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Abstract 

Mental acuity is essential to productivity in most professions and possibly associated with indoor 

air quality. I examine this potential link using a sample of university final examination results 

from a British institution. To account for potential confounders, I exploit the panel structure of 

the data to estimate models with subject and student fixed effects. I find that exposure to elevated 

levels of particulate matter (PM10) has a statistically and economically significant effect on test 

scores and long-term academic indicators that are potentially correlated with future career 

outcomes. Furthermore, I find that the effect is larger among male, high ability and STEM 

subgroups and is present at levels considerably lower than current EPA standards. The results 

suggest that a narrow focus on traditional health outcomes, such as hospitalization, may 

understate the true cost of pollution as indoor air quality also affects productivity.  
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I. Introduction 

 

Recent decades have seen a dramatic increase in the level of public concern surrounding 

the adverse effect of ambient pollution. However, the importance of indoor air quality has been 

often overlooked. This is of particular interest given that the US population spends 89% of their 

time indoors of which 21% in non-residential environments, such as offices and schools (Klepeis 

et al., 2001; Wu et al., 2001). Studies have shown that indoor pollution can cause immediate 

health effects including irritation of the eyes, nose, and throat, headaches, dizziness, and fatigue 

(Young, 2001; Brenstein, 2008)
1
. Exposure to particulate matter can also affect cognitive acuity 

as any deterioration in oxygen quality may in theory impair brain functioning (Clark and 

Sokoloff, 1999). Nevertheless, evidence on the effect of indoor pollution on cognitive 

performance is remarkably scarce. A potential link between pollution and cognitive performance 

would imply that a narrow focus on traditional health outcomes, such as hospitalization and 

increased mortality, may understate the true cost of pollution as mental acuity is essential to 

productivity in most professions.  

There are many challenges in identifying the link between air pollution and human health 

such as heterogeneity in avoidance behavior, measurement error and the presence of unobserved 

correlated factors. However, identifying the causal relationship between indoor air pollution and 

cognitive performance possess an additional challenge.  Whilst the impact of air pollution on 

health outcomes is likely to be recorded, data on the adverse effect of air pollution on cognitive 

performance may be unobserved by researchers as impaired cognitive performance is unlikely to 

lead to health encounters and may not even be noticed by the affected individual (Chang et al., 

                                                 
1 There is also strong evidence on the long-term effect of indoor air pollution on human health. These effects include respiratory 

disease, heart disease and even cancer. See http://www.who.int/mediacentre/factsheets/fs292/en/.  
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2014). As such, this paper provides a unique opportunity to asses such potential link by using 

university final examinations in the UK as a measure of cognitive performance.  

I perform my analysis using a unique data set which combines readings of indoor air 

pollution (PM10) with administrative data on 2,458 students taking 11,522 exams at a leading 

public research university within the Greater London Urban Area. To account for potential 

confounders I crucially rely on the panel structure of the data to estimate models with subject and 

student fixed effects. By collecting air pollution data from within the examination sites I 

overcome the challenge of measurement error which could result from assigning pollution to 

individuals. This is of particular importance as most studies in the literature use data from 

ambient air pollution monitors which are usually located a few miles away from the location of 

the individual. As such, they are likely to be subject to considerable measurement error due to 

significant spatial variation even within finely defined areas (Moretti and Neidell, 2011; Lin et 

al., 2001). I also include controls for time-varying factors that could be contemporaneous and 

correlated with pollution, such as daily temperature and relative humidity. Nevertheless, it is still 

possible that other unobserved factors that are correlated with both pollution and test scores 

remain present. In order to ease such concern, I conduct a rich set of placebo and robustness 

tests. More specifically, I examine the correlation between test scores and indoor air pollution 

from the previous exam and also the correlation between ex-ante test scores and elevated levels 

of PM10. The correlations in both placebos are not statistically different from zero, lending 

further supports to the causal interpretation of the analysis.  

My results demonstrate that elevated levels of Particulate Matter (PM10) have a 

statistically and economically significant effect on test scores. I find that a one unit increase in 

PM10 (µg/m3) or being above the World Health Organization (WHO) guideline reduces student’s 
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test scores by 0.060 and 2.868 respectively. The effect for the dichotomous indicator is 

equivalent to 0.15 of a standard deviation which is very large and similar to the estimated effects 

found in studies that have measured the impact of paying teachers and students large financial 

incentives (Jackson, 2010) and reducing class size from 31 to 25 students (Angrist and Lavy, 

1999). Furthermore, I explore whether indoor air pollution has heterogeneous effects across 

subpopulations and academic disciplines. My interest is twofold: first, to test whether some 

subgroups are more sensitive to indoor pollution; and second, to examine whether the effect of 

indoor pollution varies across subjects.  I find that the effect is larger among male, high ability 

and STEM subgroups
2
.  

I also examine the possible non-linear impact of indoor air pollution on test scores by 

including dummy variables for different levels of pollution exposure simultaneously. 

Specifically, I define dummies for PM10 (µg/m3) being less than 25, between 25 and 50, between 

50 and 75, and above 75.  The analysis reveals a nonlinear and monotonic relationship between 

pollution and test scores with a possible threshold at 50 (µg/m3). Importantly, this threshold is 

well below current US Environmental Protection Agency (EPA) standards which suggest that it 

may be economically beneficial to lower existing guidelines
3
. The results imply that taking an 

exam with pollution above 75 (µg/m3) reduces student’s scores by 4.13 points, or approximately 

23% of a standard deviation. Finally, I show that transitory decline in cognitive performance has 

a robust negative relationship with long-term academic indicators that are potentially correlated 

with future career outcomes. More specifically, I find that exposure to coarse particulate matter 

reduces student’s composite scores and therefore the probability of receiving an upper second 

                                                 
2 The acronym STEM is widely used in the US and refers to academic disciplines of Science, Technology, Engineering and 

Mathematics.   
3 In order to determine the optimal regulatory action a full-fledged cost benefit analysis must be conducted.  
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classification or above. This is of particular interest since an upper second classification is a 

threshold requirement for most prestigious jobs and academic graduate programs in the UK. 

Overall my results provide compelling evidence that short-term exposures to elevated 

levels of indoor PM10 affect cognitive performance. Epidemiologists have already examined this 

potential link but such studies are predominantly cross sectional in nature and do not account 

convincingly for confounding factors (Mendell et al., 2005). To the best of my knowledge, this 

paper is the first to estimate the causal effect of indoor air pollution on cognitive performance 

with indoor pollution measures
4
. My findings imply that a narrow focus on health outcomes 

understate the true cost of pollution as indoor air quality also affects productivity.  

The rest of the paper is laid out as follows. In the second section, I present background 

information on coarse particulate matter and summarize the existing literature on identifying the 

impact of air pollutions on various health and academic outcomes. Section III describes the data 

while Section IV presents my identification strategy. In Section V, I present my empirical results 

and in VI I conclude.  

 

II. Background on Air pollution and Cognitive Performance 

 

Particulate matter (PM) is a mixture of solid particles and liquid droplets suspended in the air 

that consists of various components including acids, metals, dust particles, organic chemicals and 

allergens. Particle pollution is classified into two main categories namely “inhalable coarse 

particles” (PM10) and “fine particles” (PM2.5) based on their size. The former corresponds to 

particles that are larger than 2.5 and smaller than 10 micrometers in diameter and the latter to 

                                                 
4 Stafford (2015) examines the effect of indoor air quality (IAQ) on academic outcomes in Texas. She found that IAQ 

renovations have a significant positive effect on standardized tests. However, she was unable to observe actual level of indoor 

quality, and is therefore forced to rely on variation in the timing of IAQ renovations across schools.  
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particulate matter that is 2.5 micrometers in diameter or smaller
5
. The size of particles is 

associated with their ability to cause health problems. Therefore, in 1987, The EPA replaced the 

earlier Total Suspended Particulate (TSP) air quality standard with a PM10 standard and in 1997 

also established an annual and 24-hour National Ambient Air Quality Standard (NAAQS) for 

PM2.5.
6

  In 2008, the European (EU) Parliament also set legally binding limits for coarse and fine 

particulate matter. The 2008 EU ambient air quality directive replaced most previous EU air 

quality legislation and was made law in England in 2010
7
.  

The air pollution measure in this study is PM10, which comprises of smoke, dirt, dust, 

mold, spores and pollen. The emission of ambient PM10 comes from various sources such as 

factories, farming and roads. Nevertheless, indoor concentrations of coarse particles are not 

simply a byproduct of ambient pollution; they are also the result of emissions from indoor 

sources. The leading indoor sources of particles in education establishments are human activities, 

plants and various building materials (Chatzidiakou et al., 2012). Indoor concentrations of coarse 

particles in classrooms tend to surpass outdoor levels during the daytime, which highlights the 

significant contribution of indoor sources (Madureira et al., 2012)
8
. This is of particular 

importance for this study as it suggests that the level of indoor PM10 is likely to vary 

considerably across venues within close proximity of one another, and also within individual 

venues across time.   

The relationship between particulate matter and adverse health outcomes is well 

documented in the epidemiological literature. The medical explanation for such link is that 

elevated levels of particles in the air lead to changes in cardiovascular and pulmonary 

                                                 
5 For comparison, the average human hair is approximately 70 micrometers in diameter, making it 7 times larger than the largest 

coarse particle.  
6 Total Suspended Particulate corresponds to particles that are less than 100 micrometers in diameter.  
7 Similar regulations also exist in Scotland, Wales and Northern Ireland. 
8 Madureira et al. (2002) also show that PM2.5 and PM1 have the opposite trend.  
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functioning (Seaton et al., 1995). More specifically, human intake of particles may affect 

respiratory and cardiovascular conditions, such as asthma and heart attacks (Pope at al., 1995; 

Dockery, 2009; Donaldson et al., 2000; Weinmayr et al., 2010).  Particle pollution can also lead 

to milder health effects such as irritation of the airways, coughing or difficulty breathing.
9
 The 

former types of conditions are likely to be evident in most data sets commonly used in the 

literature. The latter, however, are likely to be unobserved by researchers as they do not lead to 

health encounters or even noticed by the affected individual (Chang et al., 2014)
10

. While 

empirical evidence suggests that symptoms from exposure to particulate matter can manifest 

within hours or days, it is unclear whether there is also an instantaneous effect (Son et al., 2013). 

This paper provides a unique opportunity to test this potential immediate effect using a novel 

quasi-experimental method.  

Despite the growing evidence of strong links between air quality and various health 

outcomes, research on the effect of air pollution on cognitive performance is remarkably scarce. 

Epidemiologists have examined such potential link but these studies are predominantly cross-

sectional in nature and do not account convincingly for confounding factors (Suglia et al., 2008; 

Wang et al., 2009). A study by Lavy et al. (2014) examined the causal relationship between 

ambient pollution and high school exit exams in Israel. In that study they found that increased 

daily exposure to ambient pollution significantly decrease test scores but were unable to 

disentangle whether this was caused by exposure during the exam or a build-up effect. Moreover, 

the results were driven by days with very high levels of pollution which are less frequent in most 

                                                 
9 For further details on such effects see http://www.epa.gov/pm/health.html 
10 Schlenker and Walker (2015) show that using an inpatient discharge data substantially underestimate the morbidity effect of 

ambient pollution. This is because inpatient discharge data excludes emergency room visits which do not require overnight 

admission.   
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developed countries and it remained unclear whether lower level of pollution could also lead to 

reduced cognitive performance in indoor settings
11

.  

 

III. Data 

 

My data combines self-collected readings of indoor air pollution with administrative data on test 

scores and demographics of undergraduate students at a leading public research university within 

the Greater London Urban Area. For exam and demographic information I use a confidential 

student file which contains the full academic record of all undergraduate students that took 

exams during the 2012/2013 academic year. The file also contains a unique student identification 

number which allows me to observe key demographic information on each student such as 

gender, nationality and UCAS tariff points
12

. I also know the exact date, time and location of 

each exam and the allocation of students across examination sites, allowing me to assign indoor 

pollution levels to test takers. The indoor pollution data was self-collected from 15 examination 

sites during the exam term. I used the 3M
TM

 EVM-7 which is an advanced environmental 

monitor designed to provide real time measurements with a one per second update rate. The 

monitor provides readings on mean PM10 (µg/m3), temperature (Celsius) and relative humidity 

(%). Importantly, the monitor was placed at least one meter from the wall and 1.5 meters height 

from the floor to ensure reliable readings (WHO, 2011).  

According to the WHO, the air quality guidelines for particulate matter are also 

applicable to indoor spaces (WHO, 2005). Currently, the EPA and the WHO set daily PM10 

                                                 
11 There is also evidence on a link between ambient pollution and physical productivity.  More specifically, Chang et al. (2014) 

and Lichter et al. (2015) found that an increase in ambient air pollution leads to decrease in productivity of pear-packing workers 

and professional soccer players respectively.   
12 The UCAS tariff is a means of allocating points to pre-university qualifications, allowing a broad comparison to be made 

across a wide range of international qualifications. The tariff points system assist British universities with their admission 

decisions and their management information.  For further details see https://www.ucas.com/ucas/undergraduate/getting-

started/entry-requirements/tariff.  
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guidelines of 150 and 50 micrograms per cubic meter (µg/m3) respectively
13

. The EPA also 

report daily air quality using the Air Quality Index (AQI) for the five pollutants regulated by the 

US Clean Air Act. More specifically, the AQI is divided into six categories ranging from good to 

hazardous which are associated with different levels of health risks. AQI values above 101, 

which is about 75 (µg/m3) of PM10, pose various health risks according the EPA
14

. In the UK, 

The Department for Environment, Food and Rural Affairs use the Daily Air Qulaity Index 

(DAQI) to provide information about levels of air pollution and recommended actions and health 

advice for the same five pollutants. The index is numbered 1-10 and divided into four bands 

(low, moderate, high and very high). Index value of above 6, which is about 76 (µg/m3) of PM10 

is defined as high level of pollution in the UK. In my empirical analysis I mainly use the more 

conservative WHO guideline to generate a threshold dummy which classifies exposure beyond 

the 50 (µg/m3) standards
15

.  

Table 1 presents descriptive statistics of key variables of interest. My sample includes 

11,522 examination results of 2,458 students taking exams in 15 different venues across 18 days.  

Each student took 5.2 exams on average, and the pass rate was 83%. In columns (2)-(5) I stratify 

the sample by gender and ability.  I use UCAS tariff points, which is a means of allocating points 

to pre-university qualifications, as a proxy for student ability. The table indicates that there are 

more females in the sample and that they tend to achieve marginally better scores. As expected, 

the high ability subgroup achieved significantly higher marks compared to their low ability 

counterparts.  It is important to note that pollution, temperature and relative humidity do not vary 

                                                 
13 According to the EPA, an area meets the 24-hour PM10 standard if it does not exceed the above level more than once per year 

on average over a three-year period.  
14 The WHO guideline of 50 (µg/m3) is equivalent to an AQI of 46 which is in the “Good” category.  
15 I also examine lower and higher thresholds in my analysis (see table 3 for further details).  
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much by sub-population. The similarity in these observables across gender and ability is 

important as it suggests that selection on observables is unlikely to drive my results. 

 

IV. Empirical Strategy 

 

For identification, I crucially rely on the panel structure of the data to estimate models 

with subject and student fixed effects. More formally, I estimate the following specification: 

istittststststitist ISiteDurTODDayNUMRHTempfPMXR   3210 ),()1(  

where istR  is the test score of student i at site s at time t;  itX  is a vector of individual 

characteristics possibly related to test outcomes, such as gender ; stPM is  PM10 level at site s at 

time t; stTemp is the temperature
16

 at site s at time t;  stRH  is the relative humidity measure at site 

s at time t; stNUM  is the number of students taking exam at site s at time t tDay , tTOD , Dur  

and Site  are day-of-week, time-of-day, duration and examination site fixed effects respectively; 

iI  is fixed effect for the individual; and ist is an idiosyncratic error term
17

. In order to accurately 

account for both spatial and serial correlation I use two-way cluster robust standard errors, 

clustering on both examination site and date
18

.  

There are three main econometric challenges in identifying the causal effect of air 

pollution on test scores.  First, the possible correlation between pollution exposure and 

unobserved determinants of students’ test scores. For example, if wealthy individuals are sorting 

                                                 
16 I include linear and quadratic terms for relative humidity, 5O bins for temperature, and linear and quadratic interaction terms of 

mean temperature and relative humidity. 
17 Note that in a different specification I use subject fixed effects in place of the student fixed effects. Subject fixed effect is 

defined as department and year of study (for example, a second year economics student). 
18 As a robustness check I also clustered at both the student and the examination site level separately. While the former tends to 

have smaller standard errors the latter yield very similar standard errors as the two-way clustering used in this paper. HAC robust 

standard errors also yield smaller standard errors and I therefore decided to use the most conservative clustering strategy.  
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themselves into degree subjects that exposed to lower levels of pollution (e.g. better facilities); 

naïve OLS estimation may underestimate the true causal effect of pollution as it is potentially 

mitigated by other factors (e.g. private tuition). In order to absorb these potential unobserved 

time invariant variations in subjects or individuals, I include individual fixed effects in equation 

(1). I also include controls for time-varying factors, such as daily temperature and relative 

humidity that could be contemporaneous with pollution. Nevertheless, it is still possible that 

other unobserved factors that are correlated with both pollution and test scores are still present. 

In order to limit such concern, I conduct a rich set of placebo tests which are discussed in detail 

in the next section of this paper.  

The second challenge is measurement error in assigning pollution to individuals. Most 

studies assign pollution data from ambient air pollution monitors to individuals using various 

interpolation techniques. This is likely to yield some degree of measurement error due to the 

significant spatial variation in pollution even within finely defined areas (Moretti and Neidell 

2011, Lin et al. 2001). In addition, since exams are taken indoors and normally a few miles away 

from an ambient monitor station, measurement error is likely to be exacerbated. These concerns 

are not present in this study as pollution data is collected from inside the examination site. This 

feature also allows me to ensure that I estimate the effect of exposure during the examination and 

not the potential build-up effect from exposure to pollution on the way to the exam.  

Heterogeneity in avoidance behavior is the third challenge for causal inference. The 

concern is that optimizing individuals will alter their pollution exposure to protect their health as 

air pollution information is widely available to the public. For example, if sensitive groups adopt 

compensatory behavior in response to a media alert, equation (1) is likely to understate the true 

causal effect of PM10. This concern is unlikely to arise in my setting for two reasons. First, the 
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allocation of students across examination sites is determined centrally by the university a few 

weeks prior to the examination date
19

.  Second, unlike ambient pollution, information on indoor 

pollution levels is unavailable to students. 

Figures 1-3 presents compelling evidence on the exogeneity of indoor PM10 in this study. 

Figure 1 shows the overall significant variation within and between venues, which is further 

explored in figures 2 and 3. More specifically, Figure 2 plots the variation of PM10 within a day 

across different examination sites. As evident from the figure, there is substantial variation 

across and within sites in a given day. Figure 3 which plots the variation of PM10 across days 

within a single examination site, shows a high frequency variation across days, with no evidence 

for a systematic pattern. Figures 1-3 exemplify the significant time and spatial variation of the 

data and further reduce concerns regarding possible omitted variable bias in this setting.  

 

V. Empirical Results 

 

a. Main Results 

 

Table 2 reports on the link between indoor coarse particulates and test scores. In the first two 

columns of panel A, I present cross sectional correlations between the continuous PM10 

measurement and student achievement. The coefficient estimates without any controls, column 

(1), suggest that a 1 unit increase of PM10 is associated with a 0.08 points decrease in a student’s 

test scores. In column (2) I add controls for age, gender, temperature, relative humidity, class 

size and dummies for day-of-week, examination venue, duration and nationality. I find that a 1 

unit increase in PM10 is associated with a 0.075 decline in test scores. Both estimates are 

                                                 
19 A student not attending is deemed to have failed unless extenuating evidence are provided, as such there is no possible 

selection into different time or examination venue. 
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statistically and economically significant but are cross sectional in nature and therefore should be 

treated with caution.  

In the last two columns of Table 2 I exploit the panel structure of the data to estimate 

models with subject and student fixed effects. Column (3), which includes a subject fixed effect, 

also shows a negative and highly significant effect with a more precise estimate. In order to 

account for potential confounders at the student level, column (4) estimates my preferred 

specification using within student regression. I find that a 1 unit increase in PM10 leads to a 0.06 

decline in a student’s test score, an estimate significant at the 1 percent level. These results imply 

that a student sitting an exam at a site with an average pollution level (33.15 µg/m3) will suffer a 

substantial reduction of 0.08 standard deviations in test score, as against that which the same 

person would have achieved at a site with the lowest level of pollution (4 µg/m3).  

Panel B of Table 2 reports on the effect of PM10 being above 50 (µg/m3) which the WHO 

considers to be an unhealthy level threshold. The results present negative and significant effects 

of coarse particles on students’ performances under most specifications. In column (4), where I 

include student fixed effects, I find that taking an exam at a site with pollution level above the 

WHO standard is associated with a 2.868 decline in a student’s test score, which is equivalent to 

0.15 of a standard deviation. This effect is very large and similar to estimates found in paying 

teachers and students large financial incentives (Jackson, 2010) and reducing class size from 31 

to 25 students (Angrist and Lavy, 1999). Finally, it is worth noting that the results obtained using 

the dichotomous indicators suggest the possibility of non-linear relationship between indoor 

pollution and cognitive performance.  

As such, In Table 3 I examine the possible non-linear impact of PM10 on test scores by 

including dummy variables for different levels of pollution exposure simultaneously. 
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Specifically, I define dummies for PM10 (µg/m3) being less than 25, between 25 and 50, between 

50 and 75, and above 75. I find no significant effect for PM10 levels below the WHO standard. 

Column 4, which show results for my preferred specification using student fixed effect indicates 

that PM10 exposure between 50 and 75 (µg/m3) is significantly associated with a 2.277 decline in 

the student’s score. When PM10 reaches 75 (µg/m3) the effect increases to 4.132, which is also 

significant at the 5% level.  Importantly, these results suggest a threshold around 50 (µg/m3) 

which is well below current EPA standards and therefore it may be economically beneficial to 

lower existing guidelines. Also note that both the WHO and the EPA guidelines are for 24-hour 

and there are no existing standards for hourly exposure to PM10. Therefore, my results may 

suggest a daily threshold below 50 (µg/m3) as air pollution tends to be higher during the day.   

 

b. Heterogeneity  

 

In this section I explore whether indoor air pollution has a heterogeneous effect across 

sub-populations and academic disciplines. The reason for this investigation is twofold; first, to 

test whether some subgroups are more sensitive to indoor pollution than others; and second, to 

examine whether the effect of indoor pollution varies by subjects. To study the former I stratify 

by gender and ability and for the latter I break down my sample by subject.  

Table 4 present estimates on the effects of coarse particulate on test scores stratified by 

gender, ability and subject, using my preferred specification with student fixed effects.  In the 

first two columns I break down the sample of test takers by gender. Column (1), which reports 

on the effect for the male subsample only, shows a negative and significant link between indoor 

levels of PM10 and test scores. More specifically, the results suggest that a 1 unit increase in 

PM10 (µg/m3) reduces students’ test scores by 0.086 and being above the WHO threshold 

14



 

reduces students’ test scores by 3.167. These estimates are considerably higher than the results 

obtained in the analysis for the full sample which suggests that male students are more sensitive 

to coarse particulate than their female counterpart. Indeed, Column (2), which reports results for 

the female subgroup, demonstrates such pattern precisely. The continuous coefficient drops to 

0.035 and the threshold dummy declines to 1.406 and is only significant at the 10% level. The 

results are not statistically different from each other but are suggestive of heterogeneous effect.  

A potential explanation for such difference is the higher prevalence of Attention Deficit 

Hyperactivity Disorder (ADHD) among male students which possibly makes them more 

vulnerable to distractions induced by elevated levels of indoor pollution (Biederman et al. 2002).  

 Columns (3) and (4) of Table 4 report on the effects of coarse particulate matter on 

students’ test scores by my ex-ante ability measure. As a proxy for ability I use UCAS tariff 

points, which are a means of allocating points to pre-university qualifications, in order to break 

down the sample above or below the ability median. The results suggest that the effect of indoor 

air pollution on cognitive performance is larger among high ability students. Specifically, an 

additional unit of PM10 is associated with a 0.070 decline in students’ test scores compared to 

0.054 among low ability students. When I use the dichotomous measure I find that exposure to 

indoor PM10 reduce test scores for low and high ability types by 2.824 and 3.098 respectively
20

. 

One possible explanation for this finding is the reasonable assumption of decreasing marginal 

returns to effort. Hence, high achievers may be more sensitive to random disturbances, such as 

indoor pollution, since any additional mark requires higher effort.   

 In the last two columns of Table 4 I examine the effect of indoor PM10 on different 

academic disciplines. I follow the guideline of the National Science Foundation (NCF) and 

stratify my sample into two groups; Science, Technology, engineering, and mathematics (STEM) 

                                                 
20 Note that the estimates are not statically different from each other and they are only suggestive.    
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and all other disciplines (non-STEM)
21

. The motivation for this analysis is to explore if some 

types of mental tasks are more sensitive to indoor air pollution. The results show that the effect is 

very large for STEM disciplines (-0.090) compared to the estimate for non-STEM subjects of -

0.038. The results suggest that tasks which require higher degree of numerical functioning are 

more affected by pollution.  

 

c. The Effect of Indoor Air Pollution on Other Academic Outcomes  

 

In this section I study whether transitory impaired cognitive performance also leads to long-

term adverse effects by looking at key academic indicators that are potentially correlated with 

future career outcomes. In Table 5, I estimate the effect of PM10 on the probability of failing an 

exam. The results are highly significant for both the continuous and threshold measures, and 

suggest that being above the WHO standard increases the portability of failing an exam by 5.3 

percentage points. Failing an exam can have a substantial adverse effect on student’s future 

career path due to three main reasons. First, failing can delay graduation and may lead to a 

change in degree title
22

. Second, since most graduate schemes in the UK require submission of 

full transcript during the application process, failing an exam can send a bad signal to potential 

employers. Finally, in case of a retake a student can receive no more than 40 points (a pass) 

regardless of his or her actual examination score. Hence, failing an exam have a substantial 

effect on final degree classification which may affect a student’s career options.  

 In Table 6, I carry the analysis at the student level. Therefore, the treatment is the average 

pollution exposure across all examinations. Note that the dichotomous indicator is the average of 

                                                 
21 Note that the NSF uses a broader definition of STEM which also includes social sciences. In my empirical analysis I classified 

only one social science (economics) as a STEM subject.  
22 For example, a student that study for a BSc in Management with Economics and fail the core microeconomic module can still 

graduate with a BSc in Management which may limit future career options.    
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above threshold (50 µg/m3) exposure incidences over all exams. In Panel A, I estimate the effect 

of exposure to coarse particulate matter on students’ composite score. The results indicate that an 

additional 10 units of PM10 and a 10% increase in the number of above threshold exposure are 

associated with a 1.922 and 0.933 decline in a student’s composite score respectively. In Panel 

B, I examine the effect of indoor pollution on the probability of receiving a classification of 

upper second or above. This is of particular interest as an upper second classification is a 

threshold requirement to most prestigious graduate jobs and academic graduate programs in the 

UK
23

. The results show that an additional 10 units of PM10 and a 10% increase in the number of

above-threshold exposures reduces the probability of a student achieving a second class 

classification by 4.5 and 19.8 percentage points respectively.  

d. Robustness Checks

In this section I conduct two placebo exercises and robustness checks to ease concerns that 

my estimates may capture unobserved time varying factors which are correlated with both indoor 

air pollution and test scores. The first placebo exercise uses the level of air pollution from the 

previous exam as the coefficient of interest. Hence, if equation (1) is correctly specified the 

coefficients of the lag variables should not be statistically different from zero. The results in 

Panel A of Table 7 suggests that my preferred specification with student fixed effect is indeed 

not statistically significant. However, the OLS estimates with and without controls are highly 

significant which exemplifies the importance of controlling for individual unobserved 

characteristics. Note that the estimate with the subject fixed effect is also insignificant which is 

23 According to the Association of Graduate Recruiters, 78% of UK employers require an upper second classification 

(http://www.bbc.co.uk/news/10506798). 
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reassuring as the last section of the analysis was conducted at the student level and therefore 

cannot include student fixed effects.  

In Panel B, I perform an additional placebo exercise using my ex-ante measure of ability as 

the dependent variable. Since UCAS tariff points are based on pre-university achievements, they 

should not be correlated with exposure to indoor air pollution during university after accounting 

for unobservables. Column (3) which includes subject fixed effect shows that the relationship 

between indoor levels of PM10 and pre-university qualifications is not statistically significant.  

Again, OLS estimates with and without controls are significant at the 5% and 1% levels 

respectively.  Overall, these results are of great importance for two main reasons. First, they 

lends further supports to the casual interpretation of my results as it reduces concerns over time 

varying characteristics that my main specification may fail to capture. Second, it demonstrates 

that OLS estimates, even with a rich set of controls, may still suffer from omitted variable bias.  

Finally, in Panel C I examine whether my estimates capture only the transitory pollution 

exposure and verify that it is not related to prior exposure. More specifically, I estimate the 

correlation between the last exam score and the average pollution level from all previous exams. 

The results are not statistically different from zero in all specifications.  

 

VI.  Conclusion  

 

In this paper I analyze the relationship between short-term exposure to indoor coarse 

particles and cognitive performance. I perform my analysis using a unique merged data set of 

indoor PM10 levels and administrative student data. I find that a one unit increase in PM10 

(µg/m3) and being above the WHO guideline reduces student’s test scores by 0.060 and 2.868 

respectively. I also explore whether indoor air pollution has a heterogeneous effect across sub-

18



 

populations and academic discipline and find the effect is larger among male, high ability and 

STEM subgroups.  

While my results are robust to a wide range of different specifications it is important to 

note a few caveats that may limit my analysis. First, since I do not observe the exact composition 

of my PM10 readings, I can not identify whether specific components of coarse particulates are 

driving my results. Second, despite my rigorous identification strategy, which includes student 

fixed effects and a rich set of controls it is still possible that other time variant unobserved 

correlated factors are still present. For example, traffic on the way to the exam can be correlated 

with both pollution levels and test scores as heavy traffic can increase pollution and stress. 

Finally, since data on individual health conditions is unavailable I’m unable to identify the exact 

pathophysiological pathways that drive my results which may be a rewarding area for future 

research. Despite the above limitations this paper provides compelling evidence on the causal 

link between indoor air pollution and cognitive performance.  

This analysis suggests that a narrow focus on traditional health outcomes, such as 

hospitalization and increased mortality, may significantly understate the true cost of pollution.  

This is since mental acuity is essential to most professions and therefore a reduction in indoor air 

quality can reduce productivity. My analysis also shows that the effect of indoor air pollution on 

cognitive performance is present at levels considerably lower than current EPA mandates. This is 

of particular importance as the EPA is currently reviewing whether revisions to the current PM10 

standards are warranted
24

. 

 

 

                                                 
24

For more details see http://www3.epa.gov/airtrends/aqtrnd95/pm10.html. 

 

19

http://www3.epa.gov/airtrends/aqtrnd95/pm10.html


 

References 

Angrist, J. D., & Lavy, V. (1999). Using Maimonides’ Rule to Estimate the Effect of Class Size 

on Student Achievement," Quarterly Journal of Economics, May 1999. 

 

Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., & Tarlo, S. M. 

(2008). The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical 

Immunology, 121(3), 585-591. 

 

Biederman, J., Mick, E., Faraone, S. V., Braaten, E., Doyle, A., Spencer, T., & Johnson, M. A. 

(2002). Influence of gender on attention deficit hyperactivity disorder in children referred to a 

psychiatric clinic. American Journal of Psychiatry, 159(1), 36-42. 

 

Chang, T., Zivin, J. S. G., Gross, T., & Neidell, M. J. (2014). Particulate pollution and the 

productivity of pear packers (No. w19944). National Bureau of Economic Research. 

 

Chatzidiakou, L., Mumovic, D., & Summerfield, A. J. (2012). What do we know about indoor 

air quality in school classrooms? A critical review of the literature. Intelligent Buildings 

International, 4(4), 228-259. 

 

Clarke, D. D., & Sokoloff, L. (1999). Circulation and energy metabolism of the brain. Basic 

neurochemistry: molecular, cellular and medical aspects, 6, 637-669. 

 

Dockery, D. W. (2009). Health effects of particulate air pollution. Annals of epidemiology, 19(4), 

257-263. 

 

Donaldson, K., Gilmour, M. I., & MacNee, W. (2000). Asthma and PM10. Respiratory 

Research, 1(1), 12. 

 

Jackson, C. K. (2010). A Little Now for a Lot Later A Look at a Texas Advanced Placement 

Incentive Program. Journal of Human Resources, 45(3), 591-639. 

 

Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P.,  & 

Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource 

for assessing exposure to environmental pollutants. Journal of exposure analysis and 

environmental epidemiology, 11(3), 231-252. 

 

Lavy, V., Ebenstein, A., & Roth, S. (2014). The Impact of Short Term Exposure to Ambient Air 

Pollution on Cognitive Performance and Human Capital Formation (No. w20648). National 

Bureau of Economic Research. 

 

Lin, T. Y., Young, L. H., & Wang, C. S. (2001). Spatial variations of ground level ozone 

concentrations in areas of different scales. Atmospheric environment, 35(33), 5799-5807. 

 

Lichter, A., Pestel, N., & Sommer, E. (2015). Productivity Effects of Air Pollution: Evidence 

from Professional Soccer (No. 8964). The Institute for the Study of Labor (IZA) 

20



 

 

Madureira, J., Paciência, I., & Fernandes, E. D. O. (2012). Levels and indoor–outdoor 

relationships of size-specific particulate matter in naturally ventilated Portuguese schools. 

Journal of Toxicology and Environmental Health, Part A, 75(22-23), 1423-1436. 

 

Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools 

influence student performance? A critical review of the literature. Indoor air, 15(1), 27-52. 

 

Moretti, E., & Neidell, M. (2011). Pollution, health, and avoidance behavior evidence from the 

ports of Los Angeles. Journal of human Resources, 46(1), 154-175. 

 

Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of 

health effects of particulate air pollution. Inhalation toxicology, 7(1), 1-18. 

 

Schlenker, W., & Walker, W. R. (2015). Airports, air pollution, and contemporaneous health. 

Review of Economic Studies, forthcoming.  

 

Seaton, A., Godden, D., MacNee, W., & Donaldson, K. (1995). Particulate air pollution and 

acute health effects. The Lancet, 345(8943), 176-178. 

 

Shu, W., Zhang, J., Zeng, X., Zeng, Y., & She, W. (2009). Association of traffic-related air 

pollution with children’s neurobehavioral functions in Quanzhou, China. Environ Health 

Perspect, 117, 1612-1618. 

 

Son, J. Y., & Bell, M. L. (2013). The relationships between short-term exposure to particulate 

matter and mortality in Korea: impact of particulate matter exposure metrics for sub-daily 

exposures. Environmental Research Letters, 8(1), 014015. 

 

Stafford, T. M. (2015). Indoor air quality and academic performance. Journal of Environmental 

Economics and Management, 70, 34-50. 

 

Suglia, S. F., Gryparis, A., Wright, R. O., Schwartz, J., & Wright, R. J. (2008). Association of 

black carbon with cognition among children in a prospective birth cohort study. American 

journal of epidemiology, 167(3), 280-286. 

 

Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., & Forastiere, F. (2010). Short-term 

effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like 

symptoms: a systematic review and meta-analysis. Environ Health Perspect, 118(4), 449-57. 

 

WHO (2011). Methods for Monitoring Indoor Air Quality in Schools. World Health 

Organisation, WHO Regional Publications, Bonn, Germany. European Series.  

WHO (2006). Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen 

dioxide and sulfur dioxide. Copenhagen: WHO Regional Office for Europe. 

 

21



 

Wu, X., Apte, M. G., & Bennett, D. H. (2012). Indoor particle levels in small-and medium-sized 

commercial buildings in California. Environmental science & technology, 46(22), 12355-12363. 

 

Yang, X., Zhang, Y. P., Chen, D., Chen, W. G., & Wang, R. (2001). Eye irritation caused by 

formaldehyde as an indoor air pollution-a controlled human exposure experiment. Biomedical 

and environmental sciences: BES, 14(3), 229-236. 

22



All Males Females Low High
Variable (1) (2) (3) (4) (5)

33.35 33.66 33.10 34.50 32.33
(21.51) (21.78) (21.29) (21.93) (21.08)

0.214 0.215 0.212 0.227 0.202
(0.41) (0.41) (0.41) (0.23) (0.40)

54.59 53.67 55.34 50.59 58.63
(18.05) (19.41) (16.82) (19.09) (15.86)

16.37 16.51 16.26 16.40 16.35
(2.31) (2.16) (2.41) (2.29) (2.32)

54.02 54.43 53.67 53.62 54.38
(12.15) (12.08) (12.20) (12.26) (12.07)

21.36 21.46 21.27 21.96 20.71
(2.77) (2.95) (2.61) (3.42) (1.18)

5.178 5.262 5.109 5.066 5.161
(1.41) (1.47) (1.34) (1.45) (1.32)

124.6 122.6 126.2 123.7 125.2
(75.68) (76.24) (75.18) (75.89) (75.38)

Failed an Exam 0.172 0.201 0.149 0.240 0.104
(yes=1) (0.38) (0.40) (0.36) (0.43) (0.31)
Observations 11,522 5,189 6,333 5,580 5,806

By Ability

Table 1

Descriptive Statistics

Age

By Gender

PM10 

(µg/m3)

Number of Students 

PM10 
(PM10 >50)

Notes: Standard deviations are in parentheses. Relative humidity is the amount of moisture in the air as a share 
of what the air can hold at that temperature. The ability level is based on UCAS tariff points which is a means of 
allocating points to pre-university qualifications. The sample is split by whether the student is above or below 
the median. 

Exam Score 
(1-100 points)

Temperature 
(celsius)

Relative Humidity
(percent saturation)

Number of Exams
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No Controls Controls Subject Student 
(1) (2) (3) (4)

PM10 (µg/m3) -0.083*** -0.075** -0.075*** -0.060***
(0.027) (0.030) (0.020) (0.020)

Dummy for PM10>50 -2.814* -2.697** -3.445*** -2.868***
(1.461) (1.341) (0.860) (0.818)

Observations 11,730 11,522 11,522 11,522
Notes: Each cell in the table represents a separate regression.Standard errors are
heteroskedastic-consistent and clustered by examination venue and date of pollution
assignment. All regressions include suppressed controls for temperature and humidity.
*** Signifcant at the 1 percent level, ** Signifcant at the 5 percent level, * Signifcant at
the 10 percent level.

Table 2

Pooled OLS and Fixed Effect Models of Indoor Air Pollution's Impact on 
Test Scores

Polled OLS Fixed Effects
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No Controls Controls Subject Student 
(1) (2) (3) (4)

Dummy for PM10  >25 & <= 50 -3.087** -1.980 -1.418 -0.778
(1.480) (1.205) (0.937) (0.977)

Dummy for PM10  >50 & <= 75 -2.920* -2.374 -2.970** -2.277**
(1.540) (1.702) (1.138) (1.082)

Dummy for PM10  >75 -5.488** -5.530** -5.453*** -4.132**
(2.473) (2.377) (1.636) (1.797)

Observations 11,730 11,522 11,522 11,522

Table 3

Indoor Air Pollution's Impact on Test Scores 
Polled OLS Fixed Effects

Notes: See Table 2. Each column in the table represents a separate regression.
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Males Females Low High STEM non-STEM
(1) (2) (3) (4) (5) (6)

PM10 (µg/m3) -0.086*** -0.035 -0.054** -0.070*** -0.090*** -0.038**
(0.021) (0.022) (0.023) (0.021) (0.032) (0.019)

Dummy for PM10>50 -3.167*** -1.406* -2.824*** -3.098*** -3.553** -1.434*
(0.781) (0.791) (0.999) (0.804) (1.634) (0.738)

Observations 5,189 6,333 5,596 5,822 7,187 4,270
Notes: See Table 2. All specifications include student fixed effects.

Degree Subject
Heterogeneity in the Impact of Indoor Air Pollution on Test Scores

Table 4

Gender Ability
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No Controls Controls Subject Student 
(1) (2) (3) (4)

PM10 (µg/m3) 0.001 0.001* 0.001*** 0.001**
(0.001) (0.001) (0.000) (0.000)

Dummy for PM10>50 0.036 0.057* 0.069*** 0.053***
(0.034) (0.033) (0.020) (0.018)

Observations 11,730 11,522 11,522 11,522

Table 5 
Indoor Air Pollution's Impact on Failing an Exam

Pooled OLS Fixed Effects

Notes: See Table 2. All specifications include student fixed effects.
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Fixed Effects
No Controls Controls Subject

(1) (2) (3)

PM10 (µg/m3, 10 units) -1.510** -1.750*** -1.922***
(0.630) (0.625) (0.454)

Dummy for PM10>50 -3.527 -5.278 -9.333***
(5.427) (4.023) (2.722)

Observations 2,462 2,458 2,458

PM10 (µg/m3, 10 units) -0.055*** -0.060*** -0.045***
(0.019) (0.015) (0.011)

Dummy for PM10>50 -0.109 -0.146 -0.198***
(0.139) (0.105) (0.072)

Observations 2,462 2,458 2,458

Panel B: Upper Second Class (yes=1)

Notes: Each observation is a student and pollution is averaged over all of the tests 
taken. Standard error are heteroskedastic-consistent and clustered at deaprtment and 
year level. 

Table 6 
Indoor Air Pollution's Impact on Other Academic Outcomes

Pooled OLS

Panel A: Composite Score
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No Controls Controls Subject Student 
(1) (2) (3) (4)

PM10 (µg/m3) -0.086*** -0.056** -0.027 -0.008
(0.025) (0.022) (0.020) (0.022)

Observations 9,268 9,079 9,079 9,079

PM10 (µg/m3) -0.982** -1.490*** -0.675
(0.445) (0.381) (0.831)

Observations 2,438 2,438 2,438

PM10 (µg/m3) -0.039 -0.041 0.035
(0.045) (0.034) (0.031)

Observations 2,462 2,458 2,458

Table 7
 Placebo and Robustness Tests 

Pooled OLS Fixed Effects

Panel A: Previous Exam

Panel B: UCAS Tariff Points

Notes: See Tables 2 and 6. In panel A, I assign PM10 to each exam using 
the reading of PM10 for the previous exam of the same student to the 
actual exam. In Panel B, I use my ex-ante measure of ability as the 
dependent variable. In Panel C, My dependent variable is the final test 
score and the independent variable is the average pollution level from all 
previous exams of the same student.

Panel C: Prior Pollution

29



Figure 1

 Variation in Indoor Air Pollution 
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Figure 2
Within Day Variation

Notes: Example of variation in PM10 within a day across venues
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Figure 3
 Variation Across Days

Notes: Example of variation in PM10 across days within one examination venue
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