. On the other side of the

spectrum, Manski (1989 and 1994) derives the worst case bounds for the conditional mean and
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quantile functions implied by a minimal set of assumptions. These bounds are typically very

wide, especially when one is interested in the e¤ects of a change in X on the conditional mean or

quantile of Y . In this case, they are simply the di¤erence between the upper (lower) bound at one

value and the lower (upper) bounds at another value of X. The width of the bounds is the sum

of the widths of the bounds at both values. Bounding the partial derivative of the conditional

mean (or quantile) requires bounds on the partial derivative of the function, which is often not

available. In the absence of such a restriction, the partial derivatives are unbounded. Thus, these

bounds do not collapse to a point when we have separability.

In this paper, we suggest an intermediate path between the worst case bounds of Manski

and the classical sample selection models. The main di¤erence with Manski is that we impose

the nonparametric index restriction de�ned in Assumption 4. This restriction is implied by the

independence assumption made by most sample selection models, which are separable in the

error term. We derive the sharp bounds on the structural function and on the derivatives of this

function. The nice feature of these bounds is that they collapse to a point when the outcome is

separable in the disturbance term or when there is identi�cation at in�nity. Thus, there is no

cost in terms of identi�cation by relaxing these two assumptions.2

Theorem 1 gives the main result of this paper. It states that given our assumptions, the

parameters of interest (i.e., the structural functions and the partial e¤ects) at the �th quantile

of the parameter of interest in the whole population (given X) lies within the intersection of a

particular interval of quantiles de�ned upon the conditional outcome distribution (given X and

P ) of the selected population, which is observed. The admissible ranks of the interval, denoted by

�p, are obtained in two steps. First, we derive the admissible interval of quantiles (��;x) for the

conditional outcome distribution of the whole population at some rank � by invoking Assumption

2 and the results in Manski (1994) on sharp bounds. Together they imply that � must lie withinh
��(1�P (x;z))

P (x;z) ; �
P (x;z)

i
and that ��;x is obtained by taking the intersection over Z. Obviously, if

P = 1 for some value of Z the interval collapses to a point. Second, we evaluate the conditional

outcome distribution of the selected population at the values in ��;x, which are conditional on

X, and �nally obtain the admissible ranks �p as the intersection across di¤erent values in X.

Theorem 1 (Identi�ed set) Assumptions 1, 2, 4 and 5 hold at some � 2 (0; 1). The sharp
2Of course, there are costs w.r.t. the precision of the estimator.
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identi�ed set for m (x; �) is given by

m (x; �) 2 \
p2PS=1;X=x

fQY (�jS = 1; x; p) : � 2 �pg .

Assumption 3-a and existence of the derivatives imply the following sharp bounds for the � th

quantile treatment e¤ect of the continuous variable X1

@m (x; �)

@x1
2 \
p2PS=1;X=x

�
@QY (�jS = 1; x; p)

@x1
: � 2 �p

�
.

Assumption 3-b implies the following sharp bounds for the � th quantile treatment e¤ect of shifting

X1 from x1 to x0

m (x1; x�1; �)�m
�
x01; x�1; �

�
2 \
p2(PS=1;X=x\PX=x0;S=1)

�
QY (�jS = 1; x; p)�QY

�
�jS = 1; x0; p

�
: � 2 �p

	
.

�p is the identi�ed set for F" (� jS = 1; p) and is given by

�p = \
x2XS=1

fFY (qjS = 1; x; p) : q 2 �xg ;

�x = \
Z2ZS=1;X=x

�
QY (�jS = 1; x; z) : � 2

�
� � (1� P (x; z))

P (x; z)
;

�

P (x; z)

��
:

Proof.

We �rst calculate the conditional bounds given P = p. To this end, assume that we know the

scalar � (p) that satis�es

F" (� jS = 1; x; z) = F" (� jS = 1; P (x; z)) = � (p) :

This means that

Q" (� (p) jS = 1; x; z) = Q" (� (p) jS = 1; p) = � :

By m being strictly increasing in ", Assumption 2, and the equivariance property of quantiles

QY (� (p) jS = 1; x; z) = m (x;Q" (� (p) jS = 1; x; z))

= m (x;Q" (� (p) jS = 1; p)) = m (x; �) :

When considering a continuous regressor, the partial quantile e¤ect (given the existence of the

required derivatives) is

@QY (� (p) jS = 1; x; z)
@x1

=
@m (x;Q" (� (p) jS = 1; p))

@x1
+
@m (x; t)

@t

@Q" (� (p) jS = 1; p)
@x1

=
@m (x; �)

@x1
:
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When considering a discrete regressor, the partial quantile e¤ect is

QY (� (p) jS = 1; x; z)�QY
�
� (p) jS = 1; x0; z

�
= m (x; �)�m

�
x0; �

�
Thus, point identi�cation of the derivatives or of the discrete change is obtained conditional

on knowing � (p).

In our case, � (p) is not known, but falls into an set of admissible ranks �p. To show that

this set is sharp, note that Manski (1994) proves the sharpness of identi�ed set of quantiles �x

for F�1Y (�jX = x) = m (x; �). Therefore, sharp bounds on FY (m (x; �) jS = 1; X = x; P = p) are

given by fFY (qjS = 1; X = x; P = p) : q 2 �xg. By m being strictly increasing in ", Assumption

2, and the equivariance property of quantiles

FY (m (x; �) jS = 1; x; p) = F" (� jS = 1; x; p)

= F" (� jS = 1; p) = � (p)

Thus, the bounds on FY (m (x; �) jS = 1; X = x; P = p) are the bounds on � (p) which do not

depend on X. Therefore, we can take the intersection of the bounds given X which yields

� (p) 2 �p. We have, thus, shown that the bounds conditional on P = p are sharp. Finally,

as m(x; �) is independent of P (or, equivalently, of Z, as X is �xed at x), the intersection of

parameter bounds under �p across di¤erent p conditional on X = x; S = 1 gives the results.

We will discuss the implications of Theorem 1 in greater details in section 4. A �rst remark

is that empty sets may be observed. The upper bound in the intersection of �p over P can be

lower than the lower bound, which disquali�es Z as valid instrument that may be excluded from

the outcome equation. To see this, note that bounds crossing implies that m(x; �) is in fact a

function of P and, thus of Z because X is �xed at x. In this case, Y and Z are directly related

such that the latter cannot be a valid instrument as assumed in the model.

Even though this provides us with a testable implication, the violation of the instrument

validity does not necessarily provoke bounds crossing such that testing will not be uniformly

powerful. Furthermore, since bounds can cross in �nite samples even when they do not in the

population, an estimate of the precision of the bounds is necessary in order to implement a

formal test. Testing based on bounds crossing is considered by Blundell, Gosling, Ichimura &

Meghir (2007). Kitagawa (2009) proposes a di¤erent approach to test for the instrument validity

(or exclusion restriction) in sample selection models. He develops an inferential procedure for

whether the integral of the envelope over the conditional densities of the selected Y given Z (for
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X �xed) is larger than one. This is useful because an integrated envelope larger than one is

equivalent to an empty identi�cation set, which has already been noticed by Manski (2003).

2.3 Alternative models that produce the same bounds

Section 2.1 de�ned the least restrictive model that justi�es the bounds presented in theorem 1.

In this subsection we discuss slightly more restrictive models that have been considered in the

literature and imply the same bounds.

While the selection equation was left unspeci�ed in Section 2.1, our assumptions are implied

by a familiar single crossing model. In the rather general form considered by Newey (2007), the

selection indicator is generated by

S = 1 (� � �(X;Z)) , (4)

where � is an unobserved factor and � is a general function. It is assumed that F�(t) is strictly

monotonic in t such that P = F� (� (X;Z)). Furthermore,

("; �)?X;Z (5)

where �?�denotes independence. This could be slightly relaxed to independence conditional on

P . Note that independence can also be expressed based on the concept of copulae if the marginal

distributions of " and � are normalized to U (0; 1), as in Arellano & Bonhomme (n.d.):

C ("; �jX;Z) = C ("; �jP ) : (6)

That is, the copula of " and � is independent of X and Z after conditioning on P . All parametric

families in Arellano & Bonhomme (n.d.) satisfy this assumption. Therefore, our bounds can be

considered as the worst case bounds if the copula was nonparametrically speci�ed.

Vytlacil (2002) shows that the latent single index structure for S de�ned in equation (4) is

equivalent to the following monotonicity assumption:

For all (x; z) and
�
x0; z0

�
2 X � Z;

either Si (x; z) � Si
�
x0; z0

�
for all i or Si (x; z) � Si

�
x0; z0

�
for all i; (7)

where Si (x; z) is the potential selection indicator that is observed whenXi and Zi are exogenously

set to x and z. This assumption is similar to the monotonicity assumption of Imbens & Angrist
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(1994), however, with respect to the selection indicator (and not the treatment indicator). Lee

(2009) bounds treatment e¤ects in the presence of sample selection and invokes a monotonicity

assumption similar to (7). The main di¤erence is that he has no instrument such that Z is empty.

Lemma 2 Expressions (4) and (5) and the monotonicity of F�(t) imply Assumption 4.

Proof. By the monotonicity of F�(t), fS = 1g = f� � Q�g(P ). Thus, F" (� jS = 1; X; Z; P ) =

F" (� jf� � Q�g(P ); X; Z; P ) = F" (� jf� � Q�g(P ); P ). As P serves as control function for �,

any bounded function of � (including the cdf) given S = 1 and P is independent of X;Z. This is

Assumption 4.

A natural assumption in quantile models is the rank invariance assumption (also called

comonotonicity). This assumption appears already in the early motivations for considering

quantile treatment e¤ects, for instance in Lehmann (1974) and Doksum (1974). It has been

considered more recently by Koenker & Xiao (2006) and Chernozhukov & Hansen (2005), among

others. We de�ne the potential outcomes as Y (x) = m (x; "x) and state the rank invariance

assumption as

Conditional on Z and �, f"xg are identically distributed: (8)

Lemma 3 Expressions (4) and (8) imply Assumption 3.

Proof. To be written.

3 A new anatomy of the sample selection model

This section, the title of which alludes to Manski (1989), o¤ers a new anatomy of the sample

selection model. It �rst discusses the conditions under which the structural function is point

identi�ed. Then, it shows that the e¤ects are identi�ed for some sub-populations without further

assumptions other than the ones of Section 2. Finally, the similarities and di¤erences between

the sample selection model and the instrumental variable model is discussed.

3.1 Conditions for point identi�cation in the whole population

Since our model nests many traditional sample selection models, it allows us to discuss the

conditions required for point identi�cation. When the parameter of interest is the structural

12



function, two strategies point identify m (x; �): identi�cation at in�nity, see Chamberlain (1986),

and a parametric speci�cation of the copula. When the interest is limited to the discrete change

or the derivative of m (x; �), the separability between x and " o¤ers a third way to identify these

objects.

Given our assumptions, point identi�cation of m (x; �) over all x 2 X based on identi�cation

at in�nity does not require P (x; z) = 1 for some z across all values x. What has to be satis�ed is

that there exists a value of X, x0, and a value of Z, z0, such that P (x0; z0) = 1. This immediately

yields m (x0; �). Furthermore, it must hold for some x00, z00, and z000 that P (x0; z00) = P (x00; z000).

This allows identifying m(x00; �), as the distribution of " given P is equal across di¤erent x in

the selected population by Assumption 2. The same argument applies to any further values of

the regressor such that any m (x; �) is identi�ed. For this reason, F" (� jS = 1; p) has to be point

identi�ed for only one observed value of P (x;Z) and Z has to be su¢ ciently rich to satisfy

common support in Z across di¤erent x. This is di¤erent to the bounds of Manski (1994) that

collapse to a point only if P (x; z) = 1 for some z at each x.

Given these results, an obvious solution yielding point identi�cation consists in parameterizing

F" (� jS = 1; p). Under the single index crossing model, the identi�cation of the copula of "

and � identi�es F" (� jS = 1; p) : Arellano & Bonhomme (n.d.) assume that this copula belongs

to a parametric family. Note that this does not restrict the outcome heterogeneity. Previous

model speci�cations, e.g., Heckman (1974) and Donald (1995), simultaneously parameterized the

distribution of the errors in the outcome equation and the copula. This is unnecessary, severely

restricts the model, and can be rejected by the data.

Both identi�cation at in�nity and a parametric speci�cation of the copula yield point iden-

ti�cation of the partial e¤ect. In addition, the latter is also point identi�ed when m (X; ") is

separable and " is globally independent of X and Z, which is the leading case considered in most

semi- or non-parametric models. Assuming the following separable model

Y = m (x) + ", (X;Z)?"

implies that
@F�1Y (�jS = 1; x; p)

@x1
=
@m (x)

@x1
;

which does not depend on �. Therefore, the identi�ed set shrinks to a point. Here, full indepen-

dence is required while Assumption 1 in Section 2.1 only imposes a local quantile independence.
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The separability assumption has stringent consequences, especially if one considers quantile ef-

fects. The latter are restricted to be location shift e¤ects. Heteroscedasticity and higher order

dependence are excluded even if they are ubiquitous in the empirical literature.

Note that slightly weaker assumptions are su¢ cient to point identify the parameters of in-

terest. First, if one is interested in mean e¤ects alone, only mean independence (instead of full

independence) has to hold. Second, full independence can be eased somewhat by conditioning on

the selection probability:

Y (x) = g (x) + ", X?"jP (9)

This is a moderate relaxation that only allows for heteroscedasticity related to the conditional

selection probability. Note that in the absence of sample selection (implying that P is a constant

and equal to 1), full independence is assumed. Thus, even this weaker form is a strong restriction.

Given its importance in the literature, Melly & Huber (2010) suggest a test for the conditional

independence assumption in expression (9) for the linear quantile regression model.

Independence implies that the partial e¤ects are constant across � such that the lower bound

coincides with the upper bound, yielding a single admissible value.3 Thus, there is no cost for

allowing for a violation of the independence in terms of identi�cation. If the errors are indeed

independent, the partial e¤ects are point identi�ed in the same manner as before. If they are not

independent, we obtain a consistent identi�cation region that covers the true parameter.

3.2 Point identi�cation in some sub-populations

Since point identi�cation is often not obtained under reasonable assumptions, an alternative

strategy that has been prominently applied in the instrumental variable literature consists in

moving the goalposts and identifying the parameters only for a subgroup instead of the full

population. Even this approach requires the assumption of the single crossing selection equation

(4). Newey (2007) shows that the latter and a strong support assumption for Z identi�es the

distribution of Y in the selected population. If the support condition is not satis�ed, we can move

the goalposts further and contend ourselves with identifying the e¤ects for the selected population

that satis�es the common support restriction.

The traditional semiparametric estimators handle the sample selection problem by condition-

ing on the propensity score, see for instance Powell (1987), Newey (1991), Cosslett (1991), and

3Therefore, all m(X; �) are parallel across di¤erent � 2 (0; 1).
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Buchinsky (1998). They consistently estimate the parameters in the whole population if the out-

come function is separable as discussed in Section 3.1. However, if one allows for outcome het-

erogeneity by means of a nonseparable model, Newey (2007) results indicates that these methods

estimate the mean and quantile e¤ects consistently (only) in the selected population. This is in

the spirit of the distinction between the local and global interpretation of IV estimators. The

latter estimate the e¤ects in the whole population if e¤ect homogeneity is assumed and the e¤ects

for the so-called compliers (see Section 3.3) if heterogeneity is allowed for.

Note that the selected population is not the largest population for which we can identify the

distribution of the outcome. De�ne z� (x) as the value of z 2 Z that maximizes the observed

participation probability at some x 2 X :

z� (x) = argmax
z2Z

Pr (S = 1jX = x;Z = z) :

The potential outcome distribution for some hypothetical X = x, denoted as Y (x), is identi�ed

for the population with S (X; z� (X)) = 1.

It is obvious that the group with S (X; z� (X)) = 1 is a super-population of the selected

population. It encounters the latter plus those individuals who would have switched from

non-selection to selection, had their instrument value been set to z�. Note that if the common

support assumption is not satis�ed, we can derive a similar result for the population with

min
x2X

S (x; z� (x)) = 1, i.e., conditional on the subpopulation satisfying common support.

3.3 Links to the IV literature

This section discusses the analogies (and distinctions) of the sample selection framework

considered in this paper and the instrumental variable (IV) treatment e¤ects model. First of

all, IV models for binary treatments may be written in terms of sample selection models, recall

the equivalence result in Vytlacil (2002). The main di¤erence between both frameworks is,

however, that outcomes are uncensored in the IV model while they are not observed when

S = 0 in the sample selection model. Therefore, the rank invariance of Chernozhukov & Hansen

(2005) has no power at all in the latter case while it is powerful in the IV model because the

rank of each individual is observed in one of the outcome distributions (under treatment and

non-treatment).4

4Note that the rank invariance assumption discussed in Section 2.3 is di¤erent from the rank invariance assump-

tion in Chernozhukov & Hansen (2005). Our rank invariance is with respect to X while their rank invariance is
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The similarities are stronger when considering the LATE model of Imbens & Angrist (1994).

In Section 3.2, we allow for outcome heterogeneity, restrict the �rst step heterogeneity,5 and

identify the function for a sub-population.6 To see the analogy with the sample selection model,

de�ne z� (x) in the following way:

z� (x) = argmin
z2Z

Pr (S = 1jX = x; Z = z) .

Using the potential selection notation we can now de�ne three types of individuals (de�ers are

excluded by the monotonicity condition):

never-selected: S (x; z� (x)) = 0;

always-selected: Si (x; z� (x)) = 1;

compliers: Si (x; z� (x)) < Si (x; z
� (x)) :

The point is that we identify the distribution of Y for the compliers and for the always-selected,

not just of the complying population, as in the IV model. (Recall, however, that compliance in

the IV model is w.r.t. to the treatment state whereas it refers to selection in the sample selection

model.) In an IV model, identi�cation depends on variation in the treatment as a response to

variation in an instrument in order to observe outcomes in both treatment states. Therefore, we

cannot identify treatment e¤ects on the always-takers because their potential outcomes under

non-treatment are unobserved. In the sample selection model, only one potential outcome needs

to be observed. Therefore, we easily identify the outcome distribution of the always-selected.

This is the bright side of the sample selection model.

On the dark side, the goals of a treatment e¤ect model and of a sample selection model are not

necessarily identical. While we may be satis�ed with estimating treatment e¤ects in the complying

population, we often aim at identifying the outcome distribution in the whole population when

applying a sample selection correction. The identi�cation of functions of populations that depend

on the instrument and more generally on the propensity score is not satisfying. We illustrate this

point by means of two examples. First, sample selection models have been used to correct for

the selection bias that may arise when estimating the gender wage gap. It is typically assumed

with respect to D (S in the sample selection model).
5Remember that the single crossing condition is equivalent to their monotonicity condition.
6Machado (2009) makes a similar analogy using the monotonicity assumption for a binary Z. She identi�es the

e¤ects for the always-selected individuals.
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that there is no selection problem for men. The female wage equation is corrected and compared

to the observed male wage distribution. The problem is that these two distributions will not be

comparable because of the inherently di¤erent populations consisting of all males, but only the

selected females. A second example is the comparison of wage functions across di¤erent time

periods. Since the employment probability changed over time, the wage functions are estimated

w.r.t. di¤erent populations such that the comparison is not meaningful.

There are obviously cases where the identi�cation for some sub-population is interesting. For

instance, when one is interested in the e¤ect of a treatment and the outcome is only observed for

a selected subpopulation. This is the case considered by Lee (2009), among others, who imposes

the monotonicity assumption outlined in expression (7), but assumes no instrument for selection.

In the absence of Z, point identi�cation is not attained (except if the selection probability is the

same for the treated and non-treated). Still, the e¤ect for the population selected when treated

and non-treated (S (X = 1) = S (X = 0) = 1) can be bounded. The advantage of considering

this population is that the bounds for the average treatment e¤ect don�t depend on the bounds

of the support of Y . Lechner & Melly (2010) bounds average and quantile treatment e¤ects for

the population selected when treated (Si (X = 1) = 1).

4 The parametric linear case

This section discusses estimation of and inference about the bounds derived in Section 3 under

the parametric linear regression model. The �rst motivation for doing so is that, while the

discussion of nonparametric identi�cation is important to allow for a maximum of generality, the

dimensionality of the problems often forces applied researchers to use a parametric model. Second,

a large share of the literature still relies on the parametric model, see Mulligan & Rubinstein

(2008) for a recent example. It therefore seems worthwhile to see what may be gained by our

approach in these studies.

4.1 Identi�cation

In addition to the identifying assumptions of Section 2.1, we impose linearity of the conditional

quantile in the whole population.
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Assumption 5 (linearity)

m(x; �) = x� (�) . (10)

Similar to Newey (1991), the common support assumption can be weakened to

E
�
S (X � E [XjP; S = 1]) (X � E [XjP; S = 1])0

�
is nonsingular.

To identify the structural function and the partial e¤ects in the linear framework, we apply

Theorem 1 to � (�) = @m(x;�)
@x and obtain

� (�) 2 \
p2PX=x;S=1

f� (S = 1; �; p) : � 2 �pg ,

where � (S = 1; �; p) is the �th quantile regression coe¢ cient vector in the selected population

with P = p. �p denotes the identi�ed set for F" (� jS = 1; p) and is de�ned in Theorem 1.

Note that the maximum and the minimum in the identi�ed interval for � (�) are not necessarily

attained at the boundaries of �(p) because � (�; p) is not necessarily monotonic in �. Thus, all

quantile regression processes in �(p) have to be computed to determine the upper and lower

bound for � (�). After identifying the admissible set �(p) for �(�) at each value of P , we take

the intersection across P to further narrow the bounds on � (�), as the latter does not depend on

P .

Adding to the discussion in Section 3.1, we brie�y investigate under which conditions point

identi�cation is achieved for the special case of linear quantile regression processes. This implies

that the lower bound on � (�) coincides with the upper bound such that the identi�ed interval

collapses to a single point. This is the case if the regressors are independent of the error term

conditional on P , see expression (9). In the linear model independence implies that the vector of

slope coe¢ cients is constant across quantiles such that the minimum is equal to the maximum.

In contrast to the estimation of slope coe¢ cients, the constant is not point identi�ed even if

independence is satis�ed, but p < 1 for all observations.

If independence does not hold, point identi�cation is still feasible when the data contains ob-

servations with selection probability P = 1. For the constant in linear models, point identi�ca-

tion based on identi�cation at in�nity has been discussed in Heckman (1990) and Andrews &

Schafgans (1998). In order to identify the whole vector � (�), it is required that all regressors are

linearly independent in the sub-population with P = 1. If some regressors are linearly dependent,

point identi�cation of the coe¢ cients on these regressors is not obtained. The strategy suggested
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in this section extends the approach by proposing set identi�cation of the quantile coe¢ cients

when there is no population with P = 1. In contrast, the mean parameters cannot be bounded

without further assumptions, e.g. a bounded support for the dependent variable.

Further assumptions can be introduced to tighten the bounds or simplify their de�nition. For

instance, if it is assumed that the regressors a¤ect only the �rst two moments of Y (heteroscedas-

ticity), the upper and lower bound on � (�) are attained at the boundaries of the interval for

�(p). Another restriction is the positive selection assumption that has been imposed for instance

by Blundell et al. (2007). This assumption implies that the lower bound on �p becomes � .

4.2 Estimation

We suggest a nonparametric four-step estimator for the sharp identi�ed set. In the �rst step, we

estimate the identi�ed set for F" (� jP; S = 1), �p. This requires the nonparametric estimation of

Pr (S = 1 jX;Z ), F�1Y (�jX;Z; S = 1) and FY (qjX;P; S = 1). Ahn & Powell (1993) propose to

estimate the conditional selection probability by local constant kernel estimation. We, however,

prefer to use local logit in the application. This has similar advantages as local linear estimation

under continuous outcomes has compared to local constant estimators, namely a better conver-

gence rate at the boundaries.7 We estimate the conditional quantile and distribution functions by

local linear quantile regression. In the second step, for each observation with p̂i > max (� ; 1� �),

the linear quantile regression process of Y on X in a local neighborhood of p̂i is estimated. This

corresponds to the nonparametric quantile regression estimator proposed by Chaudhuri (1991)

using, however, an in�nite bandwidth with respect to X as linearity of Y in X is assumed. Only

observations with similar p̂ can be used in the same regression as the rank of the latent quantile

regression in the selected population depends on p. The function �̂(�; p̂i) for � 2 (0; 1) is the

result of this second step. In the third step, we calculate the identi�ed set conditional on p̂i by

	̂ (p) �
n
�̂(�; p) : � 2 �̂p

o
.

In the fourth and �nal step, the identi�ed set for � (�) is estimated as the intersection of the

conditional bounds

� (�) 2 	̂ � \
p̂i>max(�;1��)

	̂ (p̂i) .

7For Monte Carlo results on the �nite sample properties of local logit and alternative semi- and nonparametric

estimators, see Frölich (2006).

19



A simple way to report the identi�ed set is to yield the largest and smallest elements for each

parameter.

4.3 Inference

Note: work in progress!

We follow a strategy similar to the one suggested by Chernozhukov, Rigobon & Stoker (2009).

We start with the simple problem of estimating a 1 � a con�dence interval for the quantile

regression parameter �̂k(�; p) when � and p are pre-determined. This con�dence interval can

be obtained in a straightforward way either analytically or by resampling and is denoted by

C1�� (�; p). In the next step, p is still �xed, but not �. By proposition 2 of Chernozhukov et al.

(2009) we obtain the following con�dence intervals for 	̂k (p)

CR1�a (p) � [�2
h
��(1�p)

p
; �
p

iC1�a (�; p) .
For any p, CR1�a (p) is a valid, not necessarily conservative, con�dence interval for �k (�).

5 Labor Market Application

To be done!

6 Conclusion

It may seem disappointing that in a sample selection model for quantiles, invoking a quite com-

prehensive set of conditions (exclusion restriction, monotonicity of selection in observables, rank

invariance in the conditional outcome distribution) does generally not identify the parameters

of interest even in the linear regression framework. This, however, should not be too surpris-

ing when bearing in mind that the outcome is never observed for a subpopulation if there is no

identi�cation at in�nity. Thus, we either have to severely restrict the generality of the model to

obtain point identi�cation or content ourselves with partial identi�cation.

The approach suggested in this paper aims at combining the best of both worlds. If the data

support even stronger conditions than those mentioned before (such as separability of observables

and unobservables), which are maintained in classical sample selection models, the parameters

20



are point identi�ed. If these assumptions are rejected, the suggested method yields the tightest

bounds on the parameters of interest under somewhat weaker conditions.
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