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Abstract 

 
This paper studies the impacts of high temperature days on out-migration from sub-state regions in the 

United States. Using data from two different sources – covering 10 and 24 year periods respectively - we 

find that an increase in the incidence of high temperature days in a year leads to more out-migration 

compared to moderate temperature days. The effect of temperature on out-migration does not vary by 

multiple observable characteristics like race, family structure, income, age, or sex. Finally, we explore 

employment effects of temperature shocks and find that increased incidence of high temperatures on 

average does not have a statistically significant effect on employment. While we do not find strong 

employment effects in areas that depend on agriculture (where the climate-income relationship might be 

most obvious), we still find significant out-migration from these areas, suggesting more nuanced pathways 

than direct labor-market-impacts for climate to affect mobility. 
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Introduction 
 

While migration due to climate change has been offered as an important adaptation mechanism, 

micro evidence on whether people move due to higher temperatures in developed countries has 

only become a focus of research very recently. The burgeoning literature in this area has focused 

largely on extreme events that cause severe disruptions to the economy and well-being. For 

example, Mahajan and Yang (2017) show that people move away from places that experience 

devastating hurricanes, Hornbeck (2012) finds that migration was the primary adaptation 

mechanism used by those affected by the American Dust Bowl in the late 1930s, and Boustan, 

Kahn, and Rhodes (2012) study migration responses to natural disasters in the 20th century. 

Additionally, there is increasing evidence from developing countries where incomes are much 

more closely tied to climate due to a higher reliance on agriculture (Cai et al. 2016). For 

example, Bohra-Mishra, Oppenheimer, and Hsiang (2014) find migratory responses to climate 

shocks in Indonesia; Mueller, Gray, and Kosec (2014) examine the relationship between heat 

stress and long-term migration in Pakistan; and Marchiori, Maystadt, and Schumacher (2012) 

provide evidence on weather anomalies and migration in sub-Saharan Africa.  

 

While such papers are indeed important in identifying a climate-migration connection, it is also 

useful to consider non-catastrophic sources of weather variation in contexts where other climate 

coping mechanisms might be present (these can range from direct adaptation mechanisms such 

as air conditioning to income smoothing resources such as social safety nets). Indeed, there are 

many reasons to hypothesize that such effects might be important. Recent work in economics has 

highlighted the role of environmental factors in determining economic growth (Hsiang et al., 

2017; Dell, Jones, and Olken 2011), worker productivity (Graff Zivin and Neidell 2012), and 

cognition (Garg, Jagnani, and Taraz 2017). The motivating questions of this investigation are 

whether and in what settings might increased temperatures serve as “push” factors for migration 

and how important labor market opportunities might be as a channel of action for such a 

relationship. To these ends, we will examine whether high temperatures impact migration in the 

United States, and whether temperature shocks lead to changes in labor market opportunities (in 

particular non-agriculture labor market opportunities) that might be the driving force behind the 

decision to migrate.  



 

Using annual migration and labor market data from the continental U.S., we find that extreme 

temperatures in a given location are associated with moderate increases in out-migration from 

that area, but that increased temperatures are not linearly associated with local employment. 

These results are not driven by spatial heterogeneity in time invariant characteristics that might 

matter for temperature and labor markets simultaneously, as we employ an empirical design that 

exploits temperature variation within local areas. The local regions of study are MigPUMAs 

(Migratory Public Use Microdata Areas) from the Census’s American Community Survey (ACS) 

and counties from the Internal Revenue Service’s (IRS) Statistics on Income (SOI) migration 

data. We utilize a 10-year period from 2005-2015 for the individual survey data from the ACS 

and the 24 years from 1990-2014 for the IRS SOI data which tracks the flow of tax returns, 

claimed exemptions, and aggregate income between every two counties in the U.S. each year. 

State-by-year macroeconomic factors are also held constant using appropriate fixed effects. 

Hence, we are utilizing short-run, idiosyncratic variation in temperatures at a fairly local level 

over time to identify our effects. We restrict our ACS sample to working age adults (25-64), and 

the IRS data only captures information regarding earners and their dependents. This ensures that 

our results are not driven by elderly people moving away from colder climates for health reasons 

(as would be implied by the results in Deschenes and Moretti 2009).  

 

Using the ACS and IRS data – along with county-level, labor-market data from the Bureau of 

Labor Statistics (BLS) – linked to temperature data from NOAA (the Global Historical 

Climatology Network – GHCN), we are able to estimate migration and labor market impacts of 

temperature fluctuations. Following Deschenes and Greenstone, 2011, as has become common in 

this literature, we use counts of days with mean temperatures in 10-degree Fahrenheit bins in the 

year as our temperature measure. For our migration results, we exploit the fact that the ACS 

reports respondents’ MigPUMA of residence in the prior year, and that the IRS data tracks the 

address from which tax documents are filed and compares this information to the filing address 

from the prior year. Using these data, we are able to construct annual counts of the number of 

out-migrants from each MigPUMA and use the analogous counts produced by the IRS for each 

county and year.   



Although the climate of an area (i.e.- the distribution of weather conditions) can be known and 

considered in the decision of whether to leave or locate in an area, the specific realization of 

weather conditions in a given year (or other relevant time period) can be considered to be 

effectively random for the current residents. It is the variation in the conditions experienced in a 

location in a given year, which we leverage to estimate the effects of temperatures on migration 

decisions. 

 

Following a similar approach, we also examine labor market impacts of high temperature days 

using two sources of labor market data. First, we use employment questions asked in the ACS to 

estimate unemployment rates among the working age population in each MigPUMA, and we use 

data from the BLS on annual average unemployment rates and labor force size in each county. 

Estimates of the relationship between temperatures and unemployment rates do not exhibit a 

clearly systematic relationship (linear or otherwise), and specifically our results do not suggest 

that high temperatures result in lower employment. Indeed, our results present a bit of a puzzle, 

as we find no average effects even in areas heavily dependent on agriculture.  

 

An important question arises about whether our migration results have economic meaning in 

light of the fact that we do not find effects on employment. For example, if climate shocks 

simply reallocate factors of production in a costless manner, then the fact that climate shocks 

make people move, while revealing an interesting behavioral aspect, might not have any bearing 

on overall welfare. To the extent that mobility is not costless, the fact that we observe migration 

at all implies some potential welfare losses if people are unable to move in response to 

temperature shocks. Our paper therefore highlights the fact that even if we do not find direct 

employment or economic effects of climate shocks, the fact that people move in response to 

higher temperatures might be used as an important statistic to understand welfare impacts.  

 

Our paper contributes to a burgeoning literature in environmental economics on the effects of 

extreme temperature (or more generally climate shocks) on migration. In doing so we 

complement the existing literature focusing on catastrophic climate shocks or moderate climate 

shocks in developing countries, by providing evidence on the impacts of non-catastrophic 

temperature changes in a developed country like the United States. Closely related to this paper 



is the work of Feng, Oppenheimer and Schlenker (2012) who examine net-migration flows in the 

United States due to changes in crop yields (which in turn are affected by the weather) in the 

Corn Belt.  While agricultural incomes no doubt play a role in determining push and pull factors, 

our paper takes a broader view of this question by asking whether temperature in general acts as 

a push factor in migration.3 Our motivating idea is that there could be factors other than income 

that climate affects, and thinking about whether temperature affects migration even in areas 

where the income link is not obvious is therefore a relevant starting point.  

 

An important caveat is in order: this paper focuses only on climate as a “push” factor in 

migration, not as a “pull” factor. Given that we know migrants’ destinations as well as their 

origins, it is tempting to analyze whether temperature variation in a location attracts people. 

However, this is a much harder question to credibly address because the destination choice set is 

not known, and is likely highly heterogeneous. A valid empirical approach to identifying “pull” 

effects of temperatures would require the evaluation of a destination’s climate as well as those of 

other potential candidate destinations.  For example, whether the perfect weather in San Diego 

attracts a migrant is only relevant relative to the weather in other locations considered by the 

migrant, holding other factors constant. Given the structural approach necessary for credibly 

answering such a question, we currently only examine push factors in a reduced form 

framework.  

 

Data 

We currently rely on two independent sources of data for information regarding migration in the 

United States. The first is the ACS, which provides repeated, annual cross-sections of the 

American population back to 2000. Questions regarding place of residence one-year prior to the 

enumeration date have been included since 2005, and therefore our analytic sample will begin in 

that year. 4  All analyses in this investigation rely on the Census-provided person-level 

observation weights, which ensure that estimated statistics are nationally representative.  

                                                        
3 In our setting, we find we can replicate the Feng, Oppenheimer and Schlenker (2012) finding that high 
temperatures drive unemployment, but only in Corn Belt counties with high-levels of agriculture.  This relationship 
does not appear to exist generally or even in high-ag areas in other regions of the country. 
4 2005 is also the year in which the ACS became a stable 1-in-100 random national sample (randomized at the 
household level), which serves our purposes well. Prior to 2005, the ACS had a varying sample ratio around 1-to-
240. 



 

Publicly available geographic information regarding ACS respondents is limited to identifiable 

areas containing at least 100,000 persons. For location of current residence, geographic 

information is provided at the level of Public Use Microdata Areas (PUMAs); however, 

migration information is reported at the more-aggregate level of Migratory PUMA (MigPUMA). 

Boundaries of PUMAs and MigPUMAs never cross state lines and are redrawn following each 

decennial census. The 2012 ACS survey was the first to be organized by PUMA and MigPUMA 

definitions based on the 2010 Census. The first two panels of Figure 1 represent the 2000- and 

2010-based PUMA and MigPUMA boundaries in light grey and black borders respectively for 

New Jersey and the surrounding area.  

 

ACS data is reported at the level of the individual respondent. We include all respondents of 

working age, 25-64 in our analysis, and aggregate these individual observations to the 

MigPUMA level in order to reduce the number of observations with zero values for the 

considered outcome variables and reduce the computational burden of the investigation. 

Summary statistics for the aggregated ACS sample are provided in Panel A of Table 1.   

 

Our second source of information on internal migration are the Statistics of Income (SOI) data 

from the Internal Revenue Service (IRS), which identify the flows of tax filings between 

counties on a yearly basis.5 Migration flows are reported in both directions each year for every 

county-pair going back to 1990. In particular, the number of returns filed with addresses in 

County 1 by individuals in a given year that filed from addresses in different counties in the prior 

year are reported as migratory inflow for County 1. The number individuals that filed tax returns 

from addresses in County 1 in the prior year but filed from an address in a different county this 

year are reported in the outflow data for County 1. These outflow measures are the data we 

currently leverage in this investigation. 

 

 In addition to the number of gained and lost returns from and to each county, the SOI data also 

reports the number of exemptions claimed and aggregate income (beginning in 1992) reported on 

the “moving” returns. The count of returns serves as a proxy for the number of households that 

                                                        
5 Additional information and raw data is available: https://www.irs.gov/uac/soi-tax-stats-migration-data. 

https://www.irs.gov/uac/soi-tax-stats-migration-data


migrate, while the number of exemptions proxies for the number of individuals that migrate 

between counties.  

 

The IRS SOI data is limited in that it does not precisely capture the number of migrating 

individuals. It is also important to note that households that do not file taxes in a given year 

aren’t captured by the data at all. As a result, the poor and elderly are likely underrepresented in 

the IRS SOI data.6  

Throughout this analysis, we will be considering two measures of migration. The first includes 

all moves that cross the boundary of the smallest observable geographic unit, MigPUMA for the 

ACS data and county for the IRS SOI data. This removes from consideration any changes of 

address within these units, which are likely to represent changes in accommodation rather than 

migration. The second measure of migration considers only moves across state boundaries. 

Moves which involve a change in the reported state of residence are generally more likely to be 

associated with a true migration. Hereafter, the first measure will be called All Migration and 

will not be the center of the current investigation while the second measure will be referenced as 

Interstate Migration and will be the focus of the discussion and analysis of this paper. Moves to 

and from foreign countries are included in Interstate Migration, but represent a very small 

portion of such moves.   

 

In order to assess the impacts of ambient temperatures on migration, the migration flows must be 

linked to relevant temperature conditions. The temperature measures used in this analysis are 

annual counts of days with reported mean temperatures falling in nine distinct temperature bins 

in a given year for a given MigPUMA/county. The bins capture counts of days with mean 

temperatures in 10-degree Fahrenheit ranges from 20 °F to 90 °F, with the remaining bins 

counting days <20 °F and >90 °F. Day-bin-counts are calculated for each monitor in NOAA’s 

Global Historical Climatology Network for the relevant period and counts are assigned to 

MigPUMAs/counties based on the inverse distance weighted average of these counts from all 

monitors within 300km of the centroid of the relevant MigPUMA/county (following Dell, Jones, 
                                                        
6 The IRS SOI data also only capture information from returns which are filed before September of the filing year – 
which is the year following the relevant tax year. While 95 to 98% of fillings are received by this cutoff, any filings 
after September are not captured. This may lead to lower representation of the very rich in the data as the 
complication of the tax returns of such individuals is more likely to warrant extensions beyond the September cutoff 
(Gross, 1999). 



and Olken, 2014).7 Only data from the continental United States – excluding Virginia – are 

included in the samples for analysis.  

Table 1 summarizes the migration leaving (outflow) MigPUMAs/counties in each year for each 

of the analytic samples. Generally, we see comparable rates of inflow and outflow migration for 

each measure with 5-7% All Migration and 2-3% Interstate Migration each year.  
 

Figure 2 presents the population-weighted average of All and Interstate Migration rates along 

with the average mean daily temperature (also, population weighted based on 2000 MigPUMAs) 

for the 1990-2014 period. Note that although we have ACS data through 2015, the last survey in 

this series is informative about moves that took place during 2014.   

 

Empirical Strategy 

Causal identification in this setting relies on random variation in the realized weather in a given 

locality in a given year. The independent variables of interest will therefore be the counts of days 

in a given calendar year on which mean temperatures fall in each of our 10 °F-width bins. These 

bins cover the temperature range from 20°F to 90°F with the remaining bins counting days 

<20°F and >90°F. The average number of days in each bin in each year are reported in Table 1, 

note that days with mean temperatures >90°F are quite uncommon.  

 

To control for unique characteristics of given areas and idiosyncratic regional shocks, 

MigPUMA/county fixed effects and state-year fixed effects are included in all analyses. The 

main specification for analysis of the ACS data is as follows: 

 

𝑀𝑀𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼 + � 𝛽𝛽𝑡𝑡� ∗ 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚�
10

𝑡𝑡=1
+ 𝛿𝛿 ∗ 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚) + 𝛾𝛾𝑚𝑚 + 𝜇𝜇𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 

 

𝑀𝑀𝑅𝑅𝑐𝑐𝑚𝑚𝑚𝑚 = 𝛼𝛼 + � 𝛽𝛽𝑡𝑡� ∗ 𝑇𝑇𝑡𝑡𝑐𝑐𝑚𝑚�
10

𝑡𝑡=1
+ 𝛿𝛿 ∗ 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚) + 𝛾𝛾𝑐𝑐 + 𝜇𝜇𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 

 

                                                        
7 The inverse of the squared distance is actually used so that the contribution of more distant monitors is quite 
steeply discounted.   



Where 𝑀𝑀𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑀𝑀𝑅𝑅𝑐𝑐𝑚𝑚𝑚𝑚 are migration rates from MigPUMA or county m or c respectively in 

state, s, and year, y. 𝑇𝑇𝑡𝑡�  is the vector of temperature bin counts where t identifies the bins and y 

denotes the year of the observation. 𝛽𝛽𝑡𝑡�  is therefore a vector of the estimated coefficients of 

interest, the interpretation of which is the effect of an additional day each year with a mean 

temperature in bin t relative to a day in the omitted category (as is common in the literature, we 

omit the 60-70°F bin). 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚)  is a function of MigPUMA or county precipitation, 𝛾𝛾 

represents the local area (MigPUMA or county) fixed effects, and 𝜇𝜇𝑚𝑚𝑚𝑚 represents the state-year 

fixed effects. 𝜀𝜀𝑐𝑐𝑚𝑚𝑚𝑚 is the idiosyncratic error term.  

 

ACS regressions are weighted by working age population (population aged 25-64) in each 

MigPUMA. Regressions based on the number of returns and total aggregate income variables in 

the IRS SOI data are weighted by the number of returns in each county while the estimates based 

on the count of exemptions are weighted by the number of exemptions in each county.  

 

When the MigPUMA/counties which define the observations are the place of origin (that is, 

migratory outflows are being considered), the temperature (and precipitation) variables capture 

the conditions in the location from which the population considers leaving. Because realized 

weather in a given locality in a given year is random, the estimated effects of such variation can 

be interpreted causally. The analyses of if and how temperatures in a location might “push” 

residents to leave therefore provide estimates of causal effects.  

 

Results 

Migration 

Table 2 presents our main results on the effects of temperature on out-migration using the ACS 

data aggregated to the MigPUMA level. The omitted category is number of days with mean 

temperatures in the range of 60-70°F; hence, all coefficients are interpreted as relative to days in 

that temperature range. The columns represent increasing levels of fixed effects, and our 

preferred specification is column 4 that accounts for MigPUMA and state by year fixed effects. 

However, going from Column 1 to Column 4 does provide some interesting insights. Col 1 for 

example shows that in general people tend to out-migrate when the number of hot and cold days 

increases, relative to days in the 60-70°F range. However, the opposite is true in column 2 when 



MigPUMA fixed effects are added. The estimates in these columns indicate the need for fixed 

effects that capture area-specific characteristics of the local geographic areas of examination. 

The last two columns use time fixed effects in addition to the MigPUMA fixed effects, and the 

last column makes the time fixed effects state-specific, which accounts for macroeconomic 

factors at the state and year level that might affect migration. This is a key fixed effect, as 

migration certainly depends on broad economic factors, but our estimates are based on variation 

that is idiosyncratic from area norms and state-level trends and shocks.  

Column 4 of Table 2 (as well as Figure 3) shows that days in the higher temperature categories 

(above 80°F) induce outmigration. Estimates are statistically significant for the 80-90°F bin (and 

for a single >80°F bin when the top two bins are combined – results not shown). All estimates 

are reported in the number of movers per 100,000 working-aged individuals at the start of the 

period, and all marginal effects report the impact of a single additional day with a mean 

temperature in the relevant bin in an entire year.  

It is important to note that slightly warmer days compared to the omitted category (i.e. days in 

the 70-80°F  range) induce less out migration, while an increase in hot days leads to a higher 

number of individuals leaving the state. This is an interesting non-linearity in the migratory 

response to local temperatures that will have important implication for the anticipated overall 

effects of climate change, as anticipated increases in warm days will lead to very different 

predicted outcomes than increases in the number of hot days.   

 Table 3 repeats the addition of geographic and then temporal fixed effects, culminating in the 

main specification, however this time the estimates are based on the number of returns that file in 

a different county the following year (per 100,000 filed in the county of interest) from the IRS 

SOI data. We see generally the same responses to the addition of more stringent spatial and 

temporal controls in this data set. Deviations in temperature from the human ideal of 60-70°F 

lead to out-migrations generally in Column 1. The addition of location-specific (county in this 

data set) fixed effects reverse these signs for many bins, and temporal fixed effects significantly 

reduce the magnitude of estimates. Column 4 again represents our preferred specification, 

accounting for both location-specific and state-year idiosyncrasies (see also Figure 4). Again, we 

see that higher temperatures are associated with higher levels of out-migration. Interestingly, in 

this data, there is no migration-reducing response to an additional day in the 70-80°F bin.  



 The estimates in Table 3 represent our preferred specification applied to the three migration-

related outcome measures in the IRS data. The number of returns – proxying for the number of 

households – and the number of exemptions – proxying for the number of individuals – show a 

consistent pattern of increases in the number of warm and hot days leading to higher levels of 

out-migration. While the coefficient on the >90°F temperature bin is larger in the exemptions 

sample than the returns sample, it is not significantly so. Nevertheless, the general comparability 

of the magnitudes of the coefficients on the warm- and hot-day indicators in Columns 1 and 2 

suggest that it is small households being driven to migrate by increases in hot days. Smaller 

households are likely to be younger and face fewer mobility frictions, so it is not surprising that 

such households are more responsive to adverse shocks.  

The smaller magnitude of the out-migration characterized by the estimates based on the IRS data 

relative to the ACS data may be due to the segments of the population not captured by the IRS 

data (those who don’t pay taxes by the September deadline in consecutive years – i.e.: the poor, 

those with low earnings, the negligent, and the rich). It could also be that the IRS proxy for 

individuals (i.e.: exemptions) underestimates the number of people actually moving.   

The third column of Table 4 presents the marginal effects of realized temperatures on the 

aggregate income reported in year t on the returns of those that left the county in year t as a share 

of the total aggregate income reported in year t by all those that filed their taxes from the county 

in year t-1 (the previous year). This measure is clearly less straightforward than the other two, 

but the positive coefficients on the higher temperature bins suggest that some income is being 

earned outside a given county after hotter temperature realizations that would have been earned 

in the county but-for the higher temperatures.   

Taken together, the estimates reported in Tables 2-4 generally indicate that higher temperatures, 

and in particular hot days, drive increases in out-migration. To better understand the channels 

through which higher temperatures might contribute to increased migration, we now consider 

how such higher temperatures impact local labor market conditions.  

 

Unemployment 

Beginning with the ACS data, we look at the reported employment status at the time of 

enumeration of those who lived in a given MigPUMA one year prior to enumeration. Column 1 

of Table 5 and Figure 5 present the coefficients from the main specification (including 



MigPUMA and state-year fixed effects) estimated on the share of the working-age population 

that reported being unemployed at the time of the survey. Outcomes are now measured as 

population shares (between 0 and 1) rather than rates per 100,000. While the coefficient on the 

top temperature bin is marginally significant, the negative sign on the estimate suggests that hot 

days lower the unemployment rate. This is unlikely to be a driving factor for the out-migration 

responses identified previously. 

Column 2 of Table 5 and Figure 6 provide estimates from the same specification using annual 

average unemployment rates by county over the period from 1990-2015. This data was obtained 

from the BLS Local Area Unemployment (LAU) program.8 The estimated effects of increased 

hot days are generally small and insignificant. The significant coefficients that do appear do not 

serve to explain the increased migration rates associated with higher temperatures. The results in 

Table 5 lead us to conclude that changes in unemployment rates are not the mechanism through 

which hotter temperatures driving out-migration.  

 

Climate Projections 

Models of climate change allow for the estimation of the differences in conditions between 

present day and future dates under various scenarios. Taking our estimated coefficients seriously 

(and assuming past responses fairly characterize future responses), we can undertake some back-

of-the-envelope estimations of how out-migration might be expected to change as the climate 

warms. Beginning with the estimates of the changes in the level of out-migration in response to 

additional days in each temperature bin (from Column 4 in Tables 2 and 3), we then apply 

estimates of the expected increase in the number of days with a mean temperature falling in each 

bin relative to present day. For the latter information, we rely on Deschenes and Greenstone 

(2011), in which the number of days annually falling in each 10°F bin are estimated for the 

period from 2070-2099 using the Hadley Climate Centre’s third Coupled Ocean-Atmosphere 

General Circulation Model assuming a business-as-usual emissions path (A1F1). The authors 

also error-correct the predictions from the model by comparing the model’s predictions for the 

1990-2002 period to realized weather conditions.  

Specifically, we extracted the average number of days predicted nationally to fall in each 

temperature bin, and separately subtract the average number realized in our two samples (counts 

                                                        
8 Available: https://www.bls.gov/lau/. 

https://www.bls.gov/lau/


differ slightly between the MigPUMA-based ACS data and the county-based IRS data). This 

gives us the projected change in the number of days in each temperature bin between our sample 

and the 2070-2099 period for each of our two samples. These numbers are then simply 

multiplied by our estimated coefficients for the relevant sample and summed in order to 

approximate a net change in the migration rates that might be associated with conditions as 

forecast by the Hadley 3 model under the business-as-usual emissions path.  

Uncertainty in the estimated conditions provided by the climate model is not accounted for, and 

all coefficient estimates are used, regardless of significance. The results of this approximation 

exercise are reported in Table 6 with the net-estimates presented at the bottom in the grey rows.  

Column 1 reports the anticipated change in the number of days falling in each temperature bin 

averaged between our two samples (and rounded to the nearest integer). Even this simple 

representation suggests the dramatic rightward shift in the temperature distribution that is 

expected by the end of the century if the world continues on its current emissions trajectory. 

There will be many more hot days and fewer cold, comfortable and warm days (~11 fewer days 

in the omitted, 60-70°F, bin are expected). The upshot from these estimates is that migration 

rates could conceivably increase fairly substantially as the number of hot days increases. Our 

estimates imply 15.8% and 4% increases in annual out-migration due only to temperature 

increases by the end of the century.  

 

Conclusion 

We have shown that out-migration rates increase with the incidence of hot days. This 

relationship does not appear to be acting through temperature-driven labor market effects as we 

are unable to detect broad-scale impacts of high temperatures on unemployment levels. The 

magnitude of the migration inducing effect of hot days is moderate, such that predicted 

conditions at the end of the century will likely lead to increases in annual out-migration of less 

than 20%. Nevertheless, our estimates do not factor in the effects of increased natural disasters 

and coastal flooding also expected under climate change, and together these factors could 

contribute to significant levels of geographic displacement, even in a developed-country setting 

like the United States.  

 



While the loss of community and intellectual capital (not to mention tax revenues) represented 

by out-migration may embody costs to a local region, it is not obvious that such movement 

represents a loss in social welfare. However, moving costs are certainly non-zero yet must be 

smaller than the costs faced by migrants in their places of origin. Additionally, it is likely that 

such moving costs are highly heterogeneous and that those facing greater mobility frictions 

would require larger shocks to drive them into migrant statuses. The moving decisions of groups 

with low mobility frictions may be informative about the costs absorbed by non-movers facing 

higher frictions.  

Next steps for this project involve the examination of heterogeneity in the temperature-migration 

relationship to better characterize who is moving in response to hot days and why. A broader 

range of economic and employment outcomes will also be examined to better understand the 

factors that might be driving the identified temperature-migration connection. Finally, we hope 

to leverage the observable migration levels to infer the deeper societal costs imposed by 

increased incidence of high temperatures and consider more deeply the resulting implications 

under Climate Change.  

 

 

 

  



References 
Bohra-Mishra, Pratikshya, Michael Oppenheimer, and Solomon M. Hsiang. "Nonlinear permanent migration 
response to climatic variations but minimal response to disasters." Proceedings of the National Academy of 
Sciences111.27 (2014): 9780-9785.  

Boustan, Leah Platt, Matthew E. Kahn, and Paul W. Rhode. "Moving to higher ground: Migration 
response to natural disasters in the early twentieth century." The American Economic Review 102.3 
(2012): 238-244. 

Cai, Ruohong, et al. "Climate variability and international migration: The importance of the agricultural 
linkage." Journal of Environmental Economics and Management 79 (2016): 135-151. 

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. "What do we learn from the weather? The new 
climate–economy literature." Journal of Economic Literature 52.3 (2014): 740-798. 

Deschênes, Olivier, and Michael Greenstone. "Climate change, mortality, and adaptation: Evidence from 
annual fluctuations in weather in the US." American Economic Journal: Applied Economics 3.4 (2011): 
152-185. 

Deschenes, O and Moretti, E. 2009. Extreme Weather Events, Mortality and Migration. Review of 
Economics and Statistics. 

Feng, Shuaizhang, Michael Oppenheimer, and Wolfram Schlenker. Climate change, crop yields, and 
internal migration in the United States. No. w17734. National Bureau of Economic Research, 2012. 

Garg, Teevrat, Maulik Jagnani, and Vis Taraz. "Human Capital Costs of Climate Change: Evidence from 
Test Scores in India." (2017). 

Graff Zivin, Joshua, and Matthew Neidell. "The impact of pollution on worker productivity." The 
American economic review 102.7 (2012): 3652-3673. 

Gross, Emily. “U.S. Population Migration Data: Strengths and Limitations.” IRS Data Documentation 
(1999) available: https://www.irs.gov/pub/irs-soi/99gross_update.doc. Accessed: August 4, 2017.  

Hornbeck, Richard. "The enduring impact of the American Dust Bowl: Short-and long-run adjustments to 
environmental catastrophe." The American Economic Review 102.4 (2012): 1477-1507. 

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D.J., Muir-Wood, R., 
Wilson, P., Oppenheimer, M. and Larsen. "Estimating economic damage from climate change in the 
United States." Science 356.6345 (2017): 1362-1369. 

Mahajan, P and Yang, D. 2017. Taken by Storm: Hurricanes, Migrant Networks, US Immigration. 
University of Michigan Working Paper. 

Marchiori, Luca, Jean-François Maystadt, and Ingmar Schumacher. "The impact of weather anomalies on 
migration in sub-Saharan Africa." Journal of Environmental Economics and Management 63.3 (2012): 
355-374. 

Mueller, Valerie, Clark Gray, and Katrina Kosec. "Heat stress increases long-term human migration in 
rural Pakistan." Nature Climate Change 4.3 (2014): 182-185. 

https://www.irs.gov/pub/irs-soi/99gross_update.doc


Table 1: Summary Statistics 

Panel A: ACS Data: MigPUMA-Level  
    Outflow 
Years 2005-2015 
# of MigPUMAs per Year 940-982 
Mean Population Age 25-64 162,014 

Ag
es

  
25

-6
4 % All Moves 5.02% 

% Interstate 
Migration 2.26% 

# Days <20°F 11.19 
# Days 20-30°F 20.17 
# Days 30-40°F 38.47 
# Days 40-50°F 52.77 
# Days 50-60°F 65.30 
# Days 60-70°F 70.96 
# Days 70-80°F 70.21 
# Days 80-90°F 33.45 
# Days >90°F 2.74 
Annual Precipitation (cm) 101.82 
Notes: Data is aggregated from individual level 
responses for all working-aged (25-64 year) adults 
surveyed by the American Community Survey. A 
move is defined as the respondent having lived in a 
different MigPUMA 12 months prior, and an 
interstate move is defined as a respondent having 
lived in a different state 12 months prior. Weather 
conditions are matched to the MigPUMA of origin, 
which is the location the respondent reported living 
12 months prior to the survey. MigPUMA definitions 
shifted in 2012 based on the findings of 2010 
Decennial Census.   

 
 
 
 
 
 
 
 

Panel B: IRS SOI Data: County-Level 
    Outflow 
Year Range 1990-2014 
# of Counties per Year 3107-3108 
Total # Returns 33,609 
Total # Exemptions 73,270 
Total Aggr. Income ($1K) 1,689,632 

Al
l M

ov
es

 
 

% of Returns  6.63% 
% of Exemptions 5.79% 
% of Aggregate Income 5.27% 

In
te

r-
St

at
e 

M
ov

es
 % of Returns  2.91% 

% of Exemptions 2.56% 
% of Aggregate Income 2.44% 

# Days <20°F 10.59 
# Days 20-30°F 19.96 
# Days 30-40°F 39.37 
# Days 40-50°F 54.64 
# Days 50-60°F 65.77 
# Days 60-70°F 71.70 
# Days 70-80°F 69.83 
# Days 80-90°F 31.37 
# Days >90°F 2.01 
Annual Precipitation (cm) 101.85 
Notes: Returns proxy for the number of earners. 
Exemptions proxy for the number of individuals. 
Data only captures tax returns filed prior to 
September in the filing year (the year after the tax 
year), which can be matched to a taxpayer that filed 
in the previous year. The poor, elderly, and very rich 
are therefore likely under-represented in the 
sample. A move is defined as a return that is filed in 
a different county than the taxpayer filed in the 
previous tax year. An interstate move is defined as a 
return that is filed in a different state than the 
taxpayer filed in the previous tax-year. Weather 
conditions are matched to the county from which 
outflows are measured for the tax-year in question.

 
 
 



 
Table 2: Out-Migration – Adding Fixed Effects – ACS Aggregated Data 

 

Interstat
e Moves 

Interstate 
Moves 

Interstate 
Moves 

Interstate 
Moves 

          
# Days <20°F 10.38*** -3.692** -1.684 -6.045 
  (1.294) (1.767) (1.887) (3.885) 
# Days 20-30°F 4.291*** -6.779*** -0.151 0.327 
  (1.642) (1.602) (1.815) (3.161) 
# Days 30-40°F 12.09*** -5.545*** -3.649*** -1.916 
  (1.243) (1.311) (1.354) (2.064) 
# Days 40-50°F 10.72*** -4.644*** -2.754** 2.313 
  (1.101) (1.246) (1.328) (1.938) 
# Days 50-60°F 7.621*** -3.543** -2.117 2.15 
  (0.823) (1.509) (1.593) (2.265) 
# Days 70-80°F 7.746*** -2.991*** -3.841*** -3.466** 
  (0.578) (1.074) (1.089) (1.683) 
# Days 80-90°F 9.784*** -1.588 0.443 4.367** 
  (0.636) (1.172) (1.365) (1.939) 
# Days >90°F 15.33*** -3.355 0.525 4.194 
  (1.234) (2.458) (2.573) (3.528) 
          
Observations 10,635 10,634 10,634 10,623 
R-squared 0.778 0.635 0.646 0.647 
MigPUMA FE NO YES YES YES 
State FE NO NO NO NO 
Year FE NO NO YES NO 
State-Year FE NO NO NO YES 
Notes: Robust standard errors reported in parenthesis. Only moves to other 
states are considered out-migration. All regressions are weighted by the 
number of working-aged individuals in the MigPUMA in the year prior to 
analyzed exposure and include a fifth-order polynomial terms in precipitation.  
Results reported per 100,000 working-age population. Independent variables 
capture weather conditions in the MigPUMA of origin. Omitted category is the 
count of days with mean temperatures between 60 and 70 degrees Fahrenheit. 
Sample size varies because of the number of singleton observations dropped 
depends on the specific fixed effects included. 
*** p<0.01, ** p<0.05, * p<0.1 
 

 
  



Table 3: Out-Migration – Adding Fixed Effects – IRS SOI Migration Data – Tax 
Returns 

  Returns Returns Returns Returns 

  
Interstate 

Moves 
Interstate 

Moves 
Interstate 

Moves 
Interstate 

Moves 
          
# Days <20°F 6.954*** -13.13*** -0.632 0.836 
  (0.606) (0.392) (0.400) (0.777) 
# Days 20-30°F -0.577 -6.574*** -0.394 0.700 
  (0.769) (0.367) (0.370) (0.599) 
# Days 30-40°F 14.63*** -5.938*** -3.958*** 0.544 
  (0.548) (0.300) (0.285) (0.436) 
# Days 40-50°F 13.44*** -5.782*** -5.353*** -0.621* 
  (0.419) (0.262) (0.247) (0.368) 
# Days 50-60°F 6.930*** -2.407*** -3.892*** 0.571* 
  (0.384) (0.282) (0.267) (0.345) 
# Days 70-80°F 8.230*** -1.605*** -1.373*** 1.822*** 
  (0.299) (0.237) (0.226) (0.317) 
# Days 80-90°F 11.29*** -0.349 -0.523* 0.888** 
  (0.303) (0.257) (0.269) (0.374) 
# Days >90°F 22.21*** 1.044 -2.357*** 2.917*** 
  (0.802) (0.640) (0.595) (0.753) 
          
Observations 76,700 76,699 76,699 76,674 
R-squared 0.808 0.879 0.902 0.916 
County FE NO YES YES YES 
State FE NO NO NO NO 
Year FE NO NO YES NO 
State-Year FE NO NO NO YES 
Notes: Robust standard errors reported in parenthesis. Only moves to other states 
are considered out-migration. All regressions are weighted by the number of 
returns filed in a county for the year prior to analyzed exposure and include a fifth-
order polynomial terms in precipitation.  Results reported per 100,000 returns 
filed. Independent variables capture weather conditions in the county of origin. 
Omitted category is the count of days with mean temperatures between 60 and 70 
degrees Fahrenheit. Sample size varies because of the number of singleton 
observations dropped depends on the specific fixed effects included. 
*** p<0.01, ** p<0.05, * p<0.1 
 

 



Table 4: Out-Migration – Three IRS SOI Measures 
  Interstate Moves 
  Returns Exemptions Agg. Income 
        
# Days <20°F 0.836 0.785 1.21E-06 
  (0.777) (0.794) (0.000009) 
# Days 20-30°F 0.7 0.748 2.42E-07 
  (0.599) (0.611) (0.000007) 
# Days 30-40°F 0.544 0.289 3.59E-06 
  (0.436) (0.446) (0.000005) 
# Days 40-50°F -0.621* -0.620* -3.03E-06 
  (0.368) (0.373) (0.000004) 
# Days 50-60°F 0.571* 0.327 1.13e-05*** 
  (0.345) (0.361) (0.000004) 
# Days 70-80°F 1.822*** 1.383*** 5.53E-06 
  (0.317) (0.323) (0.000004) 
# Days 80-90°F 0.888** 0.949** 6.26E-06 
  (0.374) (0.378) (0.000004) 
# Days >90°F 2.917*** 1.736** 1.73e-05** 
  (0.753) (0.742) (0.000008) 
        
Observations 76,674 76,674 70,484 
R-squared 0.916 0.907 0.863 
County FE YES YES YES 
State FE NO NO NO 
Year FE NO NO NO 
State-Year FE YES YES YES 
Notes: Robust standard errors reported in parenthesis. Only moves to 
other states are considered out-migration. Returns and Aggregate 
Income regressions are weighted by the total number of returns filed in 
the county for the year prior to analyzed exposure. Exemptions 
regressions are weighted by the total number of exemptions claimed. All 
regressions include a fifth-order polynomial terms in precipitation. 
Returns and Exemptions results are reported per 100,000 returns filed in 
prior year. Results for Aggregate Income are for share of total Aggregate 
income of prior year filers in a location. Independent variables capture 
weather conditions in the county of origin. Omitted category is the 
count of days with mean temperatures between 60 and 70 degrees 
Fahrenheit. Returns are generally considered to proxy for the number of 
earners and exemptions for the number of individuals. Sample is for 
1990-2015. Aggregate Income data is not available until 1992.  
*** p<0.01, ** p<0.05, * p<0.1 

 
  



Table 5: Unemployment  

 

ACS: 
Unemployed BLS: 

 
as Share of  Unemployment  

  
Working-Age 
Population 

Rate 

      
# Days <20°F -0.0000302 0.000957 
  (0.000043) (0.001) 
# Days 20-30°F 8.36e-05** 0.00437*** 
  (0.000035) (0.001) 
# Days 30-40°F 0.00000955 -0.00202** 
  (0.000023) (0.001) 
# Days 40-50°F -0.0000105 0.001 
  (0.000021) (0.001) 
# Days 50-60°F -0.0000337 0.00033 
  (0.000025) (0.001) 
# Days 70-80°F -0.00000378 0.00380*** 
  (0.000019) (0.001) 
# Days 80-90°F -0.00000505 -0.000427 
  (0.000021) (0.001) 
# Days >90°F -7.17e-05* -0.00189 
  (0.000039) (0.001) 
      
Observations 10,623 76,660 
R-squared 0.838 0.906 
MigPUMA/County FE YES YES 
State FE NO NO 
Year FE NO NO 
State-Year FE YES YES 
Notes: Robust standard errors reported in parenthesis. ACS 
regression is weighted by working age (25-64) population of the 
MigPUMA in the year prior to analyzed exposure, and measure 
represents the share of this population that reports being 
unemployed at the time of enumeration. Observations in the BLS 
regression are annual average unemployment rates by county as 
calculated by BLS.  BLS regression is weighted by the size of the 
labor force in the county-year. Omitted category is the count of 
days with mean temperatures between 60 and 70 degrees 
Fahrenheit. Both regressions include a fifth-order polynomial terms 
in precipitation.  
*** p<0.01, ** p<0.05, * p<0.1 

 
 
  



Table 6: Projected Difference in Annual Migration Rates per 100,000 
Based on 2070-2099 Predicted Temperature Shifts 
 

  Avg. Change 
in # of days in 

each bin 
annually  

2070-2099  

Diff. in 2070-2099 Rates Attributable to 
  Projected Shift in Temperature Distribution 

  ACS: Out-Migration IRS: Out-Migration   
  Wrk Age Pop Returns   

Day Under 20 -8 49.51 -6.35   

  
(31.82) (5.90)   

Day 20-30 -10 -3.32 -6.97   

  
(32.15) (5.90)   

Day 30-40 -12 21.98 -6.72   

  
(23.67) (5.96)   

Day 40-50 -11 -22.6 7.23*   

  
(18.93) (5.40)   

Day 50-60 -16 -32.89 -9*   

 
  (34.65) (5.45)   

Day 70-80 -8 28.45** -14.27***   

  
(13.82) (5.45)   

Day 80-90 34 145.2** 31.38**   

  
(64.47) (2.48)   

Day Over 90 41 171.37 121.31***   
    (144.14) (13.23)   
Change per 100,000 357.70 116.61   
Net Implied Rate Change  0.0036 0.0012   
Mean Annual Rate (Present Day) 0.0226 0.0291   
% Change in Annual Rate 15.83% 4.01%   
Notes: Standard errors do not account for uncertainty in climate projections. 
Projections based on the average national change in the number of days in each 
temperature bin in the period from 2070-2099 as calculated by Deschenes and 
Greenstone (2011) using the error-corrected Hadley 3 A1F1 Climate Model.  Column 
1 presents the rounded average change in the number of days in each bin between 
the two samples. Regressions are weighted as described for the underlying analyses.  
*** p<0.01, ** p<0.05, * p<0.1 

  
 

 
  



Figures 
 

 
Figure 1: PUMA and MigPUMA boundaries based on 2000 and 2010 Censuses 
 

 
Figure 2. Implied MigPUMA Average Migration Rates and Temperatures by Year 
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Figure 3: Coefficient Estimates for ACS Out-Migration 
Notes: 95% confidence intervals based on robust standard errors shown in grey. Only moves to other 
states are considered out-migration. Regression includes MigPUMA and State-year fixed effects as well as 
a fifth-order polynomial in precipitation. Observations are weighted by the number of working-aged 
individuals in the MigPUMA in the year prior to analyzed exposure.  Results reported per 100,000 
working-age population. Independent variables capture weather conditions in the MigPUMA of origin. 
Omitted category is the count of days with mean temperatures between 60 and 70 degrees Fahrenheit.  
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Figure 4: Coefficient Estimates for IRS SOI Out-Migration 
Notes: 95% confidence intervals based on robust standard errors shown in grey. Only moves to other 
states are considered out-migration. Regression includes County and State-year fixed effects as well as a 
fifth-order polynomial in precipitation. Observations are weighted by the number of tax returns filed in 
the county in the year prior to analyzed exposure.  Results reported per 100,000 returns filed. 
Independent variables capture weather conditions in the county of origin. Omitted category is the count 
of days with mean temperatures between 60 and 70 degrees Fahrenheit.  
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Figure 5: Coefficient Estimates for ACS Self-Reported Unemployment Rate 
Notes: 95% confidence intervals based on robust standard errors shown in grey. Only moves to other 
states are considered out-migration. Unemployment rate is the number of working-aged (25-64 years) 
individuals in a MigPUMA-year that report being unemployed divided by the total number that report 
being employed or unemployed. Regression includes MigPUMA and State-year fixed effects as well as a 
fifth-order polynomial in precipitation. Observations are weighted by the number of working-aged 
individuals in the MigPUMA in the year prior to analyzed exposure.  Results reported per 100,000 
working-age population. Independent variables capture weather conditions in the MigPUMA of origin. 
Omitted category is the count of days with mean temperatures between 60 and 70 degrees Fahrenheit.  
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Figure 6: Coefficient Estimates for BLS Annual Average Unemployment 
Notes: 95% confidence intervals based on robust standard errors shown in grey.  Observations are annual 
average unemployment rates by county as calculated by BLS by dividing the number of unemployed 
individuals in the county by the size of the labor force. Regression includes County and State-year fixed 
effects as well as a fifth-order polynomial in precipitation. Observations are weighted by the size of the 
labor force in the county-year. Omitted category is the count of days with mean temperatures between 
60 and 70 degrees Fahrenheit.  
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