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We track US Medicare beneficiaries’ cumulative residential exposures to PM2.5 and 

their cognitive health from 2001 through 2013, leveraging within- and between-

county quasi-random variation in PM2.5 resulting from the expansion of Clean Air 

Act regulations. Our main estimates suggest that a 1-μg/m3 increase in decadal 

PM2.5 increases the probability of a dementia diagnosis by an average of 1.63-1.84 

percentage points. While we find that higher PM2.5 also increases the probability of 

death during the decade, models that control for this selection show that PM2.5’s 

effects on dementia cannot be explained by selecting on survival or by Tiebout-

sorting dynamics. We do not find relationships between decadal PM2.5 and placebo 

outcomes nor between other air pollutants and dementia. Our estimates suggest that 

federal regulation of PM2.5 led to 182,000 fewer people with dementia in 2013, 

yielding $214 billion in benefits. Further, PM2.5’s effect on dementia persists below 

the current regulatory thresholds.  
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Alzheimer’s disease and related forms of dementia degrade human capital, in-

crease medical spending, and reduce the quantity and quality of life. Dementia is 

the fifth leading cause of death worldwide.1 In the US alone, 5.5 million dementia 

patients spent $234 billion on health care services in 2019, with an additional 18.5 

billion labor hours by unpaid caregivers (Alzheimer’s Association 2019). The pre-

cise causes of dementia remain unknown. However, recent medical research raises 

suspicion that long-term exposure to fine-particulate air pollution smaller than 2.5 

microns in diameter (PM2.5) may contribute to dementia (Peters et al. 2019, Under-

wood 2017, Block et al. 2012). Observational studies reinforce this suspicion. For 

example, Zhang et al. (2018) and Carey et al. (2018) found that long-term exposure 

to PM2.5 is associated with decreased cognitive performance for adults in China and 

increased rates of dementia for adults in London, respectively. However, these as-

sociations may not be causal. Economic research on residential sorting has shown 

that air pollution triggers some people to move (Banzhaf and Walsh 2008, Cheng, 

Oliva, and Zhang 2017) and, conditional on moving, people sort themselves across 

neighborhoods based on their incomes and preferences for air quality and other 

public goods (Sieg et al. 2004, Bayer, Ferreira and McMillan 2007, Bayer, Keohane 

and Timmins 2009, Kahn and Walsh 2015, Bayer et al. 2016). This Tiebout sorting 

could generate correlation between PM2.5 and dementia if people who are at a 

greater risk of developing dementia sort themselves into relatively polluted areas.  

This paper is the first nationwide, individual-level study of whether long-term 

exposure to PM2.5 has a causal effect on dementia. We use administrative records 

from the U.S. Medicare program to develop a longitudinal research design that 

                                                 
1 The World Health Organization’s 10th revision of the International Statistical Classification of Diseases and Related Health 
Problems defines dementia (codes F00-F03) as “a syndrome due to disease of the brain, usually of a chronic or progressive 

nature, in which there is disturbance of multiple higher cortical functions, including memory, thinking, orientation, compre-

hension, calculation, learning capacity, language and judgement. Consciousness is not clouded. The impairments of cognitive 
function are commonly accompanied, and occasionally preceded, by deterioration in emotional control, social behavior, or 

motivation. This syndrome occurs in Alzheimer disease, in cerebrovascular disease, and in other conditions primarily or 

secondarily affecting the brain.” (WHO 2011) Below we define Alzheimer’s disease specifically, which accounts for 60% 
to 80% of all dementia cases. Mortality data are from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-

of-death. 
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comprehensively addresses residential sorting. First, we assemble ten years of data 

on a random sample of millions of Americans age 65 and above to track their diag-

nosis dates for many illnesses including Alzheimer’s disease and related dementias, 

their use of prescription drugs for symptoms of Alzheimer’s disease, their de-

mographics, and their sequence of residential addresses from 2001 through 2013. 

Then we combine individuals’ location histories with PM2.5 data from a balanced 

panel of the Environmental Protection Agency (EPA) air quality monitors to meas-

ure long-term PM2.5 exposure at the individual level, accounting for migration.  

Like the prior observational studies, the data we use show strong, positive rela-

tionships between the prevalence of dementia and the average concentration of 

PM2.5 over a decade. Figure A1 illustrates this association by plotting state-level 

dementia rates among 75, 80, 85, and 90-year-old individuals in 2013 against their 

average residential PM2.5 exposures from 2004 through 2013. Correlation coeffi-

cients range from 0.47 to 0.66.  

We investigate whether these associations are causal or are spurious due to res-

idential sorting, sample selection, errors in measuring pollution exposure, or other 

unspecified threats to identification. Our research design leverages quasi-random 

variation in PM2.5 resulting from the EPA’s expansion of Clean Air Act regulations. 

In 2004 the EPA began to enforce a maximum threshold on PM2.5, prompting local 

regulators to clean up polluted areas. The subsequent reductions in emissions cre-

ated variation in individuals’ PM2.5 exposures from 2004-2013 conditional on their 

demographics, pre-regulatory health, and pre-regulatory pollution exposures and 

other geographic factors. We use this variation to identify how PM2.5 exposure from 

2004-2013 affected the probability of being diagnosed with dementia during this 

period among those who did not have dementia in 2004. Our two-stage least-

squares (2SLS) models flexibly control for individual characteristics associated 

with dementia risk, including race, gender-by-integer-age interactions, medical ex-

penditures, fully interacted sets of baseline medical conditions, the socioeconomic 
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composition of people’s baseline neighborhoods, and the pre-regulatory pollution 

levels of those neighborhoods. Further, we include core-based statistical area 

(CBSA) fixed effects to absorb spatial variation in diagnostic standards, health care 

quality and access, and latent environmental quality. 

Under our research design, the effect of interest is identified by quasi-random 

variation in decadal exposure to PM2.5 experienced by people of the same age, race, 

and gender who lived in the same CBSA and who, at the start of the decade, had 

received the same medical diagnoses for dementia risk factors, had the same level 

of gross annual medical expenditures, and had sorted themselves into neighbor-

hoods with the same baseline levels of PM2.5 and with the same distributions of 

race, income, educational attainment, and property values. Conditional on these 

characteristics, our models are identified by three sources of residual variation in 

PM2.5 that prior studies have used to analyze air pollution’s effects on housing 

prices and residential sorting. First, like Chay and Greenstone (2005), we use in-

formation on how strengthened EPA regulations affected some counties more than 

others. Second, like Bento, Freeman, and Lang (2015), we use within-county vari-

ation in the effects of these regulations. Third, like Banzhaf and Walsh (2008), we 

observe changes in exposure among people who moved after the regulations were 

enforced.  

A two-stage linear probability model shows that a 1 μg/m3 increase in average 

residential concentrations of PM2.5 over a decade (9.1% of the mean) increases the 

probability of receiving a dementia diagnosis by 1.68 percentage points (pp) (7.5% 

of the mean) among those who survived the decade. To put theses estimate in con-

text, the elevated risk of dementia due to a 1 μg/m3 increase in decadal PM2.5 is 

approximately twice as large as the elevated risk conditionally associated with hav-

ing been previously diagnosed with hypertension and half of the elevated risk con-

ditionally associated with having been previously diagnosed with diabetes. A flex-

ible control-function probit model yields an average marginal effect of 1.84 pp. 
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This model implies that the marginal effects rise as the level of exposure falls, in-

dicating that further reductions in PM2.5 would yield even larger marginal reduc-

tions in dementia than we estimate for our study period. 

Consistent with prior work on the short-term effects of PM2.5 (e.g., Deryugina 

et al. 2019), we find that long-term exposure to PM2.5 causes mortality. Specifically, 

our two-stage linear model shows that a 1 μg/m3 increase in decadal PM2.5 elevates 

the decadal mortality risk by 2.37 pp. Because our main estimation sample is lim-

ited to people who survived through 2013, our estimates for the effect of PM2.5 on 

dementia could diverge from the population-wide effect if unobserved health that 

affects survival is correlated with unobserved health that affects dementia. We im-

plement a two-pronged approach to evaluate whether sample selection can explain 

our observed effects of PM2.5 on dementia. First, we employ a partial-identification 

approach (Manski 1990, Lee 2009) that makes no assumptions on the correlation 

between survival and the latent health affecting dementia and show that our main 

results cannot be explained by selection on mortality. Second, we extend our 2SLS 

model to incorporate a control-function procedure (Heckman and Robb 1986) 

where we first estimate the probability of survival using additional instruments con-

structed from data on individuals’ diagnoses of cancers that, based on medical lit-

erature, are unrelated to dementia. This procedure increases the estimated effect of 

a 1 μg/m3 increase in decadal PM2.5 on the dementia diagnosis probability to 2.33 

pp. This increase is consistent with the hypothesis that people with lower latent 

health are both less likely to survive the decade and more likely to develop dementia 

if they were to survive. We additionally estimate a correlated random coefficient 

model (Garen 1984) to simultaneously address selection and sorting on latent het-

erogeneity in sensitivity to PM2.5 within the selection-corrected 2SLS model. We 

find that this model yields estimates almost identical to our preceding selection-

corrected models, and we cannot reject the hypothesis of no sorting or selection on 

PM2.5 sensitivities. 
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Our results persist across a wide range of alternative modeling decisions. The 

effect of decadal PM2.5 on dementia persists when we modify our main specification 

to use (1) different measures of dementia such as the use of prescription drugs for 

the symptoms of Alzheimer’s disease rather than claims-based diagnosis codes; (2) 

different samples that include people who select into managed care plans known as 

Medicare Advantage; (3) monitor-level instruments rather than county-level instru-

ments; (4) different approaches to measuring PM2.5 exposure including expanding 

the set of monitors to include those not present for the entire study period, (5) con-

trols for baseline pollution exposure even more flexible than the fourth-order poly-

nomial function in our main models, and (6) a control that accounts for the possi-

bility that receiving a dementia diagnosis affects people’s subsequent decisions 

about where to live.  

Additional analysis supports the validity of using our research design to draw 

causal inference about the effects of PM2.5 on dementia specifically. First, we esti-

mate the same 2SLS model for other chronic illnesses thought a priori to be unre-

lated to PM2.5, but that share similarities with dementia in terms of symptoms, di-

agnostic difficulty, and how diagnosis rates are correlated with age, race, and gen-

der. These placebo tests yield point estimates that are small and statistically indis-

tinguishable from zero at conventional levels. These null effects contrast with our 

“reverse placebo” finding that long-term exposure to PM2.5 also causes mortality, 

consistent with prior work on short-term exposure. Second, we repeat the estima-

tion using having dementia in 2004 as the outcome. The point estimate is negative, 

small in absolute value, and statistically indistinguishable from zero. This suggests 

that our model is unlikely to be confounded by anticipatory Tiebout sorting into 

more or less polluted areas based on unobserved factors that contribute to differ-

ences in dementia diagnoses.  

Additional specifications provide further evidence that the higher probability of 

dementia is due to long-term exposure to PM2.5 specifically. First, expanding the 
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set of pollutants in the model to include ozone, nitrogen dioxide, sulfur dioxide, 

and carbon monoxide confirms that PM2.5 affects dementia, and the estimated effect 

of PM2.5 is unchanged by conditioning on these other pollutants. Second, we find 

that the effects are driven entirely by long-term exposure. The estimated effects of 

PM2.5 increase as we lengthen the measured exposure duration and become statis-

tically significant at eight years and beyond. Related, we show that our results are 

not explained by observed strokes that lead to vascular dementia, suggesting that 

the effects are due to Alzheimer’s disease specifically.  

These findings indicate that air pollution’s effects on dementia make its detri-

ments to health and human capital substantially larger than previously realized. In-

corporating these effects will be important for comprehensively evaluating the on-

going efforts to improve air quality worldwide. These include recent efforts to re-

duce vehicle emissions in China (Li 2017) and industrial emissions in the U.S. 

(Blundell, Gowrisankaran, and Langer 2018) via the Clean Air Act regulations even 

beyond the specific one that we consider in this paper. We find that the EPA’s 

expansion of the Clean Air Act to target PM2.5 specifically led to improvements in 

newly regulated areas that averted approximately 182,000 cases of dementia in 

2013 among people age 75 and above, yielding $214 billion in benefits. Finally, we 

find that PM2.5’s effect on dementia persists at levels below the EPA’s current reg-

ulatory threshold, implying that further improvements in air quality would reduce 

dementia rates.  

I. Related Literature 

A. Economic research on air pollution, human capital, and Tiebout sorting 

Economic research has shown that particulate matter emitted by the transporta-

tion, manufacturing, and energy sectors increases mortality. This finding persists 

around the world and over time, even as pollution has declined and medical tech-

nology has improved—from the historically high exposures in London in the 1960s 
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(McMillan and Murphy 2017) and China in the 2000s (Li et al. 2019) to the histor-

ically low exposures in the U.S. in the 2000s (Deryugina et al. 2019). Economic 

research has also shown that air pollution constrains both the production and 

productivity of human capital.2 For instance, daily pollution spikes have been found 

to increase school absences and reduce students’ scores on high stakes exams (Cur-

rie et al. 2009, Ebenstein, Lavy, and Roth 2016). Among working age adults, daily 

pollution spikes have been found to reduce productivity in both manual and cogni-

tive tasks (Chang et al. 2016, Archsmith, Heyes, and Saberian 2017). In contrast, 

prior studies have not considered whether pollution degrades human capital late in 

life apart from mortality. While prior studies have shown that cognitive decline 

impairs older adults’ financial decisions, reduces their welfare, and affects market 

functioning (Agarwal et al. 2009, Keane and Thorpe 2016) our study is the first 

economic research to investigate whether air pollution plays a role. 

Residential sorting poses a difficult econometric challenge for any study of 

long-term pollution exposure (Kahn and Walsh 2015). The Tiebout sorting litera-

ture has shown that heterogeneity in wealth and preferences plays a leading role in 

determining whether individuals choose to pay housing price premia to live in 

neighborhoods with better air quality and correlated amenities (e.g., Bayer, Ferreira 

and McMillan 2007, Banzhaf and Walsh 2008, Bayer, Keohane and Timmins 2009, 

Bayer et al. 2016, Lee and Lin 2018). This creates a potentially complex endoge-

neity problem because factors determining individual pollution exposure (e.g., 

wealth and preferences) may themselves be partially determined by latent aspects 

of health that affect dementia risk. In addition to leveraging our data and applying 

methods to overcome this problem, we contribute to the sorting literature by provid-

ing the first empirical analysis of long-term pollution exposure that accounts for 

individual migration.  

                                                 
2 See Graff-Zivin and Neidell (2013) for a systematic literature review.  
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A specific concern that our estimation strategy is designed to deal with is the 

possibility that individuals sort on unobserved risk factors such as genetics. For this 

to confound our estimates, individuals of the same age, race, sex and baseline health 

would have to be sorting on the basis of genetics into attainment versus non-attain-

ment counties (or monitors, in some of our specifications) within the same CBSA 

and with the same baseline pollution levels and neighborhood sociodemographic 

factors. In addition to our methodological approach, prior research that observed 

individuals’ genetics indicates that sorting into different levels of PM2.5 is not as-

sociated with the relevant genetic factors known as Apolipoprotein E (APOE). Spe-

cifically, Cacciottolo et al.’s (2017) study of nearly 4,000 elderly women in the US 

finds that individuals’ residential exposures to PM2.5 do not differ by APOE geno-

types. Similarly, Shin, Lillard, and Bhattacharya (2019) find “no correlation be-

tween Alzheimer’s Disease polygenic risk score and net worth, housing assets and 

nonfinancial assets” indicating that dementia-related genetics are not associated 

with sorting into neighborhoods based on economic status. 

 

B. Medical links between air pollution and dementia 

 

Medical and epidemiological research provides reason to suspect that long-term 

exposure to PM2.5 may permanently impair older adults’ cognition via dementia 

(Peters et al. 2019). Compared with other air pollutants, PM2.5’s relatively small 

size allows it to remain airborne for long periods, to penetrate buildings, and to be 

inhaled easily. Research proposes multiple pathways by which PM2.5 may cause 

dementia. First, PM2.5 accumulates in brain tissue (Maher et al. 2016) and causes 

neuroinflammation, which is associated with symptoms of dementia (Underwood 

2017). Individuals living in polluted areas for long periods have been found to have 

elevated concentrations of PM2.5 in their brains, smaller brain volume, and higher 

rates of brain infarcts or areas of necrosis (Wilker et al. 2015). Second, pollution is 

linked to increased risk for strokes and subsequent vascular dementia (Wellenius et 
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al. 2012). Third, exposure of mice to particulates in laboratory experiments results 

in neuroinflammation and patterns of brain cell damage similar to postmortem anal-

ysis of Alzheimer’s patients (Block et al. 2012). Fourth, PM2.5 has been associated 

with subclinical measures of cognitive impairment (Power et al 2016) such as la-

boratory tests, with the strongest associations among individuals over age 65 

(Zhang et al. 2018). Finally, PM2.5 has been found to increase mortality from car-

diovascular conditions (Pope et al. 2002, Landen et al. 2006) that are associated 

with a higher risk of dementia (Alzheimer’s Association 2018). Some studies found 

associations between dementia and other pollutants, including carbon monoxide, 

nitrogen oxides and ozone, but the research was not designed to disentangle the 

contributions of covarying pollutants (Peters et al. 2019).  

While suggestive, the current evidence directly linking PM2.5 to dementia is 

based on non-human mammal studies and specialized human cohorts, such as indi-

viduals who chose to live near major roadways (e.g., Chen et al. 2017).3 One such 

specialized cohort are the elderly US women in the Women’s Health Initiative 

Memory Study studied by Cacciottolo et al (2017). They find that the association 

between residential PM2.5 exposure and dementia are strongest for women with 

specific APOE genotypes. While genetics may contribute to heterogeneity in indi-

viduals’ dose-response function for PM2.5 and dementia, genes’ influence remains 

probabilistic rather than deterministic, such that “[h]aving the genetic variant asso-

ciated with an increased risk of late-onset dementia is neither necessary nor suffi-

cient for onset” (Giustinelli, Manski and Molinari 2019).  

II. Variation in Long-Term PM2.5 Exposure Due to the Clean Air Act 

We analyze how decadal exposure to air pollution affects the probability of new 

                                                 
3 An exception is Carey et al. (2018) which tracked 130,000 older adults in London over a nine-year period and found their 
likelihood of a dementia diagnosis to be positively correlated with their neighborhood’s baseline PM2.5 and NO2 but not 

ozone. However, that study did not address potential confounding from residential sorting. 
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dementia diagnoses using within-county and between-county, quasi-random varia-

tion in pollution exposure resulting from Clean Air Act (CAA) regulations. The 

CAA established national standards for maximum-allowable concentrations of air 

pollutants. Counties containing monitors that violate the standards are designated 

as being “nonattainment” by the EPA. States are then responsible for developing 

implementation plans that coordinate local regulatory actions to ensure that nonat-

tainment counties reduce concentrations around pollution “hot spots” enough to 

meet the standards. States that fail to bring their counties into attainment risk losing 

federal highway funds and may face additional penalties. 

Among the regulated pollutants, particulate matter is believed to have the most 

pernicious effects on human health (US EPA 2011). Beginning in 1971, the EPA 

regulated total suspended particulates (TSP). In light of evidence that health effects 

were driven by the smallest particulates, the EPA replaced the TSP standard with a 

standard on PM10 in 1987 and a standard on PM2.5 in 1997. Each new standard was 

followed by new nonattainment designations.4 These designations caused the reg-

ulated counties to have relatively large reductions in particulates. Further, the sizes 

of these reductions varied within counties due to local targeting of hot spots and 

geographic factors that determine particulate dispersion. Because a county’s non-

attainment status was determined by its “dirtiest” monitor, local regulators took 

actions that led to the largest pollution reductions around monitors that exceeded 

the standard or were close to doing so (Auffhammer, Bento, and Lowe 2009).  

Prior research has leveraged similar policy changes to evaluate air pollution’s 

effects by assuming that individuals’ decisions about where to live prior to these 

policies did not incorporate anticipation of these regulatory changes and their 

neighborhood-specific effects on air pollution. Chay and Greenstone (2005) and 

Isen, Rossin-Slater, and Walker (2017) use county nonattainment for TSP as an 

                                                 
4 See Kahn (1997) for a review of these policies. 
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instrument for subsequent changes in county-level TSP concentrations, while 

Bento, Freedman, and Lang (2015) develop instruments based on within-county 

variation in monitor-level nonattainment for PM10. In this paper, we exploit the 

EPA’s initial nonattainment designations for PM2.5 to develop county-level and 

monitor-level instruments for decadal PM2.5. 

In 1997, the EPA established initial monitoring protocols for PM2.5 and set the 

maximum-allowable annual average concentration at 15.05 μg/m3. By 1999, a na-

tional network of more than 900 air quality monitors was put into place. Several 

litigants challenged the new PM2.5 standard, but it was ultimately upheld by the U.S. 

Supreme Court and litigation ended in 2002. In April 2003, the EPA asked state 

and local regulators to provide their three most recent calendar years of PM2.5 mon-

itor data and to self-report any nonattainment areas to the EPA by February 2004. 

The same memo explained how the EPA would use this information to finalize 

nonattainment designations and outlined procedures and deadlines for becoming 

compliant. In January 2005, the EPA issued final nonattainment designations using 

monitor data from 2001-2003.5  

Figure I shows the locations of attainment and nonattainment counties with air 

quality monitors. At that time, 132 of the monitored counties containing approxi-

mately 27% of the US population were classified as nonattainment. Another 528 

counties containing 43% of the US population were classified as attainment. The 

remaining counties lacked monitoring data and were designated “unclassifiable” 

and not subjected to additional regulation (US EPA 2005). States were directed to 

ensure that nonattainment counties met the 15.05 μg/m3 standard by 2010.

                                                 
5 Nonattainment designations at each monitor were based on an average from 2001-2003 of annual averages over quarterly 
averages over daily averages over hourly average monitor readings. For counties with multiple monitors, nonattainment 

designations were based on the monitor with the highest concentration. Details are provided in US EPA (2005). 
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FIGURE I: INITIAL COUNTY (NON)ATTAINMENT DESIGNATIONS FOR PM2.5 

 

Note: The map shows attainment status in 2005 for US counties that had air quality monitors in place throughout the 2001-

2003 evaluation period. There were 132 nonattainment counties located in 21 states and 528 attainment counties in 50 states.  

Local regulators’ responses to these designations led to quasi-random within- 

and between-county variation in the change in average PM2.5 concentrations over 

the subsequent decade. Figure II provides initial evidence that nonattainment des-

ignations led to greater average PM2.5 reductions in newly regulated counties.6 We 

define 2004 as the start of the post-regulatory period because local regulators 

learned which counties were likely to be designated nonattainment at some point 

between April 2003 (when they received the EPA memo) and February 2004 (when 

they were required to submit their data). The figure shows that PM2.5 concentrations 

were trending downward similarly in both attainment and nonattainment counties 

prior to 2004. The dotted line shows that the difference between the two trend lines 

was fairly stable from 1999 through 2003 with between 4.4 and 4.8 higher μg/m3 

                                                 
6 The figure is based on a balanced panel of 485 PM2.5 monitors in operation continuously from 2001-2013. Appendix Figure 
A2 shows that the figure looks virtually identical if we reconstruct it using an unbalanced panel of all monitors ever in 

operation from 2001-2013. 
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in nonattainment counties.7 After 2003, PM2.5 concentrations declined at a notice-

ably faster rate in nonattainment counties so that by 2013 the gap was only 1.9 

μg/m3. This differential is 1.5 μg/m3 smaller than the gap that would be predicted 

by projecting the pre-regulatory trend from 1999-2003 forward to 2013 (3.4 μg/m3). 

The cumulative difference between the dotted and solid lines reveals that the aver-

age concentrations from 2004 to 2013 in nonattainment counties was 0.97 μg/m3 

lower than projected from the pre-regulatory trend. 

FIGURE II: ANNUAL PM2.5 CONCENTRATIONS BY COUNTY ATTAINMENT STATUS 

 
Note: The figure reports annual average concentrations of PM2.5. Measurements are taken from air quality monitors in coun-
ties designated in 2005 as attainment or nonattainment with the federal standard based on monitor readings from 2001-2003. 

The nonattainment line is a simple average over monitors in nonattainment counties that were in operation from 2001-2013. 

The attainment county line is defined similarly. The dotted line shows the difference between the nonattainment and attain-
ment lines. The pre-regulatory trend line is a projection of the difference from 1999 to 2003 when state and local regulators 

were notified of the impending nonattainment designations. In 2010 the Census Bureau recorded 41% of the US population 

age 65 and over living in attainment counties and 27% living in nonattainment counties. 

                                                 
7 Figure A8 in the appendix shows that difference in annual dementia diagnosis rates between attainment and nonattainment 

counties was also stable between 1999 and 2003.  
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Figure II mirrors the analysis that Chay and Greenstone (2005) used to motivate 

their use of the 1975 nonattainment designations for TSP (see Figure 2 in that pa-

per) as instrumental variables to isolate exogenous between-county variation in 

TSP changes. We extend their strategy to additionally isolate exogenous within-

county variation in PM2.5 changes. Specifically, we follow Auffhammer, Bento, and 

Lowe (2009) in allowing the effects of local regulatory responses to vary with dis-

tance from the regulatory threshold. We control for pre-regulatory trends with a 

flexible function of local PM2.5 levels from 2001-2003 and find that, conditional on 

pre-regulatory levels of PM2.5, neighborhoods in nonattainment counties had PM2.5 

reductions over the following decade larger than neighborhoods in attainment coun-

ties, with the size of the difference varying with the distance from the threshold. 

We further exploit exogenous within-county variation in PM2.5 by developing an 

IV approach in the spirit of Bento, Friedman, and Lang (2005), where we interact 

county-attainment status with the nearest monitor’s attainment status to account 

explicitly for differential targeting within a county. Section IV-VI formalize these 

models and report results. 

III.  Data and Summary Statistics 

A. Medicare Data 

The U.S. Medicare program provides universal health insurance for citizens 

over age 65. The traditional form of Medicare (TM) pays health care providers a 

predetermined fee for each service they provide and exposes enrollees to relatively 

high cost sharing.8 Alternatively, beneficiaries can choose to enroll in a Medicare 

Advantage (MA) managed care plan that charges a monthly premium in exchange 

                                                 
8 Traditional Medicare is comprised of universal inpatient coverage for hospitals, skilled nursing facilities, and hospice fa-
cilities (known as Part A) and coverage for physician services and outpatient treatments (known as Part B). Enrolling in Part 

B requires paying an additional monthly premium. Over 90% of people over age 65 choose to enroll in Part B.  
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for lower cost sharing than TM and may use alternative methods of paying provid-

ers.9 We analyze Medicare administrative records from the US Centers for Medi-

care and Medicaid Services (CMS). CMS maintains a comprehensive national da-

tabase on beneficiaries, including their addresses, medical claims, and de-

mographics. We start with a random 10% sample of all beneficiaries in 2001 and 

then add random 10% samples of all new beneficiaries each year from 2002 to 

2013.10  

After compiling these data, we extract records for the subset of individuals for 

whom we can observe health, residential location, and PM2.5 exposure at the point 

when PM2.5 regulation effectively began in 2004. We start with everyone who was 

65 or older on January 1, 2004 (6.6 million people). Then we make four sample 

cuts for our main analysis. First, we drop 2.7 million individuals who lived in “un-

classifiable” counties that lacked PM2.5 monitors at the time regulation began. This 

data cut is standard in air pollution studies due to the increased scope for measure-

ment error.11 Next, we restrict the sample to individuals enrolled in traditional Med-

icare (TM) in 2004 by dropping 0.8 million who enrolled in Medicare Advantage 

(MA) that year. This is because CMS lacks data on dementia diagnoses of MA 

enrollees in 2004, and our models require the opportunity to observe within-person 

changes in dementia. However, for some analysis we expand the sample to include 

MA enrollees and evaluate the use of ADRD medication as the outcome of interest.  

Our third exclusion is to drop 0.3 million individuals who had dementia in 2004 

                                                 
9 MA enrollees are left out of most studies of Medicare beneficiaries due to data limitations during our study period, but we 

are able to overcome these limitations and include MA enrollees in some specifications, described below. 
10 Some people become eligible prior to age 65, for example due to disability, but we exclude them from the data until they 
turn 65. Due to the provenance of our data, we also include an independent, random 20% sample from the universe of age 

65 and over beneficiaries who purchased standalone prescription drug insurance plans through Medicare Part D at any point 

between 2006 and 2010 without the aid of low-income subsidies.  
11 Spatially interpolating their pollution exposures relies exclusively on information from other counties, which may increase 

measurement error due to the greater distance between people’s residences and the monitors. This could pose a threat even 

to 2SLS estimation if the measurement error tends to be greater in the unmonitored/unclassifiable counties because they were 
treated the same as attainment counties for regulatory purposes. We avoid this threat to identification by dropping people 

who lived in unmonitored/unclassifiable counties at the time nonattainment designations were made. 
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because the disease is currently irreversible, leaving no scope for change.12 Finally, 

we drop 0.4 million individuals whose CMS records are missing claims in 2004 or 

who we could not assign to a Census block group in 2004 based on their mailing 

address on file or due to the fact that they moved during that year. These sample 

cuts are unlikely to compromise external validity. Appendix Table A1 shows that 

the excluded groups are similar to our main estimation sample in terms of average 

demographics, longevity, and, when observable, medical conditions, health ex-

penditures, pollution exposure, and Census block-group demographics. 

FIGURE III: SAMPLE SIZES AND TRANSITIONS FROM 2004-2013 

 
Note: The solid arrows denote our primary sample. The dashed arrows indicate samples we use in sensitivity analyses that 

evaluate any effect on our estimates from selection on survival or selection on type of Medicare plan. The dotted arrow 

denotes a small subsample that we exclude because they moved to a location outside the United States, or to another location 

that we were unable to geocode, leaving us unable to reliably estimate their pollution exposure. 

The resulting sample consists of 2,439,950 individuals in 2004. Figure III illus-

trates how between 2004 and 2013, some of these individuals move outside of the 

                                                 
12 As described below, we perform a model validation test using a sample that includes those with dementia in 2004.  
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continental US, move out of TM into MA and perhaps back again, or die. Our pri-

mary estimation sample is comprised of 1,257,232 individuals who are alive and 

enrolled in traditional Medicare in 2013 (1,177,515 individuals who were continu-

ously enrolled in TM from 2004 to 2013 plus 79,717 who moved from TM to MA 

and then back to TM). We explicitly account for potential selection bias caused by 

focusing on this balanced panel of TM survivors by additionally estimating models 

with extended samples that include those who die before 2013 and those who move 

and remain in Medicare Advantage through 2013, as denoted by the dashed arrows 

in Figure III. Thus, we ultimately estimate models using 98% of the individuals in 

our data without dementia in 2004. We drop 2% for whom we cannot reliably assign 

pollution exposure because they move outside the US or to an address that we are 

unable to geocode.  

B. Dementia and its risk factors 

For individuals in traditional Medicare, CMS’s Chronic Conditions Data Ware-

house file uses codes on insurance claims to track if and when each individual is 

diagnosed with a range of specific chronic medical conditions. A diagnosis of de-

mentia as officially defined by the World Health Organization (see footnote 1) is 

based on the presence of multiple symptoms of cognitive impairment that signifi-

cantly impact daily functioning.13 Examples include memory loss, impaired judge-

ment, loss of spatial awareness, depression, and behavioral changes. Alzheimer’s 

disease is the primary type of dementia, accounting for 60% to 80% of all cases 

(Alzheimer’s Association 2018).14 Figure IV shows how the fraction of individuals 

with dementia varies by age and gender in 2013. Approximately 2% of our sample 

                                                 
 
14 The ICD-10 defines Alzheimer’s disease (G30) as “A degenerative disease of the brain characterized by the insidious onset 

of dementia. Impairment of memory, judgment, attention span, and problem solving skills are followed by severe apraxias 

and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe 
cortical atrophy and the triad of senile plaques; neurofibrillary tangles; and neuropil threads” (World Health Organization 

2011). 
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receives a diagnosis by age 66. Diagnosis rates increase gradually with age through 

the mid-seventies before accelerating in the late seventies and beyond. More than 

one third of those living to age 90 receive a dementia diagnosis by that point. The 

diagnosis rate is higher for women, and this gender gap widens with age. 

This claims-based approach to identifying dementia cases has been well vali-

dated, with Medicare claims from 2007-2012 correctly identifying 85 percent of 

patients diagnosed with dementia by clinician researchers using in-person assess-

ments (Lee et al. 2019; see also Taylor Jr., Fillenbaum, and Ezell 2002). The overall 

dementia rate in our traditional Medicare data for 2012 is 12.8 percentage points, 

compared with 10.5 percentage points determined by a panel of clinicians using an 

in-person set of cognitive tests given to 888 individuals age 65 and above in the 

Health and Retirement Study (HRS) (Hudiomet et al. 2018). The higher cross-sec-

tional rate in the traditional Medicare sample may be due to several factors, includ-

ing sampling error in the HRS, underdiagnosis in the HRS (Agarwal et al. 2009), 

non-representativeness of the HRS (Hudiomet et al. 2018), or selection of healthier 

individuals out of TM and into MA during our study period (Newhouse et al. 2016).  

We assess whether the use of claims-based diagnosis for the TM sample influ-

ences our conclusions by also evaluating whether PM2.5 affects the probability that 

individuals fill a prescription for drugs used to treat the symptoms of Alzheimer’s 

disease. In the CMS data, we observe if and when each individual, including those 

on MA plans, began taking one of these five drugs: donepezil, galantimine, rivastig-

mine, memantine, and donepezil and memantine in combination. Beginning in 

2006, 1,098,256 individuals in our sample had drug coverage through Medicare, 

and 12% of them initiated one of these medications between 2006 and 2013. 

Among the TM enrollees for whom we can observe both drug use and dementia 

diagnoses, we see that 90% of those prescribed these drugs also received a dementia 

diagnosis by 2013.  
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FIGURE IV: DEMENTIA DIAGNOSIS AND PRESCRIPTION DRUG USE BY AGE AND 

GENDER IN 2013 

 

CMS data also provide controls for the known medical risk factors for demen-

tia. These include chronic conditions that reduce the flow of blood and oxygen to 

the brain (Alzheimer’s Association 2019). Most individuals in our data were diag-

nosed with at least one of these risk factors by 2004: stroke (7%), congestive heart 

failure (13%), diabetes (22%), ischemic heart disease (36%), and hypertension 

(67%). Additional behavioral factors associated with lower risk of dementia include 

higher educational attainment, better nutrition and overall physical health, and a 

higher degree of social and cognitive engagement. We proxy for these individual-

level behaviors by using the average characteristics of individuals living in each 

individual’s 2004 Census block group.15 From the US Census Summary files, we 

use block-group averages of household income, per capita income, housing value, 

gross rent, housing stock age, percent of the housing stock that is owner occupied, 

share of residents over 65, share of residents by race, and share of residents by 

                                                 
15 A block group contains 600 to 3,000 residents on average (US Census). 
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educational attainment.  

C. Using Address Histories to Measure Long-Term Pollution Exposure 

CMS uses information from the US Social Security Administration to track 

Medicare beneficiaries’ residential addresses. We obtain ZIP+4 Codes for each in-

dividual’s sequence of addresses from 2004 to 2013. ZIP+4 Codes are close to 

street addresses in terms of spatial precision: each code corresponds to a single mail 

delivery point such as a house, one floor of an apartment building, or one side of a 

street on a city block. The US includes more than 34 million ZIP+4 Codes, or about 

one for every four households.  

Migration rates in our sample are similar to those reported by the Census Bu-

reau for individuals aged 65 and above. Over two-thirds of individuals live in the 

same ZIP+4 throughout our study period. Of the 31% of individuals who move at 

least once, 17% move between counties and 10% move between states. We use this 

information to measure each individual’s long-term exposure to air pollution, in-

corporating changes in pollution experienced as a result of moving.16  

Individuals in our estimation samples live in 2.7 million distinct ZIP+4 Codes 

during 2004-2013. We measure residential exposure to PM2.5 based on the concen-

trations at the centroids of the residential ZIP+4 using data from the EPA’s air qual-

ity system. These data include a balanced panel of 485 monitors that monitored 

PM2.5 continuously for our entire study period (2001-2013) and a total of 1,722 

monitors over this time. 

We use the latitude and longitude coordinates of each monitor along with the 

                                                 
16 We are unable to observe seasonal migration by people with more than one residence (e.g., snowbirds) because we only 

observe the residential address on record with the Social Security Administration and CMS. Fortunately, the scope for meas-
urement error is small. Jeffery (2015) estimates that seasonal migrators only account for 2% to 4.1% of the Medicare popu-

lation based on addresses on Medicare claims for individuals’ primary care and emergency room visits.  
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coordinates of each ZIP+4 to assign the annual average concentration at each resi-

dence.17 Specifically, we calculate the shortest distance between each ZIP+4 cen-

troid and each monitor. Then, for each centroid-year combination, we calculate a 

weighted average of ambient concentrations recorded at all monitors with the 

weights given by the square of the inverse distance.18 Thus, as the distance from a 

ZIP+4 centroid to a monitor increases, the weight assigned to that monitor de-

creases. We combine the resulting set of ZIP+4-specific local PM2.5 readings with 

individuals’ residential ZIP+4 histories to construct individual-specific exposure 

histories. Finally, we repeat this process to measure PM2.5 from 2001 to 2003 at the 

locations where individuals lived in 2004. By using these data to control for pre-

regulatory PM2.5 levels, we can identify PM2.5’s effect on dementia from variation 

in post-regulatory exposures among individuals who lived in similarly polluted 

neighborhoods at the time regulation began but differed in whether their neighbor-

hoods were in or out of attainment.  

These exposure histories are the most comprehensive data ever developed to 

study how air pollution affects cognitive impairment among older adults. Like all 

existing methods for measuring pollution exposure, the constructed histories may 

embed measurement error because of our inability to fully observe factors such as 

avoidance behavior, the location and duration of activities taking place outside of 

the home, variation in indoor air penetration rates due to heterogeneity in home 

sealing, and variation in respiration due to health and physical activity. Our instru-

mental variables approach also helps to address these sources of measurement error. 

                                                 
17 Geographic coordinates of ZIP+4 centroids were purchased from GeoLytics, which created them from the Census Bureau’s 

TIGER/line Shapefiles and US Postal Service records. 
18 This method of interpolation, with weights given by the distance raised to a negative exponent, is a predominant method 

in the environmental economics literature.  
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FIGURE V: AVERAGE RESIDENTIAL CONCENTRATION OF PM2.5 BY YEAR  

 
Note: The figure reports the annual average concentrations of fine particulate matter based on place of residence for our 

sample of Medicare beneficiaries. 

Exposure to air pollution among the US Medicare population declined substan-

tially during the 2000s. Figure V shows that annual average residential exposure to 

PM2.5 declined from over 13 μg/m3 in 2001 to about 9 μg/m3 in 2013. This is true 

regardless of whether we measure exposure using the 2001-2013 balanced panel of 

485 monitors (the dashed line) or the unbalanced panel of all 1,722 monitors in 

operation each year (solid line). We feature this balanced panel in our main econo-

metric analysis to avoid measurement error that could be introduced if new moni-

tors tend to be located in more or less polluted areas (Muller and Rudd 2017, Grain-

ger, Schreiber, and Chang 2018, Grainger and Schreiber 2019). We also show that 

our results are robust to instead using the unbalanced monitor panel. 
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IV.  Main Econometric Model and Results 

A. Identification of the linear 2SLS model 

 Let 𝑦𝑖,𝑡 indicate whether individual i has dementia in year t and let ∆𝑦𝑖 =

𝑦𝑖,2013 − 𝑦𝑖,2004 denote the change in dementia status between 2004 and 2013. Be-

cause dementia has no cure, it is an absorbing state and, by definition, ∆𝑦𝑖 is equal 

to zero for all individuals who have dementia in 2004. Therefore we model whether 

individual i is newly diagnosed with dementia by the end of 2013 (i.e., we model 

dementia onset) and restrict our primary sample to individuals who had not received 

a dementia diagnosis before the end of 2004.19 This measure of new dementia di-

agnosis is the dependent variable in our primary, linear probability model,20 

(1) ∆𝑦𝑖 = α ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜂𝑐(𝑖) + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝜖𝑖.  

The coefficient of interest in equation (1), α, measures the effect of the average 

concentration of PM2.5 at the individual’s residence over the decade (from 2004 to 

2013) on ∆𝑦𝑖.
21 While this model assumes that any effect of PM2.5 is linear and 

constant over time, below we present results from non-linear models and from mod-

els that vary the length of history of PM2.5 accumulation.  

We control for individual and neighborhood characteristics that may be corre-

lated with both dementia and PM2.5. First, we add dummy variables, 𝜂𝑐(𝑖), for the 

2013 core-based statistical area (CBSA) in which individuals live.22 This absorbs 

                                                 
19 The results presented in Section IV restrict the sample to those who were still alive in 2013. Section V addresses potential 
biases arising from this sample selection. 
20 We begin with a model of dementia onset, which is standard in the research on dementia. In principle, we could instead 

begin with a model describing an individual’s dementia status in both 2004 and 2013 to derive equation (1), which would 
directly specify the relationship between the instruments and unobserved determinants of dementia in each time period. Such 

a model is shown in Appendix B.  Our model of onset allows us to make an equivalent strict-exogeneity assumption and our 

discussion of identification below explicitly accounts for the fact that error in the onset equation captures changes in unob-
servable dementia determinants, conditional on not having dementia in 2004. 
21 This model is similar to stress models discussed in Deaton and Paxson (1998).  
22 There are approximately 1,000 CBSAs, which are defined according to the Office of Management and Budget as of one 
or more counties anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeconomically 

tied to the urban center by commuting. For people living outside of CBSAs, we create a state-specific, rural dummy variable. 
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the effects of environmental factors that could be spatially correlated with both pol-

lution and dementia. Examples include extreme temperatures, the presence of lead 

pipes, and chemical exposures via hazardous waste sites. In particular, extreme 

temperatures are known to cause morbidities that serve as risk factors for dementia 

(Deschenes 2014). Equally important, these dummies will absorb variation across 

CBSAs in access to medical care and doctors’ diagnostic procedures that could lead 

to spatial variation in dementia diagnosis rates. Additionally, for the majority of 

individuals who never move during our study period, the CBSA dummies will con-

trol for pre-regulatory sorting across CBSAs on the basis of latent characteristics 

that may serve as risk factors for dementia (Finkelstein, Gentzkow, and Williams 

2016). 

To control for heterogeneity in dementia risk among individuals living in each 

CBSA, we utilize all of their demographic information in Medicare records along 

with relevant information about their health at the start of the decade. The 𝑋𝑖 vector 

includes indicators for race and gender-specific indicators for integer age at the end 

of 2013 (from 75 through 100).23 These flexible age-by-gender controls absorb the 

nonlinear trends in dementia rates shown in Figure IV.  

Because our dependent variable is dementia onset (i.e., we condition on not 

having dementia at baseline), we include 𝐻𝑖, which is a vector characterizing base-

line health in 2004. We employ a full-factorial design to control for pre-existing 

medical conditions that are known risk factors for dementia, adding dummy varia-

bles for each of 32 possible combinations of hypertension, diabetes, congestive 

heart failure, ischemic heart disease, and stroke.24 We further control for unob-

                                                 
23 75 is the minimum age in 2013 because the sample is limited to people who were 65 or older on January 1, 2004. Cente-
narians are grouped into two gender-specific bins because their relatively small numbers prevent us from precisely estimating 

age-specific coefficients. Our findings on air pollution are unaffected by adding age-specific bins beyond age 100. 
24 Because air pollution is a risk factor for these morbidities, controlling for them will also help to absorb the manifested 
effects of individual differences in pollution exposure prior to our study period. The full list of these interaction terms is 

provided in Table A2.B.  
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served heterogeneity in baseline health by adding a fourth-order polynomial func-

tion of gross expenditures on all health care services covered by Medicare Parts A 

and B in 2004.25  

To proxy for socioeconomic characteristics that we do not observe for individ-

uals, such as wealth, education, and degree of social engagement, we add a series 

of covariates, 𝑊𝑖, describing the residents of individual i’s 2004 Census block 

group. Specifically, we include median household income, income per capita, mean 

and median house value, median rent, median house age, fractions of the housing 

stock that are owner occupied, renter occupied and vacant, fraction of the residents 

over age 65, fractions of residents who report being white, black, and Hispanic, and 

the fractions of residents in each of seven educational-attainment bins. These neigh-

borhood-level measures also serve to control for within-CBSA heterogeneity in 

other amenities known to attract wealthier households with higher education. 

Finally, we add a fourth-order polynomial function, 𝑓(∙), in baseline PM2.5 ex-

posure from 2001 through 2003 at individual i’s residential location in 2004. This 

controls for any residual effects of pre-regulatory sorting into more polluted neigh-

borhoods by individuals who are more likely to receive a future dementia diagnosis. 

Controlling for baseline neighborhood concentration also makes the identification 

of α in equation (1) similar to a first-differences model. That is, α is identified by 

how cumulative PM2.5 exposure from 2004 to 2013 affects the probability of a new 

dementia diagnosis, conditional on pre-regulatory concentrations in the individu-

als’ baseline neighborhoods.  

Despite the rich set of controls in equation (1), two potential threats to identifi-

cation remain: measurement error in pollution exposure and omitted variable bias. 

                                                 
25 Medicare Parts A and B cover virtually all medical services aside from prescription drugs and long-term care. This includes 
doctors’ services, preventive care, durable medical equipment, hospital outpatient services, laboratory tests, imaging, hospital 

inpatient services, nursing facilities, and hospice care. 
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We address both concerns by instrumenting for decadal exposure. Equation (2) pro-

vides the first stage of the 2SLS model: 

(2)  ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 = 𝜋𝑍𝑖 + 𝜉𝑐(𝑖) + 𝜎𝑋𝑖 + 𝜏𝐻𝑖 + 𝜔𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝜀𝑖.  

𝑍𝑖 is a vector of instrumental variables created by interacting an indicator for indi-

viduals who resided in nonattainment counties in 2004 with the fourth-order poly-

nomial function of baseline exposure that enters the second-stage model. This flex-

ibility capitalizes on the within-county variation in subsequent PM2.5 exposure due 

to local regulators’ responses to nonattainment designations.26  

In our 2SLS models, α is identified by variation in (instrumented) decadal ex-

posure to PM2.5 experienced by individuals of the same age, race, and gender who 

lived in the same CBSA and who, at the start of the decade, had not received a 

dementia diagnosis and had received the same medical diagnoses for dementia risk 

factors, had the same level of gross annual medical expenditures, and had sorted 

themselves into neighborhoods with the same baseline levels of PM2.5 and with the 

same distributions of race, income, educational attainment, and property values. 

The identifying variation in PM2.5 arises from three sources. First, some CBSAs 

include both attainment and nonattainment counties, yielding between-county dif-

ferences in post-regulatory exposures similar to the identifying variation in Chay 

and Greenstone (2005) and Isen, Rossin-Slater, and Walker (2017). Second, within 

each county, residential locations differ in their initial distance from the attainment 

threshold, yielding within-county differences in post-regulatory exposure due to 

local targeting of pollution hot spots similar to the identifying variation in Auff-

hammer, Bento, and Lowe (2009) and Bento, Freedman, and Lang (2015).27 Third, 

individuals who moved between 2004 and 2013 experienced variation in exposure 

                                                 
26 Formally, instrument validity requires that cov(Z, 𝜖) = 0 where, as discussed above, 𝜖 represents unobserved attributes that 

affect dementia onset for those who did not have dementia at the beginning of our sample. 
27 Appendix Figure A4 illustrates the first two sources of identifying variation by showing within-CBSA and within-county 

variation in nonattainment status conditional on baseline PM2.5 concentrations, using New York and Chicago as examples. 
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due to their migration paths, similar to the identifying variation in Banzhaf and 

Walsh (2008).  

 

B. First-stage results 

The pollution exposure histories and first-stage estimates reveal that the EPA’s 

PM2.5 regulation was followed by systematic changes in exposure. First, average 

exposures declined for more than 95% of individuals between 2001-2003 and 2004-

2013. Second, the declines were larger for individuals whose 2004 neighborhoods 

were more polluted at baseline (2001-2003). Third, conditional on baseline neigh-

borhood pollution, the declines were larger for individuals whose 2004 neighbor-

hoods were in nonattainment counties. Figure VI.A illustrates these trends. It plots 

estimates for the average decline in exposures between 2001-2003 and 2004-2013, 

conditional on county attainment status and baseline pollution levels. These esti-

mates are derived by regressing changes in individual exposure on indicators for 

0.33 µg/m3 bins of baseline exposure interacted with county attainment status. Ad-

ditional covariates include the CBSA dummies, block group variables, and all in-

dividual variables from equations (1)-(2). The resulting trend lines mirror Auffham-

mer, Bento, and Lowe’s (2009) estimates for the partial effect of the EPA’s 1990 

county nonattainment designations for PM10 on subsequent PM10 concentrations.  

The identifying variation for our 2SLS model comes from the difference be-

tween the attainment and nonattainment trend lines in Figure VI.A. Visual inspec-

tion shows that PM2.5 declined by more in nonattainment counties, even conditional 

on baseline exposure. Figure VI.B provides a more formal illustration of the iden-

tifying variation. It uses the coefficients on the instruments from equation (2) to 
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plot the estimated partial effect of nonattainment on post-regulatory PM2.5 expo-

sure, conditional on baseline exposure.28 Intuitively, the partial effect of nonattain-

ment is negative. The size of the effect declines in baseline concentrations as we 

approach the regulatory threshold from below. Potential explanations for the de-

clining difference include spatial spillovers from pollution control effort in nonat-

tainment areas and incentives for attainment area regulators to target known hot 

spots that could cause them to be reclassified in the future. Finally, the first-stage F 

statistic is 637, suggesting that any finite sample bias is negligible.  

The partial effect of nonattainment on individual PM2.5 exposure in Figure VI.B 

is noticeably smaller than the reduction implied by visual comparison between at-

tainment and nonattainment counties’ average concentrations in Figure II. This is 

because the covariates in (1)-(2) absorb much of the regulation’s effect. In particu-

lar, spatial dummies absorb the between-CBSA variation in PM2.5 reductions. To 

illustrate the regulation’s full effect on average PM2.5 reductions, we regress differ-

ences between individuals’ decadal exposures and their baseline exposures on the 

county nonattainment indicator. This difference-in-differences regression shows 

that average PM2.5 exposure declined by 1.24 µg/m3 more among those in nonat-

tainment counties than those living in attainment counties, with declines of 3.04 

µg/m3 and 1.80 µg/m3, respectively. We interpret this difference as the regulation’s 

approximate effect on exposure in nonattainment. This reduction is slightly larger 

than in Figure II mainly because of within-county variation in where individuals 

live in relation to monitors. 

                                                 
28 Table A2 reports the model coefficients. 
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FIGURE VI.A: CHANGES IN POST-REGULATORY PM2.5 EXPOSURE, BY ATTAINMENT 

STATUS AND PRE-REGULATORY CONCENTRATIONS 2001-2003 

Note: The figure shows the average effect of the nonattainment designation on the average conditional change in decadal 
PM2.5 concentrations. The dotted lines denote 95% confidence bands with clustering on Census block group.  

FIGURE VI.B: ESTIMATED PARTIAL EFFECT OF NONATTAINMENT ON POST-REGU-

LATORY PM2.5 EXPOSURE, BY PRE-REGULATORY CONCENTRATIONS 2001-2003

 
Note: The figure shows the average effect of the nonattainment designation on the average conditional change in decadal 
PM2.5 concentrations. The dotted lines denote 95% confidence bands constructed from 1,000 bootstrap replications, with 

clustering on Census block group. 
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C. Second-stage results 

Table I presents results from models with and without covariates and instru-

ments. The dementia indicator is multiplied by 100 so that PM2.5 coefficients rep-

resent percentage point (pp) changes in the probability of receiving a dementia di-

agnosis. Standard errors are robust to heteroscedasticity and are clustered at the 

Census block group level to allow for spatial correlation in diagnoses.29  

Column (1) shows the result from an OLS regression that includes only decadal 

PM2.5 and CBSA-specific intercepts. A 1-µg/m3 increase in average residential con-

centrations of PM2.5 from 2004 through 2013 is associated with a 0.75 pp increase 

in the probability of receiving a dementia diagnosis by the end of 2013. About 28% 

of this association persists in Column (2) when we add all observed measures of 

baseline health and PM2.5 exposure, demographics and socioeconomic status.  

TABLE I—DECADAL EXPOSURE TO PM2.5 AND DEMENTIA IN 2013 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 other-
wise. Col (1) is a univariate OLS regression with CBSA-specific intercepts. Col (2) adds all covariates for baseline health in 

2004, individual demographics, demographics for the individual’s Census block group, and pre-regulatory PM2.5 levels at 

their residence from 2001-2003. Columns (3) and (4) are the 2SLS analogues to Columns (1) and (2), respectively. The first 
row of Columns (1)-(4) presents the coefficient on decadal PM2.5, which is the average marginal effect in these models. 

Coefficients on all other covariates in the first and second stage models in Col (4) are reported in Appendix Table A2. Col 

(5) is the control-function probit analogue to the 2SLS model in Col (4). Col (6) is a control-function probit that allows for 
additionally flexibility in both stages of estimation. The first row of Columns (5) and (6) present the average marginal effect 

of decadal PM2.5 on dementia. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using 

robust standard errors clustered by block group. Standard errors in Columns (5) and (6) are bootstrapped using 1,000 repeti-

tions. 

                                                 
29 Because our instrumental-variables-based measure of pollution varies at the fine level of the ZIP+4, we cluster our standard 

errors at the coarser level of the block group. Our results are robust to clustering at the even coarser county level.  

 (1) (2) (3) (4) (5) (6)

0.751*** 0.209* 1.164*** 1.679*** 1.626*** 1.844***

(0.06) (0.11) (0.09) (0.49) (0.49) (0.47)

ind. & neigh. covariates  x  x x x

specification OLS OLS 2SLS 2SLS IV Probit IV Probit 

first-stage F statistic 19,161 637 637 44

number of individuals 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22 22 22 22 22 22

decadal PM2.5 (1 μg/m3)
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Columns (3) and (4) show the 2SLS analogs to the OLS models in columns (1) 

and (2). The first stage results are reported in Table A2. The p-value from a Sargan 

test of over-identifying restrictions is 0.34, so we fail to reject the joint hypothesis 

that our instruments are valid and that the model is correctly specified. Using in-

strumental variables increases the estimates for PM2.5’s effect and makes the esti-

mates less sensitive to the inclusion of individual covariates. The second-stage co-

efficient on PM2.5 in our main specification, Column (4), is about seven times larger 

than the corresponding OLS estimate from Column (2), consistent with substantial 

measurement error in pollution exposure.30 The coefficient implies that a 1-µg/m3 

increase in average PM2.5 from 2004 through 2013 increased the probability of a 

dementia diagnosis by the end of 2013 by 1.68 pp.31  

The fitted probabilities of receiving a dementia diagnosis from the linear 2SLS 

model lie between zero and one for 99.9% of individuals. Nonetheless, we evaluate 

whether the results in Column (4) are robust to the linearity assumption. First, we 

estimate a probit model that controls for the endogeneity of PM2.5 using the control-

function approach developed in Rivers and Vuong (1988) and, second, we estimate 

a flexible version of this model using the insights of Blundell and Powell (2003, 

2004) for estimating non-parametric, binary-response models with endogenous re-

gressors. For these models, we make the identifying assumptions that the errors in 

equations (1) and (2) are jointly normal and independent of the instruments.  

To estimate the first control-function probit model, we proceed in two stages; 

in the first stage, equation (2) is estimated via OLS and, in the second stage, a probit 

version of equation (1) is estimated via maximum likelihood, where we include the 

                                                 
30 Deryugina et al. (2019) report similar differences between OLS and 2SLS results in estimating the effect of daily pollution 

spikes on mortality among the Medicare population. 
31 Coefficients on the remaining covariates are reported in Appendix Table A2. We find that diagnosis rates tend to be higher 
for African-Americans (+3.7 pp) and Hispanics (+3.4 pp) relative to Asians (+0.5 pp) and whites (+0.8 pp), with “other race” 

as the omitted category. Diagnosis rates also decline by about 1% for every $100,000 of additional neighborhood income per 

capita and tend to be lower in neighborhoods with higher educational attainment. For example, 10 pp higher fraction of block 
group residents with graduate degrees (relative to less than 8th grade education) is associated with a 0.5 pp lower probability 

of a dementia diagnosis.  



32 

 

first-stage residuals as a control. The estimated average marginal effect of PM2.5 on 

dementia shown in Column (5) implies that a 1-µg/m3 increase in average PM2.5 

from 2004 through 2013 increased the probability of a dementia diagnosis by the 

end of 2013 by 1.63 pp. 

Our second probit model is a flexible extension of this control-function probit 

model. While the controls themselves enter all specifications in a flexible manner, 

the model underlying Column (5) specifies a latent dementia propensity that is lin-

ear in PM2.5 and additively separable in PM2.5 and the controls. Therefore, we ex-

tend the probit model by allowing PM2.5 to flexibly enter as a fourth-order polyno-

mial and include interactions between PM2.5 and the vectors Xi, Hi, and Wi (individ-

ual demographics, individual health and health-spending controls, and Census 

block-group demographics, respectively).32 In this approach, the effect of PM2.5 on 

the latent propensity to be diagnosed with dementia can vary flexibly with both the 

level of PM2.5 and with the levels of individual and neighborhood characteristics. 

We additionally specify a flexible first-stage regression that allows for interactions 

between attainment status and all of the included controls.33 As shown in Column 

(6), the average marginal effect from this model implies that a 1-µg/m3 increase in 

average PM2.5 from 2004 through 2013 increases the probability of a dementia di-

agnosis by 1.84 pp.34  

This flexible probit model provides estimates of the heterogeneity in the mar-

ginal effects of PM2.5 across the level of decadal exposure to PM2.5 and across in-

dividual and neighborhood characteristics. The results show that for the range cur-

rently relevant for the US, the marginal effects are larger at lower levels of PM2.5. 

This implies that, all else equal, further reductions in PM2.5 would have greater 

                                                 
32 The results are not sensitive to using even higher-order polynomials. When using an eighth-order polynomial in exposure, 

we find an average marginal effect of 1.80.  
33 Note that using the same linear first stage as in Columns (4) and (5) results in a slightly lower estimate of 1.78, versus the 

estimate of 1.84 shown in Column (6) of Table I. 
34 It is convenient in models of this class to focus on average marginal effects as that allows the researcher to begin with a 
flexible representation of the probability of dementia instead of deriving this probability from the structural model 

(Wooldridge 2015). 
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effects on reducing dementia than we estimate for the reductions in 2004-2013. For 

example, the current regulatory threshold of 12 μg/m3 that was established in 2012 

is near the 75th percentile of decadal exposure in our data (11.94 μg/m3). The results 

from the flexible probit model indicate that individuals with decadal exposures 

within a one-unit window of 12 μg/m3 (i.e., between 11.5 and 12.5 μg/m3) experi-

enced an average marginal effect of 0.99 pp. But among those within a one-unit 

window of 11 μg/m3 (around the median of 11.19 μg/m3 in our sample, and below 

the current regulations) the model yields a larger average marginal effect of 1.67 

pp. At the 25th percentile of decadal exposure in our data (10.04 μg/m3), the aver-

age marginal effect is 2.52 pp. As calculated, the differentials in these average mar-

ginal effects take into account both the non-linearity in PM2.5 and the impacts of the 

heterogeneous effects of individual and neighborhood characteristics.  

D. Assessing the magnitude of PM2.5’s effects on dementia 

The point estimate from our main 2SLS model (Table I, Column (4)) indicates 

that a 1 μg/m3 increase in 10-year average residential concentrations of PM2.5 from 

2004 to 2013 increases the probability of receiving a dementia diagnosis by 1.68 

pp. This is equivalent to a 7.5% increase relative to the dementia diagnosis rate 

among our sample. To provide context for these results, a 1 μg/m3 change is equiv-

alent to 9.1% of the average person’s exposure during our study period and 59% of 

a standard deviation. Thus, a 1 μg/m3 increase is a moderate change in exposure.  

Table II compares our PM2.5 result to the coefficients we estimate on other de-

mentia risk factors that were included as covariates in the model.35 For instance, 

our estimate for the effect of a 1 μg/m3 increase in decadal PM2.5 is about twice as 

large as the estimated increase in dementia risk associated with having been diag-

nosed with hypertension at the beginning of the decade but not diagnosed with any 

                                                 
35 The estimates presented here come from our main, linear 2SLS specification summarized in Table I Column (4). Corre-

sponding estimates from the probit-model specifications yield similar results. 
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of the other health risk factors (0.8 pp). Our PM2.5 estimate is smaller than the risks 

associated with pre-existing diagnoses of the other chronic conditions individually, 

which range from a 2.1 pp increase for ischemic heart disease alone to a 8.0 pp 

increase for stroke alone. We estimate that someone diagnosed with all five risk 

factors by 2004 had a 20.6 pp higher probability of being diagnosed with dementia 

by the end of 2013, all else equal. Aging provides another opportunity for compar-

ison. Focusing on females, our PM2.5 estimate is approximately one-quarter of the 

conditional increase associated with aging from 75 to 80 and one-tenth of the con-

ditional increase associated with aging from 75 to 85.  

TABLE II. COMPARING RELATIVE RISKS FOR PM2.5 AND OTHER RISK FACTORS  

  
Note: The table reports point estimates and 95% confidence intervals for dementia risk factors based on the model in Table 

I, Column (4). Appendix Table A2 reports the full set of model coefficients. 

 

V. Using Partial Identification and Instruments to Assess Selection Bias 

A. Selection on Survival 

Prior work has found that PM2.5 kills people on Medicare (Di et al. 2017, 

Risk Factor

Percentage point 

increase in dementia 

diagnosis probability

hypertension in 2004 0.8 0.6 1.0

decadal PM2.5 (1 μg/m3) 1.7 0.7 2.6

ischemic heart disease in 2004 2.1 1.7 2.5

diabetes in 2004 3.3 2.8 3.8

congestive heart failure in 2004 4.3 3.1 5.5

Aging from 75 to 80 (women) 6.0 5.6 6.4

stroke in 2004 8.0 6.9 9.1

aging from 75 to 85 (women) 15.2 14.8 15.7

All five chronic conditions in 2004 20.6 19.5 21.6

95% 

confidence 

interval
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Deryugina et al. 2019). For example, Deryugina et al. uses an instrumental-varia-

bles regression to conclude that a one-day 1 μg/m3 increase in PM2.5 causes a 0.18% 

increase in mortality over three days. When we estimate the 2SLS specification in 

equations (1)-(2) with decadal mortality as the dependent variable, we find that a 

1-µg/m3 increase in average PM2.5 from 2004 through 2013 increases mortality by 

2.37 pp, equivalent to 6% of the decadal mortality rate.36 These results, combined 

with the concern that unobserved aspects of health that determine survival may be 

correlated with unobserved aspects of heath that determines dementia, suggest that 

sample selection may condition the interpretation of our estimates. For example, 

suppose that unobserved health determining survival is negatively correlated with 

unobserved health determining dementia, i.e., sicker people who are more likely to 

die are also more likely to be diagnosed with dementia if they live. In this case, 

selection would induce a negative correlation between the error in equation (1) and 

our instrumented measure of PM2.5, biasing downward the estimate of PM2.5’s di-

rect effect on dementia in the selected sample.37  

If selection bias were present, then the preceding IV estimates capture the total 

effect of PM2.5 on the dementia rate, which combines both the causal effect of PM2.5 

on dementia (our object of interest) plus a compositional effect. In other words, if 

individuals were exposed to a change in PM2.5, the dementia rate could change for 

two reasons. First, the change in PM2.5 could have a causal effect on dementia. 

Second, the change in PM2.5 could have a causal effect on survival and, if the un-

derlying propensity to develop dementia for the marginal individuals (who are in-

duced to die by the change in pollution) differs from the propensity for the in-

framarginal individuals, the estimated effect of PM2.5 on dementia would incorpo-

rate the effects of this compositional change. Lee (2009) discusses this concept in 

                                                 
36 Table A3 reports results from mortality models that parallel the specifications used in Table I. 
37 A less intuitive, but nonetheless possible, concern would be that the unobserved health determining survival was positively 
correlated with the unobserved health determining dementia. This would induce a positive correlation between the error in 

equation (1) and our instrumented measure of PM2.5 and cause an upward bias in our estimate. 
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detail in the context of a randomly assigned job-training program that affects 

whether individuals work as well as their subsequent wages.38 

As outlined in Honoré and Lleras-Muney (2006), the prior literature has devel-

oped several approaches to addressing the role of selection-driven compositional 

change. We apply them to our context, taking a bottom-up approach. First, we use 

a partial-identification approach to estimate bounds without making assumptions 

about the relationship between the propensity to develop dementia and the propen-

sity to survive (e.g., Manski 1990, Horowitz and Manski 2000, Lee 2009).39 Next, 

we sharpen the bounds by adding plausible assumptions about the relationship be-

tween the propensity to develop dementia and the propensity to survive (e.g., Man-

ski and Pepper 2000, Honoré and Lleras-Muney 2006, and Bhattacharya, Shaikh, 

and Vytlacil 2012). Finally, we move from partial identification to point identifica-

tion by adding additional instruments and distributional assumptions (e.g., Heck-

man 1979).  

We consider a marginal change in PM2.5 and denote the total effect of PM2.5 on 

the dementia rate as Δ. This total effect is comprised of the causal effect of PM2.5 

on dementia, which we continue to denote as 𝛼, and the compositional effect due 

to selection on survival (Lee 2009). The compositional effect is the product of two 

terms: the share of marginal individuals who die as a result of the change in PM2.5 

(we denote this share as ρ) and the difference in the underlying probabilities of 

developing dementia between this group of marginal individuals (group A) and the 

inframarginal individuals who survive the change in PM2.5 (group B). We denote 

this difference as (𝑃𝑦
𝐵 − 𝑃𝑦

𝐴). The total effect can then be written as: 

                                                 
38 See also Blundell, Gosling, Ichimura, and Meghir (2007), which analyzes changes in wage distributions in the presence of 

compositional changes. 
39 Lee (2009) requires a monotonicity assumption, which in our case would require that all individuals’ probability of sur-
vival, conditional on observables, responds with the same sign to an increase in PM2.5. As our model specifies homogeneous 

effects of PM2.5, conditional on observable characteristics, this is trivially satisfied. Thus, the bounds of Lee (2009) and the 

bounds of Horowitz and Manski (2000) are equivalent. With heterogenous effects, the Horowitz and Manski (2000) bounds 
would become wider, while the Lee (2009) bounds would stay the same (but would be interpreted as average treatment 

effects for the inframarginal households). We consider heterogenous effects of PM2.5 in Section IV.B. 
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Δ = 𝛼 + 𝜌 ∗ (𝑃𝑦
𝐵 − 𝑃𝑦

𝐴) 

and re-arranged to isolate the effect of interest, 𝛼: 

α = Δ + 𝜌 ∗ (𝑃𝑦
𝐴 − 𝑃𝑦

𝐵). 

We use this equation to calculate simple bounds for α. Further details may be found 

in Appendix B. Our results from Section IV represent estimates of the total effect 

Δ. Our analogous results for mortality can be used to construct an estimate of 𝜌. 

Bounds for α may be constructed by recognizing that the scaling of our dementia 

indicator, (𝑃𝑦
𝐵 − 𝑃𝑦

𝐴), must lie between -100 and 100 (Peterson 1976, Manski 

1990), as both 𝑃𝑦
𝐴 and 𝑃𝑦

𝐵 must each lie between 0 and 100.  Tighter bounds may 

be constructed by using information on the overall dementia rate. For example, an 

insight of Lee (2009) is that while (𝑃𝑦
𝐴 − 𝑃𝑦

𝐵) is unobserved, the data reveal the 

overall dementia rate, 𝑃𝑦, which is a weighted average over marginal and in-

framarginal individuals: 

𝑃𝑦 = 𝜌 ∗ 𝑃𝑦
𝐴 + (1 − 𝜌)𝑃𝑦

𝐵. 

Thus, for any given value of 𝑃𝑦
𝐴 , we can solve for 𝑃𝑦

𝐵.  By plugging 0 and 100 for 

𝑃𝑦
𝐴 (and then solving for the corresponding value of 𝑃𝑦

𝐵), bounds for α may be 

written as: 

 [Δ − 𝜌 ∗ 𝑃𝑦
𝐵(0),    Δ + 𝜌 ∗ (100 − 𝑃𝑦

𝐵(100))] 

We first calculate these bounds using the estimates from our linear models for 

the mean value of PM2.5.
40 The estimate of 1.68 in Table I, Column (4) is then 

interpreted as an estimate of Δ. We additionally have an estimate of the effect of a 

1-µg/m3 increase in PM2.5 on the probability of dying of 2.37 percentage points 

                                                 
40 As the results from the Rivers and Vuong (1988) IV-Probit model are similar to our main results, the analogous bounds 

for that model are very similar. The identification region for the Lee (2009)-style bounding approach using these IV-Probit 

estimates is given by [0.78, 4.63]. The identification region using the assumption that 𝑃𝑦
𝐴 ≥ 𝑃𝑦

𝐵 is [1.63, 4.63]. 
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(shown in Table A.3). Combining this estimate with the overall mean survival rate 

in our sample of 60.51 yields 𝜌 = 0.04.41 The mean dementia rate in our sample 

provides us with 𝑃𝑦  = 21.98.  

The estimated identification region is shown in brackets in the top row of Table 

III, Column (1). The lower bound of this region is still 0.82 despite embedding the 

extreme assumption that everyone who is induced to die by an increase in PM2.5 

would have zero probability of developing dementia had they survived. Further, the 

lower bound indicates that only half of the estimated total effect of 1.68 can be 

explained by a compositional effect. A 95% confidence interval for α is shown in 

the second row and calculated following the method of Imbens and Manski (2004). 

While these lower-bound results show that the existence of no causal effect of PM2.5 

on dementia is unlikely, the upper-bound results cannot rule out effects much larger 

than what we find when we altogether ignore the potential for selection.  

 

TABLE III—ESTIMATES ALLOWING FOR SELECTION ON SURVIVAL 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 other-
wise. Column (1) reports the identification region in brackets from a simple, worst-case bounding approach. Column (2) 

reports the identification region in brackets after imposing an additional assumption of positive correlation between the latent 

health of survival and the latent health of cognition to sharpen the bounds. Columns (3) and (4) report analogous identification 
regions to (1) and (2) but with the underlying estimates coming from our most flexible IV Probit specification. Finally, 

Column (5) reports results from a selection-correction model that uses an exclusion restriction to arrive at a point estimate. 

Underneath the identification regions in Columns (1)-(4), we report in parentheses the 95% confidence intervals on 𝛼 using 

the method described in Imbens and Manski (2004). Underneath the point estimate in Column (5), we report a standard error. 

The standard errors underlying the confidence intervals in Columns (1)-(4) and the standard error in Column (5) are calcu-
lated using a bootstrap with 1,000 replications, clustered by initial Census block group. The first-stage F statistics for Column 

(5) are shown in Table IV Column (1). Asterisks indicate statistical significance for Column (5) at the 10% (*), 5% (**), and 

1% (***) levels.  

                                                 
41 This share is calculated for a marginal change at the mean as 2.37/60.51=0.039. 

 (1) (2) (3) (4) (5)

[0.82, 4.73] [1.68, 4.73] [0.95, 4.17] [1.84, 4.17] 2.334***

(-0.02, 6.08) (0.87, 6.08) (0.08, 5.32) (1.07, 5.32) (0.51)

total number of ind. 2,384,195 2,384,195 2,384,195 2,384,195 2,384,195

num. who survive through 2013 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22 22 22 22 22

share who survive through 2013 61 61 61 61 61

decadal PM2.5 (1 μg/m3)
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Next we sharpen these bounds by assuming a plausible form of monotone treat-

ment selection (Manski and Pepper 2000) in which those who would be induced to 

die following a change in PM2.5 were, on average, no less likely to develop demen-

tia than those whose survival was unaffected by the change (𝑖. 𝑒. , 𝑃𝑦
𝐴 ≥ 𝑃𝑦

𝐵). Intu-

itively, this assumes that the latent health driving mortality is positively correlated 

with the latent health driving dementia. Table III Column (2) shows that, under this 

assumption, the lower bound of the identification region increases to our 2SLS es-

timate of 1.68.42  

We alternatively calculate bounds using estimates of Δ, ρ, and 𝑃𝑦 from our most 

flexible IV-Probit model.43 The bounds for this case are shown in Table III Column 

(3) with the corresponding monotone treatment selection bounds shown in Column 

(4). These are of a similar magnitude, respectively, to the bounds in Columns (1) 

and (2), but tighter.44 Because this model also allows us to calculate heterogeneity 

in the average marginal effects of PM2.5, we calculate bounds separately for the 

three subsamples with average decadal PM2.5 within the 1-μg/m3 windows centered 

around 10, 11, and 12 μg/m3. The identification regions of the average marginal 

effects for these three subsamples are [1.88, 4.27], [0.76, 4.07], and [-0.15, 3.90], 

respectively. Intuitively, the lower bounds are decreasing in PM2.5 because the mag-

nitude of the estimated total effect is decreasing across the three bins. In addition, 

the width of the identification regions are increasing in PM2.5, as a result of the 

increased PM2.5-induced mortality across the bins. These lower bounds reflect the 

extreme assumption that those who suffered from PM2.5-driven mortality would 

have been immune to dementia had they survived. Applying the assumption that 

                                                 
42 Making arbitrary assumptions can also sharpen the bounds, e.g., assuming that the dementia rate among the marginal 

individuals is between half and double the rate of the inframarginal individuals. This would yield an identification region 
of [1.25, 2.54]. 
43 Because this model allows the effects of PM2.5 on mortality and dementia to vary by observed characteristics, we use 

individual-specific values of Δ, ρ, and 𝑃𝑦 to create individual-specific marginal effects and then calculate the averages based 

on specifying the lower and upper bounds of 𝑃𝑦
𝐴 for all individuals.  

44 The difference in the estimated effects of PM2.5 on mortality (shown in Table A.3) between the two models leads to the 

tighter bounds. 
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these individuals were merely no less sensitive than the survivors in terms of de-

veloping dementia sharpens the bounds. Under this assumption, the identification 

regions become [2.52, 4.27], [1.67, 4.07], and [0.99, 3.90], respectively. 

The preceding bounds do not require any assumptions regarding the validity of 

instruments for the selection process. Use of valid instruments, however, allows for 

point identification of the effect of PM2.5 on dementia. The medical literature pro-

vides a set of instruments that affect survival but not dementia: prior diagnoses of 

non-smoking related cancers, which are uncorrelated with dementia outcomes 

(Driver et al. 2012, Ganguli 2015). Therefore, we complement the partial identifi-

cation results by adding a control-function approach based on Heckman (1979) and 

Heckman and Robb (1986) to obtain a selection-corrected point estimate. We begin 

by estimating a linear probability model of decadal survival, Si, with the same co-

variates as equation (2) plus an additional vector of instruments, 𝑀𝑖. 

(3) 𝑆𝑖 = 𝜆𝑍𝑖 + 𝜁𝑐(𝑖) + 𝜑𝑋𝑖 + 𝜇𝐻𝑖 + 𝜅𝑊𝑖 + 𝑓 (∑
𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝛿𝑀𝑖 + 𝜐𝑖.  

We define 𝑀𝑖 to include indicators for baseline diagnoses of non-smoking-related 

cancers (leukemia, lymphoma, and cancers of the breast, prostrate, colon, rectum, 

and endometrium) from the CMS’s Chronic Conditions Data Warehouse file. These 

cancers, which affect decadal survival, are assumed to be unrelated to latent fea-

tures of health that affect the probability of a dementia diagnosis.45 In our estima-

tion of equation (3), the instruments are jointly significant at the 1% level and indi-

vidually significant at the 1% level with the exception of prostate cancer, as shown 

in Appendix Table A4. 

We then use the survival-function residuals, 𝜐̂𝑖, to define an additional control 

                                                 
45 A potential concern is that non-smoking related cancers, while not causing dementia, could be correlated with dementia 

through other omitted factors. For example, a competing-risks framework could lead to a negative correlation between non-
smoking related cancers and latent health affecting dementia and lead to an upward-biased estimate of α in our selection-

correction model. Such a framework would likewise suggest that our 2SLS model provides a downward-biased estimate. On 

this basis, one could interpret non-smoking related cancers as “imperfect instruments,” as defined by Nevo and Rosen (2012), 
and use them to partially identify α. The estimated identification region is then simply the interval between the 2SLS estimate 

and the selection-corrected estimate, i.e., [1.68, 2.33]. 
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variable that we include in equations (1) and (2). Given the well-documented equiv-

alence of 2SLS and control-function estimation in linear models (Hausman 1978), 

we estimate the following control-function equation, 

(4) ∆𝑦𝑖 = α ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜂𝑐(𝑖) + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 + 𝑓 (∑

𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) +

         𝜙1𝜐̂𝑖 + 𝜙2𝜀𝑖̂ + 𝜖𝑖̃, where 𝜖𝑖̃ = 𝜖𝑖 − 𝜙1𝜐𝑖 − 𝜙2𝜀𝑖̂. 

𝜐𝑖 is the control formed by the residuals from the survival equation in (3) and 𝜀𝑖̂ is 

the control formed by the residuals from the first-stage equation, i.e., a modified 

version of equation (2) that includes 𝜐̂𝑖 as an additional control.  Because we esti-

mate 𝜐̂𝑖 and 𝜀𝑖̂ in prior stages, we bootstrap standard errors over all three regres-

sions, clustering at the Census block-group level. 

Table III Column (5) reports the estimate for α using equation (4) to augment 

our main 2SLS model and recover a point estimate that controls for selection on 

survival. This point estimate of 2.33 is larger than the corresponding 2SLS estimate 

from Table I. Likewise, the selection-corrected point estimates using our two probit 

models (employing a probit survival equation) increase to 2.19 and 2.29, respec-

tively.46 These increases are consistent with classic selection bias caused by posi-

tively correlated latent health factors. In other words, individuals who were less 

likely to survive the decade were also more likely to develop dementia, which is 

consistent with the monotone treatment selection on latent health that was used to 

tighten the bounds in Table III Columns (2) and (4).  

B. Selection models with heterogeneous sensitivities to PM2.5 

We now extend the selection-correction model to specify potentially correlated, 

random coefficients on PM2.5. We present results from models that apply the Garen 

(1984) framework in several novel ways. First, we implement a model that allows 

                                                 
46 Van de Ven and Van Praag (1981) and Dubin and Rivers (1989) provide discussions of selection bias when the outcome 

equation is binary. 
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the unobserved heterogeneity in the sensitivity of dementia to PM2.5 to be correlated 

with survival. Second, we estimate a version that allows the unobserved heteroge-

neity in these sensitivities to be correlated with endogenous location choice, similar 

to the approaches in Chay and Greenstone (2005), Bento, Friedman, and Lang 

(2015), and Schlenker and Walker (2017). Third, we estimate a specification that 

nests the prior two by allowing the unobserved heterogeneity to be correlated with 

both survival and endogenous location choice. Finally, we present a version of this 

general case where we relax one of the strong linearity assumptions of the original 

Garen approach.  

Our first approach begins by specifying a heterogeneous coefficient on PM2.5 

exposure: 𝛼𝑖 = 𝛼̅ + 𝜏𝑖 where 𝛼̅ is the population mean of 𝛼𝑖 and 𝜏𝑖 captures devia-

tions from this mean.47 Assuming the heterogeneity in sensitivities is linearly re-

lated to latent health, 𝛼̅ can be identified by extending equation (4) to include an 

interaction between the survival-equation residual and decadal PM2.5 exposure fol-

lowing Garen (1984) and Wooldridge (2015).48  

(5) Δ𝑦𝑖  = 𝛼̅ ∑
𝑃𝑀2.5𝑖,𝑡

10

2013

𝑡=2004

+ 𝜂𝑐(𝑖) + 𝛽𝑋𝑖 + 𝛾𝐻𝑖 + 𝜃𝑊𝑖 

 + 𝑓 (∑
𝑃𝑀2.5𝑖,𝑡

3

2003
𝑡=2001 ) + 𝜙1𝜐̂𝑖 + 𝜙2𝜀𝑖̂ + 𝜓1𝜐𝑖 ∑

𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 + 𝜖𝑖̃,  

 where 𝜖𝑖̃ =  𝜖𝑖 − 𝜙1𝜐̂𝑖 − 𝜙2𝜀𝑖̂ − 𝜓1𝜐̂𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 . 

Results from this specification are shown in Table IV Column (2). The coefficient 

is effectively unchanged from the Heckman-selection specification with homoge-

nous sensitivities reported in Table III, Column (5) and repeated in Table IV, Col-

umn (1), suggesting that heterogeneity in PM2.5 sensitivities is not correlated with 

                                                 
47 Heckman and Vytacil (1998), Card (2001) and Wooldridge (2003) provide discussions of this and similar approaches.  
48 Formally, the identifying assumptions are that 𝐸[𝜖𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜙1𝜐𝑖 + 𝜙2𝜀𝑖, 𝐸[𝜏𝑖 |𝜐𝑖 , 𝜀𝑖] = 𝜓1𝜐𝑖, and that unobservables are 

independent of the regressors in equations (2)-(3). 
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survival.49  

A separate concern is that sensitivity could correlate with residential sorting, 

e.g., individuals who are more sensitive to PM2.5 may live in more polluted neigh-

borhoods. In this case, the instrument for pollution could be correlated with the 

endogenous location choice, causing 2SLS to recover a local average treatment ef-

fect among a non-random subset of the population. We therefore modify equation 

(5) to address this concern by interacting decadal PM2.5 exposure with the attain-

ment-based control function instead of the survival-based control function, i.e., re-

placing 𝜓1𝜐̂𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004  with 𝜓2𝜀𝑖̂ ∑

𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 . The resulting model is sim-

ilar to the specifications used in Chay and Greenstone (2005), Bento, Friedman, 

and Lang (2015), and Schlenker and Walker (2017) to study air pollution’s effects 

on housing prices and hospital admissions. It provides a consistent estimator of the 

population-wide dementia-sensitivity to PM2.5 in the presence of Tiebout sorting on 

random coefficients. Table IV Column (3) shows the results from this specification. 

Just as with the prior model, we find that the estimate for mean sensitivity is effec-

tively unchanged from the Heckman-selection specification with homogeneous 

sensitivities shown in Table IV Column (1), suggesting that individuals were not 

sorting based on their sensitivity to PM2.5.
50 

We then generalize equation (5) to allow heterogeneity in PM2.5 sensitivity to 

be correlated with both survival-based sample selection and choice-based residen-

tial sorting. By including both interaction terms, 𝜐̂𝑖 ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004  and 

𝜀𝑖̂ ∑
𝑃𝑀2.5𝑖,𝑡

10

2013
𝑡=2004 , this model nests the prior two specifications.51 As shown in Ta-

ble IV Column (4), we find that a 1 µg/m3 increase in average PM2.5 from 2004 

                                                 
49 Our point estimate of ψ1 is -0.02 (s.e. 0.08) implying that those who survived were slightly less sensitive than those who 

died. The average sensitivity among survivors is calculated as 𝛼̅ + 𝜓̂1𝐸[𝜐𝑖|𝑆𝑖 = 1] = 2.34 − 0.02 ∗ 0.30 = 2.33, which is 

trivially lower than the sensitivity of the population as a whole. 
50 Our point estimate of ψ2 is 0.03 (s.e. 0.05).  
51 The third and fourth specifications also assume that the expected value of the parameter governing heterogeneity is linearly 



44 

 

through 2013 increases the probability of a dementia diagnosis by 2.33 percentage 

points, virtually identical to the estimates in Columns (1)-(3).  

Finally, to weaken the assumption that heterogeneity in sensitivity is linearly 

related to 𝜐̂𝑖 and 𝜀𝑖̂, we estimate a specification that includes interactions between 

PM2.5 and fourth-degree polynomials in 𝜐̂𝑖 and 𝜀𝑖̂. Table III Column (5) presents 

these results. They indicate that a 1-µg/m3 increase in average PM2.5 from 2004 

through 2013 increases the probability of a dementia diagnosis by 2.59 percentage 

points, a slightly higher estimate than the specifications that assume the effects are 

linear in latent health.  

 

TABLE IV—ESTIMATES ALLOWING FOR CORRELATED RANDOM COEFFICIENTS 

 
Note: The dependent variable equals 100 if an individual was diagnosed with dementia prior to the end of 2013 and 0 other-

wise. Column (1) repeats the results from Table II Column (5). It controls for selection on mortality. Column (2) extends 

Column (1) to allow individuals to differ in their sensitivity to PM2.5, with sensitivity being potentially correlated with latent 
factors affecting survival. Column (3) extends Column (1) to allow individuals to differ in their sensitivity to PM2.5, with 

sensitivity being potentially correlated with latent factors affecting residential sorting on air pollution. Column (4) nests the 

models in the first three columns to control for all three mechanisms simultaneously. Column (5) extends Column (4) by 
relaxing the identifying linear-in-latent-health assumption underlying Column (4). Asterisks indicate statistical significance 

at the 10% (*), 5% (**), and 1% (***) levels using standard errors clustered by initial Census block group and bootstrapped 

over all stages of estimation.  

                                                 
related to the survival-function residuals and first-stage residuals: 𝐸[𝜏𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜓2𝜀𝑖 and 𝐸[𝜏𝑖  |𝜐𝑖 , 𝜀𝑖] = 𝜓1𝜐𝑖 + 𝜓2𝜀𝑖, re-

spectively. 

 (1) (2) (3) (4) (5)

2.334*** 2.339*** 2.328*** 2.332*** 2.586***

(0.51) (0.51) (0.51) (0.51) (0.52)

Corrects for selection based on survival x x x x x

αi allowed to vary with survival only x

αi allowed to vary with attainment only x

αi allowed to vary with survival and attainment x

αi allowed to vary flexibly with surv. and attain. x

first-stage F statistic, survival 707 707 707 707 707

first-stage F statistic, attainment 637 637 637 637 637

number of individuals who survive through 2013 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232

total number of individuals 2,384,195 2,384,195 2,384,195 2,384,195 2,384,195

share with dementia in 2013 22 22 22 22 22

share who survive through 2013 61 61 61 61 61

decadal PM2.5 (1 μg/m3)
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Overall, the collective results in Table IV suggest that classic selection on sur-

vival may cause our main estimates to be attenuated relative to the population av-

erage treatment effect. They also suggest that our main estimates are not influenced 

by differential sensitivities to PM2.5 through either selection or sorting.  

 

VI. Additional Analyses of Robustness and Validity 

A. Alternative measures of dementia including for those in Medicare Advantage 

Table V shows results from models that first repeat the estimation after adding 

individuals who self-selected out of TM and into MA and then decompose our main 

result into PM2.5’s effects on different types of dementia diagnoses. Column (1) 

repeats our main estimate for convenience. In Column (2), we define the dependent 

variable as taking a prescription for the symptoms of Alzheimer’s disease at any 

point from 2006 through 2013. This allows us to expand the sample to include in-

dividuals who exited TM at some point after 2004 to enroll in a MA plan that in-

cluded prescription drug coverage. This excludes individuals on TM who did not 

receive drug coverage through Medicare. On net, this expands the sample by 

278,395 individuals (accounting for 94% of the sample who switched to MA and 

survived through 2013, as shown in Figure III). The results indicate that a 1-µg/m3 

increase in average PM2.5 over the decade increases the probability of taking an 

Alzheimer’s drug by 9.6%, slightly larger than the percent effect observed for di-

agnosis rates. This demonstrates that our main results are not dependent on either 

the use of claims-based diagnosis or the exclusion of MA. Column (3) maximizes 

the sample by defining the dependent variable as having either a claims-based di-

agnosis or a claim for a prescription drug to treat symptoms of Alzheimer’s disease. 

The net effect of expanding the sample and altering the measure of dementia is to 

lower the sample dementia rate in 2013 to 21%. The resulting 2SLS coefficient, 

1.69 pp, is nearly identical to our main 2SLS estimate, giving further evidence that 
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this estimate is not biased by selection into Medicare Advantage. 

Columns (4) and (5) repeat the estimation of equation (1) for the TM sample 

after stratifying the dependent variable to decompose the relative impacts on de-

mentia cases with and without an associated diagnosis of Alzheimer’s disease. Our 

decomposition suggests that Alzheimer’s accounts for 64% of the dementia cases 

that our model attributes to long-term PM2.5 exposure. A caveat to this interpreta-

tion is that it is difficult for doctors to distinguish between Alzheimer’s and other 

forms of dementia without an autopsy or extensive brain imaging, leaving some 

doctors reluctant to diagnose living patients with Alzheimer’s specifically, as op-

posed to dementia generally.  

TABLE V—ESTIMATES USING ALTERNATIVE MEASURES OF DEMENTIA 

 

Note: Col (1) repeats the main specification from Table I. Col (2) defines the dependent variable to be 100 for individuals 

who took a prescription drug for Alzheimer’s disease and alters the sample to include everyone who had drug coverage 

through Medicare including those on Medicare Advantage. Col (3) defines the dependent variable to be 100 for individuals 
who are diagnosed with dementia and/or take prescription drugs for Alzheimer’s disease. Col (4) is the same as (1) but 

defines the dependent variable as dementia cases without an Alzheimer’s diagnosis and Col (5) defines it as Alzheimer’s 

disease specifically. Col (6) is the same as (1) but adds an indicator for whether individuals had a stroke by 2013. Summing 
the percentages of individuals enrolled in traditional Medicare and Medicare Advantage rounds to just over 100% because a 

small fraction of individuals switched between the two programs in 2013. Asterisks indicate statistical significance at the 

10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group. 

 (1) (2) (3) (4) (5) (6)

1.679*** 1.203** 1.692*** 0.611 1.068*** 1.696***

(0.49) (0.55) (0.46) (0.38) (0.39) (0.48)

dependent variable

claim-     

based 

diagnosis

dementia 

drug

claim-          

based 

diagnosis        

or drug

claim-        

based 

diagnosis 

without 

Alzheimer's

claim-       

based 

diagnosis 

with 

Alzheimer's

claim-     

based 

diagnosis

first-stage F statistic 637 571 718 637 637 637

total number of individuals 1,257,232 1,044,271 1,535,746 1,257,232 1,257,232 1,257,232

% in traditional Medicare in 2013 100 73 82 100 100 100

% in Medicare Advantage in 2013 1 28 19 1 1 1

dependent variable mean 22 12 21 12 10 22

decadal PM2.5 (1 μg/m3)
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As a further test of which types of dementia drive our results, we repeat estima-

tion of the model in Column (1) after adding a dummy for whether the individual 

had a stroke by the end of 2013. Strokes cause vascular dementia, the second most 

common form of dementia behind Alzheimer’s, and may be caused by short-term 

spikes in air pollution. Hence, the stroke variable absorbs any effects of PM2.5 on 

dementia that occur due to observed strokes. Our results suggest that the probability 

of being diagnosed with dementia is 19.1 pp higher for those who had a prior stroke. 

However, controlling for stroke has virtually no effect on the PM2.5 coefficient, as 

shown in Column (6). This suggests that long-term exposure to PM2.5 increases the 

risk of Alzheimer’s disease, specifically.  

B. Alternative measures of PM2.5 exposure 

Table VI summarizes results from alternative approaches to measuring PM2.5 

exposure. In Column (2) we utilize within-county variation in monitor readings, 

similar to Bento, Freedman, and Lang (2015). Specifically, we replace the CBSA 

dummy variables with county dummy variables, and we stratify the nonattainment 

indicator according to whether the average PM2.5 concentration from 2001 to 2003 

at the air quality monitor closest to an individual’s residence exceeded the federal 

standard. This generates three indicators that vary across individuals within coun-

ties: (i) nonattainment county with the individual’s nearest monitor exceeding the 

standard, (ii) nonattainment county without the individual’s nearest monitor ex-

ceeding the standard, and (iii) attainment county with the individual’s nearest mon-

itor exceeding the standard. As in our main specification, each indicator is inter-

acted with the fourth-order polynomial function of baseline exposure. This yields 

an estimate of 1.67 pp, nearly the same as our main estimate in Column (1).52
 

                                                 
52 Appendix Figure A5 shows the estimated partial effects of each interaction. We find patterns consistent with strategic 

regulatory targeting. Our estimates suggest that nonattainment designations produced slight increases in PM2.5 for people in 

attainment counties living near nonattainment monitors in adjacent counties. This pattern could result from regulatory actions 
diverting pollution from areas near nonattainment monitors to areas in adjacent attainment counties (e.g., siting of new pro-

duction facilities).  
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TABLE VI—ESTIMATES USING ALTERNATIVE MEASURES OF PM2.5 EXPOSURE 

 
Note: Col (1) repeats our main result that is modified for each remaining Column. Column (2) stratifies the nonattainment 

county instrument according to whether the monitor closest to an individual’s residence was in attainment while replacing 

CBSA dummies with county dummies. Column (3) replaces our preferred measure of pollution (based on a balanced panel 

of continuously operating monitors) with data from an unbalanced panel of all monitors in operation each year. Column (4) 

measures pollution at the coarser 5-digit ZIP code level. Column (5) replaces the fourth-order polynomial function of baseline 

pollution exposure with a “spline” function based on dummies for 72 baseline exposure bins, each of which has a width of 
0.33 micrograms per cubic meter. Column (6) stops tracking cumulative exposure among dementia patients at the time they 

move to new residences. Col (7) strops tracking cumulative exposure at the point when we first observe their dementia 

diagnosis. 

Column (3) replaces our “balanced monitor panel” measure of exposure with a 

measure constructed from an unbalanced panel of all monitors in operation each 

year (between 871 and 1,137 monitors per year). The unbalanced panel may im-

prove efficiency by using all available ground-level information on pollutant con-

centrations, but it also may introduce additional measurement error. We find that 

using the unbalanced panel reduces the instrument’s power to explain decadal PM2.5 

exposures in the first stage and yields a smaller but still economically and statisti-

cally significant second-stage estimate of 1.26 pp. 

In Column (4) we measure PM2.5 at the centroids of individuals’ 5-digit ZIP 

code areas instead of their 9-digit ZIP mail delivery points. This coarser approach 

recognizes that exposures may occur over larger areas as individuals travel outside 

their immediate neighborhoods for activities such as shopping and recreation. The 

 (1) (2) (3) (4) (5) (6) (7)

1.679*** 1.666*** 1.262*** 1.658*** 1.650*** 1.855*** 1.921***

(0.49) (0.43) (0.49) (0.51) (0.49) (0.54) (0.54)

baseline specification x

IV = county x monitor attainment  x    

unbalanced monitor panel  x   

5-digit ZIP assignment of PM2.5 x

spline function of baseline PM2.5  x

exposure fixed at post-diagnosis move   x

exposure fixed at diagnosis   x

first-stage F statistic 637 491 395 645 135 515 476

number of individuals 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22 22 22 22 22 22 22

decadal PM2.5 (1 μg/m3)
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estimated effect of PM2.5 on dementia is 1.66 pp, virtually identical to our main 

result. 

Column (5) replaces the fourth-order polynomial function of baseline (2001-

2003) residential PM2.5 concentrations with a more flexible spline function. We par-

tition neighborhoods into 72 bins by baseline concentrations (in 0.33 µg/m3 incre-

ments) and add an indicator variable for each bin. This again produces a similar 

PM2.5 coefficient (1.65 pp). 

A remaining concern is that our estimates could reflect reverse causality via 

Tiebout sorting if dementia diagnoses cause people to move to more polluted areas, 

e.g., if assisted living facilities tend to be in more polluted areas. We test this hy-

pothesis by fixing annual average exposure at the point of an individual’s first post-

diagnosis move. For example, if an individual is diagnosed with dementia in 2010 

and moves to a new residence in 2012, then we replace the decadal measure of their 

PM2.5 exposure with their annual average exposure from 2004 through 2011. Col-

umn (6) shows that this approach increases our estimate slightly. This is the oppo-

site of what would be implied by reverse causality. It results from the fact that in-

dividuals who move with dementia tend to move to less-polluted areas than indi-

viduals who move without dementia.53 Column (7) takes this logic one step further 

by fixing dementia patients’ cumulative exposures in their diagnosis years so that, 

in the prior example, we would use annual average exposure from 2004-2010. Once 

again, the coefficient increases slightly, further reinforcing that our main approach 

to measuring pollution exposure does bias our estimates upward. 

C. Alternative measures of air pollution 

Appendix Table A5 shows that our linear 2SLS results for PM2.5 are robust to 

additionally conditioning on other federally regulated air pollutants: coarse partic-

ulate matter (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and 

                                                 
53 Appendix Figure A6 shows exposure conditional on migration status and dementia diagnosis. 
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carbon monoxide (CO). Specifically, we extend the covariate set to include fourth-

order polynomial functions of baseline concentrations of each pollutant while treat-

ing subsequent decadal exposures to all six pollutants as endogenous. Similar to 

Bento, Friedman, and Lang (2015), this relies on the instrument vector described in 

Section VI.B to obtain an overidentified model.54 The resulting coefficient on PM2.5 

is virtually unchanged, and we fail to reject the hypothesis that PM10, O3, NO2, SO2, 

and CO jointly have no additional effect on dementia at the 10% level.  

FIGURE VII: ESTIMATED EFFECTS OF PM2.5 ON DEMENTIA BY EXPOSURE DURA-

TION 

 

D. Alternative exposure durations 

We focus on decadal PM2.5 exposure because 10 years is the longest interval 

over which our research design and data enable us to identify an effect, but it is 

                                                 
54 For consistency we measure concentrations of each pollutant using the same balanced panel of monitoring stations that we 

use to construct measures of PM2.5. 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2005 2006 2007 2008 2009 2010 2011 2012 2013Es
ti

m
at

ed
 e

ff
ec

t 
o

f 
cu

m
u

la
ti

ve
ex

p
o

su
re

Final year of exposure period



51 

 

straightforward to use the same design to estimate effects for shorter intervals. To 

examine how PM2.5’s effect on the probability of a dementia diagnosis varies with 

exposure duration, we estimate models for two years to ten years of exposure (i.e., 

from 2004-2005, 2004-2006,… , 2004-2013). These estimates are from models that 

parallel our main 2SLS specification but replace the decadal exposure measure with 

a shorter integer-year duration. At the two-year mark in 2005 the estimation sample 

includes 2.4 million individuals. As we move from 2005 to 2013, the sample di-

minishes due to death and switching into Medicare Advantage. 

Figure VII shows our estimates for the effects of 1 μg/m3 increases in average 

residential concentrations from 2004 to the interval endpoints shown on the hori-

zontal axis, along with 95% confidence intervals. The estimates increase steadily 

with exposure duration and remain statistically distinguishable from zero beyond 

the eighth year (2011). Appendix figure A7 shows that the figure looks nearly the 

same when we reconstruct it after restricting the sample to individuals who survived 

to 2013; i.e., holding the longitudinal sample fixed as we adjust exposure duration. 

This comparison reinforces our conclusion that our main findings are not biased 

away from zero due to attrition from death and transition to MA. 

 

E. Placebo tests 

As previously discussed, we test whether pollution has a causal impact on death 

among the Medicare population. Specifically, using the 2SLS specification in equa-

tions (1) and (2) with decadal mortality as the dependent variable, we find that a 1-

µg/m3 increase in average PM2.5 from 2004 through 2013 increases mortality by 

2.37 percentage points, equivalent to 6% of the decadal mortality rate. The full re-

sults of this specification are shown in Table A3 in the appendix. The consistency 

between this finding for long-term exposure and the results from well-identified 

mortality effects from short term spikes in PM2.5 (e.g., Deryugina et al. 2019) lends 

credence to our research design. 
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We estimate an additional set of traditional placebo models designed to test 

whether unspecified threats to identification cause spurious positive relationships 

between pollution and the onset of poor health generally. We examine five chronic 

conditions that are not known or suspected to be caused by air pollution but share 

similarities with dementia in terms of how they affect the body, how they are diag-

nosed, and how diagnosis rates are correlated with age, race, and gender. These 

include glaucoma, fibromyalgia, breast cancer, prostate cancer, and peripheral vas-

cular disease. Glaucoma is a progressive disorder with nerve degeneration that is 

strongly associated with age; fibromyalgia affects mood and behavior and can be 

difficult to diagnose; breast cancer and prostate cancer can be slow to progress and 

have gender-specific diagnosis rates; and peripheral vascular disease is associated 

with reduced blood circulation. Conditional on age and gender, dementia, glau-

coma, and peripheral vascular disease are all more common among African-Amer-

icans and Hispanics relative to non-Hispanic whites.55 

TABLE VII—ESTIMATES OF PM2.5 ON PLACEBO HEALTH OUTCOMES 

 
Note: the first column repeats our main result for comparison. The next six columns report results using the same model but 

replacing dementia with each of the placebos. Asterisks indicate statistical significance at the 10%, 5%, and 1% levels based 

on robust standard errors clustered by Census block group. 

                                                 
55 The placebo model samples are slightly smaller than our main dementia sample. This is because the placebo models parallel 

our dementia specification in excluding people who had been diagnosed with the placebos by 2004. While the placebo models 
also add people who had been diagnosed with dementia in 2004, but not the placebos, this addition is more than offset by the 

prior-diagnosis-with-placebo exclusions because the 10-year survival rate for people with dementia in 2004 is low (16%). 

 
Dementia 

in 2013
Glaucoma

Fibro-

myalgia

Breast 

cancer

Prostate 

cancer

Peripheral 

vascular 

disease

1.679*** -1.026* -0.465 -0.077 -0.189 0.581

(0.49) (0.53) (0.53) (0.21) (0.23) (0.60)

first-stage F statistic 637 600 626 624 625 631

number of individuals1,257,232 1,065,603 1,182,076 1,248,239 1,249,959 1,186,008

share with outcome 22 17 18 3 4 27

decadal PM2.5                                          

(1 μg/m3)
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Finding large, positive, and statistically significant effects of PM2.5 on these 

placebo morbidities would signal that our 2SLS research design may be compro-

mised. Table VII shows that this is not the case. We fail to reject the null hypothesis 

of zero effect at the 5% significance level for each placebo outcome. Our criteria 

for selecting the placebos in Table VII excludes cardiopulmonary conditions and 

other illnesses that have previously been linked to air pollution. When we instead 

ignore these criteria and repeat estimation of our main specification for each of the 

15 most common chronic conditions among the Medicare population (Centers for 

Medicare and Medicaid Services 2012) including those linked to pollution expo-

sure, we find a positive effect of PM2.5 at the 5% level for only one disease besides 

dementia: chronic obstructive pulmonary disease. This reinforces findings from 

prior large cohort studies that found PM2.5 to cause and exacerbate COPD (e.g., 

Guo et al. 2018).56  

The last column of Table V summarizes a final placebo specification that re-

peats 2SLS estimation on a larger sample using a dementia diagnosis in 2004 as the 

outcome. Anticipatory Tiebout sorting on factors that contribute to dementia and 

are correlated with PM2.5 but are not accounted for by our model could yield a re-

lationship between dementia in 2004 and PM2.5 exposure over the subsequent dec-

ade. However, this is not the case. The resulting coefficient is negative, close to 

zero, and estimated relatively precisely.57 As with our observed effects on mortal-

ity, the lack of effects on placebo outcomes affirms the credibility of using our 

research design to draw causal inferences about the effects of PM2.5 on dementia. 

 

                                                 
56 We leave a comprehensive analysis of PM2.5 on morbidity to future research. 
57 Figure A8 provides the informal visual inspection confirming parallel pre-treatment trends in diagnoses rates the spirit of 

Autor (2003). While parallel pre-trends is neither necessary nor sufficient for drawing causal inference from our 2SLS re-

search design, the absence of pre-instrument differences may assuage concerns that the estimated differences during the 
subsequent decade are due to other factors such as differential rates of change in doctors’ diagnostic and prescribing deci-

sions. 
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VIII. Welfare Implications and Conclusion 

Our findings provide the first large-scale, nationwide evidence to support the 

hypothesis from medical research that long-term exposure to fine-particulate air 

pollution increases the individual risk of dementia among older adults. Our results 

show that PM2.5’s effect on dementia is driven by cumulative exposure and that this 

effect is not explained by other pollutants, selection on mortality, sorting between 

traditional Medicare and Medicare Advantage, residential sorting based on antici-

pating future pollution changes, or other forms of Tiebout sorting based on unob-

served health, genetics, income, and preferences for neighborhood amenities. 

Dementia’s global social costs continue to grow with the aging populations of 

many countries, causing the World Health Organization to label it a “public health 

priority” and the US Centers for Disease Control to describe it as a “public health 

crisis.” Because no medical preventions or cures exist, policy discussions have fo-

cused on investment in research and health infrastructure and modifying behaviors 

related to smoking, diet and exercise (World Health Organization 2012, US Centers 

for Disease Control and Prevention 2018). Our findings reveal another lever avail-

able to policy makers. We show that EPA regulation of PM2.5 during the 2000s 

lowered dementia rates in the United States. Specifically, we estimate that county 

nonattainment designations determined in late 2003 and early 2004 lowered aver-

age PM2.5 across the subsequent decade in nonattainment counties by 1.24 µg/m3. 

Multiplying this reduction by our main estimate for the effect of a 1 g/m3 increase 

in decadal exposure on the probability of a dementia diagnosis (1.68 pp) implies 

that the regulation reduced the dementia rate in nonattainment counties by 2.1 pp, 

amounting to 182,000 fewer dementia cases among individuals age 75 and above 

in nonattainment counties in 2013.58  

                                                 
58 This value comes from scaling our estimates by Census data indicating that 8.7 million people age 75 and over lived in 

counties in 2013 that were nonattainment in 2005. 
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To provide insights to the magnitude of the monetary value of these avoided 

cases, we combine our data with estimates from prior estimates of the value of 

quality-adjusted life years. Appendix C provides details of our approach. To sum-

marize, we estimate that for individuals over age 75, a new dementia diagnosis is 

equivalent to losing 7.4 years of life in otherwise average health without dementia. 

Eighty-three percent of this loss is due to lower life expectancy and seventeen per-

cent comes from reduced quality of remaining life. Assuming a value per statistical 

life year of $160,000 for individuals over 75 in average health without dementia 

implies that each case avoided is worth about $1.2 million, generating benefits of 

$214 billion for the age 75+ cohort living in nonattainment counties in 2013.59  

In addition to these economic implications of US environmental policy, the 

finding that air pollution elevates the risk of dementia has implications for house-

hold finance and retirement planning. First, having dementia has been found to alter 

the process and outcomes of individuals’ financial decisions (e.g., Keane and Thorp 

2015, Keane et al. 2020). Second, an individual’s prior exposure to PM2.5 is an 

important variable for predicting her future risk of dementia. Better predictions can 

help individuals improve their financial decisions, as prior research has shown that 

individuals’ expectations about their likelihood of acquiring dementia influence re-

tirement planning, savings, and the purchase of long-term care insurance (Agarwal 

et al. 2009, Shin, Lillard, and Bhattacharya 2019).  

 

 

 

 

                                                 
59 With a 3% discount rate, $160,000 is less than half the value per life year implied by the constant value of a statistical life 
used by the EPA to calculate the benefits of regulating air pollution to reduce mortality among the Medicare population 

(Aldy and Viscusi 2007).  In comparison, Murphy and Topel (2006) report that an average 80 year old has a VSLY around 

$200,000 (in 2018 dollars). In any case, our benefit measures can be easily rescaled by alternative assumptions for the value 
of statistical life years, but will remain large enough to matter for evaluating air quality regulations under any estimates from 

the current literature. 



56 

 

REFERENCES 

Agarwal, Sumit, John C. Driscoll, Xavier Gabaix, and David Laibson. 2009. “The 

Age of Reason: Financial Decisions over the Life Cycle and Implications for 

Regulation.” Brookings Papers on Economic Activity. Fall: 51-117.  

Aldy, Joseph E. and W. Kip Viscusi. 2007. “Age Differences in the Value of Sta-

tistical Life: Revealed Preference Evidence.” Review of Environmental Eco-

nomics and Policy, 1(2): 241-260.  

Alzheimer’s Association. 2019. “2019 Alzheimer’s Disease Facts and Figures.” 

https://www.alz.org/media/Documents/alzheimers-facts-and-figures-2019-

r.pdf.  

Archsmith, James, Anthony Heyes and Soodeh Saberian. 2018. “Air Quality and 

Error Quantity: Pollution and Performance in a High-skilled, Quality-focused 

Occupation”. Journal of the Association of Environmental and Resource Econ-

omists, 5(4): 827-863. 

Auffhammer, Maximilian, Antonio M. Bento and Scott E. Lowe. 2009. “Measuring 

the Effects of the Clean Air Act Amendments on Ambient PM10 Concentra-

tions: The Critical Importance of a Spatially Disaggregated Analysis.” Journal 

of Environmental Economics and Management, 58: 15-26. 

Autor, David H. 2003. “Outsourcing at Will: The Contribution of Unjust Dismissal 

Doctrine to the Growth of Employment Outsourcing.” Journal of Labor Eco-

nomics 21(1): 1-42. 

Banzhaf, H. Spencer and Randall P. Walsh. 2008. “Do People Vote with Their 

Feet? An Empirical Test of Tiebout’s Mechanism.” American Economic Re-

view, 98(3): 843-863. 

Bayer, Patrick, Fernando Ferreira and Robert McMillan. 2007. “A Unified Frame-

work for Measuring Preferences for Schools and Neighborhoods.” Journal of 

Political Economy, 115(4): 588-638. 

Bayer, Patrick, Nathaniel Keohane and Christopher Timmins. 2009. “Migration 

and Hedonic Valuation: The Case of Air Quality.” Journal of Environmental 

Economics and Management, 58(1): 1-14. 

Bayer, Patrick, Robert McMillan, Alvin Murphy and Christopher Timmins. 2016. 

“A Dynamic Model of Demand for Houses and Neighborhoods”. Economet-

rica. 84(3): 893-842. 

Bento, Antonio, Matthew Freedman and Corey Lang. 2015. “Who Benefits from 



57 

 

Environmental Regulation? Evidence from the Clean Air Act Amendments.” 

Review of Economics and Statistics, 97(3): 610-622. 

Bhattacharya, Jay, Azeem M. Shaikh, and Edward Vytlacil. 2012. "Treatment Ef-

fect Bounds: An Application to Swan–Ganz Catheterization." Journal of Econ-

ometrics, 168.2: 223-243. 

Block M.L., et al. 2012. “The Outdoor Air Pollution and Brain Health Workshop.” 

NeuroToxicology, 33: 972-984. 

Blundell, Wesley, Gautam Gowrisankaran and Ashley Langer. 2018. “Escalation 

of Scrutiny: The Gains from Dynamic Enforcement of Environmental Regula-

tions.” NBER Working Paper #24810. 

Blundell, Richard, Amanda Gosling, Hikehiko Ichimura, and Costas Meghir. 

“Changes in the Distribution of Male and Female Wages Accounting for Em-

ployment Composition Using Bounds. Econometrica, 75(2), pp.323-363. 

Blundell, Richard and James L. Powell. 2003. “Endogeneity in Nonparametric and 

Semiparametric Regression Models.” Econometric Society Monographs, 36: 

312-357. 

Blundell, Richard and James L. Powell. 2004. “Endogeneity in Semiparametric Bi-

nary Response Models.” Review of Economic Studies. 71: 655-679.  

Cacciottolo, M, X Wang, I Driscoll et al. 2017. “Particulate Air Pollutants, APOE 

Alleles and Their Contributions to Cognitive Impairment in Older Women And 

to Amyloidogenesis in Experimental Models.” Translational Psychiatry, 7:1-8.  

Card, David. 2001. “Estimating the Returns to Schooling: Progress on Some Per-

sistent Econometric Problems.” Econometrica, 69(5):1127-1160. 

Carey I.M., Anderson H.R., Atkinson R.W., Beeves S.D., Cook D.G., Strachan 

D.P., Dajnak D., Gulliver J., and Kelly F.J.. 2018. “Are Noise and Air Pollu-

tion Related to the Incidence of Dementia? A Cohort Study in London, Eng-

land.” BMJ Open 2018;8:e022404. doi: 10.1136/bmjopen-2018-022404  

Centers for Medicare and Medicaid Services. 2012. “Chronic Conditions among 

Medicare Beneficiaries Chartbook: 2012 Edition.”  

Chay, Kenneth Y. and Michael Greenstone. 2005. “Does Air Quality Matter? Evi-

dence from the Housing Market.” Journal of Political Economy, 113(2): 376-

424. 

Chang, Tom, Joshua Graff-Zivin, Tal Gross and Matthew Neidell. 2016. “Particu-



58 

 

late Pollution and the Productivity of Pear Packers.” American Economic Jour-

nal: Economic Policy, 8(3): 141-69.  

Chen, Hong et al. 2017. “Living Near Major Roads and the Incidence of Dementia, 

Parkinson’s Disease, and Multiple Sclerosis: A Population-Based Cohort 

Study.” Lancet, 389(10070): 718-726. 

Chen, Shuai, Paulina Oliva, and Peng Zhang. 2018. “The Effect of Air Pollution on 

Migration: Evidence from China” NBER Working Paper #24036. 

Currie, Janet, Eric Hanushek, E. Megan Kahn, Matthew Neidell and Steven Rivkin. 

2009. “Does Pollution Increase School Absences?” Review of Economics and 

Statistics, 91(4): 672-694. 

Deaton, Angus S. and Christina H. Paxson. 1998. “Aging and Inequality in Income 

and Health.” American Economic Review: Papers and Proceedings. 88 (2): 

248-253. 

Deschenes, Olivier 2014. “Temperature, Human Health, and Adaptation: A Review 

of the Empirical Literature.” Energy Economics, 46: 606-619. 

Deryugina, Tatyana, Garth Heutel, Nolan H. Miller and David Molitor. 2019. “The 

Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind 

Direction.” American Economic Review, 109(12): 4178-4219.  

Di, Qian, Yan Wang, Antonella Zanobetti, Yun Wang, Petros Koutrakis, Christine 

Choirat, Francesca Dominici, and Joel D. Schwartz. 2017. “Air Pollution and 

Mortality in the Medicare Population.” The New England Journal of Medicine.  

Driver, Jane A., Alexa Beiser, Rhoda Au, Bernard E Kreger, Greta Lee Splansky, 

Tobias Kurth, Douglas P Kiel, Kun Ping Lu, Sudha Seshadri, and Phillip A 

Wolf. 2012. “Inverse Association Between Cancer and Alzheimer’s Disease: 

Results from the Framingham Heart Study.” BMJ, 344:e1442. 

Dubin, Jeffrey A and Douglas Rivers. 1989. “Selection Bias in Linear Regression, 

Logit and Probit Models.” Sociological Methods & Research, 18(2-3), pp.360-

390.  

Ebenstein, Avraham, Victor Lavy, and Sefi Roth. 2016. “The Long Run Economic 

Consequences of High-Stakes Examinations: Evidence from Transitory Varia-

tion in Pollution.” American Economic Journal: Applied Economics, 8(4): 36-

65. 

Finkelstein, Amy, Matthew Gentzkow and Heidi Williams. 2016. “Sources of Ge-

https://scholar.princeton.edu/deaton/publications/aging-and-inequality-income-and-health
https://scholar.princeton.edu/deaton/publications/aging-and-inequality-income-and-health


59 

 

ographic Variation in Health Care: Evidence from Patient Migration.” Quar-

terly Journal of Economics, 1681-1726. 

Ganguli, Mary. 2015. “Cancer and Dementia: It’s Complicated.” Alzheimer Dis-

ease and Associated Disorders, 29(2): 177—182. 

Garen, John. 1984. “The Returns to Schooling: A Selectivity Bias Approach with a 

Continuous Choice Variable.” Econometrica, 52(5): 1199-1218. 

Giustinelli, Pamela, Charles F. Manski and Francesca Molinari. 2019. “Precise or 

Imprecise Probabilities? Evidence from Survey Response on Late-Onset De-

mentia.” NBER Working Paper 26125. 

Guo, Cui, Zilong Zhang, Alexis KH Lau et al. 2018. “Effect of long-term exposure 

to fine particulate matter on lung function decline and risk of chronic obstruc-

tive pulmonary disease in Taiwan: a longitudinal, cohort study.” Lancet Planet 

Health 2: e114-25. 

Grainger, Corbett, and Andrew Schreiber. 2019 "Discrimination in Ambient Air 

Pollution Monitoring?." AEA Papers and Proceedings, 109, 277-82.  

Grainger, Corbett, Andrew Schreiber and Wonjun Chang. 2018. “Do Regulators 

Strategically Avoid Pollution Hotspots when Siting Monitors? Evidence from 

Remote Sensing of Air Pollution”. Working Paper. 

Graff-Zivin, Joshua and Matthew J. Neidell. 2013. “Environment, Health, and Hu-

man Capital.” Journal of Economic Literature 51(3): 689–730. 

Hausman, Jerry A.. 1978. “Specification Tests in Econometrics.” Econometrica,  

46(6): 1251-1271.  

Heckman, James J. 1979. “Sample Selection Bias as a Specification Error.” Econ-

ometrica, 47(1): 153-161. 

Heckman, James J. and Edward Vytlacil. 1998. “Instrumental Variables Methods 

for the Correlated Random Coefficient Model: Estimating the Average Rate of 

Return to Schooling When the Return is Correlated with Schooling.” Journal 

of Human Resources, 33(4): 974-987. 

Heckman James J. and Richard Robb. 1986. “Alternative Methods for Solving the 

Problem of Selection Bias in Evaluating the Impact of Treatments on Out-

comes.” In: Wainer H. (eds) Drawing Inferences from Self-Selected Samples. 

Springer, New York, NY 

Honore, Bo E., and Adriana Lleras-Muney. 2006. “Bounds in Competing Risks 

Models and the War on Cancer.” Econometrica, 74(6), 1675-1698. 



60 

 

Horowitz, Joel L., and Charles F. Manski. 2000 "Nonparametric Analysis of Ran-

domized Experiments with Missing Covariate and Outcome Data." Journal of 

the American Statistical Association 95(449), 77-84. 

Hudiomet, P, MD Hurd and S Rohwedder. 2018. “Dementia Prevalence in the 

United States in 2000 and 2012: Estimates Based on a Nationally Representa-

tive Study.” Journals of Gerontology: Social Sciences 73(S1), S10-S19.  

Imbens, Guido W., and Charles F. Manski. 2004. "Confidence Intervals for Par-

tially Identified Parameters." Econometrica 72.6: 1845-1857. 

Isen, Adam, Maya Rossin-Slater and W. Reed Walker. 2017. “Every Breath You 

Take- Every Dollar You’ll Make: The Long-Term Consequences of the Clean 

Air Act of 1970”. Journal of Political Economy, 125(3): 849-909.  

Jeffery, Molly Moore. 2015. “A New Method for Identifying the Primary Care 

Treatability of Emergency Department Visits in a Medicare Population.” Ph.D. 

Dissertation. University of Minnesota. 

Kahn, Matthew E., 1997. “Particulate pollution trends in the United States.” Re-

gional Science and Urban Economics, 27 (1), 87-107. 

Kahn, Matthew E. and Randall P. Walsh. 2015. “Cities and the Environment.” 

Handbook of Regional and Urban Economics, Vol. 5. Elsevier. 405-465. 

Keane, Michael. and Susan Thorp. 2016. “Complex Decision Making: The Roles 

of Cognitive Limitations, Cognitive Decline and Aging” The Handbook of 

Population Ageing Vol. 1B: 661-709. 

Keane, Michael, Jonathan Ketcham, Nicolai Kuminoff, and Timothy Neal. 2020. 

“Evaluating Consumers’ Choices of Medicare Part D Plans: A Study in Behav-

ioral Welfare Economics.” Journal of Econometrics, forthcoming.   

Landen, Francine, Joel Schwartz, Frank E. Speizer and Douglas W. Dockery. 2006. 

“Reduction in Fine Particulate Air Pollution and Mortality” American Journal 

of Respiratory and Critical Care Medicine, 173: 667-672. 

Lee, David S. 2009. “Training, Wages, and Sample Selection: Estimating Sharp 

Bounds on Treatment Effects.” Review of Economic Studies, 76: 1071-1102. 

Lee, E, M Gatz, C Tseng, LS Schneider et al. 2019. “Evaluation of Medicare Claims 

Data as a Tool to Identify Dementia.” Journal of Alzheimer’s Disease 67, 769–

778. 

Lee, Eunjung, Margaret Gatz, Chiuchen Tseng et al. 2019. “Evaluation of Medicare 

Claims Data as a Tool to Identify Dementia.” Journal of Alzheimer’s Disease. 



61 

 

67: 769-778.  

Lee, Sanghoon & Lin, Jeffrey. 2018. “Natural Amenities, Neighborhood Dynam-

ics, and Persistence in the Spatial Distribution of Income.” Review of Economic 

Studies. 85. 663-694. 

Li, Shanjun. 2018. “Better Lucky than Rich? Welfare Analysis of Automobile Li-

cense Allocations in Beijing and Shanghai.” Review of Economic Studies, 

85(4): 2389-2428. 

Li, Shanjun, Nicholas Sanders, Guang Shi and Gong Yazhen. 2019. “The Mortality 

Impact of Fine Particulate Matter in China.” Working Paper. 

Manski, Charles F. 1990. "Nonparametric Bounds on Treatment Effects." The 

American Economic Review 80.2: 319-323. 

Manski, Charles F. and Pepper, John. 2000. “Monotone Treatment Response with 

an Application to the Returns to Schooling.” Econometrica, 68: 997-1012. 

Maher, Barbara A.et al. 2016. “Magnetite pollution nanoparticles in the human 

brain.” Proceedings of the National Academy of Sciences, 113(39): 10797-

10801.  

McMillan, Robert and Joshua Murphy. 2017. “Measuring the Effects of Severe Air 

Pollution: Evidence from the UK Clean Air Act of 1956.” Working Paper. 

Muller, Nicholas Z and Paul Rudd. 2017. "What Forces Dictate the Design of Pol-

lution Monitoring Networks?" Environmental Modeling and Assessment, 

23(1):1-14. 

Murphy, Kevin M., and Robert H. Topel. 2006. “The Value of Health and Longev-

ity,” Journal of Political Economy, 114(5): 871-904. 

Nevo, Aviv, and Adam M. Rosen. 2012. "Identification with Imperfect Instru-

ments." Review of Economics and Statistics 94.3: 659-671. 

Newhouse, Joseph P., Mary Price, John Hsu et al. 2015. “How Much Selection Is 

Left in Medicare Advantage?” American Journal of Health Economics, 1(1): 1-

26. 

Peters, Ruth, Nicole Ee, Jean Peters et al. 2019. “Air Pollution and Dementia: A 

Systematic Review.” Journal of Alzheimer’s Disease, 70: S145-S163.  

Peterson, Arthur V. 1976. "Bounds for a Joint Distribution Function with Fixed 

Sub-Distribution Functions: Application to Competing Risks." Proceedings of 

the National Academy of Sciences 73.1: 11-13. 



62 

 

Pope, C. Arden III et al. 2002. “Lung Cancer, Cardiopulmonary Mortality, and 

Long-Term Exposure to Fine Particulate Air Pollution.” Journal of the Ameri-

can Medical Association, 287(9): 1132-1141.  

Pope, C. Arden III, Maureen Cropper, et al. 2015. “Health Benefits of Air Pollution 

Abatement Policy: Role of the Shape of the Concentration Response Function.” 

Journal of the Air and Waste Management Association, 65(5):516-522. 

Power, Melinda C., Sara D. Adar, Jeff D. Yanosky and Jennifer Weuve. “Exposure 

to air pollution as a potential contributor to cognitive function, cognitive de-

cline, brain imaging, and dementia: a systematic review of epidemiologic re-

search.” Neurotoxicology, 56: 235-253.  

Rivers, Douglas and Quang H. Vuong. 1988. “Limited Information Estimators and 

Exogeneity Tests for Simultaneous Probit Models.” Journal of Econometrics, 

39: 347-366.  

Schlenker, Wolfram and W. Reed Walker. 2016. “Airports, Air Pollution, and Con-

temporaneous Health.” Review of Economic Studies, 83(2): 768-809. 

Shin, Su H., Dean R. Lillard, and Jay Bhattacharya (2019). “ Understanding the 

Correlation Between Alzheimer’s Disease Polygenic Risk, Wealth, and The 

Composition of Wealth Holdings.” NBER working paper 25526.  

Sieg, Holger, V. Kerry Smith, H. Spencer Banzhaf, and Randall P. Walsh. 2004. 

“Estimating the General Equilibrium Benefits of Large Changes in Spatially 

Delineated Public Goods.” International Economic Review, 45(4): 1047-1077. 

Taylor Jr., Donald H., Gerda G. Fillenbaum and Michael E. Ezell. 2002. “The ac-

curacy of medicare claims data in identifying Alzheimer's disease.” Journal of 

Clinical Epidemiology, 55, 929-937. 

Underwood, Emily. 2017. “The Polluted Brain”. Science. 355(6323): 342-345. 

US Centers for Disease Control and Prevention. 2018. A Public Health Approach 

to Alzheimer’s and Other Dementias. https://www.cdc.gov/ag-

ing/aginginfo/alzheimers.htm 

US Environmental Protection Agency. 2005. “Air Quality Designations and Clas-

sifications for Fine Particles (PM2.5) National Ambient Air Quality Standards; 

Final Rule”. Federal Registrar. 40 CFR Part 81. January 5, 2005. 

US Environmental Protection Agency. 2011. The Benefits and Costs of the Clean 

Air Act: 1990 to 2020. 



63 

 

Van de Ven, Wynand P.M.M., and Bernard M.S. Van Praag. 1981 "The Demand 

for Deductibles in Private Health Insurance: A Probit Model with Sample Se-

lection." Journal of Econometrics 17(2), 229-252.  

Wellenius, Gregory A. et al. 2012. “Ambient Air Pollution and the Risk of Acute 

Ischemic Stroke.” Archives of Internal Medicine, 172(3): 229-234. 

Wilker, Elissa H., et al. 2015. “Long-term Exposure to Fine Particulate Matter, 

Residential Proximity to Major Roads and Measures of Brain Structure.” 

Stroke, 46:1161–66. 

Wooldridge, Jeffery. 2003. “Further Results on Instrumental Variables Estimation 

of Average Treatment Effects in the Correlated Random Coefficients Model,” 

Economics Letters, 79(2): 185-191. 

Wooldridge, Jeffery. 2015. “Control Function Methods in Applied Econometrics,” 

Journal of Human Resources, 50(2): 420-445. 

World Health Organization. 2011. International Statistical Classification of Dis-

eases and Related Health Problems. 10th Rev. Vols. I‐III. Geneva: World 

Health Organization. 

World Health Organization. 2012. “Dementia: A Public Health Priority.”  

http://www.who.int/mental_health/publications/dementia_report_2012.  

Zhang, Xin, Xi Chen, and Xiaobo Zhang. 2018. “The Impact of Exposure to Air 

Pollution on Cognitive Performance.” Proceedings of the National Academy of 

Sciences, forthcoming.  

file:///C:/Users/kumin/Dropbox/CMSPollution/drafts/REStud/
file:///C:/Users/kumin/Dropbox/CMSPollution/drafts/REStud/


A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Material: For Online Publication Only 

 

 

  



 

A2 

 

SUPPLEMENTAL APPENDIX A: ADDITIONAL TABLES AND FIGURES 

 

 

FIGURE A1: ASSOCIATION BETWEEN PM2.5 AND DEMENTIA AMONG MEDICARE ENROLLEES, 2013 

 
Note: Each data point represents the fraction of individuals living in a state who had been diagnosed with dementia prior to the end of 2013 plot-

ted against their average decadal exposure to PM2.5 based on place of residence. The figures are conditional on integer age: 75 (upper left), 80 
(upper right), 85 (lower left) and 90 (lower right). Each figure also shows linear regression equations and correlation coefficients. The figures are 

based on dementia diagnoses observed for all enrollees in traditional Medicare in 2013. 
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FIGURE A1 (CONTINUED):  

ASSOCIATION BETWEEN PM2.5 AND DEMENTIA IN MAIN ESTIMATION SAMPLE, 2013 

 
Note: The figure is the same as the prior figure, except that it is constructed using only the individuals included in our main estimation sample. 

Differences between Figures A1 and A2 are mainly due to dropping individuals living in counties without pollution monitors. 
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FIGURE A2: AIR POLLUTION TRENDS: UNBALANCED AND BALANCED MONITOR PANELS 

 

The bottom figure is identical to Figure II. It displays air pollution trends based on a balanced 

panel of monitors in operation continuously from 2001-2013. For comparison, the top figure is 

based on averages taken each year over an unbalanced panel of operating monitors. 
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TABLE A1: SUMMARY STATISTICS FOR MEDICARE BENEFICIARY SAMPLES  

 

Note: Column (1) describes the sample used in our main longitudinal models. It is a balanced panel of individuals who were in traditional Medicare 

(TM) in 2004 and survived to 2013, at which point they were still enrolled in TM. Column (2) describes the full estimation sample used in models 
that include individuals who were in TM in 2004 but died or switched to Medicare Advantage (MA) before 2013. Column (3) describes individuals 

who were in TM in 2004 but not used in estimation because they lived in counties that were designated by EPA as “unclassifiable” for regulatory 

purposes due to a lack of pollution monitors. Column (4) describes individuals not used in estimation because they were enrolled in MA in 2004, 
leaving us unable to observe their dementia diagnoses and medical expenditures. Column (5) describes individuals who were in TM in 2004 but 

not used in estimation (aside from placebo regressions) because they had been diagnosed with dementia by 2004. Column (6) describes individuals 

who were in TM in 2004 but not use din estimation because they were missing data on medical expenditures, their residential address could not be 
matched to a Census block group, or they changed addresses in 2004 complicating assignment to a block group and attainment/nonattainment area. 

(1) (2) (3) (4) (5) (6)

EXCLUDED EXCLUDED EXCLUDED EXCLUDED

lived in county 

without 

pollution 

monitors

enrolled in 

Medicare 

Advantage in 

2004

had dementia in 

2004

missing data or 

moved in 2004

# people 1,257,232 2,384,195 2,695,762 772,071 339,539 418,067

Individual demographics

mean age at sample entry 69.5 71.1 71.3 71.3 77.3 69.2

mean age in 2013 82.8 84.5 84.7 84.8 91.2 82.0

male (%) 38 41 43 41 32 48

white (%) 83 83 87 75 80 77

black (%) 8 9 6 10 11 10

asian (%) 3 3 1 4 2 4

hispanic (%) 5 5 6 10 6 8

alive at beginning of 2013 (%) 100 65 60 64 20 74

ever moved (%) 31 31 36 36 52 67

ever moved county (%) 17 16 21 20 29 51

ever moved state (%) 10 10 15 12 19 37

2013 gross Medicare expenditures ($) 4,838 6,726 7,101  16,265

Medical diagnoses as of 2004

dementia (%) 0 0 10  100

stroke (%) 7 10 11  34

congestive heart failure (%) 13 21 21  45

diabetes (%) 22 25 23  34

ischemic heart disease (%) 36 42 37  61

hypertension (%) 67 70 63  84

Neighborhood characteristics

PM2.5 (hourly μg/m3) 2001-2003 13.24 13.29 12.86 13.57 13.39

Nonattainment county (%) 39.99 39.50  42.32 42.25

household income (median) 65,387 62,041 52,738 60,424 59,800

income per capita 33,498 31,822 26,815 29,954 31,095

year built (median) 1970 1969 1973 1967 1968

house value (median) 265,944 246,780 170,730 278,731 244,764

house value (average) 136,748 124,553 88,543 132,277 119,108

gross rent (median) 2,807 2,546 1,723 2,281 2,361

population over 65 (%) 18 18 19 18 19

population white not hispanic (%) 68 67 83 58 64

population black (%) 12 13 7 12 15

population hispanic (%) 13 13 7 21 14

education: 9th to 12th (%) 7 8 9 8 8

education: high school grad (%) 27 27 34 27 27

education: some college (%) 21 21 21 21 21

education: associate degree (%) 8 8 8 8 7

education: bachelor's degree (%) 20 19 15 18 19

education: graduate degree (%) 13 12 9 11 12

owner occupied (%) 64 62 64 60 58

renter occupied (%) 27 28 23 31 32

Main estimation 

sample: 2004 - 

2013 survivors

Full estimation 

sample: 

traditional 

Medicare 

enrollees in 

2004



 

A6 

 

FIGURE A3: LOCATIONS OF EPA MONITORING STATIONS FOR FINE PARTICULATE MATTER 

 

The map shows the locations of air quality monitors for particulate matter smaller than 2.5 

microns in diameter (PM2.5). The maps was generated using the Environmental Protection 

Agency’s AirData Air Quality Monitor app: https://www.epa.gov/outdoor-air-quality-data/inter-

active-map-air-quality-monitors  

 

 

 

 

  

https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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FIGURE A4: WITHIN-CBSA VARIATION IN NONATTAINMENT STATUS BY BASELINE PM2.5 LEVELS 

  

The figures provide examples of within-county and between-county variation in nonattainment 

status conditional on baseline residential PM2.5 concentrations from 2001-2003 in two CBSAs. The 

vertical axes report the fractions of individuals in 0.33 microgram per cubic meter bins describing 

baseline PM2.5 concentrations for residential areas in specific nonattainment and attainment coun-

ties at the time nonattainment designations were made. For example, the bottom figure shows that 

about 45% of individuals living in Union county, New Jersey in 2004 were living in neighborhoods 
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that had baseline concentrations between 13.0 and 13.3 micrograms per cubic meter. The corre-

sponding fraction in Ocean county, New Jersey was about 15%. Both counties are part of the New 

York – Northern New Jersey – Long Island CBSA but differed in their regulatory designations. 

Union county contains monitors above and below the regulatory threshold whereas all of Ocean 

county’s monitors were below the threshold.  

The top figure compares two adjacent counties in the Chicago – Naperville – Joliet CBSA. 

While Lake county’s monitors were below the regulatory threshold it was designated as a nonat-

tainment county. This illustrates the fact that the EPA designated counties as nonattainment if they 

were believed to contribute to violations in other nearby counties due to spatial dispersion of emis-

sions.  
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TABLE A2.A: SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

PM2.5 (1 μg/m3) (Decadal, 2004-2013) 1.679 0.490 0.717 2.640

Chronic conditions in 2004     

H 0.769 0.094 0.586 0.953

S 8.018 0.571 6.899 9.138

S, H 9.130 0.344 8.455 9.805

D 3.291 0.266 2.771 3.812

D, H 3.592 0.149 3.300 3.884

D, S 14.072 1.857 10.433 17.711

D, S, H 13.438 0.607 12.248 14.629

I 2.101 0.183 1.743 2.459

I, H 2.598 0.124 2.356 2.840

I, S 9.854 0.832 8.223 11.485

I, S, H 11.059 0.338 10.396 11.722

I, D 4.653 0.460 3.752 5.553

I, D, H 5.591 0.175 5.247 5.935

I, D, S 8.609 1.967 4.754 12.464

I, D, S, H 14.605 0.483 13.658 15.552

C 4.293 0.596 3.124 5.462

C, H 4.232 0.314 3.616 4.848

C, S 9.136 2.702 3.841 14.432

C, S, H 12.714 1.027 10.701 14.726

C, D 8.217 1.544 5.191 11.244

C, D, H 8.289 0.460 7.388 9.191

C, D, S 18.205 6.093 6.262 30.147

C, D, S, H 18.227 1.414 15.456 20.999

C, I 4.079 0.521 3.057 5.100

C, I, H 5.383 0.205 4.981 5.785

C, I, S 9.891 1.780 6.402 13.381

C, I, S, H 13.613 0.485 12.663 14.563

C, I, D 7.987 1.097 5.837 10.136

C, I, D, H 9.245 0.243 8.769 9.721

C, I, D, S 20.333 3.847 12.792 27.874

C, I, D, S, H 20.552 0.525 19.523 21.580

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The excluded reference category for age is 75. 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 3.859 0.119 3.625 4.092

expenditures2 -0.484 0.033 -0.548 -0.421

expenditures3 0.019 0.002 0.015 0.023

expenditures4 0.000 0.000 0.000 0.000

Age (females) 

76 0.751 0.180 0.398 1.104

77 1.689 0.188 1.321 2.057

78 2.907 0.194 2.526 3.288

79 4.307 0.202 3.911 4.704

80 6.025 0.214 5.606 6.444

81 7.152 0.216 6.729 7.576

82 8.838 0.227 8.393 9.283

83 11.253 0.233 10.797 11.710

84 12.696 0.242 12.222 13.170

85 15.244 0.252 14.751 15.737

86 17.625 0.262 17.112 18.138

87 19.841 0.277 19.299 20.384

88 22.560 0.290 21.992 23.127

89 25.081 0.305 24.483 25.679

90 27.224 0.330 26.576 27.871

91 29.571 0.355 28.875 30.267

92 31.013 0.375 30.278 31.747

93 33.346 0.418 32.528 34.165

94 36.313 0.481 35.370 37.256

95 38.380 0.530 37.342 39.419

96 40.681 0.611 39.484 41.878

97 42.037 0.709 40.647 43.427

98 43.329 0.822 41.717 44.940

99 47.367 0.918 45.568 49.167

100 and over 46.058 0.687 44.712 47.403

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The excluded reference category for age is 75. 

  

coefficient

Robust 

standard 

error

male -0.837 0.186 -1.201 -0.473

Age (males)

76 -0.063 0.270 -0.592 0.466

77 -0.245 0.281 -0.795 0.305

78 -0.557 0.292 -1.130 0.016

79 -0.869 0.304 -1.464 -0.273

80 -1.310 0.322 -1.941 -0.678

81 -1.495 0.327 -2.136 -0.854

82 -1.469 0.343 -2.142 -0.796

83 -2.247 0.355 -2.942 -1.552

84 -1.912 0.373 -2.643 -1.181

85 -2.530 0.394 -3.303 -1.758

86 -2.604 0.413 -3.413 -1.794

87 -3.697 0.440 -4.560 -2.833

88 -3.976 0.470 -4.897 -3.055

89 -4.283 0.501 -5.265 -3.302

90 -4.555 0.550 -5.633 -3.476

91 -5.861 0.593 -7.023 -4.700

92 -4.591 0.651 -5.867 -3.314

93 -5.226 0.738 -6.671 -3.780

94 -6.498 0.869 -8.200 -4.796

95 -7.181 0.998 -9.137 -5.225

96 -7.097 1.179 -9.409 -4.786

97 -6.282 1.446 -9.115 -3.448

98 -7.976 1.731 -11.370 -4.583

99 -11.812 2.136 -15.999 -7.625

100 and over -9.463 1.653 -12.703 -6.224

95% Confidence Interval
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TABLE A2.A (CONT’D): SECOND STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

 
Note: The excluded reference categories are “other” for race, “% with 8th grade or less” for block group education attainment, and “% vacant” for 

block group housing stock. 

 

 

coefficient

Robust 

standard 

error

White 0.803 0.353 0.110 1.495

Black 3.718 0.392 2.951 4.486

Asian 0.517 0.410 -0.287 1.321

Hispanic 3.432 0.394 2.660 4.204

2004 Census Block Group Demographics

median household income / 1000 -0.004 0.003 -0.009 0.001

per capita income / 1000 -0.010 0.004 -0.018 -0.001

median year built 0.002 0.003 -0.003 0.007

median house value / 1000 -0.002 0.000 -0.003 -0.002

average house value / 1000 0.000 0.000 0.000 0.000

median gross rent / 1000 0.020 0.007 0.007 0.034

% over 65 0.235 0.382 -0.513 0.982

% white 1.185 0.438 0.327 2.043

% black 2.434 0.484 1.485 3.383

% hispanic 1.057 0.506 0.065 2.050

% 9th through 12th -0.158 1.185 -2.480 2.164

% high school graduate -3.933 0.903 -5.703 -2.163

% some college -5.971 0.899 -7.733 -4.209

% associate degree -7.511 1.134 -9.733 -5.289

% bachelor's degree -5.759 0.907 -7.536 -3.982

% graduate degree -5.284 0.960 -7.165 -3.403

% owner occupied -2.484 0.414 -3.295 -1.673

% renter occupied 1.908 0.462 1.002 2.814

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure -1.853 1.697 -5.179 1.474

exposure2 0.156 0.185 -0.206 0.518

exposure3 -0.010 0.009 -0.026 0.007

exposure4 0.000 0.000 0.000 0.000

95% Confidence Interval
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TABLE A2.B: FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The chronic conditions in 2004 are hypertension (H), stroke (S), diabetes (D), ischemic heart disease (I), and congestive heart failure (C). 

coefficient

Robust 

standard 

error

Chronic conditions in 2004     

H -0.0024 0.0008 -0.0040 -0.0007

S 0.0010 0.0048 -0.0085 0.0104

S, H 0.0006 0.0024 -0.0042 0.0054

D -0.0051 0.0024 -0.0099 -0.0004

D, H -0.0048 0.0012 -0.0071 -0.0024

D, S -0.0033 0.0121 -0.0270 0.0203

D, S, H -0.0007 0.0042 -0.0089 0.0074

I -0.0022 0.0017 -0.0055 0.0011

I, H -0.0026 0.0011 -0.0047 -0.0005

I, S -0.0059 0.0065 -0.0187 0.0069

I, S, H -0.0017 0.0024 -0.0065 0.0031

I, D -0.0042 0.0038 -0.0116 0.0033

I, D, H -0.0055 0.0014 -0.0083 -0.0027

I, D, S -0.0246 0.0162 -0.0564 0.0071

I, D, S, H -0.0026 0.0036 -0.0096 0.0044

C -0.0012 0.0046 -0.0103 0.0079

C, H -0.0031 0.0026 -0.0082 0.0019

C, S -0.0401 0.0231 -0.0853 0.0052

C, S, H -0.0095 0.0075 -0.0241 0.0052

C, D -0.0041 0.0126 -0.0289 0.0206

C, D, H -0.0011 0.0035 -0.0080 0.0058

C, D, S -0.0321 0.0329 -0.0966 0.0324

C, D, S, H -0.0016 0.0114 -0.0238 0.0207

C, I 0.0059 0.0042 -0.0024 0.0141

C, I, H 0.0011 0.0017 -0.0022 0.0044

C, I, S -0.0029 0.0139 -0.0301 0.0243

C, I, S, H -0.0026 0.0038 -0.0101 0.0048

C, I, D 0.0050 0.0088 -0.0121 0.0222

C, I, D, H -0.0002 0.0019 -0.0040 0.0035

C, I, D, S 0.0273 0.0326 -0.0367 0.0913

C, I, D, S, H -0.0007 0.0041 -0.0086 0.0073

95% Confidence Interval
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TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The excluded reference category for age is 75. 

 

 

coefficient

Robust 

standard 

error

2004 Gross Medicare Expenditures ($10,000)

expenditures 0.0001 0.0009 -0.0017 0.0019

expenditures2 -0.0001 0.0002 -0.0006 0.0004

expenditures3 0.0000 0.0000 0.0000 0.0000

expenditures4 0.0000 0.0000 0.0000 0.0000

Age (females)

76 0.0032 0.0020 -0.0008 0.0072

77 0.0023 0.0021 -0.0018 0.0063

78 0.0019 0.0020 -0.0020 0.0059

79 0.0009 0.0021 -0.0032 0.0051

80 0.0038 0.0021 -0.0004 0.0079

81 0.0026 0.0021 -0.0015 0.0066

82 0.0054 0.0021 0.0012 0.0095

83 0.0046 0.0021 0.0004 0.0087

84 0.0039 0.0022 -0.0003 0.0081

85 0.0046 0.0022 0.0003 0.0089

86 0.0054 0.0022 0.0010 0.0098

87 0.0050 0.0023 0.0004 0.0095

88 0.0057 0.0023 0.0011 0.0103

89 0.0075 0.0025 0.0027 0.0123

90 0.0048 0.0026 -0.0002 0.0099

91 0.0052 0.0027 -0.0001 0.0106

92 0.0084 0.0029 0.0027 0.0141

93 0.0042 0.0033 -0.0022 0.0106

94 0.0029 0.0037 -0.0043 0.0101

95 0.0052 0.0040 -0.0025 0.0129

96 0.0028 0.0044 -0.0058 0.0114

97 0.0037 0.0053 -0.0067 0.0140

98 0.0130 0.0059 0.0014 0.0246

99 0.0035 0.0071 -0.0104 0.0175

100 and over 0.0000 0.0053 -0.0103 0.0103

95% Confidence Interval



 

A15 

 

TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION  

 

Note: The excluded reference category for age is 75. 

  

coefficient

Robust 

standard 

error

male 0.0026 0.0023 -0.0018 0.0070

Age (males)

76 -0.0024 0.0032 -0.0086 0.0037

77 -0.0015 0.0032 -0.0078 0.0047

78 -0.0021 0.0032 -0.0084 0.0041

79 -0.0032 0.0033 -0.0095 0.0032

80 -0.0015 0.0033 -0.0079 0.0049

81 -0.0009 0.0032 -0.0071 0.0054

82 -0.0040 0.0033 -0.0104 0.0024

83 -0.0029 0.0033 -0.0094 0.0036

84 -0.0055 0.0033 -0.0120 0.0010

85 -0.0027 0.0034 -0.0094 0.0040

86 -0.0039 0.0034 -0.0106 0.0029

87 -0.0072 0.0037 -0.0144 0.0000

88 -0.0023 0.0038 -0.0097 0.0051

89 -0.0033 0.0040 -0.0111 0.0045

90 -0.0033 0.0042 -0.0115 0.0049

91 -0.0053 0.0045 -0.0142 0.0036

92 -0.0052 0.0048 -0.0147 0.0042

93 0.0014 0.0054 -0.0092 0.0119

94 0.0067 0.0066 -0.0063 0.0197

95 0.0030 0.0074 -0.0115 0.0176

96 0.0001 0.0086 -0.0167 0.0168

97 -0.0048 0.0100 -0.0244 0.0148

98 -0.0097 0.0133 -0.0358 0.0163

99 -0.0193 0.0154 -0.0495 0.0108

100 and over 0.0075 0.0115 -0.0150 0.0301

95% Confidence Interval
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TABLE A2.B (CONT’D): FIRST STAGE RESULTS FROM THE MAIN 2SLS SPECIFICATION 

Note: The excluded reference categories are “other” for race, “% with 8th grade or less” for block group education attainment, and “% vacant” for 

block group housing stock.  

coefficient

Robust 

standard 

error

White -0.0094 0.0038 -0.0168 -0.0021

Black 0.0000 0.0041 -0.0081 0.0080

Asian 0.0108 0.0051 0.0008 0.0208

Hispanic 0.0183 0.0043 0.0098 0.0269

2004 Census Block Group Demographics

median household income / 1000 -0.0005 0.0001 -0.0006 -0.0004

per capita income / 1000 0.0018 0.0001 0.0015 0.0020

median year built -0.0002 0.0001 -0.0003 -0.0001

median house value / 1000 -0.0001 0.0000 -0.0002 -0.0001

average house value / 1000 0.0000 0.0000 0.0000 0.0000

median gross rent / 1000 -0.0001 0.0002 -0.0005 0.0002

% over 65 0.0800 0.0115 0.0574 0.1025

% white 0.0587 0.0118 0.0355 0.0819

% black 0.0907 0.0134 0.0645 0.1169

% hispanic -0.1238 0.0252 -0.1731 -0.0744

% 9th through 12th -0.0886 0.0209 -0.1294 -0.0477

% high school graduate -0.1383 0.0211 -0.1796 -0.0969

% some college -0.2163 0.0254 -0.2661 -0.1664

% associate degree -0.0631 0.0209 -0.1041 -0.0221

% bachelor's degree -0.0472 0.0227 -0.0917 -0.0027

% graduate degree -0.0447 0.0093 -0.0629 -0.0265

% owner occupied 0.0045 0.0104 -0.0159 0.0248

% renter occupied 0.0000 0.0000 0.0000 0.0000

PM2.5 (1 μg/m3) (Baseline, 2001-2003)     

exposure 0.9679 0.1504 0.6732 1.2627

exposure2 -0.0862 0.0200 -0.1255 -0.0469

exposure3 0.0068 0.0011 0.0045 0.0090

exposure4 -0.0002 0.0000 -0.0002 -0.0001

Nonattainment * PM2.5 (1 μg/m3) (2001-2003)     

Nonattainment -23.5482 1.3850 -26.2627 -20.8337

Nonattainment * exposure 4.9770 0.3495 4.2920 5.6619

Nonattainment * exposure2 -0.3615 0.0343 -0.4286 -0.2943

Nonattainment * exposure3 0.0094 0.0016 0.0063 0.0125

Nonattainment * exposure4 0.0000 0.0000 -0.0001 0.0000

R2  =  0.9631

95% Confidence Interval
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TABLE A3—DECADAL EXPOSURE TO PM2.5 AND MORTALITY  

 
Note: The dependent variable equals 100 if an individual died prior to the end of 2013 and 0 otherwise. Col (1) is a univariate OLS regression with 

CBSA-specific intercepts. Col (2) adds all covariates for baseline health in 2004, individual demographics, demographics for the individual’s 
Census block group, and pre-regulatory PM2.5 levels at their residence from 2001-2003. Columns (3) and (4) are the 2SLS analogues to Columns 

(1) and (2), respectively. The first row of Columns (1)-(4) presents the coefficient on decadal PM2.5, which is the average marginal effect in these 

models. Col (5) is the control-function probit analogue to the 2SLS model in Col (4). Col (6) is a control-function probit that allows for additionally 
flexibility in both stages of estimation. The first row of Columns (5) and (6) present the average marginal effect of decadal PM2.5 on mortality. 

Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels using robust standard errors clustered by block group. 

Standard errors in Columns (5) and (6) are bootstrapped using 500 repetitions. 

The table shows results from repeating estimation of the model in Table I using mortality as 

the outcome. The main specification in column (4) implies that a 1-µg/m3 increase in average 

PM2.5 exposure from 2004 through 2013 increased the probability of a death by the end of 2013 

by 2.37 percentage points. This is six times larger than the comparable OLS specification in col-

umn (2). The OLS model in (2) yields an estimate that is about half the size of the estimate reported 

by Di et al. (2017) based on hazard function estimation using CMS data on the Medicare popula-

tion from 2000 to 2012. 

 (1) (2) (3) (4) (5) (6)

0.537*** 0.365*** 0.734*** 2.369*** 2.331*** 1.791***

(0.06) (0.09) (0.09) (0.45) (0.44) (0.40)

ind. & neigh. covariates  x  x x x

specification OLS OLS 2SLS 2SLS IV Probit IV Probit 

first-stage F statistic 24,224 799 799 55

number of individuals 2,384,195 2,384,195 2,384,195 2,384,195 2,384,195 2,384,195

share who survive through 2013 61 61 61 61 61 61

decadal PM2.5 (1 μg/m3)
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TABLE A4—COEFFICIENTS ON CANCER INSTRUMENTS IN THE SURVIVAL REGRESSION 

 
Note: The dependent variable equals 100 if an individual survived through the end of 2013. Asterisks indicate statistical significance at the 10% 

(*), 5% (**), and 1% (***) levels using robust standard errors clustered by initial Census block group.  

The table shows coefficients on the instruments from the survival regression. The dependent 

variable is scaled to enable the coefficients to be interpreted as percentage point changes in the 

probability of survival. 

  

 

-3.66***

(0.14)

0.11

(0.14)

-3.37***

(0.17)

-5.03***

(0.37)

-11.94***

(0.25)

number of individuals 2,384,195

share who survive through 2013 61

Breast cancer in 2004

Prostate cancer in 2004

Colorectal cancer in 2004

Endometrial cancer in 2004

Leukemia/Lymphoma in 2004
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FIGURE A5: PARTIAL EFFECT OF COUNTY-BY-MONITOR NONATTAINMENT ON PM2.5 EXPOSURE 

 

The figure reports conditional variation in decadal PM2.5 exposures that arises from nonattain-

ment status of the air quality monitor closest to the individual’s residence, conditional on county 

nonattainment designation. Each solid line is constructed by using our first-stage coefficients on 

the excluded instruments to predict how nonattainment designations affected average decadal ex-

posure conditional on baseline exposure. The excluded instruments consist of a fourth-order pol-

ynomial function of baseline exposure interacted with nonattainment indicators for the county and 

nearest monitor, which may or may not be in the same county. In the legend, “A” and “NA” denote 

attainment and nonattainment. The dotted lines represent 95% confidence bands based on 1,000 

bootstrap replications, with clustering by Census block group. 
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TABLE A5—ESTIMATES INCLUDING OTHER MEASURES OF AIR POLLUTION 

 
Note: Col (1) repeats the specification from Col (2) of Table IV. It is modified for each remaining column. Col (2) adds other criteria air pollutants. 

Columns (3) and (4) replace the county dummies with CBSA dummies. 

The table shows coefficients on PM2.5 with and without simultaneously controlling for other 

federally regulated air pollutants: coarse particulate matter (PM10), ozone (O3), nitrogen dioxide 

(NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The main text provides additional details.  

  

 mean
standard 

deviation

1.666*** 1.520*  1.258*** 1.657**

(0.43) (0.78) (0.43) (0.75)

-0.396 -0.711*

(0.48) (0.40)

584.195 -33.664

(403.75) (329.51)

0.623 0.327

(0.65) (0.39)

-0.712 4.777

(5.28) (3.38)

25.558*  23.541

(13.26) (15.27)

p-value on F-stat for PM10, O3, NO2, SO2 and CO 0.1239 0.2662

IV = county x monitor attainment x x x x

CBSA dummies   x x

county dummies x x   

number of individuals 1,257,232 1,257,232 1,257,232 1,257,232

share with dementia in 2013 22.0 22.0 22.0 22.0

decadal carbon monoxide (parts per million)

decadal PM2.5 (1 μg/m3)

decadal PM10 (1 μg/m3)

decadal ozone (parts per million)

decadal sulfur dioxide (parts per billion)

decadal nitrogen dioxide (parts per billion)

0.069

10.94

21.31

0.04

13.21

2.51

0.38

1.700

4.223

0.004

4.022

1.063

Concentrations

(3)(1) (2) (4)
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FIGURE A6: ANNUAL AVERAGE CHANGES IN PM2.5 BY AGE, MIGRATORY STATUS, AND DEMENTIA 

  

The solid trend line shows that movers with dementia tend to experience relatively larger year-

to-year reductions in their PM2.5 exposures as a result of moving, compared to non-movers of the 

same age (who may or may not have dementia). The dashed lines are 95% confidence bands on 

our estimates for the differentials. More specifically, the figure is constructed from a vector of 

coefficients, 𝜒, estimated by regressing the year-to-year changes in individuals’ PM2.5 exposures 

on indicators for integer age and interactions between indicators for (i) integer age, (ii) whether 

the individual has dementia, and (iii) whether the year-to-year change in PM2.5 exposure straddled 

a move.  

∆𝑃𝑀25𝑖𝑡 = 𝑃𝑀2.5𝑖,𝑡 − 𝑃𝑀2.5𝑖,𝑡−1 = 𝜚 + 𝜍{𝑎𝑔𝑒𝑡} + 𝜒{𝑎𝑔𝑒𝑡}{𝑚𝑜𝑣𝑒𝑡}{𝑑𝑒𝑚𝑒𝑛𝑡𝑖𝑎𝑡} + 𝜗𝑖. 

Like our main econometric models, all individuals age 100 and over are grouped into a single 

age bin at 100. Since the model includes 9 observations per individual and the errors may exhibit 

autocorrelation the confidence intervals are constructed from robust standard errors clustered at 

the individual level.  
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FIGURE A7: SENSITIVITY OF CUMULATIVE EXPOSURE ESTIMATES TO SAMPLE COMPOSITION 

 

The figure on the left is the same as figure VII in the main text. It shows the estimated effect 

of a 1-µg/m3 increase in average PM2.5 exposure from 2004 through the final year of exposure on 

the horizontal axis. The sample size decreases from 2.377 million individuals in 2005 to 1.257 

million in 2013 due to death and transition to Medicare Advantage. The figure on the right is 

constructed by repeating the estimation using only the 1.257 million individuals who survived to 

2013.  

FIGURE A8: TRENDS IN NEW DEMENTIA DIAGNOSIS PRIOR TO 2005 BY COUNTY ATTAINMENT 

STATUS 
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Supplemental Appendix B: Additional Background on Models 

A Model of a Dementia Production Function 

To illustrate how our econometric model for dementia’s onset can be linked to a more primi-

tive “production function” for dementia we start by writing dementia as being determined by the 

lifetime history of PM2.5 exposure (from initial year B to year t), all time-varying determinants of 

dementia, 𝜁𝑖𝑡 (which includes both observed and unobserved), and all time-invariant determi-

nants of dementia, 𝜉𝑖 (which includes both observed factors and unobserved factors such as ge-

netics):  

𝑦𝑖𝑡 = 𝛼 ∑ 𝑃𝑀𝑖𝑠

𝑡

𝑠=𝑡−9

(1 − 𝛿)𝑡−𝑠 + 𝑔(𝑃𝑀𝑖𝐵, 𝑃𝑀𝑖𝐵+1, … , 𝑃𝑀𝑖𝑡−11, 𝑃𝑀𝑖𝑡−10) +  𝜁𝑖𝑡 +  𝜉𝑖𝑡 

where we specify the functional form for the most recent decade of PM2.5 exposure with discount 

rate 𝛿, and allow all previous exposure to enter flexibly via the function 𝑔(∙).  First-differencing 

yields: 

Δ𝑦𝑖2013 ≡  𝑦𝑖2013 − 𝑦𝑖2003 

               = 𝛼 ∑ 𝑃𝑀𝑖𝑠

2013

𝑠=2004

(1 − 𝛿)2013−𝑠 − 𝛼 ∑ 𝑃𝑀𝑖𝑠

2003

𝑠=1994

(1 − 𝛿)2003−𝑠 + ∆𝑔𝑖2013 +  ∆𝜁𝑖2013, 

where 𝜉𝑖 has dropped out, Δ𝑔𝑖,2013 = 𝑔(𝑃𝑀𝑖𝐵, … , 𝑃𝑀𝑖2003) − 𝑔(𝑃𝑀𝑖𝐵, … , 𝑃𝑀𝑖1993), and 

Δ𝜁𝑖,2013 = 𝜁𝑖2013 − 𝜁𝑖2003.  Next, we assume that the discount rate on the most recent decade of 

exposure is zero, embedding the medical literature’s hypothesis that the near-term effect of PM2.5 

exposure are cumulative (e.g., Underwood 2017, Block et al. 2012), as in: 60   

Δ𝑦𝑖2013 =  𝛼 ∑ 𝑃𝑀𝑖𝑠

2013

𝑠=2004

− 𝛼 ∑ 𝑃𝑀𝑖𝑠

2003

𝑠=1994

+ ∆𝑔𝑖2013 +  ∆𝜁𝑖2013.  

To illustrate how this primitive specification relates to our empirical model of dementia onset, 

recall that our main specification is given by: 

                                                 
60 In principle, one could alternatively aim to estimate the discount rate, 𝛿, via non-linear least squares.   
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Δ𝑦𝑖2013 =  𝛼 ∑ 𝑃𝑀𝑖𝑠

2013

𝑠=2004

+ 𝑓(𝑃𝑀𝑖2001, 𝑃𝑀𝑖2002, 𝑃𝑀𝑖2003) +  𝛽𝑋
𝑖

+ 𝛾𝐻𝑖 + 𝜃𝑊𝑖 + 𝜂
𝑐(𝑖)

+ 𝜖𝑖,     

where we proxy for 𝛼 ∑ 𝑃𝑀𝑖𝑠
2003
𝑠=1994 , Δ𝑔𝑖,2013, and Δ𝜁𝑖,2013 with 𝑓(𝑃𝑀𝑖,2001, 𝑃𝑀𝑖,2002,𝑃𝑀𝑖,2003), 

 𝛽𝑋𝑖, 𝛾𝐻𝑖, 𝜃𝑊𝑖 , and 𝜂𝑐(𝑖).  This implies that, by definition, our econometric error is given by:  

𝜀𝑖 =  −𝛼 ∑ 𝑃𝑀𝑖𝑠

2003

𝑠=1994

+ ∆𝑔𝑖2013 + ∆𝜁𝑖2013 − 𝑓(𝑃𝑀𝑖2001, 𝑃𝑀𝑖2002, 𝑃𝑀𝑖2003) − 𝛽𝑋𝑖 − 𝛾𝐻𝑖 − 𝜃𝑊𝑖 − 𝜂𝑐(𝑖). 

Our key identifying assumption is therefore that cov(𝜖𝑖, 𝑍𝑖) = 0 where 𝑍𝑖 are the instru-

ments and 𝜖𝑖 contains all attributes that affect dementia onset conditional on 

𝑓(𝑃𝑀𝑖,2001, 𝑃𝑀𝑖,2002,𝑃𝑀𝑖,2003), 𝛽𝑋𝑖, 𝛾𝐻𝑖 , 𝜃𝑊𝑖 , and  𝜂𝑐(𝑖).  Note that in this specification, if 

𝑔𝑖𝑡 = 𝛼 ∑ 𝑃𝑀𝑖𝑠
𝑡−10
𝑠=𝐵 , then −𝛼 ∑ 𝑃𝑀𝑖𝑠

2003
𝑠=1994 +  Δg𝑖,2013 = 0. 

Thus, in words, the identifying assumption required for consistent estimation in our main 

specification is that, after we condition on our controls, individuals are not systematically sorting 

themselves into neighborhoods located in different counties (within the same CBSA) that differ in 

their likelihood of being designated nonattainment in the future, based on unobserved time-varying 

factors that are correlated with the likelihood of a new dementia diagnosis.  Note that we condition 

on an extensive set of controls given by (1) the CBSAs where individuals had chosen to live at the 

start of 2004; (2) their observed individual demographics; (3) their observed measures of individ-

ual health from 2001-2003; (4) the observed measures of socioeconomic status among the individ-

uals living in their residential Census block groups in 2004; and (5) their baseline PM2.5 exposure 

from 2001-2003.  It is worth noting that analogs to this assumption are ubiquitous in the economic 

literature linking pollution to health outcomes (e.g., Schlenker and Walker 2016, Isen, Rossin-

Slater, and Walker 2017, and Deryugina et al. 2019).  Further, the strength of our identifying as-

sumption is weakened relative to most prior studies in this literature by the way we leverage the 

panel structure of CMS administrative data to additionally purge separable time-constant individ-

ual-specific unobserved characteristics that may affect health outcomes. 
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Additional Details on Bounds 

This derivation follows Lee (2009) and is modified for our application.   

For notational simplicity, we let Y denote the binary outcome of interest, i.e., a new diag-

nosis of dementia, and let X denote the continuous explanatory variable of interest, i.e., instru-

mented decadal exposure to PM2.5, and suppress all other variables.  S is the binary variable de-

noting survival.  We consider changes in the expected value of Y for a marginal increase in X, 

where the increase is denoted h.   

We are interested in the causal effect of X on Y, holding selection on survival constant.  We 

denote this causal effect 𝛼𝑋 .  For any given X, this is defined as the change in the expected value 

of Y among those who would survive under both X and X+h, i.e., inframarginal individuals, 

𝛼𝑋 =  lim
ℎ→0

𝐸[𝑌|𝑋 + ℎ, 𝑆(𝑋 + ℎ) = 1] − 𝐸[𝑌|𝑋, 𝑆(𝑋 + ℎ) = 1] 

ℎ
. 

Without additional assumptions, one cannot directly recover 𝛼𝑋 from the data.  However, 

one can recover the total effect of X on Y, which we denote as Δ𝑋. 

 (B1)                                 Δ𝑋 =  lim
ℎ→0

𝐸[𝑌|𝑋 + ℎ, 𝑆(𝑋 + ℎ) = 1] − 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1] 

ℎ
. 

This captures the fact that those exposed to X+h will have a different survival rate com-

pared with those exposed to just X.  Denoting the share of marginal individuals as 𝜌𝑋ℎ, allows us 

to rewrite the second term in the numerator of equation (B1) as,  

(B2)      𝐸[𝑌|𝑋, 𝑆(𝑋) = 1] = 𝜌𝑋ℎ𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] 

+(1 − 𝜌𝑋ℎ)𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1]. 

Gathering terms, this allows us to write the numerator in equation (B1) as, 

𝐸[𝑌|𝑋 + ℎ, 𝑆(𝑋 + ℎ) = 1] −  𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1]

−  𝜌𝑋ℎ(𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] − 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1]). 

We assume monotonicity, such that S is weakly decreasing in X.  This implies that 𝑆(𝑋 + ℎ) =

1 → 𝑆(𝑋) = 1, and that, 

𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0]   =  𝐸[𝑌|𝑋, 𝑆(𝑋 + ℎ) = 1]. 

This allows us to write, 
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(B3)     ∆𝑋= 𝛼𝑋 + lim
ℎ→0

𝜌𝑋ℎ

ℎ
(𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1] − 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0]). 

This equation shows that the difference in expected Y under the marginal change in X is 

comprised of two terms.  The first term reflects the effect of the marginal increase in X on the 

expected value of Y for inframarginal individuals.  The second term reflects the underlying differ-

ence in the expected Y between inframarginal and marginal individuals, scaled by 𝜌𝑋ℎ.  In other 

words, the total effect is comprised of a causal effect of X on expected Y and a compositional 

effect.  As 𝛼𝑋 is the object of interest, we rearrange equation (B3) to get, 

(B4)       𝛼𝑋 = 𝛥𝑋 + 𝑙𝑖𝑚
ℎ→0

𝜌𝑋ℎ

ℎ
(𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] − 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1]). 

While Δ𝑋 and 𝜌𝑋ℎ are recoverable from the data, the remaining two conditional expectations in 

equation (B4) remain unknown.  However, we can recover 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1] from the data, al-

lowing us to construct lower and upper bounds for the difference in the two unknown conditional 

expectations, as 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] is naturally bounded between 0 and 100 in our 

application.  This allows us to construct bounds for 𝛼𝑋.  Specifically, for the lower bound, we set 

𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] to 0 and solve for 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1]  using,   

𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 1] = (
𝐸[𝑌|𝑋, 𝑆(𝑋) = 1] − 𝜌𝑋ℎ𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0]

1 − 𝜌𝑋ℎ
) 

which follows from equation (B2).  We then use these values, along with Δ𝑋 and 𝜌𝑋ℎ, in equation 

(B4) to recover the lower bound for 𝛼𝑋.  The upper bound is constructed analogously by setting  

𝐸[𝑌|𝑋, 𝑆(𝑋) = 1, 𝑆(𝑋 + ℎ) = 0] to 100.  

The construction of these bounds is quite intuitive; while we do not know which specific 

individuals are marginal and which individuals are inframarginal, we can recover the share of 

marginal individuals in the data and use this to inform the bounds. 

            Returning to our application in Section V of the main text.  In the linear-probability model, 

Δ is constant (by definition), so we calculate bounds for 𝛼 using Δ and measures of 

𝐸[𝑌|𝑋, 𝑆(𝑋) = 1]  and 𝜌𝑋ℎ calculated at the mean value of 𝑋.  In our flexible probit model, we 

estimate a value of Δ𝑋 for each individual and calculate bounds using individual-specific values 

of 𝛼𝑋 using individual-specific values of Δ𝑋, 𝐸[𝑌|𝑋, 𝑆(𝑋) = 1], and 𝜌𝑋ℎ.  Note that for simplicity 

in the main text, we write equation (B4) as, 

𝛼 =  Δ +  𝜌 ∗ (𝑃𝑦
𝐴 − 𝑃𝑦

𝐵). 
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Supplemental Appendix C: Additional Background on Policy Calculations 

 

The EPA’s benefit-cost analysis of the CAA excludes the benefits of dementia cases avoided 

(US EPA 2011). Dementia is not counted among the set of morbidities attributed to air pollution, 

nor is it included among the channels through which air pollution is assumed to increase mortality. 

The EPA’s mortality estimates are calibrated to the results of cohort studies by Pope et al. (2002) 

and Landen et al (2006), both of which found that PM2.5 increased all-cause mortality via cardio-

vascular and lung cancer deaths but not deaths due to other causes such as dementia.  

We take a first step toward filling this gap by using our estimates to approximate the value of 

dementia cases avoided in 2013 in nonattainment counties due to the 1997 PM2.5 regulation. Be-

cause we are unaware of any revealed preference estimate of the value of reducing dementia risk, 

our approach relies on estimates of the years of life lost due to dementia, the length of time living 

with dementia and quality of life lost due to having dementia, and a value of a life year among 

individuals age 75 and over with and without dementia.  

We do not know of any published estimates of the effects of dementia on life expectancy. To 

approximate this, we use the Medicare data to compare the average age at death of those who died 

with dementia against the average age at death of those who died without dementia. This yields a 

difference of 6.1 years (80.2 versus 86.3). Because the Medicare population is not typically in full 

health even apart from dementia, each year of life lost does not represent a full quality-adjusted 

life year (QALY). Using estimates from Ara and Brazier (2011), we estimate that the average 

health-state utility value (or “QALY weight”) among this population is 0.8. These values together 

imply that a dementia diagnosis on average leads to 4.88 QALYs lost due to mortality, because 

each year without dementia for this population is equivalent to 80 percent of a year in full health. 

To estimate the lost QALYs due to lower quality of life while living with dementia, we com-

bine the median QALY weights for mild, moderate and severe Alzheimer’s disease and related 

dementia from Kasai and Maguro (2013) with the transition rates between severity levels from 

Spackman et al. (2012). We rely on these prior estimates because we cannot directly observe de-

mentia severity with the Medicare data. We combine them with estimates from the Medicare data 

for the probability of survival to the end of each year following a dementia diagnosis. These esti-

mates are provided in the table below. From Spackman et al. (2012), among those who remain 

living with dementia, an estimated 77% of mild cases transition each year to moderate, and 50% 
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of moderate transition to severe. Kasai and Maguro (2013) estimated the health-state utility value 

for each level to range from 0.52–0.73 in mild cases, 0.30–0.53 in moderate cases, and 0.12–0.49 

in severe cases. Combining the midpoints of these ranges with the transition rates and survival 

rates and again assuming a utility value of 0.8 apart from dementia yields an estimated loss of 1.0 

QALY per dementia case due to morbidity. This ranges from 0.6 QALYs using the high end of 

the health state utility value range to 1.5 using the low end. By combining this with the loss from 

mortality we find a central estimate of 5.9 QALYs lost per dementia case, with a range from 5.5 

to 6.4 QALYs. 

TABLE B1—MORTALITY RATES BY YEARS SINCE DEMENTIA DIAGNOSIS 

 
 

We use a range of estimates for the value of a statistical life year in full health, from $100,000 

to $300,000, with a central estimate of $200,000. The lower bound is a common benchmark, the 

upper bound is from Aldy and Viscusi (2007). Previously, Hirth et al. (2000) found a wide range 

of estimates, with the central estimates between $114,000 and $196,000 in 2018 dollars. The mid-

point estimates of the QALYs lost per dementia diagnosis and the value of a QALY imply a value 

per statistical case of dementia avoided of approximately $1.2 million. 

We combine these statistics with our estimate that the regulation’s effect on annual average 

PM2.5 exposure from 2004 to 2013 for individuals age 75 and above in nonattainment counties 

using our difference-in-difference estimate of -1.24 µg/m3. Multiplying this reduction by our main 

estimate for the effect of a 1-µg/m3 increase in decadal exposure on the probability of a dementia 

Years since Dementia 

Diagnosis

Percent 

Dying

Cumulative 

Percent Dead

0 23.38 23.38

1 19.89 43.28

2 14.17 57.45

3 11.32 68.76

4 8.82 77.58

5 6.72 84.3

6 5.02 89.32

7 3.58 92.9

8 2.57 95.46

9 1.77 97.24

10 1.17 98.4

11 0.76 99.17

12 0.46 99.63

13 0.25 99.89

14 0.11 100
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diagnosis (1.68 pp) implies that the regulation reduced the dementia rate by 2.1 pp. We multiply 

this by the Census Bureau’s estimate that 8.7 million individuals age 75 and above lived in in 

counties in 2013 that were officially designated as nonattainment in 2005. This implies that the 

PM2.5 regulation led to approximately 182,000 fewer cases of dementia among this population in 

2013. At $1.2 million per case, the PM2.5 regulation yielded benefits of $214 billion for the cohort 

of individuals age 75 and above in nonattainment counties. Using our lower bound estimates for 

the lost QALYs per diagnosis and the value of a QALY yields a benefit of $100 billion, while 

using the upper bound indicates a benefit of $349 billion. 

We interpret these estimates as likely lower bounds on the benefits of the EPA’s PM2.5 standard 

for several reasons. First, we exclude any benefits that accrued to individuals in attainment coun-

ties, for example that might occur due to spatial spillover of PM2.5 reductions. We also exclude 

health benefits for individuals who were under age 65 at the start of the decade, benefits for those 

who died during the decade, and any health benefits other than reduced dementia rates for individ-

uals who were over 65 and survived to the end of the decade.  
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