Benefit Duration and Job Search Effort: Evidence from a Natural Experiment*

ANDREAS LICHTER

Work in progress – Please do not cite or circulate!

November 10, 2015

Abstract
Findings of prolonged unemployment spells due to more generous unemployment insurance schemes are commonly interpreted as an indication of reduced job search effort and UI-induced moral hazard. This paper exploits quasi-experimental variation in the potential benefit duration for one particular age group of workers in Germany paired with individual-level data on job search behavior to directly investigate this assumed relationship. The results of this study provide substantial support for the existence of UI-induced moral hazard: increases in the potential benefit duration cause job search effort to significantly decrease, lowering the number of filed applications and the probability of applying for a job that requires moving. When testing for heterogeneous treatment effects, responses are particularly pronounced for low- and medium-skilled workers whereas the treatment effect for the high-skilled is small and insignificant.

JEL Classification: D83, I38, J64, J68
Keywords: Job Search, Unemployment Insurance, Natural Experiment, Germany

* Andreas Lichter (lichter@iza.org) is affiliated to IZA Bonn and the University of Cologne. Michael Krause, Max Löffler, Robert Mahlstedt, Andreas Peichl, Gerard A. Pfann, Amelie Schiprowski, Sebastian Siegloch as well as seminar participants at ZEW Mannheim provided valuable comments and suggestions.
1 Introduction

A central challenge of unemployment insurance (UI) schemes is to allow unemployed individuals to actively search for suitable reemployment opportunities by partly compensating for income losses while at the same time repressing the unintended incentives to lower search intensity. Disincentive effects of UI systems, triggered by both the level of benefits as well as the potential benefit duration (PBD), have been, however, well identified by empirical research. In a nutshell, extensions of the PBD have been shown to significantly extend individuals’ nonemployment duration, irrespective of personal characteristics or institutional regulations of the labor market (see, for example; Katz and Meyer, 1990; Card and Levine, 2000; Lalive et al., 2006; Van Ours and Vodopivec, 2006; Chetty, 2008; Schmieder et al., 2012, 2015).

While standard job search theory shows that increases in the duration of nonemployment spells due to the extension of the PBD can be attributed to lower search effort and/or higher reservation wages, direct empirical evidence regarding the importance of reduced job search effort in contributing to this aggregate effect is sparse. Absent direct evidence, findings of prolonged spells of nonemployment are rather commonly interpreted as suggestive evidence of reduced search effort and the presence of moral hazard. Two recent studies by Baker and Fradkin (2015) and Marinescu (2015) aim at filling this gap by relating state-level variation in the PBD in the US to changes in state-level internet job search intensity, with both providing evidence of less job search in response to increases in the PBD during the time of the recent recession.

The present paper adds to this limited evidence by using quasi-experimental variation in the PBD for one specific age group of the unemployed in conjunction with detailed, direct information on individuals’ search effort and reservation wage.

1 Card et al. (2007) show that the extent of the observed spike in exit rates prior to the expiration of benefits significantly depends on the measurement of individuals’ unemployment spells: reemployment hazards increase significantly less than unemployment exit rates. Given that unemployment registration is not mandatory in many countries after benefit exhaustion, spikes in unemployment exit rates may hence overstate the extent of a UI-induced moral hazard.

2 Chetty (2008) shows that the increase in unemployment duration due to more generous UI cannot be entirely attributed to moral hazard, but the role of liquidity effects must also be accounted for.
choices to provide causal evidence of the effect of benefit duration on job search behavior. Variation in the PBD comes from an unexpected and rapidly implemented policy change in Germany in late 2007. The new legislation was motivated by concerns of social injustice and took place during times of stable-macro-economics conditions. On December 11, 2007, only two months after the initial reform proposal, the then acting coalition of the Christian Democrats (CDU) and Social Democrats (SPD) issued a law that enabled the extension of the PBD for eligible workers aged 50 to 54 by twelve weeks (from 12 to 15 months), while the PBD for younger workers remained unaffected.

Using data from the IZA Evaluation Dataset Survey, which covers a large sample of individuals registering as unemployed at the German Federal Employment Agency between June 2007 and May 2008, the present paper exploits this policy reform to investigate the effects of the PBD on job search behavior. Using unemployed individuals aged 45 to 49, who were not affected by the reform, as a control group allows for applying simple difference-in-differences techniques. Importantly, the swiftness of the political process and uncertainty about the design and scope of the reform until its public announcement by December, 11 2007 limit the scope of adaptive behavior. Moreover, the reform’s detachedness from actual labor market conditions allows comparing the job search behavior of the two groups prior to and after the reform net of any endogenous policy bias.

The results of this study show that unemployed individuals entitled to an additional twelve weeks of unemployment benefits exerted substantially lower levels of job search effort at the beginning of the unemployment spell compared to their untreated counterparts: they filed less job applications and were less likely to apply for jobs in distant areas. The effects are robust to the inclusion of a variety of personal and regional control variables and are of significant magnitude: the increase in the PBD by three months caused job applications to decrease by around 40% of a standard deviation, on average. Treatment effects are similar for females and

3 As detailed below, workers were subject to the reform in case having had contributed to UI for at least 12 months within the last two years (eligibility constraint) and for 30 months within the last five years. Note that the reform also extended the PBD for eligible workers aged 58 and above. Given that this study bases on data covering unemployed individuals aged 16 to 54 only, the effects of this change are, however, not investigated.
males but substantially differ by skill. Whereas treated low- and medium-skilled individuals showed significantly less job search effort in response to the reform, the high-skilled unemployed did not reduce the number of filed applications. In contrast, the increase in the PBD had no effect on reservation wages, which – despite being counterintuitive to theory – is in line with recent evidence demonstrating limited responsiveness of individuals’ reservation wage with respect to changes in UI parameters (see, among others, Krueger and Mueller 2014, Schmieder et al. 2015).

Overall, the study offers considerable evidence for UI-induced moral hazard and strategic search behavior. Unemployed individuals respond to more generous UI by significantly reducing job search effort. These findings relate to early work by Barron and Mellow (1979), who report a negative relationship between UI payments and the time devoted to job search. Moreover, the results correspond to less direct evidence of moral hazard by Arni and Schiprowski (2015), who show that externally imposed changes in search effort affect job seekers’ outcomes, and Black et al. (2003), who demonstrate that individuals leave unemployment upon receiving notice of required participation in reemployment services, i.e., in case costs of unemployment increase.

The paper proceeds as follows. Section 2 provides the theoretical foundation of this study by highlighting expected changes in job search behavior in response to an extension of the PBD. Section 3 offers a short overview about the key institutional characteristics of the German labor market and highlights the key features of the reform of interest. Information on the dataset are presented in Section 4 and Section 5 provides the empirical model and details the underlying identification strategy. The results of this analysis are presented in Section 6, while Section 7 concludes.

2 Job search theory

According to the stylized predictions of partial-equilibrium models of job search, increases in the PBD should lower job search effort and raise reservation wages. The theoretical framework by Schmieder et al. (2015) demonstrates the expected
effects in a discrete-time setting.

Risk-neutral workers are assumed to become unemployed in period $t = 0$ and to maximize the present discounted value of income. Workers receive benefits b_t and choose search effort λ_t, which is normalized to match the probability of receiving a job offer and varies between zero and one, in each period. Effort choices generate search costs $\psi(\lambda_t)$. UI benefits b are limited to P periods and replaced by an indefinite second tier payment \bar{b} thereafter, with $\bar{b} < b$, generating non-stationarity in the spirit of Van den Berg (1990). Once re-employed, workers are, however, assumed to indefinitely stay with their new job4 such that the value of being employed V^e satisfies: $V^e(w^*) = \frac{1}{\rho} w^*$, with ρ indicating the common subjective discount rate and w^* constituting the wage offer drawn from distribution $F(w^*, \mu_t)$, which is assumed to differ over the spell of nonemployment and is summarized by its mean in period t, μ_t, such that $w^*_t = \mu_t + u_t$, and the term u_t reflecting random draws from the distribution.

Given that $V^u(w^*)$ increases with w^*, the optimal strategy of a job seeker thus comprises specifying a reservation wage (ϕ_t) in each period such that all wage offers exceeding it are accepted:

$$V^u(t) = b_t + \max_{\phi_t} \left[-\psi(\lambda_t) + \frac{(1 - \lambda_t)}{1+\rho} V^u(t+1) + \frac{\lambda_t}{1+\rho} \int_{\phi_t}^{\infty} (V^e(w^*) - V^u(t+1)) dF_t(w^*) \right].$$

In line with the institutional framework presented in this analysis, benefits (and the wage offer distribution) are assumed to become stationary after $t > P$: $b_t = b$ and $F_t(w^*) = F_T(w^*)$. This in turn implies that the optimal search strategy is constant after $t > P$. Using that $V^u(t) = V^u(t+1)$ and $\phi_t = \rho V^u(t)$ hold true in stationarity, the optimal reservation wage for $t > P$ can then be deduced from the Bellman equation:

$$\frac{\phi_T}{\rho} = b_T - \psi(\lambda_T) + \frac{1}{1+\rho} \frac{\phi_T}{\rho} + \frac{\lambda_T}{1+\rho} \int_{\phi_T}^{\infty} \left(\frac{1}{\rho} w^* - \frac{\phi_T}{\rho} \right) dF_T(w^*)$$

4 Van den Berg (1990) acknowledges potential criticism regarding this assumption as rejecting a job offer may be suboptimal to accepting it and quitting immediately thereafter; given that the latter case may result in a new spell of unemployment and thus extended benefits. However, given legal boundaries prohibiting or punishing such behavior in reality, the validity of this assumption seems justifiable.
\[\phi_T = (1 + \rho)(b_T - \psi(\lambda_T)) + \frac{\lambda_T}{\rho} \int_{\phi_T}^{\infty} \left(w^* - \phi_T \right) dF_T(w^*). \] (1)

Optimal search intensity in stationarity is obtained by differentiating equation (1) with respect to \(\lambda_T \), yielding:

\[\psi'(\lambda_T)(1 + \rho) - \int_{\phi_T}^{\infty} \left(w^* - \phi_T \right) dF_T(w^*) = 0. \] (2)

In the non-stationary setting \((t \leq P)\), i.e., while receiving UI benefits, it in turn holds true that \(\phi_t = \rho V^u(t + 1) \). Knowledge about \(\phi_t \) and \(\lambda_t \) in period \(t \), with the initial conditions resulting from equations (1) and (2) in \(t = P \), allows derivation of the job seeker’s optimal strategy in non-stationarity for period \(t - 1 \):

\[\frac{\phi_{t-1}}{\rho} = b_t - \psi(\lambda_t) + \frac{1}{1 + \rho} \frac{\phi_t}{\rho} + \frac{\lambda_t}{1 + \rho} \int_{\phi_t}^{\infty} \left(\frac{1}{\rho} w^* - \frac{\phi_t}{\rho} \right) dF_t(w^*) \]

\[(1 + \rho)\phi_{t-1} = (1 + \rho)(b_t - \psi(\lambda_t)) + \phi_t + \lambda_t \int_{\phi_t}^{\infty} (w^* - \phi_t) dF_t(w^*). \] (3)

Optimal search effort in period \(t - 1 \) can then be deduced by differentiating equation (3) with respect to \(\lambda_{t-1} \), which yields:

\[\rho(1 + \rho)\psi'(\lambda_{t-1}) - \int_{\phi_{t-1}}^{\infty} w^* - \phi_{t-1} dF_t(w^*) = 0. \] (4)

Based on equation (3), it can then be shown that reservation wages raise in response to an extension of the PBD,

\[\frac{d\phi_t}{dP} = \frac{dV^u(t + 1)}{dP} \rho > 0, \] (5)

in case there is some probability of remaining unemployed after the exhaustion of the PBD, in which case an extension of the PBD will increase the value of remaining unemployed in each period \(t \leq P \): \(\frac{dV^u(t + 1)}{dP} > 0 \).

Using that

\[(1 + \rho)\rho\psi'(\lambda_t) - \int_{\phi_t}^{\infty} w^* - \rho V^u_{t+1} dF_t(w^*) = 0 \] \[5\]

\[\text{Note that this expression can be derived by differentiating equation (3) with respect to } \lambda_t. \]
it further follows that job search effort decreases in response to an increase in the PBD in the case where \(\frac{dV(t+1)}{dP} > 0 \forall t \leq P \):

\[
\frac{d\lambda_t}{dP} = -\frac{dV(t + 1)}{dP} \frac{(1 - F(\phi_t))}{(1 + \rho)\psi''(\lambda_t)} < 0.
\] (6)

3 The institutional setting

In Germany, all employees subject to social security contributions are covered by UI and are entitled to receive unemployment benefits if having had contributed to UI for at least twelve months within the last two years preceding their job loss. The duration of benefits is subject to the number of months employed within a given time frame and increases with age. Monthly benefits amount to 60% (67% for recipients with children) of the last net wage, which is capped at the upper ceiling of the social security contributions, and payments are generally rescinded for up to twelve weeks if workers terminate their job themselves, which lowers the maximum benefit duration accordingly. Each recipient of unemployment benefits is further obliged to actively search for a job and to be at the Employment Service’s disposal, while failure to comply with these requirements may result in benefit cuts. Individuals who are not entitled for or exhaust their unemployment benefits may receive welfare benefits, which are granted for an unlimited period and designed to assure living at subsistence level.

UI benefit extension for older workers in 2007. The extension of the PBD for older workers was the result of an unexpected policy reform under the grand coalition of Christian Democrats (CDU) and Social Democrats (SPD) in late 2007. The remarkably rapid implementation of the reform proposal, uncertainty about the design and scope of the reform until its public announcement, and its detachedness from the business cycle allows for the investigation of the effects of the PBD on job search effort and reservation wages in absence of (the common challenges of) avoidance behavior and endogenous policy bias. Below, the key features of this

\[& \text{and is equal to equation (4) in period } t. \]
\[& \text{6 Note that there is no general minimum number of applications required by law.} \]
reform are detailed.

Since their implementation in the early 2000s, the Social Democrats were heavily divided about the evaluation of their large, structural reforms that had made the German labor market much more flexible (Hartz IV, Agenda 2010, among others) but had marked a significant shift in the party’s policy agenda, resulting in electoral defeats and a challenge to the identity of the party. On October 1, 2007, the then acting party leader of the Social Democrats, Kurt Beck, marked the party’s public turn from its (more) liberal policy by calling for an extension of the PBD for older workers. The reform proposal was motivated on the grounds of social injustice concerns – long periods of UI contributions were ought to be rewarded by extended PBD – and was made during times of stable macro-economic conditions (see Figure A.1 in the Appendix).

The initial proposal was met with considerable skepticism, from politicians in both the Christian Democratic and the Social Democratic parties. Disagreement about the proposal, and hence uncertainty about the implementation of the suggested reform, lasted for several weeks and raised rumors about the collapse of the acting coalition. To ease the growing tensions, both parties negotiated over pending disputes in a coalition meeting on the night of November 12, and a general decision in favor of an extension of the PBD was announced by the following morning. However, details about the actual changes of the UI scheme did not become public until December 11, 2007, when the corresponding law was issued to parliament.

Ultimately, the reform affected those unemployed individuals aged 50 or above who fulfilled the given entitlement criteria. PBD for workers aged 50 to 54 was extended by twelve weeks (from 12 to 15 months) if having had contributed to UI for at least 12 months within the last two years (eligibility constraint) and for 30 months within the last five years. Likewise, UI benefit duration was extended from 18 to 24 months for all workers aged 58 or above if they had fulfilled the eligibility constraint and had contributed to UI for at least four out of the last five

[7] The reform proposal followed claims of the German Trade Union Confederation (DGB), who initially suggested the extension of the PBD for all workers aged 45 and above to up to 24 months.

[8] The coalition also disagreed about other pending topics, such as the introduction of minimum wages in the postal sector, for example.

[9] Note that the reform extended the qualifying period from three to five years, too.
years. The reform also contained a transitional agreement which extended the PBD for those respective workers who were unemployed prior to the reform, fulfilled the entitlement criteria highlighted above and whose eligibility period was not exhausted by December 31, 2007.\footnote{Hence, the reform subsequently extended the PBD for all eligible individuals who had become unemployed before January 1, 2008 and were entitled to receive benefit payments on December 31, 2007 by three months (see §434r, SGB III). However, note that this only applied to those individuals who fulfilled both criteria (above the respective age threshold and sufficient contributions to UI) at the time of unemployment registration.}

The reform was passed by Parliament on January 26, 2008 and retroactively extended back to January 1, 2008. Table A.1 in the Appendix outlines the relationship between the claimant’s age and length of UI contributions and the PBD prior to (upper panel) and after the reform (lower panel). However, as the data used in this analysis focuses on unemployed individuals aged 16 to 54, this study exploits information about the reform for the younger of the two age groups only.

4 Data

In order to investigate the consequences of this reform, the analysis in this paper uses data from the IZA Evaluation Dataset Survey, which covers a large sample of individuals registering as unemployed at the German Federal Employment Agency between June 2007 and May 2008, i.e., prior to and after the reform (see Arni et al. (2014) for details). Designed to allow for the investigation of active labor market program (ALMP) effects, the dataset surveys prime-aged workers (aged 16 to 54) who enter unemployment, search for reemployment opportunities and qualify for participation in ALMPs. Individuals close to (early) retirement and all recipients of welfare benefits, who are thus not entitled for participation in ALMPs, are in turn not covered by the survey.

In order to obtain a representative sample of the unemployed population in this survey and to account for seasonal effects over one year, a random sample of unemployed individuals was drawn from the monthly unemployment inflow statistics of the German Federal Employment Agency in each month between June 2007 and May 2008. In total, 17,396 individuals were first interviewed around two months
after becoming unemployed and were repeatedly questioned over time. For the present analysis, the first wave of the survey is exploited, which provides detailed information on individual job search behavior at the beginning of the unemployment spell.

More precisely, the survey covers information on the number of applications, the filing of applications that require moving and the reservation wage, i.e., the indicated lowest wage rate at which an unemployed person would consider working. This information is supplemented by a large set of variables on the respondents’ employment history, personal characteristics (e.g., the age, education or level of professional training) and personality traits, such as the locus of control or the Big Five. The data also include information on individuals’ supervision intensity by the local Employment Agencies (the number of agency visits or received job offers, among others) and local labor market conditions, such as regional unemployment and vacancy rates.

For the empirical analysis presented below, all individuals who are already reemployed at the time of the first interview\(^1\) – around 25% of the observations – or did not participate in the labor market are excluded\(^2\). Descriptive statistics for the estimation sample are provided in Table A.2 in the Appendix.

5 Identification

The dataset allows observing the job search behavior of unemployed individuals who were interviewed prior to or after the public announcement of the reform and its details on December 11, 2007. Variation in the date of unemployment registration, the policy reform and the date of the interview provide a clear quasi-experimental setting to identify the effects of the PBD on job search effort.

Figure 1 illustrates the setting of the analysis. Individual \(a\) registered as unemployed \((U_a)\) and was interviewed about her job search behavior \((I_a)\) prior to the

\(^{11}\) On average, the interview is conducted around eight weeks after the individuals’ unemployment registration.

\(^{12}\) Note that both the probability of being reemployed at the time of the first interview as well as the probability of participating in the labor market are not affected by the reform of interest.
Figure 1: Unemployment Entry, Interview Date and Expected Benefit Duration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_a) (I_a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_c) (I_c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_b) (I_b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The figure plots the setting of this analysis. Individuals \(i \in \{a, b, c\} \) registered as unemployed at \(U_i \) and were interviewed at \(I_i \). Expectations about the potential benefit duration change on December 11, 2007; the day the bill was introduced to the parliament.

reform, thus choosing her job search effort while expecting a PBD of twelve months. In turn, individual \(b \) became unemployed and chose job search effort while knowing about the extension of the PBD. For individual \(c \), expectations about the PBD were updated after unemployment registration but prior to the interview. Some part of the relevant job search period was thus subject to the new PBD regime, whereas initial job search effort was chosen while expecting a PBD of 12 months. The job search effort of individual \(c \) may thus have converged towards the search effort level of individual \(b \) after the extension of the PBD became public.\(^{13}\)

Based on this setting and in line with the empirical strategies pursued by Kyyrä and Ollikainen (2008) as well as Van Ours and Vodopivec (2008), a simple difference-in-differences strategy is applied to compare pre- and post-reform outcomes. Unemployed workers aged 50 to 54, which were interviewed after the announcement of the reform and hence gained knowledge about the extension of the PBD prior to choosing their job search behavior, constitute the *treatment group*. Same-aged individuals interviewed prior to the introduction of the reform serve as the *comparison group*\(^{14}\). Unemployed workers aged 45 to 49, interviewed prior to or after the reform, serve as *control groups* in order to account for any seasonal aggregate effects.

\(^{13}\) In the empirical analysis presented below, special attention is paid to those individuals whose expectations about the PBD updated after unemployment registration but prior to the interview.

\(^{14}\) Note that the comparison group is equivalent to the treatment group observations measured pre-treatment.
Identifying eligible individuals As highlighted before, benefit duration in Germany is subject to the claimant’s age and length of UI contributions within a given qualifying period. The reform of interest thus changed the PBD for a subset of individuals aged 50 to 54 only. Individuals were entitled to extended PBD if having had contributed to UI for at least 12 months within the last two years (eligibility constraint) and for 30 months within the last five years (coverage constraint). For the purpose of this analysis, all unemployed individuals that did not fulfill the contribution criteria were thus excluded, irrespective of the claimant’s age. Unfortunately, the present dataset provides information on the respondents’ last employment period only, which limits the analysis to those claimants who have fulfilled both entitlement criteria without any interrupting period of non-employment. Compared to the entire eligible population, the individuals in this sample are thus positively selected with regard to their labor market history given that the sampled individuals were not subject to unemployment in the recent past. If the sampled individuals responded differently with regard to this reform compared to the eligible individuals not covered in the analysis, the estimates of this study may thus not provide the true treatment effect for the entire eligible population.

In general, heterogeneous responses may be due to consequences and causes of prior unemployment experience. First, UI-induced moral hazard may be less (more) pronounced among the group of those eligible individuals who have experienced unemployment prior to the current unemployment spell if these individuals had encountered net (dis)utility from unemployment and include past experiences in their current decision about job search effort. Second, unobservable and observable differences between both groups may have caused prior unemployment spells and could affect individuals’ responses with respect to the reform of the PBD.

The analysis presented below, however, suggests that past unemployment experience does not affect current choices about job search effort. UI-induced moral hazard is of similar magnitude for those individuals in the sample who have been unemployed prior to the current spell and those who have not. Evidence of more pronounced UI-induced moral hazard among the low- and medium-skilled compared to the high-skilled unemployed further implies that the sample may underestimate
the overall treatment effect for the entire eligible population if the covered sample is positively selected on skills.

Empirical model The present setting allows for the estimation of the following equation:

$$y_i = \alpha + \beta T_i + \gamma A_i + \delta(T_i \times A_i) + X_i' \rho + \varepsilon_i,$$

with the dependent variable y_i indicating measures of job search effort or the reservation wage of individual i, T_i being a dummy variable indicating whether the individual was interviewed after the reform, and A_i indicating whether the individual is aged between 50 to 54. The treatment effect is given by δ, X_i' defines a vector of control variables and ε_i the error term.

Identification of the model rests upon the assumptions that (I) no observable or unobservable individual characteristics determined the allocation to the treatment or comparison group and (II) potential changes in labor market conditions over the sampling period affected treatment and control groups to an equal extent. Put more precisely, except for differences in knowledge about the reform due to the timing of being interviewed/becoming unemployed, the comparison group should be highly similar to the treatment group. Moreover, changes in business cycle conditions should not have had asymmetric effects on treatment and control groups. The remainder of this section aims at validating these identifying assumptions.

Voluntary quits and strategic layoffs In order for the identifying assumptions to hold, layoffs have to be exogenous from the individual’s perspective. As some workers may, however, potentially opt to become unemployed in response to the extension of the PBD, the treatment group may be self-selected in this respect. To account for potential selection, all workers that voluntarily quit their job or became unemployed by mutual agreement are therefore excluded from the sample. Excluding these individuals from the analysis further accounts for the fact that payments of UI can be suspended for up to twelve weeks if workers voluntarily opt out of employment, which lowers the PBD accordingly.

Strategic layoff decisions by firms may further violate the identifying assump-
tion. If firms deliberately suspend dismissals of older workers (aged 50 or above) to allow for a longer PBD, allocation into the treatment and comparison group would be non-random. Due to the fast implementation of the reform, adaptive behavior of firms is highly unlikely, and strict dismissal laws impede strategic timing of layoffs in Germany. However, as a robustness check, the analysis is further limited to layoffs where strategic timing of terminations can be ruled out, focusing on those workers who became unemployed either due to plant closings or the expiration of a temporary contact. As detailed below, the results of the analysis remain unaffected in the cases where the analysis is limited to the respective subgroups.

Concurrent ALMP reforms Estimates would be biased if simultaneous reforms had occurred that asymmetrically affected treatment, comparison and control groups. Concurrent with the extension of the PBD, the government did indeed introduce labor market integration vouchers (*Eingliederungsgutscheine*). In brief, these vouchers slightly modified eligibility criteria for unemployed individuals aged 50 or above so that they could receive employment integration subsidies (*Eingliederungszuschüsse*). These subsidies have long been used as an ALMP instrument in Germany, and all unemployed individuals are allowed to file for integration subsidies in general. Approval, duration as well as the amount of the subsidy are subject to the discretion of the local Employment Agency and are dependent upon applicants’ work productivity limitations, with the scope and availability of integration subsidies being extended for individuals aged 50 or above (since May 2007).

The existence of integration vouchers and extended subsidies for the unemployed aged 50 or above should, however, not impede the causal interpretation of the findings in this analysis. Given that all unemployed individuals in the treatment and the comparison group were potentially eligible for extended subsidies in general, potential effects arising from these subsidies should be captured by the parameter of the age group dummy and therefore not affect the treatment effect of interest. Moreover, the slight modifications in the eligibility criteria for subsidies invoked by the introduction of the integration voucher as of January 1, 2008 only had a marginal, negligible effect on take up rates. In 2008, the Federal Employment Agency granted 3,000 vouchers only, compared to more than 1.5 million ALMP measures in total.
Observable characteristics by age group and interview period. As highlighted above, besides differences in knowledge about the reform and the timing of becoming unemployed, the comparison and treatment group should be highly similar in observable characteristics. Moreover, labor market conditions should be either constant over time or change to an equal extent for the treatment and control group. The IZA Evaluation dataset allows for extensive testing of both identifying assumptions. Table 1 shows (differences in) mean characteristics by age groups and within the treatment and control group prior to and after the reform.

Columns (1) to (3) show means for the two age groups and the results of a simple t-test (p-value) on the equality of the means for a large set of variables. Besides expected differences in age, it becomes apparent that both groups of individuals are not systematically different from each other. On average, individuals from both groups are married, completed an apprenticeship and generated a monthly net labor income of around 1,400 euros prior to unemployment, for example. Evaluated at the mean, both groups of workers come from comparable regions across Germany, with differences in local unemployment and vacancy rates being small and insignificant. Moreover, the unemployed from both groups received equal supervision by local Federal Employment Agencies, for example, by means of the number of agency visits or job offers. Lastly, both groups are similar with respect to personality traits, measured by means of individuals’ locus of control, extroversion or openness, among others.

It is further tested whether mean characteristics within one age group differ before and after the reform. Columns (4) to (9) show the corresponding results. Both of the two control groups as well as comparison and treatment group are highly similar in terms of observable personal characteristics. Most importantly, the comparison and treatment group neither differ in terms of personal characteristics nor personality traits when being compared at the mean. The only notable exception

15 By April 2012, the voucher program was stopped. Over the course of its existence, a total of around 20,000 vouchers had been issued. The total number of subsidies granted was quite constant over the period of interest. Figure A.2 in the Appendix shows the annual number of subsidies granted from 2006 to 2010.
<table>
<thead>
<tr>
<th></th>
<th>Within Control Group</th>
<th>Within Treatment Group</th>
<th>p-value</th>
<th>individuals</th>
<th>within treatment</th>
<th>post treatment</th>
<th>within treatment</th>
<th>post treatment</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>47.31</td>
<td>52.57</td>
<td>0.00</td>
<td>47.18</td>
<td>52.71</td>
<td>0.32</td>
<td>52.51</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Male (no/yes)</td>
<td>0.45</td>
<td>0.42</td>
<td>0.46</td>
<td>0.48</td>
<td>0.39</td>
<td>0.47</td>
<td>0.44</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>3.83</td>
<td>3.63</td>
<td>0.11</td>
<td>3.99</td>
<td>3.64</td>
<td>0.54</td>
<td>3.61</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Skill level</td>
<td>2.09</td>
<td>2.11</td>
<td>0.21</td>
<td>2.08</td>
<td>2.16</td>
<td>0.31</td>
<td>2.09</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Last log wage</td>
<td>7.07</td>
<td>7.10</td>
<td>0.58</td>
<td>7.10</td>
<td>7.10</td>
<td>1.00</td>
<td>7.10</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Unemployed Before</td>
<td>0.65</td>
<td>0.62</td>
<td>0.62</td>
<td>0.67</td>
<td>0.67</td>
<td>0.94</td>
<td>0.67</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Regiona characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State of residence</td>
<td>8.11</td>
<td>8.36</td>
<td>0.45</td>
<td>7.57</td>
<td>8.32</td>
<td>0.23</td>
<td>7.94</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Local unemployment rate</td>
<td>9.26</td>
<td>9.19</td>
<td>0.83</td>
<td>9.14</td>
<td>9.31</td>
<td>0.82</td>
<td>9.11</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Local ALMP intensity</td>
<td>15.70</td>
<td>16.34</td>
<td>0.17</td>
<td>16.42</td>
<td>14.42</td>
<td>0.01</td>
<td>15.59</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Individual ALMP measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of agency job offers</td>
<td>1.83</td>
<td>1.90</td>
<td>0.78</td>
<td>2.04</td>
<td>1.74</td>
<td>0.36</td>
<td>1.96</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Number of agency visits</td>
<td>1.70</td>
<td>1.78</td>
<td>0.16</td>
<td>1.93</td>
<td>1.61</td>
<td>0.00</td>
<td>1.91</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>Personality traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal locus of control</td>
<td>5.90</td>
<td>5.90</td>
<td>0.99</td>
<td>5.90</td>
<td>5.90</td>
<td>0.81</td>
<td>5.99</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Consciousness</td>
<td>6.39</td>
<td>6.26</td>
<td>0.10</td>
<td>6.38</td>
<td>6.40</td>
<td>0.89</td>
<td>6.41</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Openness</td>
<td>4.55</td>
<td>4.91</td>
<td>0.72</td>
<td>4.91</td>
<td>4.97</td>
<td>0.66</td>
<td>4.97</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Extraversion</td>
<td>5.00</td>
<td>3.85</td>
<td>0.79</td>
<td>3.84</td>
<td>3.80</td>
<td>0.79</td>
<td>3.84</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Neuroticism</td>
<td>3.83</td>
<td>3.83</td>
<td>0.39</td>
<td>3.83</td>
<td>3.83</td>
<td>0.39</td>
<td>3.83</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>Weeks b/w UE and interview</td>
<td>7.67</td>
<td>7.83</td>
<td>0.39</td>
<td>9.32</td>
<td>7.03</td>
<td>0.00</td>
<td>9.95</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of filed applications</td>
<td>15.58</td>
<td>16.65</td>
<td>0.62</td>
<td>12.96</td>
<td>16.59</td>
<td>0.18</td>
<td>13.39</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Applying for distant jobs</td>
<td>0.15</td>
<td>0.15</td>
<td>0.06</td>
<td>0.10</td>
<td>0.17</td>
<td>0.08</td>
<td>0.24</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Log reservation wage</td>
<td>7.00</td>
<td>7.00</td>
<td>0.93</td>
<td>7.01</td>
<td>7.01</td>
<td>0.92</td>
<td>7.00</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table provides information on (differences) in means for (a) control and treatment group; (b) the control group before and after the reform; and (c) the comparison group. The total number of observations is 597.
is the share of respondents that has been unemployed prior to this current spell, which is higher in both the control and treatment group after the reform but only significantly different in the latter group.

When focusing on regional characteristics and individual ALMP measures, differences in some variables become apparent. However, changes over time occur for both age cohorts symmetrically and to a similar extent. In detail, the data suggest local active labor market intensity, measured by means of the share of ALMP participants over the number of total unemployed individuals, to be higher after the reform, yet for both treatment and control group. Local unemployment rates, in turn, remain constant. The same pattern applies to individual-level measures of support by the local Federal Employment Agencies. On average, the number of visits at the local agency is slightly lower after the reform. These small difference may, however, be explained by the fact that the mean number of weeks elapsed between the individuals’ unemployment registration and the interview decreased for both age groups from nine weeks prior to the reform to seven weeks afterwards.

A simple comparison of job search measures for treatment, comparison and control groups already provides insights about the effects of this reform on job search behavior. Whereas the number of filed applications and the probability of applying for jobs that require moving is of similar magnitude for the control group, both measures of job search effort are lower for the treatment than for the comparison group. In contrast, mean reservation wages for treatment, comparison and control group are highly similar, providing no indication of higher reservation wages in response to the reform.

6 Results

Table 2 provides the corresponding treatment effect estimates for the three outcomes of interest, the number of filed applications, the probability of applying for jobs that require moving and the reservation wage.

Column (1) of Panel A shows that the PBD has a negative and significant effect on the total number of applications. In this very simple model, the average number
of filed applications drops by around 40% of a standard deviation in response to the reform. In columns (2) to (5), control variables are successively added to the model to check the robustness of this result. Adding personal characteristics, such as the individuals’ gender, level of training or last wage prior to unemployment hardly changes the treatment effect (see Column (2)). The same conclusions arise when adding individual-level controls of ALMP intensity (Column (3)), or regional controls of the labor market to the model (Column (4)). As it has been shown that personality traits may affect job search behavior (Caliendo et al., 2015), information on individuals’ personality traits are added in the most comprehensive specification. As displayed in Column (5), accounting for these variables, however, hardly affects the estimate.

Panel B of Table 2 presents the corresponding results when focusing on the probability of applying for jobs that require moving as the outcome variable of interest. The estimates show a statistically significant and robust negative effect of the PBD on the probability of applying for a job that requires moving. From the results of the simple model presented in Column (1), it can be inferred that the probability decreases by around 20% in response to the reform. In line with the results of Panel A, the effect is very robust with respect to the inclusion of additional covariates. Estimates of the treatment effect provided in Columns (2) to (5) do not change much when successively adding controls.

The estimates presented in Panel C in turn provide no evidence in favor of higher reservation wages due to the increase in the PBD. The estimated treatment effect from the simple model presented in Column (1) is close to zero and statistically insignificant. This holds true when successively adding control variables to the model. Contrary to standard job search theory, this result is still in line with recent evidence by Krueger and Mueller (2014) and Schmieder et al. (2015), who show that reservation wages respond little over the spell of unemployment and with respect to changes in UI parameters because, for example, job seekers may potentially “anchor their reservation wage on their previous wage” (Krueger and Mueller, 2014, p.31). Overall, the moderate increase in the PBD is found to lower job search effort but keeps reservation wages unaffected.
Table 2: The Effect of the PBD on Job Search

Panel A – Number of job applications

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>3.638</td>
<td>6.410**</td>
<td>6.969**</td>
<td>7.419***</td>
<td>7.467***</td>
</tr>
<tr>
<td></td>
<td>(2.685)</td>
<td>(2.804)</td>
<td>(2.874)</td>
<td>(2.863)</td>
<td>(2.790)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>8.996**</td>
<td>5.945</td>
<td>6.898</td>
<td>7.885*</td>
<td>6.702</td>
</tr>
<tr>
<td></td>
<td>(4.528)</td>
<td>(4.456)</td>
<td>(4.818)</td>
<td>(4.786)</td>
<td>(4.606)</td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.005</td>
<td>0.044</td>
<td>0.125</td>
<td>0.134</td>
<td>0.151</td>
</tr>
</tbody>
</table>

Panel B – Distant applications

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>0.071*</td>
<td>0.084*</td>
<td>0.095**</td>
<td>0.077</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.046)</td>
<td>(0.046)</td>
<td>(0.047)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>0.144**</td>
<td>0.185**</td>
<td>0.193**</td>
<td>0.197**</td>
<td>0.194**</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.079)</td>
<td>(0.079)</td>
<td>(0.081)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>-0.205***</td>
<td>-0.211***</td>
<td>-0.223***</td>
<td>-0.222***</td>
<td>-0.218***</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.064)</td>
<td>(0.064)</td>
<td>(0.065)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.013</td>
<td>0.152</td>
<td>0.155</td>
<td>0.146</td>
<td>0.151</td>
</tr>
</tbody>
</table>

Panel C – (Log) reservation wage

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>-0.017</td>
<td>0.008</td>
<td>0.011</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.034)</td>
<td>(0.035)</td>
<td>(0.035)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>-0.013</td>
<td>0.065</td>
<td>0.057</td>
<td>0.039</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.055)</td>
<td>(0.055)</td>
<td>(0.055)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>0.022</td>
<td>-0.027</td>
<td>-0.027</td>
<td>-0.022</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.049)</td>
<td>(0.050)</td>
<td>(0.050)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>-0.005</td>
<td>0.707</td>
<td>0.710</td>
<td>0.709</td>
<td>0.710</td>
</tr>
</tbody>
</table>

Individual controls	No	Yes	Yes	Yes	Yes
ALMP measures	No	No	Yes	Yes	Yes
Regional controls	No	No	No	Yes	Yes
Personality traits	No	No	No	No	Yes
Number of observations	598	598	598	598	598

Notes: The table provides the baseline results of the analysis based on equation (1). Standard errors (in parantheses) are heteroscedasticity robust. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Table 3: PBD and the Number of Applications - Treatment Duration

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>3.780</td>
<td>9.152***</td>
<td>3.780</td>
<td>8.304***</td>
<td>7.413</td>
<td>11.060**</td>
</tr>
<tr>
<td></td>
<td>(2.968)</td>
<td>(3.350)</td>
<td>(2.971)</td>
<td>(3.161)</td>
<td>(6.268)</td>
<td>(4.801)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>9.585***</td>
<td>5.306</td>
<td>9.585***</td>
<td>7.387</td>
<td>9.602***</td>
<td>7.975*</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>-12.555***</td>
<td>-13.000***</td>
<td>-12.555***</td>
<td>-12.377*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.802)</td>
<td>(4.931)</td>
<td>(4.807)</td>
<td>(4.806)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× UE after reform</td>
<td>3.674</td>
<td>-0.879</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.578)</td>
<td>(5.048)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview Dec-Jan</td>
<td></td>
<td></td>
<td>-10.539**</td>
<td>-12.247***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.541)</td>
<td>(4.495)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview Feb-Apr</td>
<td></td>
<td></td>
<td>-14.900***</td>
<td>-13.813***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.421)</td>
<td>(5.286)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview May-Jul</td>
<td></td>
<td></td>
<td>-12.250</td>
<td>-12.781*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7.792)</td>
<td>(7.444)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.008</td>
<td>0.171</td>
<td>0.006</td>
<td>0.150</td>
<td>-0.000</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Notes: The table shows the regression results of equation (1), focusing on differential effects due to the timing/duration of the treatment. The dependent variable is the number of applications. In Columns (1) and (2), all individuals who became unemployed prior to the reform but were interviewed thereafter are dropped. Standard errors (in parentheses) are heteroscedasticity robust.

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

Adjustment of job search behavior Due to the setup of the reform, the treatment group comprises a subset of individuals who learned about the reform after registering as unemployed but prior to the interview. These individuals therefore started their initial job search while expecting a PBD of 12 months but learned about the reform during the relevant search spell. In this section, it is hence tested whether there are different treatment effects for the fully and partly treated individuals. It is further tested whether the treatment effect remains stable over the survey period by allowing for different treatment effects from December 11 to January, February to April and May to July.

In a first step, all individuals who learned about the reform after unemployment
registration but prior to the interview were dropped from the sample. Columns (1) and (2) of Table 3 indicate that the estimated effect remains virtually unchanged when using the reduced sample. In line with this result, columns (3) and (4) further show no evidence of heterogeneous treatment effects for the partly and fully treated. While the treatment effect may certainly depend on the relative time period between entry into unemployment, the reform and the interview date, a small sample size unfortunately precludes further analysis of this potential heterogeneity. Columns (5) and (6) in turn indicate that treatment effects do not differ with respect to the interview date, which corroborates the baseline findings and evidence in favor of UI-induced moral hazard.

6.1 Sensitivity of Results and Heterogenous Effects

The following section investigates the sensitivity of the previous results and tests for heterogeneous treatment effects. Sensitivity of the results is studied by (i) accounting for adaptive behavior, (ii) assessing potential biases due to strategic layoff decisions of firms, and (iii) testing the unconfoundedness assumption by means of a pseudo treatment test. Moreover, heterogeneous treatment effects for particular subgroups of the unemployed are provided to analyze the extent of UI-induced moral hazard for males and females, different skill groups and individuals with and without prior unemployment experience.

Salience of the reform The fast implementation of the policy limits the potential of adaptive behavior. Knowledge about important aspect of the reform, such as the reform’s date of inception and its retroactive implementation, only became public on December 11, 2007. In conjunction with exact knowledge about the interview date, this allows for the precise definition of treatment and control groups. However, as a general agreement about the reform was already reached by November 12, 2007, adaptive behavior to this news cannot be entirely ruled out.

Although early adaption to the reform would blur the control group and would bias estimates towards zero, given that the control and treatment group would be more similar, the sensitivity of the results is tested when redefining treatment and
control groups by November 12, 2007. Table A.4 in the Appendix provides the corresponding results for the three outcomes of interest, obtained from the most simple and most comprehensive version of the empirical model. The estimates highlight that all qualitative results of the analysis remain robust to the redefinition of the reform’s date.

Strategic timing of layoffs As highlighted above, strategic timing of layoffs may impede the causal interpretation of the findings provided. Although strict employment protection laws in Germany limit the scope for strategic firing decisions of firms, the robustness of the findings is tested by limiting the analysis to those individuals who became unemployed due to plant closure, the termination of a mutual contract and alike. Although the number of observations decreases significantly, the results presented in Table A.5 demonstrate that estimates remain robust to this constraint.

Pseudo treatment Identification of the underlying model further relies on the assumption that individuals are randomly assigned to treatment and control group and are similar in terms of observable and unobservable characteristics. While observable characteristics are indeed similar among treatment, comparison and control groups (cf. Table 1), unobservable variables may still violate the unconfoundedness assumption. Following Rosenbaum (1987), this assumption is indirectly tested by estimating the causal effect of the treatment for two groups of individuals that were unaffected by the reform (workers aged 40 to 44 and 45 to 49, respectively); with one of the two groups (the older age group) being arbitrarily considered as pseudo-treated. No evidence of any pseudo treatment effect on the outcomes would strengthen the claim of unconfoundedness. Table A.6 shows support for the identifying assumption, given that pseudo-treatment effects for all three measures of job

16 However, point estimates are smaller and less precisely estimated, which suggest that the reform’s date in the baseline regressions is correctly chosen.

17 Dismissal of regular workers is subject to a variety of legal regulations. Advanced notice of layoff is required by law, with the period of notice increasing with workers’ tenure (§622, German Civil Code). Additional rules (Kündigungsschutzgesetz) apply for plants that employ at least ten full-time equivalent workers. Rates of job destruction and creation mirror these legislative features of the German labor market: job and worker flow rates are around 50% lower than in the US (Bachmann et al., 2013).
search effort are small and statistically insignificant.

Heterogeneous treatment effects Lastly, the presence of heterogeneous treatment effects is investigated, focusing on differential effects by gender, skill and prior unemployment experience. Estimates of the treatment effect on the number of job applications are provided for the most simple and most comprehensive specification, respectively. Corresponding results for the probability of applying for jobs that require moving are provided in Table A.7 in the Appendix of the paper.

Columns (1) and (2) of Table 4 show that both females and males respond similarly to the extension of the PBD. The number of filed job applications decreases by around 9 and 7 applications, respectively. When focusing on individuals’ skills (see Columns (3) and (4)), treatment effects are strong and significant for low- and medium-skilled workers but insignificant and small for the high-skilled, suggesting that UI-induced moral hazard is absent for those individuals who have invested more time and resources in their education. Finally, when testing for heterogeneous effects by prior unemployment experience, the estimates provide no evidence that the previously unemployed react differently to the reform. The treatment effect is of similar magnitude for both types of individuals, which in turn suggests that potential biases due to the study’s limitation on unemployed individuals who fulfilled both entitlement criteria without any interruption should be small (cf. Section 5).

7 Conclusion

To date, a large empirical literature has established that UI generosity significantly affects the duration of unemployment. While this finding is usually attributed to UI-induced moral hazard, empirical evidence on the assumed relationship is scarce. Using quasi-experimental variation in the PBD for one specific age group of workers in Germany, both before and after the rapid implementation of the new legislation in 2007/2008, paired with direct information on the job search behavior of unemployed individuals, this paper complements the existing evidence by providing causal estimates of the effect of the PBD on job search effort and reservation wages.
Table 4: Heterogenous Effect - PBD and the Number of Applications

<table>
<thead>
<tr>
<th>Dep. Var.: Job applications</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>3.363</td>
<td>7.419***</td>
<td>4.818*</td>
<td>7.316****</td>
<td>3.854</td>
<td>7.468***</td>
</tr>
<tr>
<td></td>
<td>(2.770)</td>
<td>(2.783)</td>
<td>(2.866)</td>
<td>(2.776)</td>
<td>(2.830)</td>
<td>(2.795)</td>
</tr>
<tr>
<td></td>
<td>(3.697)</td>
<td>(4.779)</td>
<td>(3.642)</td>
<td>(4.814)</td>
<td>(3.810)</td>
<td>(5.003)</td>
</tr>
<tr>
<td>Treatment X Female</td>
<td>-12.228****</td>
<td>-11.560***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.558)</td>
<td>(4.109)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X Male</td>
<td>-9.578*</td>
<td>-12.568**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.543)</td>
<td>(6.179)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X Low-Skilled</td>
<td>-11.900**</td>
<td>-11.200*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.772)</td>
<td>(5.771)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X Medium-Skilled</td>
<td>-13.374****</td>
<td>-14.178***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.620)</td>
<td>(4.667)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X High-Skilled</td>
<td>-1.546</td>
<td>-2.964</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.410)</td>
<td>(8.566)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X Not UE before</td>
<td>-13.286**</td>
<td>-12.100*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.907)</td>
<td>(6.341)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment X UE before</td>
<td>-9.787**</td>
<td>-11.975**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.676)</td>
<td>(4.677)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.008</td>
<td>0.150</td>
<td>0.017</td>
<td>0.154</td>
<td>0.004</td>
<td>0.150</td>
</tr>
</tbody>
</table>

Individual controls	No	Yes	No	Yes	No	Yes
ALMP measures	No	Yes	No	Yes	No	Yes
Regional controls	No	Yes	No	Yes	No	Yes
Personality traits	No	Yes	No	Yes	No	Yes
Number of observations	598	598	598	598	598	598

*Notes: The table shows the regression results of equation (1), allowing for heterogeneous treatment effects by (a) gender, (b) education, and (c) prior unemployment experience. The dependent variable is the number of applications. Standard errors (in parantheses) are heteroscedasticity robust. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$*
The results of this analysis lend considerable support to the existence of UI-induced moral hazard, with the extension of the PBD leading to a considerable decrease in job search effort measured by the number of filed applications and the probability of applying for jobs that require moving. In line with recent evidence (see, among others, Krueger and Mueller (2014) and Schmieder et al. (2015)) but in contrast to standard job search theory, reservation wages, however, remain unaffected by the reform.

Overall, the study provides comprehensive evidence of strategic search behavior. Unemployed individuals respond to more generous UI by reducing search effort, which highlights the trade-off faced by policy makers when designing UI schemes. While UI should allow individuals to actively search for suitable reemployment, disincentive effects arising from too generous UI should also be avoided in turn. Based on the findings of this study, future research might aim at estimating effort choices and reemployment probabilities due to changes in UI in one integrated framework.
References

A Appendix

Table A.1: Claimants’ Age, Length of UI Contributions and PBD

Before January 1 2008

<table>
<thead>
<tr>
<th>Period of UI contribution (months)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>30</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>& Age of eligible person .. or above</td>
<td>55</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential Benefit Duration (PBD)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
</table>

Since January 1 2008

<table>
<thead>
<tr>
<th>Period of UI contribution (months)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>& Age of eligible person .. or above</td>
<td>50</td>
<td>55</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential Benefit Duration (PBD)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
</table>

Notes: The table shows the relationship between the claimant’s age, length of UI contributions and the potential benefit duration. Note that prior to the reform, the qualifying period determining the length of coverage was three years. It was extended to five years by January 1 2008.

Figure A.1: (Seasonal-Adjusted) Unemployment Rate (2006-2010)

Notes: The graph plots monthly (seasonal-adjusted) unemployment rates from January 2006 to December 2010 for Germany. The data are provided by the German Federal Employment Agency.
Figure A.2: Number of Granted Employment Integration Subsidies (2006-2010)

Notes: The graph plots the annual number of granted employment integration subsidies. The data are provided by the German Federal Employment Agency.

Table A.2: Descriptive Statistics on Estimation Sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of filed applications</td>
<td>16.07</td>
<td>26.82</td>
<td>0.00</td>
<td>400.00</td>
<td>598</td>
</tr>
<tr>
<td>Applying for distant jobs</td>
<td>0.15</td>
<td>0.36</td>
<td>0.00</td>
<td>1.00</td>
<td>598</td>
</tr>
<tr>
<td>Log reservation wage</td>
<td>7.00</td>
<td>0.47</td>
<td>5.30</td>
<td>8.99</td>
<td>559</td>
</tr>
<tr>
<td>Personal characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>49.72</td>
<td>3.00</td>
<td>45.00</td>
<td>55.17</td>
<td>598</td>
</tr>
<tr>
<td>Male (no/yes)</td>
<td>0.44</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>598</td>
</tr>
<tr>
<td>Education</td>
<td>3.74</td>
<td>1.50</td>
<td>0.00</td>
<td>7.00</td>
<td>598</td>
</tr>
<tr>
<td>Skill level</td>
<td>2.10</td>
<td>0.50</td>
<td>1.00</td>
<td>3.00</td>
<td>598</td>
</tr>
<tr>
<td>Last log wage</td>
<td>7.08</td>
<td>0.56</td>
<td>5.08</td>
<td>9.21</td>
<td>598</td>
</tr>
<tr>
<td>Unemployed Before</td>
<td>0.64</td>
<td>0.48</td>
<td>0.00</td>
<td>1.00</td>
<td>598</td>
</tr>
<tr>
<td>Regional characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local unemployment rate</td>
<td>9.23</td>
<td>3.93</td>
<td>3.00</td>
<td>17.00</td>
<td>598</td>
</tr>
<tr>
<td>Local ALMP intensity</td>
<td>15.99</td>
<td>5.60</td>
<td>7.00</td>
<td>30.00</td>
<td>598</td>
</tr>
<tr>
<td>State of residence</td>
<td>8.22</td>
<td>4.07</td>
<td>1.00</td>
<td>16.00</td>
<td>598</td>
</tr>
<tr>
<td>Individual ALMP measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of agency job offers</td>
<td>1.86</td>
<td>3.00</td>
<td>0.00</td>
<td>25.00</td>
<td>598</td>
</tr>
<tr>
<td>Number of agency visits</td>
<td>1.74</td>
<td>0.70</td>
<td>0.00</td>
<td>4.00</td>
<td>598</td>
</tr>
<tr>
<td>Personality traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal locus of control</td>
<td>5.90</td>
<td>0.94</td>
<td>1.33</td>
<td>7.00</td>
<td>598</td>
</tr>
<tr>
<td>Consciousness</td>
<td>6.33</td>
<td>0.94</td>
<td>1.00</td>
<td>7.00</td>
<td>598</td>
</tr>
<tr>
<td>Openness</td>
<td>4.93</td>
<td>1.25</td>
<td>1.00</td>
<td>7.00</td>
<td>598</td>
</tr>
<tr>
<td>Extraversion</td>
<td>5.01</td>
<td>1.06</td>
<td>1.00</td>
<td>7.00</td>
<td>598</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>3.84</td>
<td>1.20</td>
<td>1.00</td>
<td>7.00</td>
<td>598</td>
</tr>
</tbody>
</table>

Source: The table provides descriptive statistics for the underlying estimation sample. The number of observations is 597, except for the reservation wage (N = 559).
Table A.3: PBD and Applying for Jobs in Distant Areas - Treatment Duration

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>0.067</td>
<td>0.072</td>
<td>0.067</td>
<td>0.068</td>
<td>0.096</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.055)</td>
<td>(0.043)</td>
<td>(0.053)</td>
<td>(0.070)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>0.131 **</td>
<td>0.186 **</td>
<td>0.131 **</td>
<td>0.177 **</td>
<td>0.131 **</td>
<td>0.179 **</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.087)</td>
<td>(0.058)</td>
<td>(0.081)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>-0.192 ***</td>
<td>-0.212 ***</td>
<td>-0.192 ***</td>
<td>-0.204 ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.068)</td>
<td>(0.069)</td>
<td>(0.067)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× UE after reform</td>
<td></td>
<td></td>
<td>0.029</td>
<td>0.038</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.083)</td>
<td>(0.086)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview Dec-Jan</td>
<td></td>
<td>-0.150 **</td>
<td>-0.189 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.075)</td>
<td>(0.072)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview Feb-Apr</td>
<td></td>
<td>-0.184 *</td>
<td>-0.182 *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.097)</td>
<td>(0.093)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>... interview May-Jul</td>
<td></td>
<td>-0.242 ***</td>
<td>-0.217 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.083)</td>
<td>(0.084)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.011</td>
<td>0.150</td>
<td>0.006</td>
<td>0.144</td>
<td>0.003</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Notes: The table shows the regression results of equation (1), focusing on differential effects due to the timing/duration of the treatment. The dependent variable indicates whether individuals apply for jobs that require moving. In Columns (1) and (2), all individuals who became unemployed prior to the reform but were interviewed thereafter are dropped. Standard errors (in parantheses) are heteroscedasticity robust.

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Table A.4: PBD and Job Search - Salience of reform

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>4.291</td>
<td>7.213***</td>
<td>0.070</td>
<td>0.051</td>
<td>-0.026</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(2.626)</td>
<td>(2.611)</td>
<td>(0.044)</td>
<td>(0.046)</td>
<td>(0.069)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>9.364***</td>
<td>4.339</td>
<td>0.150**</td>
<td>0.172*</td>
<td>0.026</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>(3.467)</td>
<td>(5.298)</td>
<td>(0.068)</td>
<td>(0.091)</td>
<td>(0.093)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>-10.399**</td>
<td>-7.996*</td>
<td>-0.191**</td>
<td>-0.177**</td>
<td>-0.029</td>
<td>-0.025</td>
</tr>
<tr>
<td></td>
<td>(4.311)</td>
<td>(4.191)</td>
<td>(0.075)</td>
<td>(0.075)</td>
<td>(0.103)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Adjusted-R²</td>
<td>0.001</td>
<td>0.146</td>
<td>0.007</td>
<td>0.141</td>
<td>-0.004</td>
<td>0.711</td>
</tr>
</tbody>
</table>

Notes: The table shows the regression results of equation (1) when defining treatment and control groups by November 12, 2007. Standard errors (in parantheses) are heteroscedasticity robust.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.5: PBD and Job Search - Accounting for Selective Layoffs

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>8.148</td>
<td>13.306*</td>
<td>0.095</td>
<td>0.205**</td>
<td>-0.034</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(6.112)</td>
<td>(7.046)</td>
<td>(0.069)</td>
<td>(0.089)</td>
<td>(0.101)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>3.206</td>
<td>3.888</td>
<td>0.063</td>
<td>0.335**</td>
<td>-0.066</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(2.557)</td>
<td>(7.978)</td>
<td>(0.088)</td>
<td>(0.134)</td>
<td>(0.141)</td>
<td>(0.111)</td>
</tr>
<tr>
<td>Treatment Effect</td>
<td>-10.714</td>
<td>-19.745*</td>
<td>-0.206**</td>
<td>-0.260**</td>
<td>0.097</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(6.587)</td>
<td>(10.082)</td>
<td>(0.102)</td>
<td>(0.110)</td>
<td>(0.160)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Adjusted-R²</td>
<td>-0.002</td>
<td>0.331</td>
<td>0.024</td>
<td>0.136</td>
<td>-0.014</td>
<td>0.610</td>
</tr>
</tbody>
</table>

Notes: The table shows the regression results of equation (1) when reducing the scope of strategic firm behavior. Standard errors (in parantheses) are heteroscedasticity robust.
* p < 0.1, ** p < 0.05, *** p < 0.01
Table A.6: PBD and Job Search - Pseudo Treatment Effects

<table>
<thead>
<tr>
<th></th>
<th>Job applications</th>
<th>Distant applications</th>
<th>Reservation wage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Date of Reform</td>
<td>-0.880</td>
<td>1.205</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>(2.354)</td>
<td>(2.230)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>-1.303</td>
<td>-5.634</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td>(2.646)</td>
<td>(4.000)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Pseudo Treatment</td>
<td>3.621</td>
<td>4.597</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(3.129)</td>
<td>(3.193)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>-0.001</td>
<td>0.113</td>
<td>0.002</td>
</tr>
</tbody>
</table>

	Job applications	Distant applications	Reservation wage			
	(1)	(2)	(3)	(4)	(5)	(6)
Individual controls	No	Yes	No	Yes	No	Yes
ALMP measures	No	Yes	No	Yes	No	Yes
Regional controls	No	Yes	No	Yes	No	Yes
Personality traits	No	Yes	No	Yes	No	Yes
Number of observations	639	639	639	639	595	595

Notes: The table shows the regression results of equation (1) when focusing on two groups of workers that were unaffected by the reform. Standard errors (in parantheses) are heteroscedasticity robust. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Table A.7: Heterogenous Effect - PBD and Applying for Jobs in Distant Areas

<table>
<thead>
<tr>
<th>Dep. Var.: Distant Applications</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Reform</td>
<td>0.061</td>
<td>0.073</td>
<td>0.098**</td>
<td>0.072</td>
<td>0.076*</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.047)</td>
<td>(0.041)</td>
<td>(0.047)</td>
<td>(0.039)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Age Group Dummy</td>
<td>0.144**</td>
<td>0.195**</td>
<td>0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X Female</td>
<td>-0.199****</td>
<td>-0.225***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.068)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X Male</td>
<td>-0.203**</td>
<td>-0.211***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.075)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X Low-Skilled</td>
<td>-0.307***</td>
<td>-0.265***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.098)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X Medium-Skilled</td>
<td>-0.190***</td>
<td>-0.217***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.065)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X High-Skilled</td>
<td>-0.189*</td>
<td>-0.204*</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.111)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X Not UE before</td>
<td>-0.224***</td>
<td>-0.220***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.074)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Treatment X UE before</td>
<td>-0.188***</td>
<td>-0.217***</td>
<td>-0.142**</td>
<td>0.194**</td>
<td>0.138**</td>
<td>0.193**</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.071)</td>
<td>(0.058)</td>
<td>(0.080)</td>
<td>(0.058)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Adjusted-R^2</td>
<td>0.031</td>
<td>0.149</td>
<td>0.077</td>
<td>0.148</td>
<td>0.019</td>
<td>0.149</td>
</tr>
</tbody>
</table>

- Individual controls
- ALMP measures
- Regional controls
- Personality traits
- Number of observations

Notes: The table shows the regression results of equation (1), allowing for heterogeneous treatment effects by (a) gender, (b) education, and (c) prior unemployment experience. The dependent variable is the probability of applying for jobs in distant areas. Standard errors (in parantheses) are heteroscedasticity robust. *p < 0.1, **p < 0.05, ***p < 0.01