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Abstract

Understanding the relationship between temperature and economic growth is criti-
cal to the design of optimal climate policies. A large body of literature has estimated a
negative relationship between these factors using aggregated data. However, the micro-
mechanism behind this relationship remains unknown; thus, its usefulness in shaping
adaptation policies is limited. By applying detailed firm-level production data derived
from nearly two million observations of the Chinese manufacturing sector in the pe-
riod of 1998-2007, this paper documents the relationship between daily temperature
and four components in a standard Cobb-Douglas production function: output, total
factor productivity (TFP), labor, and capital inputs. We detect an inverted U-shaped
relationship between daily temperature and TFP; by contrast, the effects of tempera-
ture on labor and capital inputs are limited. Moreover, the response function between
daily temperature and output is almost identical to that between temperature and
TFP, thereby suggesting that the reduction in TFP in response to high temperatures
is the primary driver behind output losses. In addition, temperature affects both la-
bor and capital productivity. A medium-run climate prediction indicates that climate
change will reduce TFP by 4.18%, and result in output losses of 5.71%. This loss cor-
responds to CNY 208.32 billion (USD 32.57 billion) in 2013 values. Given that TFP is
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invariant to the intensity of use of labor and capital inputs and reflects both labor and
capital productivity, the Chinese manufacturing industry is unlikely to avoid climate
damages simply by implementing factor allocation. Thus, new innovations that expand
the technology frontier for all inputs should be developed to offset weather-driven TFP
losses if other adaptation strategies are infeasible.
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1 Introduction

Understanding the effect of temperature on economic activity is critical to the design of
optimal climate policies (Dell et al., 2012). A growing body of literature has estimated the
historical effects of temperature on economic growth using reduced-form statistical meth-
ods (e.g., see Nordhaus and Yang (1996); Hsiang (2010); Dell et al. (2012); Burke et al.
(Forthcoming)), and strong negative effects have been detected in various parts of the world.
However, most of these studies are based on aggregated economic data; therefore, the spe-
cific micro-mechanism behind this relationship remains unknown. The usefulness of these
works is thus limited in terms of informing climate adaptation policies. In particular, the
sector whose losses are most responsible for GDP losses is unclear. Furthermore, whether or
not temperature affects output primarily through costly factor reallocation or productivity
losses remains unknown.

This paper fills this research gap in two ways. First, prior studies that use micro data
primarily examined productivity in the agricultural sector (e.g., see Mendelsohn et al. (1994);
Schlenker et al. (2005, 2006); Deschénes and Greenstone (2007); Schlenker and Roberts
(2009)). However, focusing solely on the agricultural sector cannot fully explain GDP losses
given the small share of agricultural output in many national economies. For example,
agriculture accounts for only 1% and 10% of the GDPs of the U.S. and of China, respectively;
by contrast, the manufacturing sector constitutes 12% and 32% of these GDPs (U.S. Bureau
of Economic Analysis, 2013; China Statistical Yearbook, 2014). Therefore, this paper selects
the Chinese manufacturing sector as the empirical setting because of its significance to
the Chinese economy. Furthermore, this sector comprises 12% of global exports (World
Bank, 2013a); thus, the output losses can have global general equilibrium consequences. In
addition, China is the world’s largest carbon dioxide (COz) emitter (U.S. Energy Information
Administration, 2012); hence, the potential climate damages to the Chinese manufacturing
sector may motivate this country to develop more aggressive carbon reduction policies, which

is critical to mitigating global climate change.



Second, this paper documents the relationship between temperature and the four com-
ponents in a standard Cobb-Douglas production function: output, total factor productivity
(TFP), labor, and capital inputs, using detailed firm-level production data from nearly two
million observations in the manufacturing sector in China from 1998 to 2007. The primary
focus is TFP, which combines both labor and capital productivity and is invariant to the
intensity of use of labor and capital inputs (Syverson, 2011). TFP has been employed to
measure technology progress and is essential to economic growth (Aghion and Durlauf, 2005).
While recent works have investigated labor productivity in Indian manufacturing (Adhvaryu
et al., 2014; Somanathan et al., 2014), no study to date has jointly examined productivity
and factor allocation effects of temperature.

To identify the causal effects of temperature on TFP and other variables, we employ
year-to-year variation in a firm’s exposure to the distribution of daily temperatures, mod-
eled as 10-degree Fahrenheit (F) bins (Deschénes and Greenstone, 2011). We find an inverted
U-shaped relationship between daily temperature and TFP. The negative effect of extreme
high temperatures, above 90°F, is particularly large in magnitude. In our preferred spec-
ification, one more day with temperatures above 90°F decreases TFP by 0.56%, relative
to temperatures between 50-60°F. Importantly, we find that the response function between
daily temperature and output is almost identical to that of TFP. By contrast, the effects on
labor and capital inputs are limited. This implies that the reduction in TFP in response to
high temperatures is the primary channel through which temperature affects manufacturing
output.

Given that TFP combines both labor and capital productivity, disentangling the effects
separately is important. Previous studies have largely focused on labor productivity (e.g.,
see Adhvaryu et al. (2014); Somanathan et al. (2014)), and ignored capital productivity.
High temperatures could cause discomfort, fatigue, and cognitive impairment on workers,
and reduce labor productivity. In addition, such temperatures could also affect machine

performance and lower capital productivity. Although one cannot explicitly disentangle TFP



as labor and capital productivity in a Cobb-Douglas production function, we can examine
differential TFP effects for labor- or capital-intensive firms. Various specifications suggest
that high temperatures affect both labor and capital productivity.

Firms are required to provide some protection for workers, such as hydration, air con-
ditioning, and subsidies during extremely hot days in China.! Given the relative rigidity
of labor regulations in state-owned firms compared with those of private firms, one may
expect effects of high temperatures on TFP to differ based on firm ownership. Our empirical
results support this argument. We find that the effects of high temperatures on TFP for
state-owned firms are slightly positive. On the contrary, TFP in private firms exhibits larger
negative response to high temperatures. This implies that labor regulations could play an
important role in mitigating the negative effects of high temperatures.

Lastly, using the estimated coefficients of climatic variables on output and TFP, we
predict a medium-run climate effect on output and TFP. Compared with the periods from
1998-2007, climate change is likely to reduce output by 5.71% by 2020-2049, which is mainly
caused by the reduction in TFP. This is equivalent to CNY 208.32 billion (USD 32.57 billion)
losses in 2013 values. Given that China is the world’s largest exporter and manufacturing
goods comprise 94% of total exports (World Bank, 2013a), the output losses could have
global general equilibrium consequences via trade.

This paper contributes to the existing literature in three aspects. First, to our best
knowledge, this paper is the first to present a possible micro-mechanism for considerable
studies that focus on temperature and economic growth (Nordhaus and Yang, 1996; Hsiang,
2010; Dell et al., 2012; Burke et al., Forthcoming). We find that a 1°F (1° Celsius (C))
increase in annual mean temperature reduces China’s GDP by 0.92% (1.66%). This finding
is consistent with Hsiang (2010) and Dell et al. (2012); they find that a 1°F (1°C) increase in
annual mean temperature leads to 1.39% (2.5%) and 0.56% (1.0%) GDP reduction in other

developing countries. Our results suggest that the reduction of TFP in the manufacturing

lhttp://www.chinasafety.gov.cn/newpage/Contents/Channel_20697/2012/0704/173399/content _
173399 .htm.
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sector as a response to high temperatures is primarily responsible for the negative relationship
between temperature and economic growth.

Second, this paper provides the first study that documents the relationship between
daily temperature and TFP. Unlike single-factor productivity which heavily depends on the
intensity of use of the excluded factor, TFP is invariant to labor and capital inputs, and thus
is more likely to capture the true productivity. Furthermore, high temperatures affect both
labor and capital productivity, the latter of which has been ignored in the literature.

Third, a large body of literature in macroeconomics, industrial organization, labor, and
trade seeks to understand the determinants of productivity (Syverson, 2011). This paper
provides a new channel: weather, or specifically, temperature. High temperatures, especially
above 90°F, have a significantly negative effect on TFP. Given the typical fluctuation of
temperature across space and over time, this exogenous variation could further cause TFP
dispersion across firms.

The results of this paper have considerable policy implications. If high temperatures
only affect labor productivity, then manufacturing could adapt to climate change by simply
shifting from being labor-intensive to being capital-intensive. However, because TFP reflects
both labor and capital productivity, and is invariant to the intensity of inputs, temperature
could induce shifts in isoquants rather than along isoquants. Therefore, Chinese manufac-
turing is less likely to avoid damages under climate change simply by reallocating labor and
capital inputs. Indeed, new innovations that expand the technology frontier for all inputs
need to occur to offset weather-driven TFP losses if other adaptation strategies are infeasible.

In addition, the empirical setting is Chinese manufacturing, which is critical for the
Chinese economy. The new findings of potential damages on the manufacturing sector could
be incorporated in the cost-benefit analysis in designing climate policies, and motivate China
to aggressively act on reducing carbon emissions with self interest in mind. As the world’s
largest emitter of COy (U.S. Energy Information Administration, 2012), China’s effort is

critical in mitigating global climate change.



Finally, transitioning from agriculture to manufacturing is recognized as a feasible way to
aid Sub-Saharan Africa in adapting to climate change (Henderson et al., 2015). Nonetheless,
climate change may also impact the African manufacturing industry given the significant
climate damages to the Chinese manufacturing sector described in this paper. Therefore,
the estimates in this research need to be generalized to other countries to improve the support
for adaptation policy design.

The rest of the paper is organized as follows. Section 2 presents a simple conceptual
framework that helps the empirical analysis. Section 3 describes data sources and summary
statistics. Section 4 presents the empirical strategy and the identification. Section 5 describes
the results and interpretation. Section 6 predicts the impacts of climate change on output

and TFP. Section 7 offers economic and policy implications and Section 8 concludes.

2 Background and Conceptual Framework

This section provides a simple conceptual framework and the channels that how temperature
might affect the four components in a production function: output, TFP, labor, and capital
inputs.

Consider a standard Cobb-Douglas production function for an industry
Y(T) = A(T)L(T)*K (T)". (1)

Here, Y denotes output and L and K denote labor and capital, respectively. In practice,
output is measured by value added; therefore, material input is excluded from the production
function. The Hicks-neutral efficiency level, or TFP, is represented by A. Output elasticities
of labor and capital are measured by a and S. Temperature, denoted as 7', could affect

output through productivity and inputs.



Taking natural logs of the above equation leads to the following function

y(T) = a(T) + al(T) + BE(T), (2)

where lowercase symbols represent natural logs of variables. It is worth noting that TFP is
a weighted average of labor and capital productivity. To see this, consider a Cobb-Douglas

production function that distinguishes labor and capital productivity

Y(T) = (AL(T)L(T)*(Ax(T)K(T))", (3)

where Ay and Ag denote the labor and capital productivity, respectively. Taking natural

logs of the above equation results in the following equation

y(T) = aar(T) + Bax(T) + al(T) + BE(T). (4)

Comparing the above equation with Equation (2), one can obtain

a(T) = aar(T) + Bag(T), (5)

which suggests that TFP is a weighted average of labor and capital productivity, where
the weights are output elasticities of labor and capital inputs. However, in practice, one
cannot estimate Equation (4) because of two unknowns (a; and ag) within one equation.
It is common practice for labor productivity to be measured by output per worker, i.e.,
Y/L. Similarly, capital productivity is sometimes measured by output per capital, or Y/ K.
However, this single-factor productivity measurement heavily depends on the intensity of
excluded factor, and may not reflect the true productivity (Syverson, 2011). For example,
two firms with the same technology could have different labor productivity levels because

one happens to use more capital.?

2To see this, consider two firms within the same industry that share the following Cobb-Douglas produc-



Temperature could affect TFP through labor productivity. High temperatures not only
physiologically affect human body and cause discomfort and fatigue, it may also affect cogni-
tion function and psychomotor ability (Hancock et al., 2007; Graff Zivin et al., 2015). Several
studies have estimated the impacts of temperature on labor productivity using either lab ex-
periments (e.g., see Niemeld et al. (2002); Seppanen et al. (2003, 2006)) or reduced-form
statistical methods (e.g., see Graff Zivin and Neidell (2014), Adhvaryu et al. (2014), and
Somanathan et al. (2014).)

Temperature also affects TFP through capital productivity. Evidence shows that high
temperatures could dramatically impact machine performance. For example, lubricant helps
reduce friction between surfaces in machines. It also helps transmit forces and transport for-
eign particles, and has been regarded as one of the key factors for machine performance (Ku,
1976). High temperatures could negatively affect lubricant efficiency by influencing their
viscosity and pour point (Mortier et al., 1992). Moreover, high temperatures could expand
most materials used in manufacturing by altering their coefficients of thermal expansion
(Collins, 1963), and further increase gaging error in the manufacturing process. Computers
play a major role in modern manufacturing. Excessive heat could lower the electrical resis-
tance of objects and increase the current, which may slow down the processing performance
of a computer (Lilja, 2000). It is noteworthy that the evidence presented above is mainly
suggestive. To date, no rigorous study has focused on temperature and capital productivity.

Furthermore, temperature could affect labor inputs. Given the negative effects of high
temperatures, workers may reduce working hours or even be absent from work. Several
studies estimate the effects of temperature on labor supply (e.g., see Graff Zivin and Neidell

(2014) and Somanathan et al. (2014)).* Temperature could also affect capital stock. For

tion function Y = ALY2K'/2. The following values are assigned to firm 1: A, =1, L; =1, K; = 1. One
can obtain Y3 = 1, and labor productivity ¥1/L; = 1. Similarly, the following values are assigned to firm 2:
As =1, Ly = 1, K5 = 4. One can obtain Y2 = 2, and labor productivity Y2/Ls = 2. Both firms have the
same TFP levels, but the second firm exhibits higher labor productivity than the first because the second
firm uses more capital.

3See a detailed review in Dell et al. (2014).

1See Heal and Park (2013) for a conceptual framework regarding the effects of temperature on labor

supply.



example, high temperatures may abrade machines and lead to faster capital depreciation.
Given the possible effect of temperatures on all the three inputs in the production function,

naturally, temperatures may also affect output.

3 Data

3.1 Firm Data

Firm-level data come from the annual surveys conducted by the National Bureau of Statistics
(NBS) in China. This survey covers all industrial firms, either state-owned or non-state with
sales over CNY 5 million (USD 0.8 million) from 1998 to 2007 (hereafter referred to as the
“above-scale” industrial firms).> The industrial sectors here include mining, manufacturing,
and public utilities, in which manufacturing composes 93.52% of the total observations.
Given that manufacturing composes the largest share of the industrial sector, we use the
terms manufacturing sector and industrial sector interchangeably throughout the paper.%

We address several empirical issues. First, each firm has a unique numerical ID. However,
firms may change their IDs because of restructuring, acquisition, or merging. We use the
matching algorithm provided in Brandt et al. (2012) to match firms over time.”

Second, the data contain outliers. We take standard procedures in the literature that have
used this data (Cai and Liu, 2009; Brandt et al., 2012; Yu, 2014). First, we drop observations
with missing or negative values for value added, employment, and fixed capital stock. Second,
we drop observations with employment less than 10, because these small firms may not have a

reliable accounting system. Third, we drop observations that apparently violate accounting

principles: liquid assets, fixed assets, or net fixed assets larger than total assets; current

% According to the census of manufacturing firms conducted by NBS in 2004, the above-scale firms con-
tribute more than 91% of the total output. Therefore, the sample used in this study is representative of the
Chinese industrial sector.

5The main results are robust when we focus on manufacturing sector only.

"The basic idea involves first matching firms according to their IDs and then linking them using infor-
mation on firms’ names, legal persons, industry codes, and others.



depreciation larger than accumulative depreciation. Finally, we drop observations with the
values of key variables outside the range of 0.5 to 99.5 percentile. Overall, approximately
10% of observations are dropped.®

Third, in the data, each firm is classified into a four-digit Chinese Industry Classification
(CIC) code, which is similar to the U.S. Standard Industrial Classification (SIC) code. How-
ever, in 2003, the NBS adopted a new CIC system. Several sectors were merged whereas new
sectors were created. Following Brandt et al. (2012), we revise codes before 2003 to make
them consistent with codes after 2003. Overall, the sample contains 39 two-digit sectors,

193 three-digit sectors, and 497 four-digit sectors.

3.2 Measuring Firm-level TFP

Several approaches are used to estimate firm-level TFP. These methods are debated in the
literature and each requires particular assumptions (Van Biesebroeck, 2007). Fortunately,
all these measurements are sufficiently robust to empirical specifications (Syverson, 2011).
In this paper, we use the Olley-Pakes estimator (Olley and Pakes, 1996) to estimate TFP.
The index number approach (Syverson, 2011) is used for a robustness check.

Consider a standard linearized Cobb-Douglas production function

Vit = Bilis + Brkie + i, (6)

where y;; is the log output for firm ¢ in year t; [;; and k;; are log values of labor and capital
inputs, respectively; §; and Sy are output elasticities of labor and capital that need to be
estimated; u; is the error term. Hence, the log TFP is the residual @; = y;; — Bllit — Bkkit.

The OLS estimates of Equation (6) may be biased because of simultaneity and sample
selection. Simultaneity bias arises because firms can observe productivity and then make

decisions on labor and capital inputs. Thus, [;; and k;; are likely to be correlated with wu;,.

8Generally, the results are robust to those outliers.



Furthermore, firms with lower productivity may be more likely to exit from the market, and
thus result in selection bias.

Olley and Pakes (1996) propose an estimator that controls for the simultaneity and
selection biases. The basic idea is to use investment to proxy for unobserved productivity
shocks, and use a firm’s survival probability to correct for selection bias. The Olley-Pakes
estimator is widely used in the literature,” and thus serves as the baseline measurement of
TFP in this paper.'°

The Olley-Pakes estimator requires parametric estimation of the production function.
The index number approach, however, is free of the parametric assumption. Indeed, we
simply use the share of wage bill in value added to measure output elasticity of labor input

11 The index number

B, and use 1 — 3, to measure output elasticity of capital input Sx.
approach requires the assumptions of perfect competition and constant returns to scale.
These assumptions seem strong in our empirical setting, and thus the index number approach
will serve as a robustness check.

In practice, y;; is measured by value added; [; is measured by employment, and k;, is
measured by fixed capital stock. Investment is constructed using the perpetual inventory
method. All monetary variables are deflated using the industry-level price indexes following

Brandt et al. (2012). Furthermore, Equation (6) is estimated separately for each two-digit

industry.

9For example, see Pavenik (2002); Javorcik (2004); Amiti and Konings (2007); Brandt et al. (2012).

0T evinsohn and Petrin (2003) argue that the use of investment to control for unobserved productivity
shocks may be inappropriate in certain empirical settings because investment must be strictly positive in the
Olley-Pakes estimator. Nonetheless, this issue is minor in our empirical setting. Given the rapid development
in China, few observations indicate negative or zero investment. Furthermore, the Levinsohn-Petrin estimator
does not control for selection bias; thus, we prefer the Olley-Pakes estimator. Nonetheless, the results remain
robust when we use the Levinsohn-Petrin estimator.

1Tt would be ideal to use capital share to measure Si; however, data on capital rental rate is not available.

10



3.3 Weather Data

The weather data are drawn from the National Climatic Data Center (NCDC) at the Na-
tional Oceanic and Atmospheric Administration (NOAA).'? NCDC reports global station-
level weather data at three-hour intervals from 1901-2015. We extract the data covering
China from 1998-2007.' Auffhammer et al. (2013) suggest the importance of keeping a
continuous weather record when using daily weather data because missing values may con-
taminate the estimates. As such, we choose stations with valid weather records for 364 days
in a year and fill in the rest of the missing values using the average between the preceding
and subsequent days.'

The weather data contain major climatic variables, including temperature, precipitation,
dew point temperature, visibility, and wind speed. Relative humidity is not reported in
the NCDC data, but is constructed from the standard meteorological formula provided by
NOAA using temperature and dew point temperature.'®> Zhang et al. (2015) demonstrate the
importance of additional climatic variables other than temperature and precipitation. Thus,
we include temperature, precipitation, relative humidity, and wind speed in our empirical
specifications. We use the daily mean values of each climatic variable calculated as the
averages of the three-hour values as the main measurement of weather, except precipitation
which is constructed as daily total values. In addition, we use visibility as a proxy for
air pollution (Ghanem and Zhang, 2014). Air pollution is typically correlated with climatic
variables (Jayamurugan et al., 2013) and affects productivity as well (Graff Zivin and Neidell,
2012). Therefore, omitting air pollution may induce the omitted-variable bias.

The variable of interest in this analysis is temperature. Temperature may have a joint

impact with humidity on productivity. For example, when temperature is high, the human

12The data can be downloaded from the website ftp://ftp.ncdc.noaa.gov/pub/data/noaa/.

13 Approximately 400 stations cover China. Refer to Figure B.10 for a detailed distribution of weather
stations.

14We do not choose stations that are operational for all 365 days because all stations are missing one day’s
weather records for the years 1999 and 2007.

15 A detailed explanation is provided in the online appendix.
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body may cool itself down through perspiration. However, this process is hard in a more hu-
mid environment. Consequently, we also use the heat index to measure the joint influence of
temperature and humidity on productivity as a robustness check. Heat index is constructed

following the standard formula provided by the NOAA.'6

3.4 Climate Prediction Data

The climate prediction data are drawn from the Hadley Centre, one of the world’s leading
institutes in climate prediction. We focus on the Hadley Centre’s Third Coupled Ocean-
Atmosphere General Circulation Model (HadCM3), which has been commonly used in the
literature (Schlenker et al., 2006; Schlenker and Roberts, 2009; Deschénes and Greenstone,
2011).'" HadCM3 reports global grid-level daily temperature, precipitation, relative humid-
ity, and wind speed from 1990 to 2099. The grid points are separated by 2.5° latitude and
3.75° longitude. We focus on the “business-as-usual” (A1FI) scenario and choose the years
from 2020-2049, a medium-run period. We do not choose a long period such as 2070-2099
because technology could be much advanced at that time and may be insensitive to high
temperatures. Given that technology advancement may still be limited in a short time frame,
the climate prediction could be more realistic and meaningful.

Systematic model errors may exist between HadCM3 and NOAA, which may lead the
predictions to be inaccurate.!® Therefore, we implement the error-corrected method proposed
by Deschénes and Greenstone (2011). First, we calculate the difference in weather data from
1998-2007 between NOAA and HadCM3. We then add the difference to the prediction by

HadCMa3, to correct for systematic model errors.

16The online appendix presents a detailed explanation of heat index calculation.

1"The data can be downloaded at http://browse.ceda.ac.uk/browse/badc/hadcm3. We do not use
other climatic models because such models typically report only temperature and precipitation data.

18The systematic model errors are indeed severe in our sample. The average temperature for the period
of 1998-2007 in China is 54°F according to NOAA but only 49°F as per HadCM3.
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3.5 Matching Firm and Weather Data

Firm-level data and station-level weather data are merged by county and year.'® First, we
transform weather data from station level to county level using the inverse-distance weighting
method, which is widely used in the literature (Mendelsohn et al., 1994; Deschénes and
Greenstone, 2007, 2011). The basic algorithm of this approach is to first choose a circle with
a 200 km radius for each county’s centroid. Then, the weighted average of weather data for
each station within the circle is assigned to that county, where the weights are the inverse
of the distance between each station and the county’s centroid. Finally, we assign each firm
with the weather data in that county where the firm is located.?® A similar way is used

1.2 The merged

to transform climate prediction data from the grid level to the county leve
data leave an unbalanced panel from 1998-2007 for 511,352 firms with nearly two million
observations.

Table 1 presents the summary statistics of the merged data. The data cover all state-
owned firms and non-state firms with sales over CNY 5 million (USD 0.8 million) from 1998
to 2007. The industry sectors include mining (3.81%), manufacturing (93.52%), and utilities
(2.67%). Unit of observation is a firm-year. All monetary values are expressed in constant
1998 CNY.

Output is measured by valued added, which is the difference between total output and
intermediate input. From 1998 to 2007, the annual average output is approximately CNY
12 million (USD 2 million). To demonstrate the regional heterogeneity in output, Figure 1
depicts the average annual aggregate output in each county during 1998-2007. Generally,

aggregate output is the largest in the south and the east, suggesting that manufacturing

firms are mostly located in those regions.

19We do not observe the specific latitude and longitude of firms. Indeed, county is the smallest geographic
unit representing a firm’s geographic location.

20The firm data are presented at firm level and not plant level; therefore, firms with multiple branches
located in different regions may be assigned erroneous weather data. Nonetheless, more than 95% of firms
in the sample are single-plant firms (Brandt et al., 2012); thus, this issue should exert little effect on the
estimates.

21 A 300 km radius is assigned to ensure that each county has a valid observation for the period of 2020-2049.
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TFP is measured by the Solow residual in a Cobb-Douglas production function using
the Olley-Pakes estimator (Olley and Pakes, 1996). The average log TFP is 2.90, but varies
from -3.56 to 8.84, suggesting a large dispersion of TFP across firms exists. The dispersion
of TFP could be caused by many factors, and temperature may be an important one. Labor
is measured by employment, with an average of 200 people. Capital is measured by the fixed
capital stock. The average is CNY 15 million (USD 2.35 million).

Temperature, wind speed, visibility, and relative humidity are calculated as annual mean
value using daily observations. Precipitation is calculated as annual cumulative value using
daily observations. Past climate is calculated during the period 1998-2007 from NOAA,
whereas the future climate is calculated over the period 2020-2049 from HadCM3 with error
correction.?® The average temperature during 1998-2007 in the sample is 61.54°F (16.41°C).%
In general, temperature is expected to increase by 2°F (1.11°C), whereas precipitation is
expected to increase by 3 inches under climate change in China. Relative humidity and wind
speed are relatively unchanged when comparing 2020-2049 to 1998-2007, which is only a
medium-run prediction. In a long-run prediction (2070-2099), climate change is expected to
significantly increase temperature, precipitation, relative humidity, and wind speed in China

(Zhang et al., 2015).

4 Empirical Strategy

4.1 Measuring the Effect of Daily Temperature on Annual TFP

The TFP measurement is constructed at annual level because output and input are only
observed annually. To measure the effects of daily temperatures on annual TFP, We employ

a semi-parametric method, the so called bin approach, which has been widely used in the

22HadCM3 A1FT scenario does not predict for visibility.

23Firm-average temperature is higher than county-average temperature because 67% of firms are located
in the south, which is typically warmer than the north. Similarly, precipitation and relative humidity levels
are also higher in this area.
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literature (Schlenker and Roberts, 2009; Deschénes and Greenstone, 2011; Graff Zivin and
Neidell, 2014; Deryugina and Hsiang, 2014). The basic idea of the bin approach is to divide
daily temperature into small bins and then count the number of days falling into each bin.
This semi-parametric approach allows flexible model specifications of measuring nonlinear
effects of temperature and also preserves daily variations in temperature.

To develop the intuition of measuring annual TFP using daily temperatures, we present
a thought experiment motivated by Deryugina and Hsiang (2014). Suppose that only two
days are in a year, and each day could be either hot or normal. Considering the possible
effect of high temperatures on productivity, a firm could only produce one product given a
certain amount of labor and capital inputs on a hot day, but could produce two products
given the same inputs on a normal day. In addition, we assume only two years: year ¢ and
year t + 1, each with only two days. In year ¢, one day is normal and other other day is hot.
In year t 4+ 1, both days are hot. Suppose that a typical firm uses the same inputs in both
years,?* then, it will produce 3 goods in year t and 2 goods in year t+1. Thus, one more hot
day decreases productivity by 1, or 33%.

Furthermore, using annual TFP measurement could capture adaptations of firms in re-
sponse to high temperatures within a year. For example, firms may adjust their production
period from hot to cool days. This adjustment behavior will be absorbed by annual TFP
measurement. Thus, our estimates are more likely to have considered within-year adaptation.

In practice, we divide daily temperature, measured in °F, into ten bins. Temperatures
below 10°F are defined as the 1% bin, and temperatures between 10-20°F are defined as the
274 bin, etc. Finally, temperatures above 90°F are defined as the 10*" bin, which represents
extremely high temperatures.

Figure 2 plots average annual distribution of daily temperatures across different bins. The
blue bar “1998-2007” indicates past climate, i.e., during the period 1998-2007, whereas the

red bar “2020-2049” denotes future climate (2020-2049). The height of each bin represents

24Temperature may also affect labor and capital inputs, but TFP is invariant to inputs.

15



the average number of days falling into that bin’s range per year. For example, the height
of the bin above 90°F is approximately 2, which indicates that on average, there are two
days per year with temperature over 90°F. As expected, climate change is likely to shift the
distribution of temperature to the right, and lead to more extremely hot days.

It is important to know that the changes in temperature distribution are not uniform
across China. To demonstrate the regional heterogeneity in climate change, Figure 3 depicts
the changes in days with temperatures above 90°F for each county under a medium-run
climate prediction. Each observation records the difference in days with temperatures above
90°F between the periods of 2020-2049 and 1998-2007. The east and the south will generally
experience more extremely hot days.

Other than temperature, this paper also includes precipitation, relative humidity, visibil-
ity, and wind speed. For simplicity, those variables are constructed as annual means, except
precipitation calculated as annual cumulative value. We also include a quadratic for those

variables to account for nonlinearity.?

4.2 Regression Model and the Identification

To explore the effects of temperature on the four components of the Cobb-Douglas production
function (see Equation (2)), especially TFP, we estimate the following fixed-effect regression

models

Iny; = f'Temp,, + 8wy + 0"z + i + €4, (7)

where 7 indexes a firm, and ¢ references a year.
In this form, y; denotes the four components in Equation (2): output, TFP, labor, and
capital inputs. All these variables are represented in logarithms, and thus, our estimates

can be illustrated as semi-elasticities. The variable of interest, Temp;;, contains a vector

25Readers interested in the changes in the distribution of precipitation, relative humidity, and wind speed
under climate change in China can refer to Zhang et al. (2015).
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of temperature bins [Tbiny,- -, Thinye|, in which Tbin; denotes the number of days
falling into the j'™ temperature bin for firm i in year ¢. Other climatic variables, including
precipitation, relative humidity, wind speed, and visibility, are included in vector w;,. The
vector z; contains a set of fixed effects, including year-by-region fixed effects and year-by-two-
digit-sector fixed effects.?® Year-by-region fixed effects control for shocks common to each
geographic region in a year, such as climate trends, technology, and policy shocks within
each geographic region. Year-by-two-digit-sector fixed effects control for shocks common to
each two-digit sector in a given year, such as input and output price shocks and technology
shocks within each two-digit industry. We use firm fixed effects a; to control for firm-specific
time invariant characteristics, such as geographic locations. Lastly, €; is an unobservable
error term.

Several noteworthy econometric details exist. First, it is likely that the error terms
are both spatial and serial correlated. Thus, standard errors are clustered in two ways:
within firm and within county-year (Cameron et al., 2011). The former will control for the
serial correlation along time within each firm, whereas the latter will account for the spatial
correlation across firms within each county in a given year.

Second, because each day is assigned into different bins, the sum of all bins Zj Tbing;
is exactly equal to 365.2” To avoid multicollinearity, we normalize the coefficient for the 50-
60°F bin to zero. Thus, all estimates of other temperature bins are impacts relative to the
reference group 50-60°F. We choose 50-60°F as the reference group because it is in the middle
of temperature ranges and thus makes the illustration of results more intuitive. However,
our conclusion does not hinge on the choice of this reference group.

The coefficient of central interest is the estimate for each temperature bin. Considering

26We do not use more disaggregated fixed effects such as year-by-four-digit-sector fixed effects and year-
by-province fixed effects because of the computational constraints (Greenstone et al., 2012). Furthermore,
year-by-province fixed effects are likely to absorb a significant share of exogenous variations in weather given
that weather is typically homogeneous within a province (Fisher et al., 2012). Region classification data are
shown in Table B.8.

27In 2000 and 2004, the sum of all days is equal to 366. We drop February 29" to ensure that the sum of
all days is constant for the period of 1998-2007.
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that the dependent variables are all measured in logarithms, temperature effect 3; measures
the percentage change, or the semi-elascticities in the four components of the production
function for a firm if it has one more day falling into the j* temperature bin, relative to
the 50-60°F bin. The marginal effects of each temperature bin could be used to evaluate the
marginal cost of increasing temperatures induced by climate change.

The identification of the key parameter relies on year-to-year weather fluctuations within

firms over time. Formally, for the j'" temperature bin, the identification assumption is

E [Tbinitjéfit|TbiIlit7_j, Wity ity Oéi] = 0. (8)

As suggested by Deschénes and Greenstone (2007), weather fluctuations are generally ran-
dom and less predictable. Thus, we can reasonably assume that the j* temperature bin is
orthogonal to the error term, conditional on other controls. Furthermore, Zhang et al. (2015)
argue that climatic variables are generally inter-correlated. As such, omitting other climatic
variables apart from temperature and precipitation may bias the estimates. This study in-
cludes a rich set of climatic variables other than temperature and precipitation, including
relative humidity, wind speed, and visibility. This will further solidify the identification

assumption.

5 Results

5.1 Baseline Results

This section presents the baseline regression results estimated using Equation (7). To vi-
sualize the effects, Figure 4 plots the response function between daily temperature and the
four components in a Cobb-Douglas production function: output, TFP, labor, and capital
inputs. Specifically, it plots the point estimates as well as the 95% confidence intervals for

each temperature bin estimated in four regressions. Bin 50-60°F is normalized to zero. As
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such, other estimates are relative to the reference group.

Panel A in Figure 4 depicts the response function between daily temperatures and log
output. In general, we find an inverted U-shaped relationship between temperature and
output.?® The shape is relatively smooth and precisely estimated. The negative effects of
extremely high temperatures (above 90°F) are both economically and statistically significant.
The point estimate suggests that one more day with temperatures larger than 90°F decreases
output by 0.45%, relative to the impact of temperature bin 50-60°F. In the sample, the
average annual aggregate output for all firms is CNY 2.69 trillion (USD 0.43 trillion) in 1998
values. This suggests that, one more day with temperatures above 90°F decreases output
by CNY 12.11 billion (USD 1.89 billion), relative to the impact of temperature bin 50-60°F.
Given that climate change will shift the distribution of temperature to the right and induce
more extreme hot days (Figure 2), a substantial economic loss in the manufacturing sector
in China under climate change may be expected.?”

Given that temperatures, particularly high temperatures, have a significantly negative
effect on output, the mechanism, i.e., which component leads to the reduction in output,
may be the next concern. Thus, panels B, C, and D plot the response function between daily
temperature and TFP, labor, and capital inputs.

Several findings can be made from these figures. First, the response function between
daily temperature and TFP is very close to daily temperature and output. An inverted
U-shaped relationship is observed in both panels A and B. The magnitudes of the point
estimates are close. However, the gradient depicted in panel B is slightly steeper than
presented in panel A in the high-temperature ranges. For example, one more day with

temperature higher than 90°F reduces output by only 0.45% but lowers TFP by 0.56%.

28Surprisingly, bin 30-40°F, which is a relatively cold range, reports the largest point estimate and is
statistically significant. This outcome is because TFP combines both labor and capital productivity; while
30-40°F is cold for human behaviors, this range may be suitable for machine performance.

29Extremely cold days, such as those with temperatures below 10°F, are reduced under climate change.
This occurrence may benefit the manufacturing sector. However, the losses induced by the increased number
of extremely hot days should dominate these gains because the point estimate of extremely hot days is much
larger than that of extremely cold days.

19



The effects of daily temperature on labor (panel C) and capital (panel D) do not take
a particular shape. Furthermore, the estimates of most temperature bins are statistically
insignificant; however, a slight increase is observed in the highest temperature range depicted
in panel C, and the effect is statistically significant at conventional levels. This outcome sug-
gests that firms may employ additional labor in response to high temperatures, to partially
compensate the output losses driven by TFP losses. This result explains why the TFP losses
are slightly greater than the output losses in response to high temperatures. By contrast,
the effect on capital is statistically insignificant because capital is generally unadjustable in
the short run.

Table 2 further presents the effects of daily temperatures on output and TFP using
various specifications. Due to space limitations, we only report the regression results of the
two highest temperature bins: 80-90°F and above 90°F. Furthermore, the F-statistic of the
null hypothesis, that the coefficients of all temperatures bins are jointly equal to zero, are
also reported.

In column (1a), we start with a simple specification of only firm fixed effects and year
fixed effects. Thus, the identification is from plausibly exogenous variations in weather
within firms over time after we adjusted nationwide shocks in a given year. These shocks
may include policy changes, technology progress, or price shocks of inputs and output that
are common to the country. However, some shocks may be region-specific. Thus, in column
(1b), we replace year fixed effects with year-by-region fixed effects, which control for any
common shocks for a specific geographic region in a given year.

In column (1c), we replace year fixed effects with year-by-two-digit-sector fixed effects to
control for shocks that are common to two-digit industries in a given year. These shocks may
include sector-specific price shocks of inputs and output. In addition, technology progress
within each industry are included in year-by-two-digit-sector fixed effects. Column (1d)
includes both year-by-region and year-by-two-digit-sector fixed effects, which will control for

common shocks within geographic regions and two-digit sectors.
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Through columns (1a)-(1d), temperature bins are constructed using daily mean temper-
ature. In column (2a), temperature bins are constructed using daily maximum temperature
to capture the daily extremely hot effects that may be missed using daily mean temperature.
In column (2b), we construct temperature bins using daily heat index, which incorporates
the effects of both temperature and humidity.

TFP is estimated as the Solow residual in a Cobb-Douglas function using the Olley-
Pakes estimator (Olley and Pakes, 1996) through columns (1a) to (2b). In column (3), TFP
is estimated using the index number approach (Syverson, 2011) to verify the robustness of
different TFP measures. Temperature bins are constructed using daily mean temperature
and the model includes firm fixed effects, year-by-region fixed effects, and year-by-two-digit-
sector fixed effects.

The major conclusion that high temperatures have a significantly negative effect on both
output and TFP is robust across various specifications. The F-statistic for all temperature
bins are all statistically significant, suggesting that the effects of all temperature bins are
jointly different from zero.

Columns (1a) to (1d) test the robustness of fixed effects. In general, controlling for geo-
graphic shocks produces larger estimates. This is likely because manufacturing plants built
in hot regions may be equipped with heat-proof materials. When year-by-region fixed effects
are included, we are comparing firms within each geographic region; thus, this protection
measure was absorbed. Therefore, the model with year-by-region fixed effects produces larger
estimates. The estimates are relatively unchanged when including year-by-two-digit-sector
fixed effects. The most robust specification, column (1d), controls for both geographic and
industrial shocks. Thus, this specification will serve as the baseline in this paper.

Column (2a) tests the robustness of daily temperature measures, and produces the small-
est negative estimates. This is because when temperature bins are constructed using daily
maximum temperatures, above 90°F are actually not particularly hot. Column (2b) incor-

porates the joint effects of temperature and humidity, and produces slightly smaller effects,

21



indicating that the effects of humidity may be limited. Column (3) tests the robustness
of TFP measures. The results suggest that our estimates are robust to alternative TFP
measures using the index number approach, though the magnitude is smaller.

In terms of climatic variables other than temperature, precipitation and wind speed
generally have a significantly negative impact on output and TFP; by contrast, the effects of
relative humidity and visibility are statistically insignificant. The results are listed in Table

B.9, which is provided in the online appendix.

5.2 Effects of Lagged Temperatures

The temperatures in previous years may have an effect on current economic outcomes (Dell
et al., 2012; Deryugina and Hsiang, 2014). For example, hot temperatures in the prior year
may reduce the output, and further reduce investment. This outcome may affect capital
accumulation, and reduce current output. Therefore, in this section, we include one-year
lagged temperature, measured in 10°F bins, in the baseline regression model.?* Both current
and lagged temperatures are estimated simultaneously in one regression.

Figure 5 presents the effects of both current and lagged temperatures on output and
TFEFP. Panel A depicts the response function between current daily temperature and output,
whereas panel B depicts the response function between lagged daily temperature and output.
Panels C and D also depict the response function, but with the dependent variable as log
TFP.

Panels A and C show that the effects of current temperatures on both output and TFP
still remain as inverted-U shapes when we include lagged temperatures. The response func-
tion between current daily temperature and output and TFP are qualitatively almost the
same, with and without including lagged temperature. As shown in panels B and D, the

effects of lagged temperatures on output and TFP are not clear. Overall, the point estimates

30We do not include further lags because temperature is measured in 10 bins, and 2-year lags already result
in 30 dependent variables. Therefore, we are unlikely to generate adequate statistical power to identify the
effects of temperature on output and TFP.
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are mostly noisy results, and do not exhibit any particular shapes. Thus, lagged tempera-
tures, especially lagged high temperatures, seem to have limited effects on both output and

TFP.3!

5.3 Effects of Temperature on TFP Growth

Temperatures may not only affect the level of TFP, but also influence growth rate through
investments or institutions (Dell et al., 2012). To verify this hypothesis, Equation (7) is
estimated with the dependent variable as TFP growth rate. Given that the effects of tem-
perature on TFP growth rate may be time lagged, we include one-year lagged temperature
bins.

Figure 6 plots the response function between daily temperature and TFP growth rate.
Panel A is for current daily temperature, while panel B is for one-year lagged daily tempera-
ture. Surprisingly, we do not find an effect of either current or lagged temperatures on TFP
growth rate. In panel A, the response function is relatively flat. Although the temperature
range above 90°F slightly dropped, it is statistically insignificant. Moreover, in panel B, most
estimates, particularly high temperature ranges, are statistically insignificant. Panels C and
D further depict the response function between daily temperature and log investment. We
do not find a significant effect of either current or lagged daily temperature on investment.
Most estimates are statistically insignificant and not well-estimated. This suggests that the

effects of temperatures are mostly significant on the level of TFP, instead of the growth rate.

5.4 Disentangling TFP into Labor and Capital Productivity

We have shown that the negative effects of temperature on TFP is the major force that
drives the reduction in output. Given that TFP is a weighted average of labor and capital

productivity, whether the negative effects primarily originate from labor productivity, capital

31Tn general, we do not detect the significant impacts of both current and lagged temperature on labor
and capital inputs either.
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productivity, or both, is a question of interest. Previous studies have predominantly focused
on labor productivity (e.g., see Adhvaryu et al. (2014); Somanathan et al. (2014)), while
ignoring capital productivity. Because one cannot estimate labor and capital productivity
separately in a Cobb-Douglas production, we have to implicitly test the hypothesis that
the negative effects of TFP are mostly from labor productivity. The intuition is as follows.
We recall Equation (5) (a(T) = aarn(T) + Bax(T)) and suppose the negative effects of
temperature on TFP (a) are primarily from the effect on labor productivity (ar). As such,
the effects on TFP (a) should be larger in labor-intensive industries because output elasticity
of labor («) is typically larger in those industries. Thus, if we cannot find such effects, this
result implicitly suggests that temperature affects both labor and capital productivity.

To classify firms by either labor- or capital-intensive, we use two measurements of labor
intensity. The first measurement is wage bill over output, a common measurement of labor
intensity. The second measurement is labor over sales, following Dewenter and Malatesta
(2001).

Table 3 presents the effects of temperature on TFP between labor- and capital-intensive
firms. Regression models are estimated using Equation (7). Due to space limitations, we
only report the effects of the two highest temperature bins. In columns (la)-(1c), labor
intensity is measured by wage bill over output. In columns (2a)-(2c), labor intensity is
measured by labor over sales. To be able to capture the heterogeneous impacts of labor- and
capital-intensive firms, we make the two highest temperature bins (80-90°F and above 90°)
interact with variables that distinguish firms as either labor- or capital-intensive. In columns
(1a) and (2a), we simply interact two highest temperature bins with raw labor intensity. In
columns (1b) and (2b), labor intensity is classified as either above median (=1) or below
median (=0). Thus, the dummy variable “Above Median” would indicate labor-intensive
firms. Similarly in columns (1c) and (2c), labor intensity is classified based on the mean
value, and thus the dummy variable “Above Mean” indicates labor-intensive firms.

If the effects of high temperatures on TFP are mostly from the effects on labor pro-
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ductivity, the interaction terms are expected to be significantly negative. However, in all
these specifications, the interaction terms are either significantly positive or statistically
insignificant. To be more specific, we take column (1b) as an example. Given that the
variable “Above Median” is defined as equal to 1 if the firm’s labor intensity is larger
than the median, the marginal effect of temperature above 90°F for labor-intensive firms
is —0.0081 + 0.0064 = —0.0017, whereas the marginal effect for capital-intensive firms is
—0.0081. Similarly with temperature bin 80-90°F, the marginal effect for labor-intensive
firms is —0.0030 4 0.0009 = —0.0021, while that for capital-intensive firms is —0.0030. This
suggests that the negative effects of two highest temperature bins on TFP are actually
smaller in labor-intensive firms. One can observe the same pattern when interactions are
constructed using either raw labor intensity or mean values. All these implicitly suggest that

high temperatures affect both labor and capital productivity.

5.5 Industrial Heterogeneity in the Effects of Temperature on

Output and TFP

The effects of temperature on output and TFP may differ across industrial sectors because
of the differences in climate exposures, sensitivity to temperatures, or the presence of air
conditioning for protection. To explore the heterogeneity across industrial sectors, Figure
7 depicts the point estimates and the 95% confidence intervals of temperatures above 90°F
on output (panel A) and TFP (panel B) for each two-digit sector. Regression models are
estimated separately for each two-digit sector using Equation (7).3? The share of each sector
in the entire sample is enumerated in the parenthesis; sectors are sorted according to their
shares. Each sector is classified as either a light or a heavy industry (labeled in red or blue,

respectively).?3

32We do not include sectors with observations smaller than 10,000, including the sectors for oil and natural
gas mining, other mining, tobaccos, chemical fibers, waste recycling, and gas utility, because these industries
have too few observations to produce accurate estimates.

33The classification is based on the standards published by the Shanghai Bureau of Statistics. http:
//www.stats-sh.gov.cn/tjfw/201103/88317 .html.
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Several findings can be made from Figure 7. First, temperatures above 90°F exhibit
statistically significant and negative effects on output for most industries. The effects on
industries with a considerable share in the whole sample, such as textiles, non-metallic
minerals, general machinery, raw chemicals, are precisely estimated. Second, there is strong
heterogeneity across industrial sectors. One more day with temperatures above 90°F reduces
output in timber manufacturing sector by 1.26%, but has insignificant impacts on certain
sectors such as medicine manufacturing. Third, the impacts of temperatures above 90°F on
TFP for each two-digit sector in panel B are almost identical with the effects on output in
panel A, which again indicates that the reduction in TFP in response to high temperatures
are mostly responsible for output losses.

Last, results in Figure 7 suggest that temperatures above 90°F have significantly negative
effects on both light (in red) and heavy (in blue) industries. Light industries, such as
processing of foods, manufacture of foods, timber, are typically labor-intensive. By contrast,
heavy industries, such as non-metallic minerals, general machinery, raw chemicals, transport
equipment, are generally capital-intensive. Consistent with findings in Section 5.4, the result

demonstrates that high temperatures may affect both labor and capital productivity.

5.6 Role of Air Conditioners

Air conditioners (ACs) can mitigate the negative effects of high temperatures; therefore,
their use is regarded as an effective method of adapting to climate change (Barreca et al.,
Forthcoming). Unfortunately, firms do not report either the application of AC or electricity
consumption in our data; thus, we have to rely on other aggregated measures of AC use. In
this study, we utilize the province-level AC penetration rate per 100 urban households as a
proxy for AC use by firms, which is reported in the China Statistical Yearbooks. The average
AC penetration rate for each province over the period of 1998-2007 is presented in Table
B.10 in the online appendix. The provinces are sorted according to their AC penetration

rates; Guangdong is one of the hottest regions in China and has the highest AC penetration
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rate, followed by Shanghai, Chongqing, Beijing. All these rates are greater than 100. By
contrast, the two provinces Yunnan and Qinghai report the lowest AC penetration rates; the
average rate for China is 53.21.

To determine the role of AC in mitigating the negative effects of high temperatures, we
classify provinces as either high or low intensity based on the median AC penetration rate
across provinces, as listed in Table B.10. This median is 46.18; therefore, provinces with AC
penetration rates above and below 46.18 are classified as high and low intensity, respectively.
As a robustness check, we also classify provinces based on the mean AC penetration rate;
the results are identical because the mean (45.08) is highly similar to the median (46.18).

Table 4 reports the effects of AC on temperature-output and temperature-TFP relation-
ships. The dependent variables are output presented in columns (1a)-(1b) and TFP listed
in columns (2a)-(2b). Furthermore, the regression models are estimated using Equation (7).
We interact the two highest temperature bins with the dummy variable “AC Above Median”
in columns (la) and (2a); the value of this variable is one if the AC penetration rate of a
particular province is above the median. Otherwise, the value is zero. Similarly, the dummy
variable “AC Above Mean” in columns (1b) and (2b) is one if the AC penetration rate in
that province is above the mean; otherwise, the value is zero.

If manufacturing firms are well protected by AC, then we expect the interactions to be
significantly positive; however, the interactions are significantly negative in all specifications.
This result indicates that the regions reporting high-intensity AC use still display strongly
negative responses to high temperatures. This outcome implicitly suggests that firms are
indeed not very well protected by AC. Given that China is still a developing country, AC

adaptation behavior may be limited.
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5.7 Role of Ownership Types

Firms in China are required to implement protective measures such as hydration, air condi-
tioning, and subsidies for workers during extremely hot days.?* Given that labor regulations
are typically more stringent in state-owned firms than in private firms, the effects of high
temperatures on TFP can be weaker in state-owned firms than in private firms. To explore
the heterogeneity in ownership, Table 5 presents the effects of temperature on output and
TFP across ownership types; the estimates for the full sample are also reported for compar-
ison purposes. Regression models are estimated separately using Equation (7) for each type
of ownership; moreover, we report the mean temperature and the percentage of each type of
ownership in the entire sample.

Private firms constitute the largest share in the Chinese manufacturing sector and bear
the most severe damages induced by high temperatures. An additional day with temperature
above 90°F reduces output and TFP by 1.16% and 1.05%, respectively. The second largest
ownership type is foreign firms, which comprise 19.03% of the entire sample and experience
moderate damages from high temperatures. Collective firms constitute 12.98% of the entire
sample, and the negative effects of high temperatures on output and TFP are generally weak
or statistically insignificant. State-owned firms comprise the smallest share, and the effects
of temperature above 90°F on output and TFP are significantly positive.

These results demonstrate the importance of labor regulations; private firms bear the
most severe damages from high temperatures because of lax regulations. On the contrary,
the effects of the highest temperatures on state-owned firms are slightly positive because
of the stringent regulations and heavy subsidies. However, firms under the same type of
ownership may be located in the same geographic region; thus, the results may be driven by
geographic differences. Therefore, the bottom of Table 5 reports the mean temperature for

each ownership type. The mean temperature for the full sample is 61.54°F while those for

34http://www.chinasafety.gov.cn/newpage/Contents/Channel_20697/2012/0704/173399/content_
173399 .htm.
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private and state-owned firms are 61.64°F and 59.03°F, respectively. This finding suggests
that the mean temperatures of private and state-owned firms do not differ significantly;
therefore, the results are unlikely to be driven by geographic differences. Furthermore, the
findings are unlikely to be driven by sector differences because no clear pattern has been

generated of industrial sectors, as depicted in Figure 7.

5.8 Regional Heterogeneity in the Effects of Temperature on Out-

put and TFP

Firms in different regions may exhibit various responses to high temperatures. For exam-
ple, economically developed regions are more likely to be able to implement costly defensive
devices such as air conditioners. If this is the case, the negative effects of high tempera-
tures on TFP in more developed regions are expected to be smaller. People living in hot
regions are more likely to adapt to hot weather through complete physiological acclima-
tization (Graff Zivin and Neidell, 2014). Therefore, TFP should be less sensitive to high
temperatures in hot regions.

To detect such adaptation behaviors, Table 6 presents the regression estimates for the
two highest temperature bins (80-90°F and above 90°F) on TFP for each economic and
geographic region. Regression models are separately estimated for each region using Equation
(7). The average TFP for each economic region and the average annual mean temperature
for each geographic region are also reported.

Among the economic regions, the east has the highest TFP, whereas the west has the
lowest TFP. However, the negative effects of temperatures above 90°F are statistically in-
significant for northeast, central, and west. Given that high temperatures have significantly
negative effects on TFP in the most developed region, the adaptation behaviors are limited
in developed regions. This is also consistent with finding in Section 5.6.

In terms of the geographic regions, the northeast has the lowest annual mean temperature,

whereas the south has the highest annual temperature. The effects of temperatures above
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90°F are significantly negative for the south, but insignificant for the northeast. Furthermore,
if one compares the negative effects of temperatures above 90°F in the south with other
regions that have significantly negative effects but with lower annual mean temperature,
such as north and east, we can find that the negative effects in those regions are lower in

magnitude. This suggests that the adaptation behavior in hot regions are also limited.?

6 Climate Prediction

This section presents the climate prediction on output and TFP. Firms may adapt to climate
change by adopting new technology, by increasing the use of air conditioners, or by migrating
to cooler areas. As such, the prediction may be overestimated. Furthermore, climate models
are regarded with much uncertainty (Burke et al., 2015). Nonetheless, we believe that the

predictions remain instructive for climate policy design.

6.1 Main Results

To predict impacts of climate change on output, we first estimate regression coefficients for
each climatic variable from Equation (7). We then calculate the difference in each climatic
variable between the periods 2020-2049 and 1998-2007 for each firm. The firm-specific cli-
mate differences are averaged to a representative firm. Lastly, we use estimated coefficients
multiplying by the climate differences to infer the impacts of climate change on output.
Standard errors are calculated using the Delta method. In addition, we calculate the climate
prediction on TFP using the same method.

Table 7 presents the climate prediction on output in both percentage points and billion

CNY, and TFP for the full sample and for each ownership category. The point estimates,

35The estimates of the two highest temperature bins on output for each region are reported in Table B.11;
We detect a similar pattern. Other methods to identify adaptation behaviors have been developed, such as
the long-difference approach or the comparison of regression estimates in different time periods (Dell et al.,
2014). Nonetheless, the time period for our data is only 10 years (1998-2007), we are unlikely to implement
such approaches.
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standard errors, as well as the 95% confidence intervals are reported. In the last row, we
report the percentage of each ownership in the full sample.

Column (1) reports the climate prediction on output for the full sample. Compared with
the period 1998-2007, output will be reduced by 5.71% under a medium-run climate change.
In addition, the effect is statistically significant at 1% level. The climate prediction on output
in percentage points could be further translated into monetary damages by multiplying by
the average annual aggregate output for all firms during 1998-2007, which yields a loss of
CNY 208.32 billion (USD 32.57 billion) in 2013 values. To illustrate how large the damage
is, we used each country’s GDP from the World Bank (World Bank, 2013b). In 2013, 99
countries have GDPs below this amount. The output loss under climate change in the
Chinese manufacturing sector corresponds to the GDP of Cameroon or Bolivia.

Column (1) also reports the climate prediction on TFP. The model predicts that cli-
mate change will decrease TFP by 4.18%, which is statistically significant at 1% level. The
prediction on TFP is quantitatively close to the prediction on output, suggesting that the
reduction in TFP is the major driver behind output losses under climate change.

Columns (2) to (5) report climate predictions on output and TFP for each ownership
category. Consistent with the findings in Table 5, climate prediction is the largest in private
firms because of lax labor regulations. Overall, private firms will bear economic damages in
CNY 168.72 billion (USD 26.28 billion). By contrast, the prediction is trivial for state-owned

firms. Foreign and collective firms will bear moderate damages under climate change.

6.2 Industrial Heterogeneity in Climate Prediction

As shown in Figure 7, the effects on high temperatures on TFP across two-digit industrial
sectors have a strong heterogeneity. As a result, one may expect similar heterogeneity
in climate predictions. Figure 8 presents the predictions on output (panel A) and TFP
(panel B), for 33 two-digit sectors at the 95% confidence interval. The regression models

are estimated separately for each two-digit sector. The percentage of each sector in the full

31



sample are presented in the parenthesis. Sectors are ordered by their shares. Six sectors
are not presented because of excessively small sample sizes and too large standard errors.?¢
Panel C further monetizes the climate predictions on output for each sector by multiplying
by the average annual aggregate output. Sectors in panel C are sorted by their climate
impacts.

Several findings can be made from Figure 8. First, the climate prediction on output
have a strong heterogeneity in both sign and magnitude across sectors. The point estimates
vary from -12.22% for rubber and 1.95% for ferrous metal mining. Consequently, monetary
climate damages (panel C) greatly vary across sectors as well. Textile will bear the largest
climate damages, with a loss of CNY 20 billion (USD 3.11 billion), while the impacts on
water utility, non-ferrous and ferrous metal mining, smelting of non-ferrous metals, and coal
mining are approximately non-exist.

Second, most sectors will bear output damages under climate change. Among the 33
sectors, the effects of climate change on output in percentage points (panel A) in 22 sec-
tors are statistically significantly negative at the 5% level. Third, for sectors with a larger
share in the whole sample, the climate predictions are both economically and statistically
significant. In general, these sectors will bear 5-8% output losses under climate change, with
corresponding CNY 10-20 billion (USD 1.56-3.11 billion) losses. For sectors with a smaller
share, the predictions are generally insignificant because of large standard errors, which is
likely caused by small sample size.

The results in Figure 8 also confirm the findings in Section 5.4. Both light (in red) and
heavy industries (in blue) exhibit negative responses to climate change. With light industries
being typically labor-intensive and heavy industries being generally capital-intensive, the
results imply that climate change affect both labor and capital productivity. Lastly, the
climate predictions for each sector on TFP in panel B is almost identical to predictions on

output in panel A. This similarity demonstrates that the reduction in TFP in response to

36These sectors include oil and natural gas mining, other mining, tobaccos, chemical fibers, waster recy-
cling, and gas utility, with observations smaller than 10,000.
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climate change are mostly responsible for output damages.

6.3 Regional Heterogeneity in Climate Prediction

HadCM3 A1FI scenario predicts a warmer climate in China in the foreseeable future. On
average, the temperature will increase by 2°F (1.11°C). However, the changes of temperature
across regions display a strong heterogeneity. For example, panel D in Figure 9 depicts the
differences in number of days with temperatures above 90°F between the periods 2020-2049
and 1998-2007. Generally, eastern and southern China will gain more extremely hot days.
As a result, the climate predictions could vary across China. To demonstrate such regional
heterogeneity, Figure 9 presents the climate predictions on output in percentage points (panel
A) and in CNY billion (panel B) and TFP in percentage points (panel C) for each county.
The county-specific effects are calculated as follows: First, we estimate the regression model
(Equation (7)) for the whole sample; we then calculate the climate difference for each firm
between the periods of 2020-2049 and 1998-2007; Third, we use estimated coefficients and
multiply them by climate difference to infer the climate effects for each firm; Lastly, the firm-

1.37 The monetary damages for each

specific climate effects are averaged to the county leve
county are obtained using predicted output losses in percentage points (panel A) multiplying
by the county-specific aggregate output.

Overall, the climate damages in southern and eastern China are particularly severe with
more than 6% losses and corresponding CNY 0.06 billion in most counties. Notably, those
regions are where most manufacturing firms are located. On average, the northern and north-
eastern China are subject to moderate output losses. In general, the loss varies from 2-4%,
or CNY 0.02-0.04 billion (USD 3.12-6.25 million). In addition, a large area in northwestern

China are predicted to slightly increase output under climate change.

The climate prediction on TFP is generally similar to the prediction on output. Southern

3"We do not run regression models separately for each county because the sample is too small. Therefore,
the county-specific predictions in this study merely capture the heterogeneity in the changes of temperature
and not the heterogeneity in the historical relationship between output and temperature.
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China and eastern China are expected to experience severe losses, whereas the damages
are moderate for northern China. A large area in northwestern China are predicted to
moderately increase TFP. Overall, the results demonstrate a strong heterogeneity across

geographic regions.

7 Economic and Policy Implications

In the previous section, we predict the effects of climate change on output and TFP in the
medium run, and explore the heterogeneity across industrial sectors and geographic regions.
These results have significant economic and policy implications.

First, this paper helps explain the micro-mechanism for a large body of literature that
estimates the relationship between temperature and economic growth (Nordhaus and Yang,
1996; Hsiang, 2010; Dell et al., 2012; Burke et al., Forthcoming). Our model predicts that
a medium-run climate change will reduce output by 5.71%. Given that the manufacturing
sector contributes 32% of China’s GDP, this result can be translated as 5.71% x 0.32 = 1.83%
GDP losses. Mean temperature increases by approximately 2°F (1.11°C) under medium-run
climate change; this outcome suggests that a 1°F (1°C) increase in annual mean temperature
reduces the Chinese GDP by 0.92% (1.66%). This finding is consistent with Hsiang (2010)
and Dell et al. (2012), in which they find that a 1°F (1°C) increase in annual mean tempera-
ture leads to 1.39% (2.5%) and 0.56% (1.0%) GDP reduction in other developing countries.
We determine that the TFP reduction in response to high temperatures in the manufac-
turing sector is primarily responsible for the negative relationship between temperature and
economic growth.

Second, the baseline model predicts an output loss by 5.71%. This is equivalent to losses
of CNY 208.32 billion (USD 32.57 billion) in the Chinese manufacturing sector in 2013
values. This damage could be incorporated in the cost-benefit analysis when China is making

its own climate policies. As the world’s largest emitter of COy (U.S. Energy Information
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Administration, 2012), China’s effort to reduce CO, emissions is critical in tackling global
climate change. Although China has made various actions to reduce CO, emissions under
international pressure,®® the new findings of potential damages on manufacturing sector in
this study could motivate China to make more stringent policies on carbon reduction with
self interest in mind.

Third, the baseline model predicts a TFP loss by 4.18% under climate change. This TFP
reduction in response to climate change is mostly responsible for output losses. As TFP is
invariant to the intensity of use of labor and capital inputs, Chinese manufacturing is less
likely to avoid these damages simply through factor reallocation. If only labor productivity
is negatively affected by high temperatures, a natural way to avoid climate damage is to
simply replace workers with machines. However, because we find that temperature affects
both labor and capital productivity, the factor reallocation is less likely to be a feasible way
of adapting to climate change.

Fourth, China is the world’s largest exporter, wherein manufacturing goods compose 94%
of total exports (World Bank, 2013a). As a result, climate damages on Chinese manufac-
turing sector could further affect global welfare via trading. For example, reduction in TFP
and output under climate change may reduce exports, and increase prices of manufacturing
goods, which may further affect the economic welfare in the imported country. As such, the
climate damages on Chinese manufacturing sector could spill over to other countries.

Fifth, Sub-Saharan Africa is one of the regions most vulnerable to climate change because
rain-fed agriculture is the primary source of food production in this area and is the main
income source for a rural population that numbers nearly 350 million (Cooper et al., 2008).
It is thought that transitioning from agriculture to manufacturing can feasibly facilitate
adaptation to climate change (Henderson et al., 2015). Given the severe climate damages to
the Chinese manufacturing sector, climate change may also affect the African manufacturing

industry significantly. Therefore, additional researches should be conducted in Africa and

38For example, China agreed to reduce its carbon intensity (carbon dioxide emissions/GDP) by 40 to 45%
by 2020 in the 2009 Copenhagen Accord.
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possibly in other countries, to enhance the support for optimal adaptation policy design.

Sixth, the results suggest that climate damages are severe in private firms, whereas the
effects on state-owned firms are trivial. This finding reveals that labor regulations could play
an important role in mitigating the negative effects of high temperatures. In addition, we find
strong heterogeneity in climate damages across industrial sectors. This finding suggests that
climate change may generally have a negative affect on Chinese manufacturing. However,
climate change may also alter the composition of industrial sectors. Some sectors may gain
more shares, while others may lose. Given that the manufacturing sector composes 32%
of China’s GDP and employs 30% of labor forces (China Statistical Yearbook, 2014), the
climate shock on composition of the manufacturing sector could further have a profound
effect on the Chinese economy.

Lastly, climate damages across geographic regions display a strong heterogeneity. Over-
all, southern and eastern China is expected to experience severe losses, whereas northern
China is expected to experience moderate losses or even slight gains in certain regions. This
prediction provides a potential migration opportunity for Chinese manufacturing firms to
adapt to climate change. As manufacturing are largely limited by infrastructure, and Chi-
nese manufacturing is centered in the south and the east, the Chinese government may

promote more infrastructure construction in the north to adapt to climate change.

8 Conclusion

This paper estimates the economic effects of temperature on the four components of a pro-
duction function using firm-level manufacturing data in China: output, TFP, labor, and
capital inputs. We determine that the reduction in TFP in response to high temperatures
is the major channel that leads to output losses. This finding helps contribute to a growing
number of studies estimating the relationship between temperature and economic growth.

The model predicts that climate change may reduce TFP by 4.18%, and cause output
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losses by 5.71%. This result is equivalent to losses in CNY 208.32 billion (USD 32.57 billion)
in 2013 values. As Chinese manufacturing is a critical component in both the country’s GDP
and world’s export market, the potential climate damages could have a profound effect on
global welfare.

Chinese manufacturing firms may mitigate climate damages through more stringent en-
vironmental regulations or by migrating to the north. However, China and probably other
countries are less likely to be able to avoid these damages simply by reallocating labor and
capital inputs. Therefore, new technology that expands the production frontier should be
developed to compensate the weather-driven TFP losses if other adaptation strategies are
less feasible.

In terms of future study, one direction involves applying other production functions,
such as the constant-elasticity-of-substitution production function that enables researchers
to estimate labor and capital productivity explicitly, and then exploring the responses of
these factors to temperature separately. Furthermore, the present study evaluates climate
damages to the Chinese manufacturing sector alone; thus, generalizing these estimates to

other countries is particularly important in the design of global climate policies.
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A Appendix

Figure 1: Geographic Distribution of Output, 1998-2007
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Notes: This figure presents the average annual aggregate output for each county during the
period of 1998-2007. The county-level aggregate is calculated with the firm-level output,
and the unit is CNY billion in 1998 values.
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Figure 2: Distribution of Daily Temperatures, 1998-2007 and 2020-2049
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Notes: This figure illustrates the distribution of daily temperatures for the periods
1998-2007 and 2020-2049. The “1998-2007" and “2020-2049” bars represent the average
number of days per year in each temperature category over these time periods. The climate
prediction is obtained from the HadCM3 A1FT scenario.
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Figure 3: Geographic Distribution of Changes in Days with Temperatures above 90°F
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Notes: This figure depicts the changes in days with temperatures above 90°F under a
medium-run climate change. The unit is the difference in days with temperatures above

90°F between the periods 2020-2049 and 1998-2007.
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Table 3: Effects of Temperature on TFP between Labor- and Capital-Intensive Firms

Intensity = Wage Bill/Output

Intensity = Labor/Sales

(1a) (1b) (1) (2a) (21) (20)
80-90°F -0.0035***  -0.0030***  -0.0029***  -0.0024***  -0.0024*** -0.0022***
(0.0003)  (0.0003)  (0.0003)  (0.0004)  (0.0004)  (0.0004)
>90°F -0.0042***  -0.0081*** -0.0076*** -0.0055%** -0.0083*** _-0.0062***
(0.0008)  (0.0007)  (0.0007)  (0.0008)  (0.0008)  (0.0008)
80-90°F x Labor Intensity — 0.0041%** — — -0.0001 — —
(0.0003) — — (0.0002) — —
>90°F x Labor Intensity -0.0008 — — -0.0094 — —
(0.0016) - — (0.0060) — —
80-90°F x Above Median — 0.0009*** — — 0.0008*** —
— (0.0001) — — (0.0001) —
>90°x Above Median — 0.0064*** — — 0.0072%** —
— (0.0006) — — (0.0006) —
80-90°F x Above Mean — — 0.0010*** — — 0.0004***
— — (0.0001) - - (0.0001)
>90°x Above Mean — — 0.0061*** — — 0.0042%**
— — (0.0006) — — (0.0008)
Observations 1,833,408 1,833,408 1,833,408 1833408 1833408 1,833,408

Notes: The dependent variable is the log of TFP. Regression models are estimated using Equation (7) and include
firm fixed effects, year-by-region fixed effects, and year-by-two-digit-sector fixed effects. In columns (1a)-(1c), labor
intensity is measured by wage bill/output. In columns (2a)-(2c), labor intensity is determined through labor/sales. In
columns (1a) and (2a), we interact the two highest temperature bins with raw labor intensity. In columns (1b) and
(2b), labor intensity is classified as either above median (=1) or below median (=0); subsequently, we interact the two
highest temperature bins with a dummy variable for above median. The dummy variable for below median is omitted
for multicollinearity. In columns (1c) and (2c), labor intensity is classified as either above mean (=1) or below mean
(=0); then, we interact the two highest temperatures bins with a dummy variable for above mean. The dummy vari-
able for below mean is omitted for multicollinearity. Due to space limitations, we report only the effects of the two
highest temperature bins. Standard errors are clustered at both firm and county-year levels. * p <0.10, ** p <0.05,
*** p <0.01. See the text for more details.
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Table 4: Effects of Air Conditioner Penetration Rate on the Temperature-Ouput
and Temperature-TFP Relationships

Output TFP
(12) (1b) (2a) (2)
80-90°F -0.0001 -0.0001 0.0004 0.0004
(0.0006)  (0.0006)  (0.0005)  (0.0005)
>90°F 0.0040** 0.0040** 0.0037** 0.0037**
(0.0016)  (0.0016)  (0.0017)  (0.0017)
80-90°F x AC Above Median -0.0040*** — -0.0035%** —
(0.0005) — (0.0005) —
>90°x AC Above Median -0.0100%*** — -0.0109%*** —
(0.0017) — (0.0017) —
80-90°F x AC Above Mean — -0.0040*** — -0.0035%***
— (0.0005) — (0.0005)
>90°x AC Above Mean — -0.0100*** — -0.0109***
— (0.0017) — (0.0017)

Observations 1,833,408 1,833,408 1,833,408 1,833,408

Notes: The dependent variables are the log of output (la-1b) and TFP (2a-2b). Regression mod-
els are estimated using Equation (7) and include firm fixed effects, year-by-region fixed effects, and
year-by-two-digit-sector fixed effects. In columns (1a) and (2a), air conditioner penetration rate
is classified as either above median (=1) or below median (=0); subsequently, we interact the two
highest temperature bins with a dummy variable for above median. The dummy variable for be-
low median is omitted for multicollinearity. In columns (1b) and (2b), air conditioner penetration
rate is classified as either above mean (=1) or below mean (=0); then, we interact the two highest
temperatures bins with a dummy variable for above mean. The dummy variable for below mean is
omitted for multicollinearity. Due to space limitations, we report only the effects of the two highest
temperature bins. Table B.10 reports the province-level air conditioner penetration rate per 100
urban households. Standard errors are clustered at both firm and county-year levels. * p <0.10, **
p <0.05, *** p <0.01. See the text for more details.
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Table 5: Effects of Temperature on Output and TFP Across Ownership Types

Full sample  Private Foreign Collective  State-Owned
(1) (2) (3) (4) (5)
Output
80-90°F -0.0034*%%*  -0.0067***  -0.0006  -0.0040*** 0.0008
(0.0005) (0.0007) (0.0010) (0.0007) (0.0006)
>90°F -0.0045%**%  -0.0116***  -0.0028* -0.0023* 0.0031°%**
(0.0009) (0.0012) (0.0015) (0.0014) (0.0012)
TFP
80-90°F -0.0024%#%  -0.0049%*** 0.0004 -0.0029%+* 0.0007
(0.0004) (0.0007) (0.0008) (0.0007) (0.0006)
>90°F -0.0056*%*%*  -0.0105*** -0.0051***  -0.0021 0.0021**
(0.0008) (0.0011) (0.0015) (0.0013) (0.0010)
Mean Temp (°F) 61.54 61.64 64.52 60.25 59.03
Percentage 100% 38.46% 19.03% 12.98% 9.14%
Observations 1,833,408 705,129 358,413 237,976 167,373

Notes: The dependent variables are output and TFP. Regression models are estimated separately for
each ownership category using Equation (7) and includes firm fixed effects, year-by-region fixed effects,
and year-by-two-digit-sector fixed effects. Column (1) reports the estimates for the full sample while
columns (2)-(5) report the estimates for each ownership type. Due to space limitations, we report only
the effects of the two highest temperature bins. Standard errors are clustered at both firm and county-
year levels. * p <0.10, ** p <0.05, *** p <0.01. See the text for more details.
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B Online Appendix

B.1 Data

B.1.1 Calculating Relative Humidity using Temperature and Dew Point Tem-

perature

The NOAA does not report data on relative humidity. Thus, we use the following meteoro-

logical formula provided by the NOAA to calculate relative humidity:>°

112 -017T+Td
112 4+ 0.9T

RH = 100( ), (9)

where RH denotes relative humidity in percent, T" represents the air temperature in °C, and

T, represents the dew point temperature in °C.

B.1.2 Calculating Heat Index using Temperature and Relative Humidity

Heat index, or the apparent temperature, is an index that measures the sensation of tem-
perature when combined with humidity. The human body can cool itself down through
perspiration; however, this process is hard in a humid environment. For example, if the air
temperature is 90°F and the relative humidity is 60%, then the air temperature feels as if it
is at 100°F.40

To calculate heat index, we use the following formula provided by the National Weather

Service:*!

HI = —42.379 + 2.04901523 * T 4 10.14333127 * RH — 22475541 + T x RH
—.00683783 % T x T — .05481717 * RH * RH + .00122874 x T x T x RH (10)

+.00085282 « T'x RH « RH — .00000199 «T'«T'« RH « RH,

39nttp://www.erh.noaa.gov/bgm/tables/rh.shtml
4Ohttp://www.srh.noaa.gov/ama/?n=heatindex
4lhttp://wuw.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
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where HI represents heat index in °F, T" denotes temperature in °F, and RH indicates
relative humidity in percent.
When the relative humidity is less than 13% and the temperature is between 80-112°F,

the following formula is used to calculate the heat index:

HI = —42.379 + 2.04901523 » T" + 10.14333127 * RH — 22475541 +T'x RH
—.00683783 * 1"« T" — .05481717 * RH * RH + .00122874 xT'« T« RH

(11)
+.00085282 « T'x RH + RH — .00000199 * T« T'x RH + RH

—((13 = RH)/4) * (17 — |T — 95])/17)°®.

On the other hand, if the relative humidity is larger than 85% and the temperature is

between 80-87°F, we use the following formula:

HI = —42.379 4 2.04901523 « T+ 10.14333127 « RH — .22475541 «T'« RH

—.00683783 * T+ T' — .05481717 « RH » RH + .00122874 « T« T'x RH
(12)
+.00085282 « T'« RH + RH — .00000199 + T'«T'« RH + RH

+((RH — 85)/10) % (87 —T')/5).

Lastly, if the calculated heat index from above formulas is smaller than 80°F, the following

formula is used:

HI =05% (T +61.0+ ((T — 68.0) % 1.2) + (RH * 0.094)). (13)

B.2 Figures and Tables
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Figure B.10: Distribution of Weather Stations in China. Notes: Each dot represents a
weather station and each polygon represents a county.
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Table B.8: Region Classification

Geographic Regions Provinces

North Beijing, Tianjin, Hebei, Shanxi, Nei Mongol
Northeast Liaoning, Jilin, Heilongjiang
East Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong
Central Henan, Hubei, Hunan
South Guangdong, Guangxi, Hainan
Southwest Chongging, Sichuan, Guizhou, Yunan, Xizang (Tibet)
Northwest Shaanxi, Gansu, Qinghai, Ningxia Hui, Xinjiang Uygur
Economic Regions Provinces
Northeast Liaoning, Jilin, Heilongjiang
Bast Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Hainan
Central Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan
West Nei Mongol, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan,

Xizang (Tibet), Shaanxi, Gansu, Qinghai, Ningxia Hui, Xinjiang Uygur

Notes: Geographic regions are classified based on traditional standards. Economic regions are classified according
to the standards published on the NBS website http://www.stats.gov.cn/ztjc/zthd/sjtjr/dejtjkfr/tjkp/
201106/t20110613_71947 .htm.
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Table B.9: Regression Results for Climate Vari-
ables Other than Temperature

Output TFP
(1) 2)
Precipitation -0.0005%**  -0.0004***
(0.0001) (0.0001)
Precipitation Square 0.0000 0.0000
(0.0000) (0.0000)
Humidity -0.0011 -0.0015
(0.0010) (0.0010)
Humidity Square 0.0000 0.0000
(0.0000) (0.0000)
Wind Speed -0.0116 -0.0202**

(0.0104)  (0.0094)
Wind Speed Square  -0.0016** -0.0001
(0.0008)  (0.0007)

Visibility -0.0456* -0.0341
(0.0277) (0.0241)
Visibility Square 0.0032 0.0025

(0.0020)  (0.0018)

Observations 1,833,408 1,833,408

Notes: This table supplements Table 2. The dependent
variables are logarithms of output and TFP. Regression
models are estimated using Equation (7). This table
reports additional estimates for climatic variables other
than temperature. * p <0.10, ** p <0.05, *** p <0.01.
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Table B.10: Air Conditioner Penetration Rate per
100 Urban Households

Provinces AC Penetration Rate Intensity
Guangdong 126.68 High
Shanghai 124.74 High
Chongqing 113.13 High
Beijing 101.31 High
Zhejiang 95.77 High
Tianjin 82.70 High
Fujian 82.00 High
Jiangsu 77.80 High
Hubei 66.27 High
Henan 60.60 High
Anhui 54.14 High
Hunan 53.92 High
Heibei 51.60 High
Shaanxi 47.07 High
Shandong 46.61 High
Guangxi 46.18 High
Jiangxi 42.71 Low
Sichuan 42.67 Low
Hainan 28.78 Low
Shanxi 14.28 Low
Liaoning 8.69 Low
Guizhou 6.07 Low
Xinjiang Uygur 4.66 Low
Nei Mongol 3.95 Low
Heilongjiang 3.74 Low
Ningxia Hui 3.11 Low
Jilin 2.88 Low
Xizang (Tibet) 2.79 Low
Gansu 1.92 Low
Yunnan 0.50 Low
Qinghai 0.31 Low

China 53.21

Notes: This table presents the average air conditioner pene-
tration rate per 100 urban households in each province over
the periods 1998-2007 in China. The provinces are sorted by
the air conditioner penetration rate. The last row reports the
average air conditioner penetration rate for the whole China.
Provinces are classified by either high intensity (above me-
dian) or low intensity (below median) based on the median of
air conditioner penetration rate.
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