The Impact of Energy Prices on Employment, Competitiveness and Environmental Performance: Evidence from French Manufacturing Plants

Giovanni Marin¹ Francesco Vona²

¹IRCrES-CNR, Milano, Italy; SEEDS, Ferrara, Italy; OFCE-SciencesPo, France ²OFCE-SciencesPo; SKEMA Business School, France

4th IZA Conference on Labor Market Effects of Environmental Policies

Outline of the presentation

Objectives Context

Data and Basic Facts

Data Some facts

Policies and energy prices CSPE PMR and EU-ETS

Energy prices and plant performance

Empirical strategy Baseline results Extensions Within-firm relocation Firm-level performance

Conclusions

Energy prices and climate policy

- The EU committed to ambitious climate policy targets in the medium-long run
 - ► 2020 Climate and Energy Package ⇒ 20% cut in GHG (wrt 1990), 20% of EU energy from renewables, 20% improvement in energy efficiency
 - ► 2030 Energy Strategy (commitment of EU for CoP21 in Paris, 2015) ⇒ 40% cut in GHG (wrt 1990), 27% of EU energy from renewables, 27% improvement in energy efficiency (wrt BAU)
- All in all the impact of climate policy is to raise the overall price of fossil fuels (e.g. Aldy and Pizer, 2015)
 - Induce shift towards (more expensive?) renewable energy ⇒ increase in average energy prices
 - Induce energy saving technical change and changes in the input mix

Climate policy vs EU competitiveness?

- Unilateral climate policies may reduce the competitiveness of EU-based industries that rely on energy
 - Social and economic damage ⇒ job losses in EU manufacturing sectors and negative impact on income and GDP
 - ► Environmental damage ⇒ carbon leakage (i.e. emissions are just displaced abroad) ⇒ if energy efficiency (and carbon intensity of energy mix) is worse abroad, carbon leakage would even result in greater global GHG emissions
- This risk is acknowledged by the Commission ⇒ e.g exemption from auctioning in Phase III of EU-ETS (2013-2020) for selected leakage-exposed industries

Our contribution

- 1. Our paper contributes to the growing **firm-level** literature on **evaluation of environmental policies** considering energy prices rather than EU-ETS, tax discontinuities or the CAA (Walker, 2013; Greenstone et al. 2012; Martin et al., 2014; Petrick and Wagner, 2014; Flues and Lutz, 2015).
- 2. We propose a simple **shift-share IV strategy** to account for endogeneity in the effect of energy prices on plant performance.
- 3. In practice:
 - (a) We first assess the effects of recent **policy changes** on energy prices⇒ bottom line: difficult to evaluate new policies one-by-one.
 - (b) We then evaluate the impact of energy prices on several measures of plant performance: energy demand, energy efficiency, CO2 emission, employment, workforce composition and labor productivity.

Outline of the Results

- 1. Environmental Performance: The (IV) own-elasticity of energy demand with respect to energy price is -0.52. The elasticity on CO2 is near -1 for all plants and -1.7 for ETS plants.
- 2. **Employment**: The (IV) cross-elasticity of employment with respect to energy price is -0.23, larger than -0.15 of previous studies reflecting a bias in OLS.

Employment effects are skill-biased, significantly larger in trade-exposed sectors and in multi-plant firms (although driven by within firm labor relocation).

 Competitiveness: Using only firms with all plants sampled, we find that a 10% increase in energy price decreases TFP and VA per worker by around 8%.

DATA AND BASIC FACTS

Description of data

Unbalanced panel of plants for 1997-2010

- **EACEI** (Enquête Annuelle sur le Consommations d'Energie dans l'Industrie)
 - Survey on consumption and expenditure for energy products (by source: electricity, oil, coal, gas, steam, other)
 - **Unit** of analysis \Rightarrow **plant** (SIRET)
 - Stratified sample of medium-small manufacturing plants (10-250 employees) and population of big manufacturing plants (250+ employees)
- **DADS** (Déclaration Annuelle des Données Sociales)
 - Information on employment ⇒ number of employees and workforce composition by occupation (PCS)
 - **Unit** of analysis \Rightarrow **plants** (SIRET)
 - Information for the population of active plants
- FARE/FICUS (Fichier Approché des Résultats d'Esane)
 - Balance sheets for the population of French companies
 - **Unit** of analysis \Rightarrow **company** (SIREN)

Energy prices?

- As in Davis et al (2013, REStat), we cannot measure marginal electricity prices (e.g. price in peak or off-peak hours).
- No specific information on the detailed structure of energy tariff schedule
- What we call energy price is, actually, the average unit value price, i.e. expenditures divided by quantity consumed (in kWh).

SOME FACTS

Stable energy mix

Figure: Energy mix of French plants (weighted by energy consumption)

Low electricity prices

Figure: Discount in electricity price in France with respect to Italy and Germany by consumption band - IA: small consumers; IF: big consumers

Marin and Vona The Impact of Energy Prices on Firm

...but growing

Heterogeneity in energy prices

Figure: SD of log energy prices

Marin and Vona The Impact of Energy Prices on Firms' Performance

Reduction in quantity-discounts (Davis et al. 2014)

POLICIES AND ENERGY PRICES

The French case

- 1. Large share of electricity is generated by nuclear power plants
 - Messmer Plan (after the oil crisis of 1973)
 - Now about 80-90 percent of electricity is produced with nuclear power
 - ► Baseload source that cannot deal with peaks ⇒ France both exports and imports electricity
- 2. Electricity and gas markets dominated by one player (EDF and GDF, respectively)
 - State-owned companies (and well-managed)
 - Guarantee for low prices
 - Explicit aim of reducing geographical heterogeneity in prices
- 3. Ambitious, Unilateral policy plan (the Energy Transition Law):
 - Carbon price floor of 30€/tCO2 (ETS price around 6€/tCO2).
 - Carbon tax: 56€/tCO2 in 2020, 100€/tCO2 in 2030.
 - Expected effect on energy prices of around 8-10%

Regulatory changes in France over the 2000s

- Introduction of a tax on electricity (CSPE) in 2003 (more details in the following slides)
- Following **EU directives** and **deregulations** (from early 2000s):
 - Creation of an independent transmission system operator for electricity
 - Opening the grid to non-discriminatory third party access (electricity)
 - Unbundling and opening to third party access to underground storage of natural gas
- The EU-ETS induced an increase in overall fossil fuel prices (for plants covered by the scheme) and a generalized increase in electricity prices

Summary of relevant policies

- Contribution au Service Public de l'Électricité (CSPE)
- Product Market Regulation for Electricity and Gas (PMR)
- EU Emission Trading Scheme (ETS)

The CSPE tax

- The CSPE (Contribution au Service Public de l'Électricité) is a tax on electricity aimed at financing the 'public-service' component of the supply of electricity
- Set up in 2002 with a rate of 3€/MWh (3.3 in 2003, 4.5 from 2004, 9 in 2011, 10.5 in 2012, 13.5 in 2013, 16.5 in 2014, 19.5 in 2015 and 22.5 in 2016)
- Tax revenue is use to:
 - Cover the obligatory purchase by EDF of electricity produced with co-generation and renewable energy
 - Contribute to the stabilization of prices across different regions (especially islands and DOM/TOM)
 - Provide **discounts** for **poor** households on electricity purchase

Exemptions from CSPE

- ▶ Big consumers of electricity are (partly) exempted from the tax
 ⇒ to reduce the risk of reducing the international competitiveness of energy-intensive industries
 - From 2003 onwards, ceiling of 500,000€/year of overall tax cost for each plant (beyond that amount each additional kWh is not taxed)
 ⇒ the ceiling grew in time (to accommodate the increase in the tax rate) ⇒ about 1/5 of total electricity consumption is exempted
 - Up to 240GWh of self-production is exempted from the tax
 - Ceiling set to 0.5 percent of company-level value added for companies that consume more than 7GWh/year
- Average tax per kWh for very big plants is close to zero
- However, we do not observe a clear discontinuity in the effects of the tax on energy prices and factor demand.
- ► EDF is quasi-monopolist ⇒ changes in net electricity prices (i.e. reduction in quantity-discounts) offset or more than offset the tax exemptions.

Did the ceiling create a discontinuity in tax-inclusive electricity prices?

Discontinuity energy demand here. Discontinuity labor demand here.

Does the CSPE changed the structure of electricity prices within the plant?

- After 2002 there has been a reduction in the elasticity of prices to quantity
- ► Hypothesis ⇒ the changes in regulation and taxes reduced the price discounts for big consumers of electricity wrt small ones
- To evaluate and quantify this effect we estimate the following equation:

$$log(Electr_price_{it}) = \sum_{t} \beta^{t} log(Electr_cons_{i0}) + \gamma_{t}^{Sector} + \eta_{t}^{Region} + \alpha_{i} + \varepsilon_{it}$$

Product Market Regulation and EU-ETS

PMR

- **Decreases** in **PMR** are expected to **reduce** energy **prices** for plants buying a larger share of energy in the regulated markets.
- Lower price will induce a change in the energy mix towards gas and electricity.

ETS

- Impact of EU-ETS on overall electricity prices ⇒ not easy to quantify in our framework.
- ► The price of dirty fuel, like carbon, inclusive of price of allowances for EU-ETS plants is higher than for non-ETS plants ⇒ move from 'optimal' fuel mix to less carbon intensive fuel mix (more expensive).

Figure: Regulation index (6=fully regulated; 0=unregulated - source: OECD)

Figure: Average energy prices for ETS and non-ETS plants (weighted by energy consumption)

All policies together

Plant-specific measures of policy change:

- Plant-specific exposure to Product Market Reforms (PMR) for electricity and gas;
- Dummy for plants subjected to the EU-ETS;
- Average (plant-specific) CSPE per MWh of electricity.

Dep var: log(energy price)	(1)	(2)	(3)	(4)
PMR (1: fully regulated; 0: unregulated)	0.0704**			0.0647*
Firm-specific CSPE (euro/MWh)	(0.0359)	-0.0118**		-0.0106**
ETS × D(2001-2004)		(0.00475)	-0.00129	(0.00508) -0.00381
ETS × D(2005-2007)			(0.0270) -0.00484	(0.0267) -0.0154
ETS x D(2008-2010)			(0.0438)	(0.0449)
210 x 5(2000 2010)			(0.0440)	(0.0450)
N	105523	105523	105523	105523

Fixed effect model weighted by average energy consumption of the plant. Robust standard errors in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Sample: plants that are observed in EACEI for at least three years.

Summary

- Counter-intuitive effect of the CSPE ⇒ No discontinuity, rents appropriation by EDF.
- **Counter-intuitive** effect also of $PMR \Rightarrow$ price increase.
- ► Substantial changes in the structure of energy prices ⇒ reductions in quantity-discounts likely affect energy intensive companies.
- Overall, energy prices are the best sufficient statistics to evaluate effects of future climate policies.

ENERGY PRICES AND PERFORMANCE

Energy prices and plant performance

- How do energy prices influence the performance of French plants? ⇒ several policy instruments ultimately influence energy prices.
- We evaluate the relationship between plant-specific energy prices and the performance (both economic and environmental) of French plants.

Estimating equation

We estimate the following equation:

$$log(Outcome_{it}) = \beta log(Ener_price_{it}) + X'_{it}\gamma + \alpha_i + \varepsilon_{it}$$

where:

- Ener_price_{it} is the ratio between total expenditure on energy and total energy consumption (in kWh) of plant i in year t
- \blacktriangleright β is the estimated **elasticity** of the outcome variable to energy prices
- X'_{it} is a series a control variables:
 - Industry-year dummies (NACE 2-digit rev 2)
 - Region-year dummies (NUTS2)
 - Year dummies specific for ETS plants (to account for the EU-ETS in a flexible way)
- α_i is the plant fixed effect

Details on estimating sample in here.

Endogeneity concerns

- Unobserved negative demand shocks reduce output and the demand of inputs (both labour and energy)
 - Contracts for energy supply (especially electricity and gas) commit the buyer to buy a certain amount of energy for a certain price before the shock is observed
 - Unexpected reduction in demand and energy consumption raises the average price of energy paid by plants
 - Unobserved shocks are **positively correlated** with energy **prices** and **negatively** correlated with **energy demand**, **employment** and **output** $\Rightarrow \beta_{OLS}$ should be **upwardly biased**
- Plants with different energy mix (i.e. technology) are exposed to exogenous changes in energy prices differently
 - Plants respond to heterogeneous changes in energy prices across sources by changing the energy mix (i.e. reducing the relative weight of sources that became more expensive)
 - Changes in energy mix is jointly determined (e.g technological choices) with energy intensity, labour demand and output ⇒ source of endogeneity

Instrumental variable

We build a shift-share IV that only keeps exogenous variations in energy prices and accounts for both sources of endogeneity

$$\begin{aligned} IV_{it} &= log(P_electr_t \times Sh_electr_{i,0} + P_gas_t \times Sh_gas_{i,0} + P_oil_t \times Sh_oil_{i,0} + \\ &+ P_coal_t \times Sh_coal_{i,0} + P_steam_t \times Sh_steam_{i,0}) \end{aligned}$$

- Exogenous regulation (and CSPE) induced substantial changes in prices, especially so for electricity
- Prices for other sources respond more to 'global' prices and depend less on the level of consumption than electricity
- We shut down possible responses of plants to changing energy prices in terms of energy mix by weighting exogenous prices with a time-invariant (initial) plant-specific energy mix

	log(ener	gy cons)	log(energy	cons / L)
	FE	FE-IV	FE	FE-IV
log(energy price)	-1.156***	-0.523***	-1.188***	-0.729***
	(0.00916)	(0.0353)	(0.00750)	(0.0288)
F excl IV first stage		6757.2		6757.4
N	106004	106004	105969	105969
	log(CO2)	log(CC	02 / L)
	FE	FE-IV	FE	FE-IV
log(energy price)	-1.724***	-1.055***	-1.590***	-0.840***
	(0.0136)	(0.0570)	(0.0164)	(0.0684)
F excl IV first stage		4820		4651.3
N	91628	91628	88811	88811

Table: Baseline results - energy and CO2

Fixed effect model. Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant start are observed in EACEI for at least three years.

Interaction energy cost share here.

	log(e	empl)	Share HS	workers
	FE	FE-IV	FE	FE-IV
log(energy price)	-0.122*** (0.00810)	-0.230*** (0.0306)	0.00269*** (0.00104)	0.00725* (0.00391)
F excl IV first stage N	102519	6455.5 102519	102519	6455.5 102519
	Share LS v	Share LS white collar		ue collar
	FE	FE-IV	FE	FE-IV
log(energy price)	0.00294** (0.00131)	-0.00147 (0.00496)	-0.00668*** (0.00153)	-0.0189* (0.00577)
F excl IV first stage N	102519	6455.5 102519	102519	6455.5 102519

Table: Baseline results - employment

Fixed effect model. Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant start are observed in EACEI for at least three years.

Interaction energy cost share here.

Explaining the different bias for employment and energy

- For energy demand, the IV-elasticity is, as expected, smaller than the OLS-elasticity. The bias is particularly large because energy prices are measured as the ratio between expenditures and energy consumption.
- ► For **labor**, the IV-elasticity is **larger** than the OLS-elasticity. This result is less intuitive to explain.
- In our IV strategy, all firm-specific changes in technology and the energy (and input) mix enters in the error term. These changes should be positively correlated with both employment and energy prices, and thus mitigate the negative effect of energy prices on employment in OLS.

		Energ	y intensive sectors			
	log(ener	gy cons)	log(CO2)		log(empl)	
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.137*** (0.0399)	-0.542*** (0.0481)	-1.723*** (0.0695)	-1.086*** (0.0804)	-0.133*** (0.0145)	-0.288*** (0.0388)
F excl IV first stage N	55099	3254.7 55099	47615	2346.8 47615	53332	3137.9 53332
		Non ene	rgy intensive secto	rs		
	log(ener	gy cons)	log(CO2)		log(e	empl)
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.181*** (0.0296)	-0.466*** (0.0722)	-1.727*** (0.0454)	-0.989*** (0.116)	-0.109*** (0.0190)	-0.125* (0.0645)
F excl IV first stage N	50905	1952.2 50905	44013	1278.0 44013	49187	1835.1 49187

Table: Energy intensive vs non energy intensive sectors

Fixed effect model. Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant start are observed in EACEI for at least three years.

			ETS plants			
	log(ener	gy cons)	log(CO2)	log(empl)	
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.107*** (0.142)	-0.783*** (0.217)	-2.133*** (0.333)	-1.764*** (0.459)	-0.0797 (0.0594)	0.0767 (0.213)
F excl IV first stage N	3411	96.19 3411	3381	97.41 3381	3385	95.81 3385
		N	on ETS plants			
	log(ener	gy cons)	log(CO2)		log(empl)	
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.157*** (0.0271)	-0.513*** (0.0408)	-1.710*** (0.0460)	-1.025*** (0.0658)	-0.123*** (0.0117)	-0.235*** (0.0341)
F excl IV first stage N	102593	5122.2 102593	88247	3562.4 88247	99134	4890.3 99134

Table: ETS vs non ETS plants

Fixed effect model. Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant start are observed in EACEI for at least three years.

		Trade	e intensive sectors			
	log(ener	gy cons)	log(CO2)	log(empl)	
	FE	FÉ-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.216*** (0.0446)	-0.753*** (0.0680)	-1.686*** (0.0708)	-1.107*** (0.109)	-0.139*** (0.0190)	-0.257*** (0.0600)
F excl IV first stage N	42225	1787.9 42225	37330	1179.4 37330	40819	1708.1 40819
		Non tra	de intensive sector	rs		
	log(ener	gy cons)	log(CO2)		log(e	empl)
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.123*** (0.0336)	-0.408*** (0.0540)	-1.766*** (0.0607)	-1.097*** (0.0915)	-0.103*** (0.0144)	-0.164*** (0.0417)
F excl IV first stage N	63779	2993.4 63779	54298	2102.2 54298	61700	2862.7 61700

Table: Trade intensive sectors vs non trade intensive sectors

Fixed effect model. Robust standard errors in parenthesis. *p < 0.1, **p < 0.05, ***p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plants that are observed in EACEI for at least three years.

		Sir	igle plant firms			
	log(ener	gy cons)	log(CO2)	log(empl)	
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.193*** (0.0327)	-0.366*** (0.0627)	-1.787*** (0.0582)	-0.919*** (0.102)	-0.113*** (0.0144)	-0.185*** (0.0435)
F excl IV first stage N	54108	2383.2 54108	45396	1631.4 45396	52424	2249.3 52424
		M	ulti plant firms			
	log(ener FE	rgy cons) FE-IV	log(CO2) FE FE-IV		log(e FE	empl) FE-IV
log(energy price)	-1.139*** (0.0448)	-0.714*** (0.0556)	-1.676*** (0.0736)	-1.157*** (0.0929)	-0.120*** (0.0180)	-0.220*** (0.0538)
F excl IV first stage N	49038	2191.3 49038	43917	1561.5 43917	47467	2107.2 47467

Table: Single plant firms vs multi plant firms

Fixed effect model. Robust standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant start are observed in EACEI for at least three years.

To what extent the difference btw multi and single plant depend on within-firm relocation?

- We run regressions only on multi-plant firms (with all plants included in EACEI)
- We condition on firm-year fixed effects $(\gamma_{jt}) \Rightarrow log(Ener_price_{i \in j,t})$ can be interpreted as the difference of energy prices between plant *i* and its company *j*.
- Dependent variable \Rightarrow share of labour, energy and CO2 in plant *i* with respect to the total in firm *j*.

$$log(Outcome_{i \in j,t}) = \beta log(Ener_price_{i \in j,t}) + \gamma_{jt} + \alpha_i + \varepsilon_{it}$$

	Share of firm employment		Share of firm energy cons		Share of firm CO2 emissions	
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-0.0582** (0.0225)	-0.140* (0.0778)	-0.342*** (0.0370)	-0.283*** (0.0833)	-0.588 (0.0540)	-0.380*** (0.108)
F excl IV first stage N	4162	40.43 4162	4177	63.24 4177	4066	62.76 4066

Table: Within-firm relocation

Fixed effect model. Robust standard errors in parenthesis. * p-0.01, ** p-0.05, *** p-0.01. Additional control variables: firm-year dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plants in multi-plant firms for which all plants are observed in EACEI: plants that are observed in EACEI plants that are ob

From plant-level to firm-level analysis

- We aggregate up energy-related and labour-related information at the firm level for those firms with all plants included in the EACEI survey (i.e. all single-plant firms, and multi-plant firms with all plants included in the survey).
- We use firm-level data to retrieve information on balance sheets and income statements (FICUS-FARE).
- Additional measures ⇒ productivity (labour productivity and TFP⇒ direct measures of efficiency), investment, capital.

	log(energy cons)		log(energy	log(energy cons / L)		cons / turn)
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.178*** (0.0328)	-0.427*** (0.0585)	-1.059*** (0.0337)	-0.219*** (0.0659)	-1.030*** (0.0335)	-0.248*** (0.0641)
F excl IV first stage N	55582	2837.0 55582	54582	2776.3 54582	54865	2800.8 54865
	log(CO2)	log(CC	log(CO2 / L)		2 / turn)
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-1.805*** (0.0586)	-1.081*** (0.0961)	-1.696*** (0.0584)	-0.884*** (0.105)	-1.668*** (0.0579)	-0.972*** (0.102)
F excl IV first stage	47026	1881.8	46447	1841.4	46660	1858.2

Table: Firm-level performance - energy and CO2

Fixed effect model. Robust standard errors in parenthesis. * p=0.1, ** p=0.05, *** p=0.01. Additional control variables: firm-year dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plants in multi-plant firms for which all plants are observed in EACEI; plants that are observed in EACEI for at least three years.

Table: Firm-level performance - employment and economic performance

	log(empl)		log(VA	log(VA / empl)		/ empl)
	FE	FE-IV	FE	FE-IV	FE	FE-IV
log(energy price)	-0.112*** (0.0133)	-0.189*** (0.0371)	-0.0448*** (0.0138)	-0.0709* (0.0406)	-0.0214* (0.0130)	0.0153 (0.0366)
F excl IV first stage N	54582	2776.3 54582	53699	2733.0 53699	54080	2747.0 54080
	log(1 FE	FE-IV	log(invest FE	: / empl) FE-IV	log(capital s FE	tock / empl) FE-IV
log(energy price)	-0.0480*** (0.0128)	-0.0792** (0.0374)	0.0227 (0.0492)	-0.0349 (0.174)	-0.0283 (0.0180)	-0.0608 (0.0551)
F excl IV first stage N	52742	2647.1 52742	33323	1325.0 33323	53212	2669.5 53212
	Share HS workers FE FE-IV		Share LS w FE	hite collar FE-IV	Share bl FE	ue collar FE-IV
log(energy price)	-0.00669 (0.00727)	0.00375 (0.0394)	-0.0235 (0.0219)	-0.0513 (0.154)	-0.0457 (0.0382)	-0.259 (0.198)
F excl IV first stage N	54582	2776.3 54582	54582	2776.3 54582	54582	2776.3 54582

Firm-level estimates. Fixed effect model. Robust standard errors in parenthesis. * p<0.1, ** p<0.05, *** p<0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: firms for which all plants are included in EACEI and that are observed in EACEI for at least three years.

Summary and Extensions

- 1. Our study **confirms** previous results on the **effects** of environmental policies: **improve** environmental performance and energy efficiency at the **cost** of a small negative effect on employment and competitiveness.
- We highlight heterogeneous responses by skills (low/high), sector (tradable/non-tradable) and firm characteristics (multi/single plants ⇒ mitigate effects for multi-plants).
- 3. Our analysis of the **drivers** of energy price changes highlights potential problems of **single policy** evaluation.
- Our approach is suitable to simulate firm-specific responses to current and future policy: french carbon tax (56€/tCO2 in 2020; 100€/ton in 2030) and fuel-specific taxes.
- 5. Extensions: firm exit (no results so far), aggregate effects using sample weights (issue of representativeness for the estimation sample), role of technical change (control for green patents), tracking detailed changes in skill composition (use matched employer-employee data).

THANK YOU FOR YOUR ATTENTION

francesco.vona@sciencespo.fr

Table: Energy costs / wages

Sector	Energy expenditure / wages (average)
Manufacture of basic metals	0.3814
Manufacture of chemicals and chemical products	0.3782
Manufacture of other non-metallic mineral products	0.3675
Manufacture of wood and of products of wood and cork	0.3381
Manufacture of textiles	0.3234
Manufacture of paper and paper products	0.2841
Manufacture of rubber and plastic products	0.2381
Total	0.2169
Manufacture of fabricated metal products	0.2068
Manufacture of furniture	0.2050
Manufacture of coke and refined petroleum products	0.1970
Manufacture of motor vehicles, trailers and semi-trailers	0.1638
Repair and installation of machinery and equipment	0.1557
Manufacture of basic pharmaceutical products	0.1442
Manufacture of machinery and equipment n.e.c.	0.1436
Manufacture of electrical equipment	0.1354
Manufacture of computer, electronic and optical products	0.1267
Other manufacturing	0.1123
Manufacture of other transport equipment	0.1014
Manufacture of leather and related products	0.0857
Manufacture of wearing apparel	0.0805

More on quantity discounts

Figure: Cross-sectional elasticity of energy prices wrt to energy consumption (region and industry dummies included, weighted by energy purchase)

Did the ceiling create a discontinuity in the growth of electricity consumption?

Did the ceiling create a discontinuity in the growth of employment?

Table: Interaction between energy price and initial ratio between energy cost and wages - energy and CO2

	log(ener FE	gy cons) FE-IV	log(energ ₎ FE	r cons / L) FE-IV
log(energy price)	-1.104***	-0.397***	-1.151***	-0.660***
$\log(\ensuremath{energy}\xspace$ price) x Initial energy cost share of wages	(0.00978) -0.192*** (0.0145)	(0.0375) -0.286*** (0.0218)	(0.00802) -0.134*** (0.0119)	(0.0305) -0.162*** (0.0179)
F excl IV first stage N	105178	3197.1 105178	105144	3196.9 105144
	log(log(CO2)		02 / L)
	FE	FE-IV	FE	FE-IV
log(energy price)	-1.691***	-0.956***	-1.553***	-0.717***
$\log(\ensuremath{energy}\xspace$ price) x Initial energy cost share of wages	(0.0146) -0.114*** (0.0201)	(0.0609) -0.189*** (0.0291)	(0.0175) -0.132*** (0.0240)	(0.0730) -0.258*** (0.0345)
F excl IV first stage N	90969	2248.5 90969	88302	2181.5 88302

Fixed effect model. Robust standard errors in parenthesis. * p< 0.1, ** p<0.05, *** p<0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plants that are observed in EACEI for at least three years.

Table: Interaction between energy price and initial ratio between energy cost and wages - employment

	log(empl)		Share HS workers	
	FE	FE-IV	FE	FE-IV
log(energy price)	-0.129***	-0.260***	0.00372***	0.0124***
	(0.00868)	(0.0325)	(0.00111)	(0.00414)
log(energy price) x Initial energy cost share of wages	0.0258**	0.0769***	-0.00384**	-0.0121***
	(0.0127)	(0.0100)	(0.00102)	(0.00257)
F excl IV first stage		3073.9		3073.9
N	101903	101903	101903	101903
	Share LS white collar		Share blue collar	
	Share LS v	white collar	Share bl	ue collar
	Share LS v FE	vhite collar FE-IV	Share bl FE	ue collar FE-IV
log(energy price)	Share LS v FE 0.00396***	vhite collar FE-IV -0.00213	Share bl FE -0.00865***	ue collar FE-IV -0.0159***
log(energy price)	Share LS v FE 0.00396*** (0.00140)	vhite collar FE-IV -0.00213 (0.00525)	FE -0.00865*** (0.00163)	ue collar FE-IV -0.0159*** (0.00611)
log(energy price) log(energy price) × Initial energy cost share of wages	Share LS v FE 0.00396*** (0.00140) -0.00294	vhite collar FE-IV -0.00213 (0.00525) -0.000778	FE -0.00865*** (0.00163) 0.00651***	ue collar FE-IV -0.0159*** (0.00611) 0.0141***
log(energy price) log(energy price) × Initial energy cost share of wages	Share LS v FE 0.00396*** (0.00140) -0.00294 (0.00206)	white collar FE-IV -0.00213 (0.00525) -0.000778 (0.00300)	Share bl FE -0.00865*** (0.00163) 0.00651*** (0.00239)	ue collar FE-IV -0.0159*** (0.00611) 0.0141*** (0.00349)
log(energy price) log(energy price) × Initial energy cost share of wages F excl IV first stage	Share LS v FE 0.00396*** (0.00140) -0.00294 (0.00206)	white collar FE-IV -0.00213 (0.00525) -0.000778 (0.00300) 3073.9	Share bi FE -0.00865*** (0.00163) 0.00651*** (0.00239)	ue collar FE-IV -0.0159*** (0.00611) 0.0141*** (0.00349) 3073.9

Fixed effect model. Robust standard errors in parenthesis. * p< 0.1, ** p<0.05, *** p<0.01. Additional control variables: year-sector (2-digit NACE rev 2) and year-region (NUTS2) dummies. Excluded IV: log of national energy prices (by fuel) weighted with initial energy mix of the plant. Sample: plant that are observed in EACEI for at least three years.

Figure: Share of explained SD - Gas prices

Details about the estimating sample

- Unbalanced panel of plants for 1997-2010
- Particularly 'unbalanced' for small plants
- Only keep plants that are observed at least 3 times over the period 1997-2010 (results are not sensitive to different choices)

Back to Back.

Climate policy vs EU competitiveness?

Figure: Share of employees in manufacturing sectors (source: WIOD)

Ob	jectives	Data and	Facts	Policies	Energy &	2 per	formance	Conclusions
----	----------	----------	-------	----------	----------	-------	----------	-------------

PCS code (2-digit)	PCS code (1-digit)	Description (in French)				
High-skill oc	High-skill occupations					
21	20	Chefs d'entreprises artisanales				
22	20	Chefs d'entreprises industrielles ou commerciales de moins de 10 salariés				
23	20	Chefs d'entreprises industrielles ou commerciales de 10 salariés et plus				
31	30	Professionnels de la santé et avocats				
33	30	Cadres de la Fonction Publique				
34	30	Professeurs, professions scientifiques				
35	30	Professions de l'information, des arts et des spectacles				
37	30	Cadres administratifs et commerciaux d'entreprises				
38	30	Ingénieurs et cadres techniques d'entreprises				
Medium-skil	Medium-skill (white collars) occupations					
42	40	Instituteurs et assimilés				
43	40	Professions intermédiaires de la santé et du travail social				
44	40	Clergé, religieux				
45	40	Professions intermédiaires administratives de la Fonction Publique				
46	40	Professions intermédiaires administratives et commerciales des entreprises				
47	40	Techniciens				
48	40	Contremaîtres, agents de maîtrise				
52	50	Employés civils et agents de service de la Fonction Publique				
53	50	Agents de surveillance				
54	50	Employés administratifs d'entreprises				
55	50	Employés de commerce				
56	50	Personnels des services directs aux particuliers				
Low-skill (blue collars) occupations						
62	60	Ouvriers qualifiés de type industriel				
63	60	Ouvriers qualifiés de type artisanal				
64	60	Chauffeurs				
65	60	Ouvriers qualifiés de la manutention, du magasinage et du transport				
67	60	Ouvriers non qualifiés de type industriel				
68	60	Ouvriers non qualifiés de type artisanal				
69	60	Ouvriers agricoles				