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Abstract

Twins share a unique bond that can lead to severe emotional stress and

even health deterioration, once that bond is broken. In this paper we

present new empirical evidence suggesting that the loss of the co-twin can

shorten the remaining life-span of the surviving twin. In addition to this

causal effect of bereavement, our model accounts for the influence of un-

observable shared factors such as the genetic makeup and early childhood

experiences that constitute a major source of the dependence between twin

life-spans. Previous studies are limited to modeling exclusively one of these

two channels of dependence. In this paper we present a new identification

result on a symmetric version of the timing-of-events model of Abbring and

Van den Berg (2003) which incorporates both of these dependencies and

only requires limited covariate variation. Our empirical analysis is based on

9,268 twin pairs from the Danish Twin Registry. The estimated bereave-

ment effect is decreasing in the age at the time when the loss is experienced

and is more prominent in monozygotic twin pairs.
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1 Introduction

The effects of losing a close member of the social network (bereavement) are

studied in several fields of research. In particular, studies that look at bereave-

ment among twins can be divided into two strands of literature. Psychologists

and psychoanalysts are concerned with different psychological manifestations of

bereavement and the different stages of grief (see Segal et al., 1995; Segal and

Ream, 1998; Woodward, 1988). While this part of the literature is mainly focused

on psychological effects, demographers, epidemiologists and human biologists are

interested in developing a joint model of twin life-spans that correctly accounts

for the complex dependence structure within twin pairs. Tomassini et al. (2002;

2001)1 and Hougaard et al. (1992a) use survival models for each twin life-span

and include the life-span of the co-twin as an exogenous time dependent covariate.

Hougaard et al. point out the problem with this approach, i.e. their estimated

effect does not only capture the effect of bereavement but also the dependence

due to shared genetic factors. Other studies are focused on modeling this latter

type of dependence which does not only reflect the influence of shared genetic

factors but also the similarity of the environment in early childhood. The most

elaborate approach in this field is based on a bivariate frailty model which spec-

ifies a flexible dependence structure between the frailty terms (see Yashin and

Iachine, 1995a; Wienke et al., 2001; Hougaard et al., 1992a,b). In this paper we

present a model which unites these two approaches of the twin mortality liter-

ature allowing us to estimate a causal bereavement effect while controlling for

unobserved shared factors.

The twin studies by Segal et al. and Woodward document that the loss of

a co-twin can cause severe emotional stress and that the grief intensity for an

identical (monozygotic) twin is typically higher than that for other relatives or

spouses (see Segal and Bouchard, 1993; Segal et al., 1995). Besides feelings of

despair, depersonalization (numbness, shock), rumination (preoccupation with

the deceased) and loss of control, bereaved twins also show symptoms like loss of

appetite, loss of vigor and other physical symptoms (see Segal and Blozis, 2002).

According to Selye’s General Adaptation Syndrome, psychological stress is a ma-

jor cause of disease because chronic stress causes long-term biochemical changes

(see Selye, 1936, 1955).

1Tomassini et al. also use a model in which they match each bereaved twin to two not

bereaved twins based on zygosity, age and sex and compare the two resulting hazard rates after

the age when bereavement takes place. Note, that this method also ignores the endogeneity of

the time of bereavement caused by shared genetic factors.
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”Every stress leaves an indelible scar, and the organism pays for its survival

after a stressful situation by becoming a little older.” (Hans Selye)

Sanders (1999) integrates Selye’s well-established general theory of stress in

her Integrative Theory of Bereavement. She points out that besides the familiar

stages of grief, patients also show physiological changes and consequent vulnera-

bility to illness after bereavement (see Sanders, 1980).

The psychological manifestations of grief in general are well documented and

twin studies have established the existence of a strong psychological reaction to

the loss of the co-twin. Furthermore, the studies by Selye and Sanders show the

existence of a direct link between emotional stress and health outcomes. However,

no empirical study has clearly established the existence of a causal dependence

between bereavement and mortality for the case of twins.

Previous studies are focused on the effects of conjugal bereavement (see Manor

and Eisenbach, 2003; van den Berg et al., 2006; Bowling, 1987). These studies

find convincing evidence that the loss of a spouse can severely affect mortality

shortly after bereavement. However, it remains unclear wether the measured ef-

fect on mortality originates exclusively from emotional stress, since the loss of the

spouse also greatly affects the everyday life of the surviving partner. In contrast

to spouses, most twins have separate families and support systems. This sug-

gests that a causal dependence between twin life-spans should be in large part

attributed to emotional bereavement.

The first contribution to the twin bereavement literature focused on mortality

outcomes was made by Hougaard et al. (1992a). They study the joint distribution

of life times of twins, estimating two models. The first one is the Freund (1961)

model, which uses a bivariate exponential distribution and as such can be inter-

preted as a simplified version of the Tomassini et al. models. The Freund model

allows for a causal effect of the death of one twin on the hazard of the other.

The second model does not include a bereavement effect but instead accounts

for the influence of unobservable shared factors. This latter source of dependence

is an important component in models of twin life-spans. Twins often experience

a similar early childhood and while dizygotic twins share approximately 50% of

their genetic material (Segal and Ream, 1998), monozygotic twins have an iden-

tical genetic makeup. Consequently, the identification of a causal bereavement

effect among twins requires a model which simultaneously accounts for the effect

of unobservable shared factors. Previous attempts in the twin literature such as

the models of Hougaard et al. and Tomassini et al. are limited to modeling only
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one of the two effects at a time but fail to unite both in one model.

In the econometric literature, dependence due to shared factors is often called

a ”selection effect” while the effect of an event on the hazard rate of another

outcome is labeled a ”causal effect”. This terminology highlights the fact that, to

empirically study the causal effect, the results may also reflect the other effect.

Ignoring one type of dependence may lead to biased estimates of the other type.

The studies by Tomassini et al. (2002) and Hougaard et al. (1992a) recognize that

the different dependencies are suited to fit different aspects of the data, giving

hope that the two effects can be distinguished empirically. In her discussion of

Hougaard et al.’s paper, Flournoy (1992) argues that a super-model is needed

which unites both models and incorporates both effects simultaneously. Related

models have recently been used in empirical econometric studies on the effect of

labor market programs on unemployment durations. Abbring and Van den Berg

(2003a) demonstrate that bivariate versions of the mixed proportional hazard

model can be identifies which take both dependencies into account.

In our application we use data on 9,268 twin pairs including mono- and dizy-

gotic twins from the Danish Twin Registry. As our analysis exploits the timing

of deaths, it is advantageous to observe as many exits as possible in the data.

The Danish Twin Registry is one of the oldest existing twin datasets and allows

us to use cohorts from 1870 to 1930, ensuring that 80.8% of these twins have

died by 20042. The drawback of using such old cohorts is the limited information

available on the twin pairs. The Danish Twin Registry is designed as a medical

dataset, providing very detailed information on the causes of death and exit dates

on a daily basis but has only very limited information on other characteristics of

the twins. In particular, the available covariates do not vary within same-sex twin

pairs.3 Unfortunately, the identification result of Abbring and Van den Berg relies

on the assumption of sufficient covariate variation within the unit of interest, the

twin pair in our case. Consequently, their identification result does not apply to

our dataset. In Section 2 we present a new identification result for a symmetric4

version of the timing-of-events model that does not rely on this assumption.5

Our semi-parametric identification result has a wider relevance for the empir-

2In 2004 our window of observation ends.
3The major part of the dataset comprises same-sex twin pairs, since less effort was put into

following up on different-sex twins in the Danish Twin Registry.
4In contrast to the original timing-of-events model, the model we use here allows for treat-

ment in both directions. Before the first exit occurs, both life-spans can potentially affect

eachother.
5Note, that in our identification result we impose a multiplicative structure on the treatment

effect function.
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ical study of parallel systems and networks and for epidemiological research. The

symmetric timing-of-events model describes a very general setting in which two

parallel durations are connected due to observable as well as unobservable time-

constant shared factors and at the same time the first exit potentially affects the

survival of the other. In the most extreme case, the complete symmetry of our

model allows for the two durations to be indistinguishable in terms of observable

characteristics. So even if the durations can not be indexed (or the index 1,2 is

completely uninformative) and the only observable covariates are characteristics

of the duration pair (not individual characteristics), our identification result still

applies. This result is relevant in cases of old datasets or for datasets which are

limited for other reasons as well as in cases where the available covariates, creat-

ing the otherwise necessary variation within duration pairs, might be endogenous

and therefore have to be excluded.

Our model allows to estimate a causal dependence between twin life-spans

while controlling for the influence of shared genetic factors. However, the symmet-

ric timing-of-events model can also be used to estimate the dependence between

twin life-spans caused by shared genetic factors while controlling for a potential

additional causal dependence. There is an extended field of research with the

purpose to quantify the influence of genetic factors on mortality using data sets

similar to ours. Our model allows to compare these different approaches and in

our empirical analysis we show how the magnitude of the effects changes when

excluding one of the two sources of dependence.

In Section 3 we shortly introduce the twin dataset from the Danish Twin

Registry. For the purpose of our empirical analysis we impose some additional

structure on the general symmetric timing-of-events model in Section 4 using

functional forms that are well established in the twin mortality literature. Sub-

sequently, our estimation results are presented in Section 5. We find a significant

positive effect on the hazard rate of a bereaved adult twin that is decreasing in

the age at which bereavement occurred. This effect is considerably stronger for

monozygotic compared to dizygotic twin pairs. We sum up with a discussion of

our results in Section 6 and a brief outlook in Section 7.

2 Model and identification result

In order to find a suitable model for the life-spans of twin pairs, we use a sym-

metric version of the timing-of-events model by (see Abbring and van den Berg,

2003a; Abbring and Heckman, 2007). This model can be expressed by the two

individual hazard rates of durations T1 and T2 conditional on the observable vari-

4



ables x, the frailties V1 and V2 and the realized exit of the other duration.

Model A: The hazard rates of T1|(T2 = t2, x, V1) and T2|(T1 = t1, x, V2) are

given by

θ(t|T2 = t2, x, V1) = λ(t)φ(x)δ(t, t2, x)I(t>t2)V1

θ(t|T1 = t1, x, V2) = λ(t)φ(x)δ(t, t1, x)I(t>t1)V2,

where the vector of frailties V = (V1, V2)′ is assumed to be drawn from the bivari-

ate distribution G(v1, v2) and the bereavement effect function is multiplicative in

two of its arguments δ(t, tk, x) = δa(t− tk)δb(tk, x).

Here, the first multiplicative term δa of the bereavement effect function de-

scribes the dependence of the bereavement effect on the time passed since the

loss occurred and δb accounts for the dependence on the age at the time of be-

reavement as well as on observable variables x. I(.) denotes an indicator function,

which is 1 if its argument is true and 0 otherwise. The function λ(t) models the

duration dependence of the hazard rate and φ(x) holds the effect of the covariates.

Note, that given the observables x, Model A allows for two types of depen-

dencies between duration T1 and T2. The first is reflected in the joint distribution

of V1 and V2. In our application to twin life-spans this dependency is caused by

unobserved shared factors such as the genetic makeup and early childhood ex-

periences. The second type of dependence is incorporated via the bereavement

effect function δ(t, tk, x) that occurs as a multiplicative term in the hazard rate

of duration j once duration k exits. Conditional on x and V , the variables T1 and

T2 are only dependent through δ(t, tk, x). Consequently, this factor can be given a

causal interpretation as the effect of Tk on Tj. In contrast to the frailties V which

reflect the influence of time constant unobserved characteristics, the bereavement

effect accounts for the timing of events. Therefore, in Model A this effect can be

seen as a local effect as it only affects the hazard rate of the surviving duration

after the exit of the other occurs. In contrast, the influence of the unobservable

factors V can be seen as a global effect as these factors influence the hazard

rate of the two durations over the whole time interval [0,∞). It should also be

pointed out that the setup in Model A rules out the existence of a third source of

dependence in form of unobserved shared influences which vary over time. This

also gives an intuition for the identifiability of Model A. By only allowing for

one effect that is local (depends on the timing of events) and one that is global

(reflects only time constant influences), both can be distinguished.

In contrast to Model A, in the original timing-of-events model of Abbring
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and van den Berg (2003a) the functions λ and φ are allowed to differ across

the two hazards and only the hazard of duration 1 can be directly affected by

the exit of duration 2.6 In their paper the authors already point out that their

identification results can be straightforwardly extended to a setting in which the

full distribution of (T1, T2)|x is observable and both durations can potentially

be treated by the exit of the other, similar to our setup. However, a different

identification strategy is needed for the identification of Model A in which λ and

in particular φ is the same in both hazards. The difficulty arises from this complete

symmetry in the covariate effects φ(x). The latter implies that all covariates in

the vector x enter both hazards with the same value and have the same effect.

The result by Abbring and van den Berg (2003a) uses the fact that until the

first exit occurs, the two durations are competing risks. Therefore, their proof

exploits an identification result of the mixed proportional hazard competing risk

model (see Abbring and van den Berg, 2003b). In such a competing risks model,

variation of the covariate effects across the two hazards is necessary in order to

trace out the bivariate frailty distribution G(v1, v2). In particular, the assumption

is necessary that the function (φ1(x), φ2(x)) can attain all values over a nonempty

open set Φ ⊂ (0,∞)2 when x varies over X .7 Since in our symmetric setup it holds

that φ1(x) = φ2(x) = φ(x), we cannot exploit this exogenous variation across the

two hazards in our model.8

Although the original model of Abbring and van den Berg is more flexible

compared to Model A, as it allows for different baseline hazards as well as dif-

ferent regression component functions across the two hazards, it is also more

restrictive in the sense that it relies on sufficient variation of the covariate effects

across the two durations. Therefore the symmetric case of Model A is not cov-

ered by their result. The main difference in terms of the identification strategy is

the fact that while the original result of Abbring and van den Berg exploits the

results from the mixed proportional hazard competing risk model, our identifica-

6The original model also does not need the assumption that the treatment effect can be

separated into two multiplicative parts.
7If φj(x) = eβ

T
j x then it would be sufficient that the vector x has two continuous covariates

which affect the hazard rates of both risks but with different nonzero coefficients, and which

are not perfectly collinear.
8For twins it is very unlikely that observable characteristics like sex or cohort will affect

twin 1 systematically different compared to twin 2. In our dataset, twins are indexed according

to their order of births. The firstborn has index 1 and the second index 2. But this information

is extremely unreliable especially for the older cohorts. Note further, that since we use cohorts

from 1870 onwards, we only have a very limited set of covariates available in our analysis none

of which vary within same-sex twin pairs. Therefore, we can not rely on sufficient exogenous

variation within twin pairs.
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tion strategy relies on results from the simple mixed proportional hazard model.

By imposing a multiplicative structure on the treatment effect function we are

able to split the hazard rate into multiplicative parts reflecting the dependence

on time t, observables x and unobservable influences V which is characteristic

for a mixed proportional hazard model. We will exploit this structure at several

steps throughout our proof.9

Assumption 1 The vector x is k-dimensional with 1 ≤ k < ∞ and φ : X →
U ⊂ (0,∞). The set X ⊂ Rk contains at least two values.

Assumption 2 δa : R+ → (0,∞) with lims↓0 δa(s) <∞ and for δb : [0,∞)×X →
(0,∞) it holds that @ c ∈ (0,∞) s.t. δb(0, x) = cφ(x)−1 ∀x ∈ X .

Assumption 3 For the function λ : [0,∞) → (0,∞) it holds that for all t ∈
(0,∞) lims↓t λ(s) <∞ and has integral

Λ(t) :=

∫ t

0

λ(τ) dτ <∞, ∀ t ≥ 0

and further

Λ̃(t, s) :=

∫ t

s

λ(τ)δa(τ − s) dτ <∞, ∀ {(t, s) ∈ [0,∞)2 : t > s}.

For some a priori chosen t0, t∗0 and x0, there holds that
∫ t0

0
λ(τ) dτ = 1,∫ t∗0

0
λ(τ)δa(τ) dτ = 1 and φ(x0) = 1.

Assumption 4 V is an R2
+-valued time-invariant random vector (V1, V2)’ and is

drawn from distribution G which does not depend on x and has a finite, positive

mean. G is such that P (V ∈ (0,∞)2) = 1. Further, for all (t, x) ∈ (0,∞) × X
lims↓tE(Vj|Tj ≥ s, Tk = t, x) = E(Vj|Tj ≥ t, Tk = t, x).

Assumption 5 ∃ an open set Ψ ∈ (0,∞)2 with t1 > t2 ∀ (t1, t2) ∈ Ψ s.t. at

all points (t1, t2) ∈ Ψ the function ∆(t1, t2, x) = Λ̃(t1, t2)δb(t2, x) is continuously

9Note, that the identification results presented in this section can be straightforwardly ex-

tended to the case where the bereavement effect function differs between the two durations.

So if the two spells can be distinguished in the data, it is possible to identify two separate

bereavement effects δ1(t, t2, x) and δ2(t, t1, x). The first measures the effect of the exit of dura-

tion 1 on duration 2 and the other the effect of the exit of duration 2 on duration 1. However,

in most applications including our twin model the effect of bereavement will be symmetric

(δ1(t, t2, x) = δ2(t, t1, x)).
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differentiable with respect to t2.10

Note, that for Assumption 1 a single dummy variable x that does not need to

vary across the two hazards suffices, provided that it has an effect. In that case

φ(x) takes on only two values on X . Recall, that in the case of the original timing-

of-events model of Abbring and van den Berg (2003a) usually two continuous

variables with different effects on the two hazards are needed in order to assure

identification.11 For our model the most limited case of covariate variation in form

of a single dummy variable suffices.

Assumption 3 restricts the baseline hazard function to have existing limit

lims↓t λ(s) < ∞ for all t ∈ (0,∞). Note, that this does not rule out the piece-

wise constant case as well as most functional forms. Further, since this property

only has to hold for strictly positive values, this does not rule out forms with

lims↓0 λ(s) = ∞ like the Weibull function. However, the initial jump of the be-

reavement effect has to have a finite limit. Consequently, this rules out functional

forms for δa with lims↓0 δa(s) =∞. This leads to the following propositions:

Proposition 1 If Assumptions 1-4 are satisfied, then the functions λ, φ, δa, δb
from Model A are non-parametrically identified (up to a scaling factor) from the

distribution of (T1, T2)|x.

Note, that the identification of the function G is not included in Proposition 1.

This leads to Proposition 2:

Proposition 2 If Assumptions 1-5 are satisfied, then Model A which is char-

acterized by the functions G, λ, φ, δa, δb is non-parametrically identified (up to a

scaling factor) from the distribution of (T1, T2)|x.

Proof of Proposition 1

Identification of λ and φ: Let Z be the minimum of the two durations T1 and T2.

The survival function of Z|x is given as (see Appendix A.1 for details)

SZ(t|x) =

∫ ∞
0

e−Λ(t)φ(x)w dGW (w), with W = V1 + V2. (1)

10Alternative assumption 5: The open set Ψ ∈ (0,∞)2 could also exist for t1 < t2 ∀ (t1, t2) ∈ Ψ

s.t. at all points (t1, t2) ∈ Ψ the function ∆(t2, t1, x) is continuously differentiable with respect

to t1.
11The requirements for the vector of covariates x depends on the functional form assumptions

for φ1(x) and φ2(x).
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Equation 1 shows that due to the symmetry of Model A, the distribution of Z

has a hazard rate of the mixed proportional form: θz(t|x,W ) = λ(t)φ(x)W with

frailty W = V1 + V2 drawn from distribution GW . Intuitively, the hazard of the

first exit given x and W is the sum of the hazards of the two competing risks:

θz(t|x,W ) = θ(t|T2 ≥ t, x, V1) + θ(t|T1 ≥ t, x, V2) = λ(t)φ(x)(V1 + V2). Note, that

conditional on x and W the two competing risks of twin 1 and twin 2 to die at

time t, given that the co-twin survives this age, are independent events. The re-

sults by Elbers and Ridder (1982), (also see Lancaster, 1990; van den Berg, 2001,

for an overview)12 on the identification of the mixed proportional hazard model

imply that under Assumptions 1-4, the model in equation (1) characterized by

the functions λ, φ and GW is identified up to a scaling factor (see A.1 for details).

Identification of δa: The survival function of duration Tj given x and given that

the exit of the other duration occurred at Tk = 0 can be expressed as follows

S(t|Tk = 0, x) =

∫ ∞
0

e−
∫ t
0 θ(τ |Tk=0,x,Vj) dτ dGVj |Tk=0,x(vj),

where θ(t|Tk = 0, x, Vj) = λ(t)φ(x)δa(t − 0)δb(0, x)Vj. Here, we make use of the

subset Tj|(Tk = 0, x) of the observable bivariate distribution (T1, T2)|x. One of

the durations exits at time Tk = 0 and therefore the hazard of the other duration

is affected by bereavement over the full interval (0,∞). Due to the multiplicative

structure of the bereavement effect function, the distribution of Tj|(Tk = 0, x) has

a hazard rate of the mixed proportional form: θ(t|Tk = 0, x, Vj) = λ̃(t)φ̃(x)Vj with

λ̃(t) = λ(t)δa(t) and φ̃(x) = φ(x)δb(0, x). Again the results by Elbers and Ridder

imply that under Assumptions 1-4 the mixed proportional hazard model defined

by {λ̃, φ̃, GVj |Tk=0,x} is identified up to a scaling factor and since λ is known,

this also identifies δa. Note, that one central assumption for the identifiability of

a mixed proportional hazard model is the independence of observable variables

and unobservable frailties. In Appendix A.2 we show that under Assumptions 1-4

the conditional frailty distribution GVj |Tk=0,x does not depend on x. Further, As-

sumption 2 states that the functions φ(x) and δb(0, x) are not proportional assur-

ing that the function φ̂(x) = φ(x)δb(0, x) generates sufficient exogenous variation.

Identification of δb: In the following, we exploit information on the jump of the

12Also see Kortram et al. (1995) for the case of only two possible values for φ(x).
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hazard rate at the moment of bereavement

lims↓t θ(s|Tk = t, x)

θ(t|Tk = t, x)
=
φ(x)δb(t, x) lims↓t δa(s− t)λ(s)E(Vj|Tj ≥ s, Tk = t, x)

φ(x)λ(t)E(Vj|Tj ≥ t, Tk = t, x)

= δb(t, x) lim
s↓t

δa(s− t)
lims↓t λ(s)

λ(t)
. (2)

Assumptions 2 and 3 assure the existence of lims↓t δa(s − t) and lims↓t λ(s).

With this, the second equality directly follows from Assumption 4 stating that

lims↓tE(Vj|Tj ≥ s, Tk = t, x) = E(Vj|Tj ≥ t, Tk = t, x). Note, that the left hand

side of equation 2 is observable for all (t, x) ∈ (0,∞)× X . Since lims↓t δa(s− t),
lims↓t λ(s) and λ(t) are known from previous steps, we can trace out the function

δb(t, x) over (0,∞)×X .13

Proof of Proposition 2

Identification of G: Recall that the functions λ, φ, δa, δb in Model A are identified

under Assumptions 1-4. The only function that remains unknown is the bivariate

frailty distribution G(v1, v2). The density f(t1, t2|x) for t1 > t2 can be expressed

as follows (see Appendix A.3.1)

f(t1, t2|x) = c(t1, t2, x)∂2
s1,s2
LG
(
φ(x)(Λ(t2) + ∆(t1, t2, x)), φ(x)Λ(t2)

)
, (3)

with c(t1, t2, x) = λ(t1)λ(t2)φ(x)2δa(t1−t2)δb(t2, x) and ∆(t1, t2, x) = Λ̃(t1, t2)δb(t2, x).

Note, that all functions on the right hand side of equation 3 are identified except

the cross derivative of the bivariate Laplace transformation ∂2
s1,s2
LG(s1, s2), with

arguments s1 = φ(x)(Λ(t2) + ∆(t1, t2, x)) and s2 = φ(x)Λ(t2). The Laplace trans-

formation LG(s1, s2) is known to be a completely monotone function. This prop-

erty implies that it’s cross derivative ∂2
s1,s2
LG(s1, s2) is also completely monotone

(see Appendix A.3.2). Since completely monotone functions are real analytic and

real analytic functions are uniquely determined by their values on a nonempty

open set, the function ∂2
s1,s2
LG(s1, s2) can be identified on its whole support S =

[0,∞)2 if we know all it’s values on a nonempty open set. In Appendix A.3.3 we

show that under Assumption 5 the function (φ(x)(Λ(t2)+∆(t1, t2, x)), φ(x)Λ(t2))

attains all values on a nonempty open set Υ ⊂ (0,∞)2 when t1 and t2 vary

over Ψ ⊂ (0,∞)2 with t1 > t2.14 This identifies ∂2
s1,s2
LG(s1, s2) and the integral

13Note, that δb(0, x) is already known from the last identification step.
14Note, that if t1 < t2 ∀ (t1, t2) ∈ Ψ then the same reasoning can be applied to the func-

tion (φ(x)Λ(t1), φ(x)(Λ(t1) + ∆(t2, t1, x))), which then holds the arguments of ∂2s1,s2LG in the

equation above for the case t1 < t2.
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∫ s1
0

∫ s2
0
∂2
s1,s2
LG(u1, u2) du1du2 then gives us LG. Due to the uniqueness of the

Laplace transformation this also determines G(v1, v2).

3 Data

In our empirical analysis we use data from the Danish Twin Registry. When

the registry was first established in 1954, the goal was to follow up on all same-

sex twins born since 1870 and surviving as twins until at least the age of 6.

However, there is some selectivity in the very early cohorts. Twins who died young

are less likely to be included in the sample. Further, most of the information

on characteristics is only available for twins who survived January 1st 1943.

Therefore, we restrict attention to twin pairs still alive at this date. This is not a

serious limitation since we are particularly interested in the effects of bereavement

at higher ages. We use cohorts from 1870 to 1930, assuring that we observe the

exit of most twins before January 1st 2004 when our window of observation ends.

The registry contains some different-sex twin pairs, but most effort was put into

following up on same-sex and in particular monozygotic twin pairs. We refer to

Skytthe et al. (2002) for detailed descriptions of the registry and the way it has

been collected.

As a result, our sample includes 2,806 monozygotic and 6,462 dizygotic twin

pairs of which 1,219 are different sex twin pairs. All twins are born between 1873

and 1930 and in all pairs both twins have survived until at least January 1st

1943. The birth and death dates and the resulting individual lifetime durations

are observed in days. Individuals still alive on January 1st 2004 or who have emi-

grated have right-censored durations. Overall the death date is observed for 80%

of the individuals in our sample. For 94.4% of this group we observe the death

cause. The death cause is classified according to the International Classification

of Diseases(ICD) system, versions 5-8, at the 3-digit level. These are grouped into

12 categories, of which the following groups are of specific interest: ‘cardiovas-

cular’ (32.42%, death due to cardiovascular malfunctions or diseases), ‘apoplexy’

(14.13%), ‘cancer’ (26.03%, death due to malignant neoplasms), ‘suicide’ (1.03%),

‘accidents’ (3.7%) and ‘other’ (including death due to tuberculosis, other infec-

tious diseases, diseases of the respiratory, digestive or uro-genital system).

For each twin pair in our sample we observe zygosity, sex, year of birth, season

of birth and region of birth. Note, that except sex, none of the available covariates

vary within the twin pair. In the previous section we showed that our model does

not rely on this kind of variation. The information on zygosity is very accurate
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with a misclassification rate below 5% (see Holm, 1983; Lykken, 1978). We use

an indicator for being born in Copenhagen in our analysis to distinguish between

rural and urban areas in Denmark. The additional distinctions between small

towns and rural areas outside of Copenhagen turned out to be uninformative in

our empirical analysis.

Besides having one of the oldest existing twin datasets in the world, the coun-

try of Denmark is especially suited for mortality studies using individual lifetime

data over a long time interval. At the beginning of our window of observation in

the 1870ties, Denmark compared to the rest of Europe already had a quite well

established/comprehensive health care system. This is of particular importance

for our purposes as a functioning health care system dampens economic shocks

which twin pairs are exposed to over their whole life. There were also no major

epidemics between 1870 and 2004 in Denmark. Recent studies have compared in-

ternational mortality levels for 1918 and found that for the 1918–1919 worldwide

influenza pandemic Denmark stands out as the country with the lowest levels of

excess mortality (see Canudas-Romo and Erlangsen, 2008; Ansart et al., 2009).

Furthermore, Denmark remained neutral in both World Wars and although it was

occupied by Germany during the Second World War, casualties were negligible

compared to the rest of Europe. In summary, lifetime data from Denmark from

the 1870ties up to today provides a dataset that is little affected by economic or

direct health shocks compared to the rest of Europe.

4 Model of twin life-spans

For the estimation of our twin model we impose additional structure on the sym-

metric timing-of-events model (Model A) introduced in Section 2. In particular,

for each twin pair the vector of frailties (V1, V2) is assumed to be drawn from a

Cherian bivariate Gamma distribution. This distribution is often used in lifetime

models for twins (see Yashin and Iachine, 1995b; Wienke et al., 2001, 2002) and

allows for an interpretation of the individual frailty term as the sum of a shared

twin pair-specific term Ṽ0 and an individual-specific term Ṽ1

Vj = Ṽ0 + Ṽj for j ∈ 1, 2.

Here, each term Ṽ1, Ṽ2 and Ṽ0 is independently drawn from a Gamma distribution.

With this structure, the bivariate Gamma distribution of (V1, V2) has identical

marginal distributions which reflects the symmetry of life-spans within twin pairs.

Their mean is normalized to one and as a result, the joint distribution of (V1, V2)

can be fully described by two parameters: the variance σ2 of Vj and correlation

12



ρ of V1 and V2. The latter equals the fraction of the total variance of Vj that

the two twins have in common ρ = V ar(Ṽ0)

V ar(Ṽ0+Ṽj)
. Recall, that our sample includes

monozygotic (MZ) as well as dizygotic (DZ) twin pairs. We estimate separate

parameters for both types of zygosity: σ2
MZ , ρMZ and σ2

DZ , ρDZ .

In the following we denote the two life-spans of each twin pair by the vector of

random variables (T1, T2) and their realizations by (t1, t2). T1 and T2 are assumed

to be independently censored from the right.15 The twin life-spans follow a distri-

bution given by the bivariate survival function S(t1, t2|x) = P (T1 > t1, T2 > t2|x).

Note, that for all twin pairs for which the minimum of T1 and T2 is censored, we

do not observe the exact time of bereavement. The first exit could occur any time

within the interval (min{t1, t2},∞). Consequently, we have to integrate over the

respective interval to account for the occurrence of all possible exit times. This

leads to a survival function of the form16

S(t1, t2|x) =

{
S∗(t1, t1|x)−

∫ t1
t2
St2(t1, τ |x) dτ , for t1 ≥ t2

S∗(t2, t2|x)−
∫ t2
t1
St1(τ, t2|x) dτ , for t1 < t2

with S∗(t1, t2|x) = (1 + σ2φ(x)[Λ(t1) + Λ(t2)])−
ρ

σ2

(1 + σ2φ(x)Λ(t1))−
(1−ρ)
σ2 (1 + σ2φ(x)Λ(t2))−

(1−ρ)
σ2

and partial derivatives Stj(t1, t2|x) = ∂S(t1,t2|x)
∂tj

, for (j = 1, 2).

In the data section it was already mentioned that our dataset only includes

twin pairs for which both twins are still alive on January 1st 1943. This truncation

of data has to be reflected in the likelihood function as well. For this purpose we

denote the age of twin j on January 1st 1943 by tj,age43. This leads to the survival

function conditional on both twins surviving January 1st 1943

S(t1, t2|T1 > t1,age43, T2 > t2,age43, x) = S(t1, t2|x)S(t1,age43, t2,age43|x)−1

15Recall that for a small part of the twin pairs in our sample at least one twin is still alive at

the end of the observation window on 1st January 2004. However, the censoring durations only

depend on the cohort of the twin pair and not on the life-spans of the two twins. This assures

independent censoring in our data.
16The integrals

∫ t1
t2
St2(t1, τ |x) dτ and

∫ t2
t1
St1(τ, t2|x) dτ are approximated with numerical

integration methods.
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With this we can derive the likelihood contribution of a twin pair

L(t1, t2, c1, c2|x) = [ c1c2S(t1, t2|x)− c1(1− c2)St2(t1, t2|x)

−(1− c1)c2St1(t1, t2|x) + (1− c1)(1− c2)St1,t2(t1, t2|x) ]

S(t1,age43, t2,age43|x)−1.

Here, c1 and c2 denote the censoring indicators for T1 and T2 and St1,t2(t1, t2|x) =
∂2S(t1,t2|x)
∂t1∂t2

. Note, that due to the specific functional form of the Cherian bivariate

Gamma distribution the likelihood function has a closed form17. The functional

forms of S, St1 , St2 and St1,t2 and their derivation is presented in Appendix B.

For the purpose of our empirical analysis we also impose additional struc-

ture on the functions φ, λ, δa, δb of Model A. The logarithm of δa(t) is specified

as piecewise constant with three time intervals after bereavement occurred: first

year after bereavement, second to fourth and after the fourth year. The func-

tion ln(δb(tk, x)) = δagel + βT
δ x models the dependence of the bereavement effect

on the twin’s age at the time tk she/he experiences the loss of the co-twin and

the dependence on observable characteristics x such as sex and zygosity. Here,

p indicates the age interval in which the loss occurred : ages below 65, 66 to 79

and above 80. The covariate effects enter the hazard as eβ
Tx, which is the stan-

dard choice in mixed proportional hazard models and the duration dependence

function λ is assumed to follow a flexible version of the Gompertz function, i.e.

λ(t) = eα1t+α2t2+α3t3 .

We choose a flexible baseline hazard which includes the Gompertz function

as a special case for α2 = α3 = 0 which is often used in mortality models and

is known to give an acceptable fit. Specifying the correct functional form for the

baseline hazard is of particular importance in our analysis in which we are mea-

suring the impact of intermediate events in a lifetime. If for instance the baseline

hazard function were specified to be too restrictive in terms of the slope at higher

ages this lack of flexibility would be reflected in the causal bereavement effect

which in most cases occurs at higher ages. Note, that we use a very wide range

of cohorts 1870 to 1930 in our analysis. For these cohorts, the aging process has

evidently changed over time. In particular, the life expectancy at higher ages has

increased drastically between 1870 and 1930 (see Gavrilov and Nosov, 1985). In

order to account for this change in the shape of the duration dependence function

we estimate separate sets of parameters αc1, αc2 and αc3 for three different cohort

groups c ∈ {1, 2, 3}: 1873 - 1899, 1900 - 1915 and 1916 - 1930.

17The only exception are the integrals over the interval of all possible bereavement times for

censored twin pairs.
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With this structure we can express our model in terms of the logarithm of the

hazard rates of twin 1 and 2 conditional on observable and unobservable variables

x and V and the realization of the other duration

ln θ(t|T2 = t2, x, V1) = αc1t+ αc2t
2 + αc3t

3 + β
′
x+ I(t > t2)(δtq + δagep + x

′
δx) + ln(V1)

ln θ(t|T1 = t1, x, V2) = αc1t+ αc2t
2 + αc3t

3 + β
′
x+ I(t > t1)(δtq + δagep + x

′
δx) + ln(V2).

(4)

Here, δtq, δ
age
p , δx are parameters that model the effect of bereavement. The indi-

cator for the three time intervals after bereavement is denoted by q = 1, 2, 3 and

p = 1, 2 is the indicator for the three age groups at which bereavement occurs,

ages below 65 being the reference group.

5 Empirical Analysis

5.1 Residual Life Expectancies

One advantage of modeling twin life-spans on the individual level is the possi-

bility to make predictions about residual life expectancies depending on when

bereavement is experienced. Expected residual lifetimes are relevant for health

care policy and are frequently calculated in the demographic and gerontological

literature. The expected residual lifetime at age s are computed as (see Lancaster,

1990)

E(s) =

∫∞
s
S(t|x) dt

S(s|x)
.

In Tables 2a and 2b the residual life expectancies for male, female, monozygotic

and dizygotic twins implied by the estimates of Model IV (Table 1) are presented.

A male monozygotic twin who has reached the age of 65 and has lost his co-twin

at the age of 60 will life on average 11.22 remaining years. If he never had to

experience this loss he would live on average 2 years longer. A very similar pattern

is observed for female twins. Since the dependence of the bereavement effect on

sex was insignificant we set this effect to zero in our calculations in Tables 2a and

2b.

5.2 Estimation Results

In our empirical analysis we estimate four different bivariate survival models

(Table 1: Models I-IV). The different models allow the comparison of our approach

to previous models used in the twin mortality literature.
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Model II is a correlated frailty model that does not include a bereavement

effect. It represents the strand in the epidemiological literature that models the

influence of shared genetic factors by allowing for a dependence between frailty

terms (see Yashin and Iachine, 1995a; Wienke et al., 2001). Note, that in these

models a potential causal dependence between twin life-spans is ignored. In Model

(4) this corresponds to the case of δa = δage = δx = 0.

Model I on the other hand is a bivariate survival model in which the only

dependence between twin life-spans is modeled via a bereavement effect. In fact,

it does not allow for any frailty distribution (σ2 = 0 in Model (4)). It represents

the approach in the twin bereavement literature where bereavement is modeled as

an exogenous event ignoring the influence of shared genetic factors (see Hougaard

et al., 1992a; Tomassini et al., 2002).

Finally, Model III is an application of the Symmetric Timing-of-Events Model

to twin life-spans which accounts for both, the influence of shared genetic factors

as well as a causal dependence between twin life-spans (Model (4) with δage =

δx = 0 18).

In Model IV we include a more flexible bereavement effect function allowing

besides zygosity for a dependence on sex and the age at bereavement (Model (4)).

When comparing the estimates of the Correlated Gamma frailty distribution

in Model II to the ones from Model III, one finds considerably higher estimates

of the variance and the correlation parameters in Model II. This is true for the

frailty distribution of monozygotic (σ2
MZ , ρMZ) as well as for the one of dizygotic

(σ2
DZ , ρDZ) twin pairs. Especially the correlation between frailties which reflects

the influence of shared genetic factors decreases strongly (around 30%) when

including the bereavement effect in Model III. It is clear from this comparison

that the estimated correlation in Model II does not only reflect the time-invariant

influence of shared genetic factors but also captures some time-varying influences

such as a causal dependence between twin life-spans.

In Model I we find relatively high estimates for the bereavement effect. These

estimates would imply that a monozygotic male twin who is 75 years old and

has lost his co-twin at the age of 70 would die on average 2.2 years earlier com-

pared to when he would never have to experience this loss. These high estimates

are not surprising since they do not only capture a bereavement effect but also

the influence of shared genetic factors. In Model III and IV we control for this

influence and find considerably lower estimates (28% less in terms of residual

life expectancy in Model IV). This illustrates how strongly the estimates of the

bereavement effect are biased in the presence of unobserved shared genetic fac-

18δx = 0 The only exception is the dependence of the bereavement effect on zygosity.
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tors when the model fails to control for them. Considering these results, it also

becomes clear to what extend previous empirical studies have overestimated a

bereavement effect for twins.

Note, that we do not report the estimated parameters of the baseline hazard

function in Table 1. In Figure 1 the function λ(t) = eαc1t+αc2t
2+αc3t3 is plotted

over the age interval 0 - 120 for the three cohort groups c = 1, 2, 3 implied

by the estimated parameters in Model IV. Evidently, younger cohorts have a

considerably lower mortality hazard at higher ages compared to the older cohorts.

This change in the aging process over time is known as the late-life mortality

deceleration (see Gavrilov and Nosov, 1985).

In Model IV, we find a highly significant positive effect of being male (0.513)

reflecting the shorter life expectancy for males compared to females. When com-

paring monozygotic male twins to monozygotic female twins this estimate implies

a higher residual life expectancy of 2.38 years for females at the age of 75 (see

Tables 2a and 2b). Being born in spring has a weakly significant positive effect

on the mortality hazard which is in line with the findings of Doblhammer (2004).

If a twin is born in Copenhagen this increases mortality considerably (21.4% of

the effect of being male). This could be due to a greater exposition to diseases,

pollution or other risk factors in urban areas. Note, that eventhough dizygotic

twins are known to live slightly longer than monozygotic twins, we find a positive

effect on mortality for dizygotic twins compared to monozygotic twins. However,

in studies which restirct attention to twins who suvived infancy, this result is not

surprising. Identical twins face a higher infant mortality risk compared to fra-

ternal twins leading to a selective sample which overrepresents healthy identical

twins .

We estimate a piecewise constant bereavement effect in Model IV, accounting

for three different time intervals after bereavement occurred: the fist year after the

loss, second to fourth year and after four years. The overall positive effect is highly

significant and slightly decreases over time. Further, the size of the bereavement

effect strongly depends on zygosity (-.23) but not on the sex of the twin. The

size of the effect is almost twice the size for monozygotic compared to dizygotic

twins. This large difference is in line with the findings from psychological studies

(see Segal and Bouchard, 1993; Segal et al., 1995). They conduct studies with

bereaved twins and construct measures of grief intensities for monzygotic and

dizygotic twins. Overall, they document grief intensities of monozygotic twins

which are twice as large as the grief intensities observed for dizygotic twins. In

Model IV the bereavement effect function also depends on the age at bereavement.

We distinguish the ages before 65 and above 80, while ages 66 to 79 constitute
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the reference group. Evidently, there is a decrease of the effect of bereavement in

the age at which the loss occurrs. In particular, the effect of losing your co-twin

after the age of 80 is relatively small, with a decrease in residual life expectancy

of 0.58 years (for age 85, monozygotic males, see Table 2b).
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Figure 1: Plot of baseline hazard functions of Model IV

black: cohort group 1873 - 1899

red: cohort group 1900 - 1915

blue: cohort group 1916 - 1930
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Table 2a: Residual Life Expectancies (in years)

Monozygotic Males

Age No Bereav. Experienced Bereav. at age

60 70 80 90

65 14.22 11.22 0 0 0

75 7.85 5.82 6.26 0 0

85 3.31 2.27 2.48 2.73 0

95 .91 .58 .65 .72 .72

Table 2b: Residual Life Expectancies (in years)

Monozygotic Females

Age No Bereav. Experienced Bereav. at age

60 70 80 90

65 17.48 14.26 0 0 0

75 10.23 7.88 8.4 0 0

85 4.67 3.32 3.61 3.93 0

95 1.41 .92 1.01 1.13 1.13
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Dizygotic Males

Age No Bereav. Experienced Bereav. at age

60 70 80 90

65 13.55 11.91 0 0 0

75 7.38 6.27 6.73 0 0

85 3.06 2.49 2.72 2.98 0

95 .83 .65 .72 .8 .8

Dizygotic Females

Age No Bereav. Experienced Bereav. at age

60 70 80 90

65 16.77 15.01 0 0 0

75 9.7 8.41 8.95 0 0

85 4.35 3.62 3.92 4.26 0

95 1.29 1.02 1.12 1.25 1.25
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6 Discussion

The structure of the symmetric timing-of-events model (Model A in Section 2)

imposes some implicit assumptions on the underlying process generating the pairs

of twin life-spans. Since identification of the model exploits the timing of the loss,

a key assumption in the case of our twin model is that the event of losing your

co-twin at some age t does not affect your own mortality hazard prior to that

date. In the duration literature this assumption is called ’No Anticipation’. In

our application to bereavement among twins this terminology can be misleading.

In the case of some diseases, a twin will learn about the increased risk of dying

of his co-twin when he is diagnosed with a severe illness before the actual loss

occurs. However, this only constitutes a problem in terms of our model if his

own mortality hazard reacts prior to the loss. Even if some of the psychological

symptoms of grief may already manifest at an early stage when the co-twin is

diagnosed, the actual event of bereavement only takes place when the other person

is suddenly not part of the bereaved twin’s life anymore. The exact timing of this

loss is in most cases not anticipated. Nevertheless, in the case of some severe

longterm illnesses the process of bereavement might to some degree already take

place during the last stage of illness and the additional effect of loss will be small.

In this case, our model would underestimated the true bereavement effect.19 In

light of this, one should interpret our estimated effect as the effect of actual

bereavement, meaning the effect of physically losing the co-twin.

In the symmetric timing-of-events model all unobserved shared factors caus-

ing a dependence between the two life-spans of the twin pair are assumed to be

time-invariant influences. This means that our model accounts for all unobserved

shared factors such as the genetic makeup or early childhood experiences as long

as their influence on the mortality hazard is time-invariant. But some genetic dis-

positions manifest themselves more strongly during a certain stage in your life,

leading to an increased mortality hazard. This additional source of dependence

between twin life-spans would lead to an upward biased bereavement effect. We

can investigate this problem further by exploiting the detailed information on

death causes available in our dataset. In summary, it is conceivable that unob-

served time-varying shared influences are partly responsible for the dependence

between twin life-spans which our model can not capture. However, our model

19Consider the case in which a twin who’s co-twin is diagnosed with a terminal illness is so

severely affected by this anticipated loss that he will himself die before his co-twin. This very

extreme case would constitute a problem for our model since in this case anticipation would

cause the estimated bereavement effect to capture a causal effect that is reverse.
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controls for the major source of dependence that are time-invariant shared influ-

ences.

An additional source for unobserved time-varying shared variation are events

that affect the health of both twins at the same time during their life. However,

twins typically have their own family and support systems and they usually don’t

life in the same area. Further, living in Denmark during the period 1870 to 2004

reduces the probability of being exposed to shocks on the national level such as

major wars or epidemics. Additionally, the impact of health shocks is dampened

by a well established health care system (see Section 3 for more details).

7 Conclusion

The contribution of this paper is twofold. First, we show that the symmetric

version of the timing-of-events model (Model A) can be identified in the case

of very limited covariate variation by imposing a multiplicative structure on the

bereavement effect function. More specifically, the only exogenous variation that

we exploit can be generated by a single dummy variable that does not need to vary

between the two durations. The identification results of this symmetric model

have wider relevance for the empirical study of parallel systems and networks

and for epidemiological research. Besides the application to twin life-spans our

model can be applied to any symmetric bivariate duration model in which the

dependence between durations is caused by two effects: the influence of time-

invariant shared factors and a causal effect. In particular, our results allow the

estimation of a model in which the two durations are not distinguishable from

each other in any way. Even in the case where the index of duration 1 and 2

is completely uninformative and the only available covariates are characteristics

of the pair of durations (not individual characteristics), our identification result

still applies. Such completely symmetric systems can be found in many different

fields of research.

Second, our empirical analysis is the first approach to model twin life-spans

by uniting two models that have been previously used in this strand of literature.

With our model we are able to disentangle both of the effects that were only ad-

dressed separately in previous twin studies: the causal effect of bereavement and

the influence of time-constant shared factors. Ignoring the influence of shared fac-

tors has particularly strong consequences in the case of twins since their life-spans

are closely connected due to their shared genetic makeup and early childhood.
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A Appendix to the proof of propositions 1 and

2

A.1 Identification of λ and φ

The survival function of Z|x with Z = min{T1, T2} is derived as follows

P (Z > t|x) = P (T1 > t, T2 > t|x)

=

∫ ∞
0

∫ ∞
0

P (T1 > t|x, V1)P (T2 > t|x, V2) dG(v1, v2)

=

∫ ∞
0

∫ ∞
0

e−φ(x)Λ(t)(V1+V2) dG(v1, v2)

=

∫ ∞
0

e−φ(x)Λ(t)W dGW (w) ,with W = V1 + V2. (5)

Note, that for the second equality we exploit that before the first exit occurs no

bereavement effect will cause a dependence between T1 and T2. Consequently,

conditional on x and V the events (T1 > t) and (T2 > t) are independent. We

further use Assumption 4 which implies G(v1, v2|x) = G(v1, v2).

In the following, we will discuss some of the assumptions used by Elbers and

Ridder (1982) for the identification of a mixed proportional hazard model in view

of the model given in equation 5. Assumption 1 assures sufficient covariate varia-

tion in form of at least one dummy variable.20 Further, the distribution of W has

to be independent of x and has a positive and finite mean. Assumption 4 assures

the independence of (V1, V2) and x. From this the independence of W = V1 + V2

directly follows. Similarly, as V1 and V2 are assumed to have finite positive mean,

so does W .

A.2 Identification of δa

We consider the following hazard rate of mixed proportional form:

θ(t|Tk = 0, x, Vj) = λ̃j(t)φ̃j(x)Vj with λ̃j(t) = λ(t)δa, φ̃j(x) = φ(x)δb(0, x), (6)

where the frailties Vj are drawn from GVj |Tk=0,x for j, k ∈ {1, 2} and j 6= k. One

necessary assumption for the identifiability of this mixed proportional hazard

model is that the frailty distribution does not depend on x. Note, that in the

20Also see Kortram et al. (1995) for the case of only two possible values for φ(x).
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above model, the frailties Vj are drawn from a conditional distribution. Therefore,

we need to show that GVj |Tk=0,x does not depend on x. The conditional density

of Vj|(Tk = 0, x) is given by:

f(vj|Tk = 0, x) =
θk(0|x, Vj)Sk(0|x, Vj)f(vj|x)

θk(0|x)Sk(0|x)

=

∫∞
0
λ(0)φ(x)vk dG(vk|x, Vj)f(vj|x)∫∞

0
λ(0)φ(x)vk dG(vk|x)

=
E(Vk|x, Vj)f(vj|x)

E(Vk|x)
. (7)

According to Assumption 4 (V1, V2) are independent of x. Therefore, equation 7

simplifies to

f(vj|Tk = 0, x) =
E(Vk|Vj)f(vj)

E(Vk)
. (8)

From equation 8 it also follows that the distribution of (Vj|Tk = 0) for j, k ∈ {1, 2}
and j 6= k has a positive and finite mean, since G(v1, v2) has this property.

A.3 Identification of G

A.3.1 Derivation of a mixing distribution

The density f(t1, t2|x) for t1 > t2 can be expressed as follows

f(t1, t2|x) =

∫ ∞
0

∫ ∞
0

f(t1|T2 = t2, x, V1)f(t2|x, V2) dG(v1, v2)

= c(t1, t2, x)

∫ ∞
0

∫ ∞
0

V1V2e
−φ(x)(Λ(t2)+∆1(t1,t2,x))V1e−φ(x)Λ(t2)V2 dG(v1, v2)

= c(t1, t2, x)∂2
s1,s2
LG
(
φ(x)(Λ(t2) + ∆1(t1, t2, x)), φ(x)Λ(t2)

)
,

with c(t1, t2, x) = λ(t1)λ(t2)φ(x)2δa(t1−t2)δb(t2, x), ∆(t1, t2, x) = Λ̃(t1, t2)δb(t2, x)

and bivariate Laplace transformation LG with cross derivative ∂2
s1,s2
LG.

A.3.2 Complete monotonicity

Definition 1 Let Ω be a nonempty open set in Rn. A function f : Ω → R is

absolutely monotone if it is nonnegative and has nonnegative continuous partial

derivatives of all orders. f is completely monotone if f ◦m is absolutely mono-

tone, where
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m : x ∈ {ω ∈ Rn : −ω ∈ Ω} → −x.21

Note, that this definition states that a function f is completely monotone if

it’s derivatives of all orders exist, and if these derivatives are continuous and have

switching signs for each order (starting with a positive first derivative). From this

definition it follows directly that if a function f is completely monotone then all

derivatives of second order of f will also be completely monotone. Since the bi-

variate Laplace transformation LG(s1, s2) is known to be a completely monotone

function, it directly follows from Definition 1 that the cross derivative of L given

by ∂2
s1,s2
LG(s1, s2) = ∂2LG(s1,s2)

∂s1∂s2
is also completely monotone.

A.3.3 Tracing out the Laplace transformation

The function f : R2
+ → R2

+ is given by f(t1, t2) = (φ(x)(Λ(t2)+∆(t1, t2, x)), φ(x)Λ(t2)).

It maps the vector (t1, t2) on the vector of arguments of the Laplace transforma-

tion (s1, s2), with s1 = φ(x)(Λ(t2) + ∆(t1, t2, x)) and s2 = φ(x)Λ(t2). In the

following we will show that we can vary (t1, t2) on an open set such that f(t1, t2)

will also attain all values in a nonempty open set. Under Assumption 5 (with

t1 > t2 ∀ (t1, t2) ∈ Ψ) it holds that at all points (t1, t2) in the open set Ψ the first

derivatives of f exist and are continuous and f has Jacobian

Jf (t1, t2) =

[
φ(x)λ(t1)δ(t1, t2, x) φ(x)(λ(t2) + ∂∆(t1,t2,x)

t2
)

0 φ(x)λ(t2)

]
.

Note, that the determinant of Jf is given by det(Jf (t1, t2)) = φ(x)2λ(t1)λ(t2)δ1(t1, t2, x),

and since under Assumptions 1-4 the functions φ, λ, δa, δb can only attain strictly

positive (and finite) values on Ψ, it follows that det(Jf (t1, t2)) 6= 0 ∀ (t1, t2) ∈ Ψ.

Assumption 5 assures that ∂∆(t1,t2,x)
t2

exists and is continuous on Ψ. Therefore,

on the nonempty open set Ψ the function f(t1, t2) is continuously differentiable

with invertible Jacobian Jf . From the Inverse-Function Theorem it directly fol-

lows that there exists an nonempty open set Υ ⊂ (0,∞)2 such that the function

f(t1, t2) attains all values in Υ when t1 and t2 vary over Ψ ⊂ (0,∞)2.

21For n = 1 this definition reduces to the familiar definitions in Widder (1946).
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B Appendix to the derivation of the likelihood

function

In the following the functional forms of S, St1 , St2 and St1,t2 are derived. We start

with the survival function S(t1, t2|x) = P (T1 > t1, T2 > t2|x):

S(t1, t2|x) =

{
S∗(t1, t1|x)−

∫ t1
t2
St2(t1, τ |x) dτ , for t1 ≥ t2

S∗(t2, t2|x)−
∫ t2
t1
St1(τ, t2|x) dτ , for t1 < t2

Recall, that in the case when the first exit is not observable due to censor-

ing we have to integrate over all possible exit times. The resulting integrals∫ t1
t2
St2(t1, τ |x) dτ and

∫ t2
t1
St1(τ, t2|x) dτ are approximated with numerical inte-

gration methods. Here, S∗(t1, t2|x) denotes the survival function in the absence

of a bereavement effect

S∗(t1, t2|x) =

∫∫ ∞
0

P (T1 > t1|x, V1)P (T2 > t2|x, V2) dG(v1, v2)

=

∫∫∫ ∞
0

eφ(x)Λ(t1)(Ṽ0+Ṽ1)eφ(x)Λ(t2)(Ṽ0+Ṽ2) dG(ṽ0)dG(ṽ1)dG(ṽ2)

=

∫ ∞
0

eφ(x)[Λ(t1)+Λ(t2)]Ṽ0 dG(ṽ0)

∫ ∞
0

eφ(x)Λ(t1)Ṽ1 dG(ṽ1)

∫ ∞
0

eφ(x)Λ(t2)Ṽ2 dG(ṽ2)

= (1 + σ2φ(x)[Λ(t1) + Λ(t2)])−
ρ

σ2 (1 + σ2φ(x)Λ(t1))−
(1−ρ)
σ2 (1 + σ2φ(x)Λ(t2))−

(1−ρ)
σ2 .

The equalities 2-4 follow from the assumption that G(v1, v2) is a Cherian bivari-

ate Gamma distribution with independent terms Ṽ0, Ṽ1, Ṽ2 drawn from Gamma

distributions Ṽ0 ∼ Γ(ρσ−2, σ−2) and Ṽ1, Ṽ2 ∼ Γ((1− ρ)σ−2, σ−2).

In the following Stj is derived. For this purpose we define the functions ga, gb
and gc

ga(s1, s2, x) = 1 + σ2φ(x)[Λ(s2) + ∆(s1|s2, x)]

gb(s1, s2, x) = 1 + σ2φ(x)[2Λ(s2) + ∆(s1|s2, x)]

gc(s, x) = 1 + σ2φ(x)Λ(s).

with ∆(s1|s2, x) =
∫ s1
s2
λ(u)δt(u− s2)δage,x(s2, x) du.

We can now derive Stj(tj, tk|x) =
∂S(tj ,tk|x)

∂tj
= −P (Tj = tj, Tk > tk|x). Let
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tj ≥ tk with j, k ∈ {1, 2}, j 6= k

Stk(tj, tk|x) =

∫∫ ∞
0

P (Tj > tj|Tk = tk, x, Vj)P (Tk = tk|x, Vk) dG(vj, vk)

= φ(x)λ(tk)∫∫∫ ∞
0

(Ṽ0 + Ṽk)e
φ(x)[Λ(tk)+∆(tj |tk,x)](Ṽ0+Ṽj)eφ(x)Λ(tk)(Ṽ0+Ṽk) dG(ṽ0)dG(ṽj)dG(ṽk)

= φ(x)λ(tk)gb(tj, tk, x)−( ρ

σ2
+1)gc(tk, x)−(

(1−ρ)
σ2

)ga(tj, tk, x)−(
(1−ρ)
σ2

+1)

[ρga(tj, tk, x) + (1− ρ)gb(tj, tk, x)].

This yields

Stj(tj, tk|x) =


∂S∗(tj ,tj |x)

∂tj
+
∫ tj
tk
St1,t2(t1, τ |x) dτ , for tj > tk

φ(x)λ(tk)gb(tj, tk, x)−( ρ

σ2
+1)gc(tk, x)−(

(1−ρ)
σ2

)

ga(tj, tk, x)−(
(1−ρ)
σ2

+1)[ρga(tj, tk, x) + (1− ρ)gb(tj, tk, x)] , for tj ≤ tk.

Finally, St1,t2(t1, t2|x) = ∂2S(t1,t2|x)
∂t1∂t2

= P (T1 = t1, T2 = t2|x) = f ∗(max{t1, t2},min{t1, t2})
with

f ∗(tj, tk) = φ(x)2λ(tj)λ(tk)δ
t(tj − tk)δage,x(tk, x)

gb(tj, tk, x)−( ρ

σ2
+2)ga(tj, tk, x)−(

(1−ρ)
σ2

+1)gc(tk, x)−(
(1−ρ)
σ2

+1)

[ρ(ρ+ σ2)ga(tj, tk, x)gc(tk, x) + ρ(1− ρ)gb(tj, tk, x)gc(tk, x)

ρ(1− ρ)gb(tj, tk, x)ga(tj, tk, x) + (1− ρ)2gb(tj, tk, x)2].
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