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Abstract

Air pollution may impede high-skill workers from taking up short or long-term
residence in the developing world, for professional or personal advancement. Indeed,
this is revealed in the US State Department’s monitoring of PM2.5 in many cities
globally. Despite knowledge worker mobility being key to the modern global economy,
we know little about the daily functioning of these families. We assess one source of
friction by examining how PM2.5 affects attendance at international schools in north
China. Pollution sensitivity is stronger among US/Canadian/European than Chinese,
and among children who miss school the most, but overall is modest compared to
estimates for the US. Using school absence patterns as a window into short-run health
and behavior, our study suggests that high-income, highly educated families find ways
to adapt, likely by moving life indoors, even if temporary residence in China comes at
the expense of long-term health.
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1 Introduction

Consider a highly skilled couple with young children, living in a rich country and facing the

opportunity to transfer to the developing world, for professional or personal advancement.

Aware of the routinely severe ambient air pollution in typical host cities (Van Mead, 2017),

from Beijing to Calcutta to Dhaka, a pressing question on the couple’s minds is likely to be:

To what extent will air pollution act as an impediment to my child attending school or to

the family’s activities more generally, whether due to higher rates of sickness from exposure

or to actions taken to avoid exposure? To our knowledge, there is no systematic evidence

on this question. The question matters more broadly given that the international mobility

of knowledge workers and the investments they enable are key inputs to the modern global

economy (OECD, 2008; Freeman, 2010; UNCTAD, 2013; Thomas, 2014).

Our window into this question is to examine school attendance and how this responds

to particle pollution in a sample of 6,500 children of all ages enrolled at three international

schools in a major urban center in north China. Enjoying high education and incomes,

these families typically have access to substantial defensive capital, including air filtering

systems at home, school, work and car. To add perspective, annual tuition reaches one

quarter of a million Chinese Yuan, or about US$ 40,000, per child. In terms of income

and education, correlates of health status, our population is quite homogeneous.

We gained access to individual-level attendance records over multiple years, jointly

covering 2008 to 2014, allowing us to control for potential confounds and sources of vari-

ability, including seasonality, weather and unobserved heterogeneity. During this period,

daily PM2.5 (particulate matter of diameter up to 2.5 micrometers) concentrations mea-

sured at the US embassy at most 20 km from each school averaged 98 µg/m3. This mean

level is eight times the primary one-year average National Ambient Air Quality Standard

(NAAQS) of 12 µg/m3 set by the US Environmental Protection Agency.1 That the US

State Department monitors PM2.5 in several cities in the developing world underscores

1Particle levels stand out when comparing air quality in developing versus rich nations. Lelieveld et al.
(2015) estimates that outdoor PM2.5 causes 3.2 million premature deaths globally each year, compared
with 0.14 million from ozone, an oxidizing agent and very different pollutant formed under radiation and
heat that has been studied in US settings (e.g., Graff Zivin and Neidell, 2012; Deschenes et al., 2017).
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both the impediment to knowledge worker mobility (US citizens in this case) and the

relative threat posed by particles (other pollutants are not monitored). We observe stu-

dents’ nationalities, both foreign and Chinese, and the time since first enrolling at the

school which, for most children in the sample, may be a reasonable proxy for their time

of residence in China. We are thus able to look for heterogeneous responses of absences

to short-run variation in PM2.5 across nationality, duration at the school, student age,

calendar year (should awareness of PM2.5 and its health impact have shifted), and among

children who vary widely in their overall levels of absenteeism (irrespective of reason).

Beyond reporting Ordinary Least Squares (OLS) fixed-effects estimates, our favored

Two-Stage Least Squares (2SLS) approach allows for measurement error in PM2.5 expo-

sure as well as unobserved determinants of student absences that may drive or correlate

with PM2.5 levels. Our 2SLS estimates are based on the exclusion restriction that at-

mospheric ventilation conditions, which fluctuate from day to day, induce absences only

indirectly, by shifting PM2.5, and this exogenous PM2.5 component then drives absences.

Previous research has adopted designs using the degree of atmospheric stagnation to infer

the causal impact of air pollution on economic outcomes, both in China and elsewhere

(Ransom and Pope, 2013; Hanna and Oliva, 2015; He et al., 2018b). We provide visual

in-sample evidence of how atmospheric ventilation drives the build-up and removal of par-

ticles, such as a layer of hot air that stations over the metropolis, trapping emissions close

to the surface, until the thermal inversion lifts a few days later.

We do find that international school absences in this severely polluted Chinese city

respond to short-run fluctuation in PM2.5. The occurrence of severe PM2.5 on the day

before—defined here as a 24-hour mean above 200 µg/m3—raises the probability of an

absence by 0.93 percentage point, or +15% relative to an absence rate of 6.2 in every 100

enrolled student by school day observations in the sample.2 Hales et al. (2016) conjecture

“that absolute values of PM2.5 (may) matter more in determining school absences than do

fluctuations from mean PM2.5 levels” (p.11), and thus it is conceivable that the routinely

high PM2.5 already contributes to some absenteeism beyond the variation we pick up.3 In

2Here we report 2SLS estimates, which tend to be double their OLS counterparts.
3The 5th percentile of the daily PM2.5 distribution over our sample period is (a high) 17 µg/m3.
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our setting, an overall absence rate of 6 percent is higher than the 4 to 5 percent reported

for school children in Utah Valley and Texas (Ransom and Pope, 1992; Currie et al., 2009),

but lower than the 10 percent reported for Salt Lake City, where PM2.5 averages 10 µg/m3

(Hales et al., 2016).4 Besides, our students often take trips abroad and may skip school on

days shortly before or after vacations. Our favored estimation sample drops any second

and subsequent adjacent absence days within the same absence spell by a student, in order

to examine the likely single decision behind the absence spell. (Other studies have access

only to aggregate absences, so are unable to do this.) Pollution-induced absence spells

include both remedial responses and averting behavior. For example, students may stay

at home to recover from sickness or to avoid going outdoors as well as, in this high-income

population, travel out of north China to escape a multi-day bout of severe pollution.

Beyond student absences and human capital formation, the data more generally provide

insight on how air quality impacts these families’ lives. We estimate that severe PM2.5 on

the day before a school day increases the probability that an absence spell is initiated by

0.43 percentage point, that is, an 11% increase relative to a sample mean of 3.8 percent.

We specify models with richer lag structures that allow more prolonged PM2.5 exposure

to explain the absence decision, beyond simply PM2.5 on the day before or early morning

of the school day. Biological effects may not be manifested in the form of an absence

immediately, much as an avoidance trip’s departure from the city may lag high PM2.5 by

a few days. Distributed lag models with up to 14 days of delay yield estimated cumulative

PM2.5 effects that grow with the number of lags.5 In a model with cubic functions of

daily PM2.5 in each of the 14 days preceding a school day, a large and infrequent shift

in the pollution dose from 100 to 200 µg/m3 sustained over an entire fortnight raises the

probability that an absence spell is initiated by about 0.8 percentage point, or +20%

relative to the sample mean of 3.8 percent (a risk ratio of 1.2).

We further find that Chinese nationals display lower absence responses to PM2.5 than

US/Canada/Europe nationals.6 The sensitivity of absences to PM2.5 is stronger among

4In our sample, absenteeism is lowest among nationals of Japan, Korea and Singapore.
5Zanobetti et al. (2003) find that models considering only immediate exposure to particle pollution, as

opposed to more prolonged exposure over several weeks, underestimate the mortality response.
6It is conceivable that family experience and culture play a role in avoidance behavior (as in fertility and
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children who exhibit higher absenteeism overall, particularly those in the top quintile of

the distribution of individual absence rates over the 6,500 sampled students. Our data

uniquely allow us to track a student as she grows or as her duration at the school increases.

We find a U-shaped absence response to PM2.5 over age, though of marginal significance.

The PM2.5-absence response does not vary with the time of residence in China, as proxied

by the time since first enrolling at the school. We find no evidence that these international

children’s sensitivity evolves, by which they would acclimatize, or grow weaker.

On a positive note, combining the empirical PM2.5 variation in this city with our

estimated responses reveals that severe PM2.5 explains only a fraction of one percentage

point of the overall 4 percent absence incidence. Only for the most sensitive subgroup

does severe PM2.5 explain one percentage point.7 In our setting, the share of absences

explained by shifts in ambient air quality is not large relative to estimates from aggregate

data for the US. Ransom and Pope (2013) find that PM10 in Utah Valley “caused 2.25

percent of students to be absent on the average day... roughly half of the total rate of

absenteeism” (p.14, emphasis added).8 Currie et al. (2009) estimate a 0.8 percentage point

reduction in absences for El Paso in 2000/01, a year with lower CO levels compared to

1986, when CO exceeded the NAAQS on 16 days. Hales et al. (2016) study Utah absences

over a later period than in their seminal work, finding that “a 100 µg/m3 increase in 7-day

moving average PM10 is associated with a 10% to 15% increase in absences” (p.11)—a

response that is still higher but closer to what we find. Currie et al. (2009) helpfully review

the previous literature, which typically regresses school- or grade-level absence counts or

rates on one or two pollutant levels (PM10, CO, ozone, NOx), finding mostly positive

associations—and often of large magnitudes.9

We emphasize that the implications of our study go beyond the absenteeism of a narrow

work outcomes, e.g., Fernandez and Fogli (2006)) an aspect that has not been studied. Our multinational
sample concurrently experiences the same environment and enjoys similar income and schooling.

7For example, the incidence of absences in the top quintile of the student absenteeism distribution is
predicted to fall from 9.0% to 8.6%, i.e., by 0.4 percentage point, if we truncate the right tail of the 24-hour
PM2.5 distribution at 200 µg/m3 (corresponding to an 11% density). Similarly, predicted absences in this
group fall by 1.2 percentage point if we truncate the PM2.5 distribution at 100 µg/m3 (a 40% density).

8PM10, that includes and is usually double PM2.5, averages 45 µg/m3 in the 1985-1991 Utah sample.
9Table 1 in Currie et al. (2009) summarizes the sample, method and findings in Ransom and Pope

(1992), Makino (2000), Chen et al. (2000), Gilliland et al. (2001), and Park et al. (2002). Romieu et al.
(1992) examine ozone-related absences in a panel of 111 preschoolers in Mexico City over three months.
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group of children of high-income international workers residing in north China. Poor air

quality (primarily from airborne particles) is observed across developing-world cities and

is conceivably a key impediment to attracting skilled labor, of high value to the host

economies that compete with employers in the rich world. The principals we met with

described enquiries from prospective parents, whether Europeans investing in their careers

or Chinese returning to their home country, who were concerned that their children, and

thus themselves, would not function well in such a degraded ambient environment. The

highly educated parents wished to know whether the defensive capital (air-conditioning

and windows that shut properly) and procedures (pollution thresholds for outdoor play)

that were in place provided protection to their children. Examining the absences of such

children thus tells us about how attractive economic hubs in the developing world can be

to high-skill workers typically with young families. The effect of air pollution on these

families’ daily routines may be a major impediment, and our study offers unique insight

into this aspect of international knowledge worker mobility.

Our paper makes several contributions over the extant literature linking student ab-

sences to air pollution. It is the first study to offer a window into the daily functioning

of a group of young, high-income and mostly rich-country nationals being subjected to a

developing nation’s urban air, often for the first time. The media has covered the cost to

skilled families of adapting to China’s air (Mangin, 2014; Wong, 2015; Liu, 2017; Mullin,

2017). In its mission to protect US citizens, the US State Department seems to agree, by

measuring and reporting—in real time and at considerable cost—PM2.5 in cities across

Bangladesh, China, Colombia, India, Indonesia, Vietnam, and others. Our study is the

first to examine a child by day panel for a sizable population over multiple years, to consi-

der a PM2.5 range that is most relevant to developing countries, and to allow a plausible

lag structure. Like Ransom and Pope (2013), our approach adopts credible exclusion re-

strictions based on daily atmospheric ventilation conditions that critically determine local

air quality and yet do not respond to anthropogenic activity.

School attendance is a key input to the production of human capital (Grossman and
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Kaestner, 1997; Gottfried, 2014). Beyond children’s health,10 our paper contributes to our

understanding of the location decisions, human capital formation, and coping strategies

by high-skill households in the many polluted cities of the developing world. Our finding

that despite the excess pollution the absentee response is not excessive relative to what the

literature finds for the US suggests that high-income families from mostly rich countries,

stationed temporarily in developing-world megacities, find ways to adapt. For example,

moving life indoors and staying inside air-conditioned spaces at home, school, and car, may

partly be protective of one’s health, even if temporary residence in north China comes at

the expense of long-term health, a topic that remains open for research.

Related health literature. A literature, mostly in epidemiology, examines the re-

lationship between acute exposure to air pollution and public health outcomes, for which

data are collected via encounters with health suppliers or vital records. When it comes

to more subtle manifestations of morbidity that do not lead to health encounters, the

evidence is more sparse. Recent studies by economists have examined the causal effect of

short-run pollution exposure on medication purchases (Deschenes et al., 2017), hours wor-

ked (Hanna and Oliva, 2015; Aragon et al., 2018) and productivity while at work (Graff

Zivin and Neidell, 2012; Chang et al., 2016b,a; He et al., 2018b). Unlike us, studies have

typically had to rely on aggregate data, rather than individual-level panels, or examined

rich-world settings, where pollutant concentrations in ambient air are much lower than in

developing countries, particulate matter in particular.11

2 Institutional background and data

Origin of student attendance records. In 2013, we contacted the principals of 16

international schools located in a Chinese city that is routinely exposed to severe PM2.5

10Currie et al. (2009) cite the “lack of health measures that capture the range of morbidities purportedly
related to pollution” (p.693). Ransom and Pope (2013) argue that absences are “a measure of children’s
health and morbidity that is more sensitive than the extreme measures of hospitalization or death” (p.2).

11Exceptions are studies examining worker or household-level panels in China and Peru (Chang et al.,
2016a; He et al., 2018b; Aragon et al., 2018). Given their developing country setting, these three studies
focus on particulate matter. Lines of enquiry relating air pollution to morbidity include households’
avoidance behavior to mitigate health damage (Moretti and Neidell, 2011), and the short-run impact of
pollution on test scores, which may operate through morbidity (Ebenstein et al., 2016; Ham et al., 2014).
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pollution. These schools cater largely to the international community and, to a lesser

extent, to Chinese families that have some international connection, such as families that

have lived outside China. We explained that we were interested in studying the effect

of air pollution on student absences at several international schools and that, in view

of the topic’s sensitivity, the addressee’s school would be anonymized were it ultimately

included in our sample. Such data might inform on possible adaptation by children (and

their families) of varying nationalities to a new and polluted environment, starting from

the day they first enroll at the school. Among the 16 schools that we contacted, principals

at seven schools agreed to meet with us. Ultimately, longitudinal student-level attendance

records were shared by three of these schools.12

Variation in absence rates and absence inequality. A key aspect of the atten-

dance data is its longitudinal structure and high frequency. Since we follow the same

student day by day, we can control for individual heterogeneity and seasonality. The pe-

riods of observation for the three schools are: (1) September 2008 to June 2014, (2) April

2010 to December 2014, and (3) April 2013 to June 2014. The schools vary in size, with

median enrollment across days in each school sample of: (1) 1,541, (2) 1,056, and (3) 284

students. Each of the three schools caters to children of all ages, from 3 to 19 years.

In terms of student nationality, rich countries grouped by continent—US/Canada,

Europe, Japan/Korea/Singapore—each account for at least one-third of enrollment for at

least one school, e.g., at one school, US/Canada accounts for one-third of enrollment and

Europe accounts for another one-third of students. Chinese nationals account for 7% to

20% of the student body at each school. For each school sample, the median enrollment

duration among departing students is about two years, with the 10th percentile below

one year and the 90th percentile above four years (see Figure A.1(b)). Due to the high

turnover, the number of students in the combined sample (henceforth, sample) is 6,545.

We take the schools’ published calendars and validate these against observed atten-

dance records. We define a school day as a day in which a given school was in session.

This is invariably a weekday, Monday to Friday, during the academic year from August

12The initial contact letters as well as the non-disclosure agreements we signed, with the addressee and
school details omitted, are available from the authors.
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to June/July, excluding winter and summer vacations, breaks of three or more successive

weekdays, and short holidays of one or two successive weekdays. As labeled here, breaks

include the extended National Day and Spring Festival (Chinese New Year) celebratory pe-

riods, whereas short holidays include “staff professional development” and “parent-teacher

conference” days and the one or two-day Mid Autumn and Dragon Boat Festivals.

Table 1 reports summary statistics across enrolled student by school day (henceforth,

student-day) observations. The sample consists of 2.5 million student-day pairs. Compa-

red to the absence rate for nationals of Japan/Korea/Singapore, at 4.7% of student-days,

absenteeism is 31% and 51% higher for nationals of Europe, at 7.1%, and the US/Canada,

at 6.1%, respectively. Perhaps surprisingly, the absence rate for Chinese nationals, at

7.2%, is similar to that of Europeans.

Since adjacent school days of absence by a same student are usually triggered by a

single choice or shock, such as health and travel, we will focus our analysis on how pollution

exposure may trigger the decision to initiate a spell of consecutive absence days. If we

exclude the second and subsequent adjacent absence days of every student absence spell

from the sample, keeping the first day of each absence spell as well as all student-day

observations of attendance, then absences account for 4.0% of student-day observations.

To illustrate, say that the sample consisted merely of one student and 10 consecutive

school days, Monday to Friday of week 1 and Monday to Friday of week 2. If the student

were absent on Thursday and Friday of week 1 (or, similarly, Friday of week 1 and Monday

of week 2), then the “raw” absence rate would be 2/10. Excluding the second day of the

absence spell—say that it was triggered by the single decision to travel over an extended

weekend—the “spell-adjusted” absence rate would be 1/9. It is the influence of acute

exposure to particle pollution on initiating absence spells that we will examine.13

Figure 1 summarizes how (raw) absence rates vary over time and across children. For

every day in the sample, when at least one school is in session, we compute the proportion

of enrolled students who are absent. Panel (a) shows a right-skewed distribution of the

aggregate absence rate over 1,234 days. The median day exhibits an absence rate of 5.8%,

13For perspective, the sample contains 165,698 student-day absences and 97,164 absence spells. 70% of
absence spells last one day, 15% last two (school) days, and 6% last three days.
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and days in the 10th and 90th percentiles experience absence rates of 3.8% and 10.5%. The

day-to-day variation in absenteeism is important to our empirical strategy. Our task is to

uncover to what extent this temporal variation is driven by variation in concurrent and

recent exposure to ambient PM2.5, once we account for other time-varying determinants.

Individual heterogeneity is another key feature of the data. For every child, we divide

the child’s overall number of days absent by the number of school days in the sample

during which she was enrolled. This would be 2/10 in the preceding example. Panel (b)

shows a right-skewed distribution of the individual absence rate over 6,545 students. The

median student is absent on 5.1% of days. Some students exhibit a significantly higher

absence rate than others. Fixing enrollment, the top 10% of absentees account for 35%

of aggregate absences, with a mean absence rate of 23%. Such absence inequality has not

been documented and may have long-lasting effects on human capital accumulation.

For each child, we also divide the number of school days while enrolled in the sample

by her number of absence spells; this would be 9 school days/absence spell for the single

student in the example. Figure 1(c) shows there is much cross-sectional variation in this

school days/absence spell statistic. In-sample enrolled days are low for some students

since they enrolled at the school near the end of the sample period. It is also plausible

that some families leave China earlier than anticipated due to difficulty adapting to the

polluted environment. Figure A.1(a) reports the distribution across students of school

days in the sample; one academic year consists of just under 200 school days. Figure A.2

shows that students with short duration in the sample or at the school, in panels (a) and

(b) respectively, are associated with higher absence rates.

Figure 2 considers several time-varying drivers of absences, factors that we control for

in our empirical model. There are non-monotonic relationships between absenteeism and

age, in panel (a), and day of the week, in panel (b). The absence rate is lower at age 8-10

years compared to younger and older students. The absence rate is higher on Mondays and

Fridays compared to midweek. A weekend effect may partly be driven by activities that

compete with school, such as trips. Panel (c) shows the effect of (pre-determined) vacations

and breaks on surrounding school days. Absence rates tend to increase in the five days
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leading up to a vacation/break, and decrease in the five days following a vacation/break,

likely due in part to students taking off early for a trip out of town (e.g., to their home

country) or returning late.14 Patterns in the data assure us of their high quality.

Panel (d) reports a seasonal pattern for absenteeism, with lower absence rates around

August/September, as the academic year is off to a start, and in May, typically the

last full month of the academic year, compared to more absences in December through

February.15 Many students travel abroad over the winter vacation and may depart before

school closes in December or return after school reopens in January. Since newly enrolled

students are often being introduced to a type of urban environment that is foreign to

them, we separately plot absence rates over the calendar months in a student’s first year of

enrollment versus subsequent years. We find little variation along this margin—if anything,

absences appear slightly lower during a student’s first year.

Particle pollution, weather and atmospheric ventilation. As a proxy for severe

air pollution, we obtained PM2.5 mass concentrations measured every hour by the US

State Department on the rooftop of the US embassy located in the city that hosts the

schools over the 2008 to 2014 sample period. This outdoor air monitoring site is located

no more than 20 km from the three schools. The schools informed us that most students

live within 10 km of the school, likely due in part to the state of road congestion in major

Chinese cities (Viard and Fu, 2015; Gu et al., 2017). Alternative PM2.5 measurements at

Chinese Ministry of Environmental Protection (CMEP) sites across the city, available only

from 2013, show tight spatial correlation not only across CMEP sites but also with US

embassy records in the overlapping period. Specifically, in 2013 and 2014 the correlation

coefficient between (24-hour) PM2.5 at the US embassy and the average for CMEP sites is a

very high 0.97.16 This speaks to the importance of regional atmospheric ventilation shocks,

14Similarly, absences increase in the days leading up to, and decrease in the days following, a short
holiday. Further, official public holidays on which a school is in session (22 days in the sample) shift
absences (up by two-thirds). While schools may not follow the official public holiday calendar, children can
be impacted by it if parents’ employers adopt this calendar, inducing travel. For example, the government
decreed that the Monday and Tuesday prior to 2013’s Labor Day, on a Wednesday, were public holidays.
Although all three schools were in session on the Monday and Tuesday, absences were high.

15Hales et al. (2016) report similar weekly and annual patterns for elementary school absence counts in
Utah, speaking to the quality of our micro data. We also observe more absences on colder winter days.

16Andrews (2008) and Ghanem and Zhang (2014) consider manipulation of pollution readings published
by the Chinese authorities, but in preceding years.
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discussed below, that govern the dispersion of pollutants and are plausibly exogenous to

unobserved determinants of absences. As attested by local and foreign media coverage,

fluctuation in PM2.5 severity is a citywide—not a neighborhood—phenomenon.

For the same-day air quality as a potential shifter of absences, we take the PM2.5

reading at 6 am, prior to classes starting. To allow for more prolonged pollution exposure,

over up to the 14 preceding calendar days, to explain absence, we aggregate the one-hour

PM2.5 readings into daily 24-hour averages. In specifications with up to 14 days of lagged

exposure, we discard up to 14 days from the first school day after vacations, as students

may have been out of town and we are unable to assign lagged exposure. Figure 3(a)

shows wide variation in daily PM2.5 over the sample period. There is substantial density

beyond 100 µg/m3, and even beyond 200 µg/m3. In panel (b), variation up to 400 µg/m3

remains even after regressing daily PM2.5 on month-of-year fixed effects and day-of-week

fixed effects. Pollution is not exclusively a winter phenomenon: PM2.5 averages 88 µg/m3

between April and September. Panel (c) reports the distribution of the absolute change

in daily PM2.5 from one day to the next, where the median shift is a high 37 µg/m3 (the

75th percentile is 68 µg/m3). Table 1 shows that much variation also remains even as

we aggregate PM2.5 over consecutive days, e.g., the 7-day and the 14-day averages have

ranges of 25-346 and 34-270 µg/m3, respectively.

We obtained weather conditions at ground level, compiled by NASA for the sampled

city and period, namely, 3-hour readings for temperature, relative humidity and precipi-

tation. We control for these variables in our student absence equations, as such weather

conditions may shift absences directly (Section 3). Compared to the magnitude of PM2.5

shocks from one day to the next, Figure A.3 suggests that weather is more persistent, with

median shifts in daily mean ambient temperature and relative humidity from one day to

the next of 1.2 ◦C and 7.7%, respectively.17

Ventilation conditions in the lower atmosphere for a reference location 19 km from

the US embassy are available from NOAA. We observe 12-hour readings (8 am and 8 pm

17This feature, coupled with the weather controls that we add directly to our estimating equation,
suggests that ambient weather is unlikely to confound our inference of the impact of PM2.5 on absences.
Taking longer two-day differences, the median absolute shift is 51 µg/m3, 1.8 ◦C and 11% for 24-hour
mean PM2.5, temperature and relative humidity, respectively.
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local time) of vertical thermal gradients and horizontal wind speed and direction. Beyond

the OLS estimates that we provide, our 2SLS estimates allow for measurement error in

students’ pollution exposure, as well as time-varying omitted correlates or determinants

of student absences, including emissions from road traffic. In such specifications, we

instrument for measured PM2.5 using PM2.5 variation induced by atmospheric ventilation

shocks, as proxied by temperature-altitude gradients and wind conditions.

Figure 3’s three last panels report on the strength of the atmospheric ventilation

instruments. The plots show (all variables are daily means) PM2.5 against: (d) the tem-

perature difference from ground level to a pressure point of 1000 mb, (e) the temperature

difference from 1000 to 925 mb, and (f) ground-level wind speed. Again, we partial out

confounding systematic seasonal and weekly variation from each series. Positive and stee-

per temperature gradients with altitude (e.g., a layer of hot air stationed overhead that

traps pollutants close to the ground, where they are emitted), as well as lower wind speeds

(e.g., still air), are strongly associated with a deterioration in air quality, as indicated by

higher fine particle levels. The 2SLS identifying assumption is that day-to-day shifts in

ventilation, both vertical (thermal inversions set in and lift) and horizontal (wind changes

in intensity and direction), do not affect absences directly or correlate with unobserved

determinants of absences.

3 Empirical model

An observed absence decision for child i on school day t can be described by a latent utility

model, where the utility from not attending school is:

y∗it = α0 + Ztβ +Wtα1 +Xitα2 + αi + αt + εit (1)

and binary variable Ait (denoting absence) is 1 if and only if y∗it > 0. Row vector Zt of

pollution variables includes concurrent exposure (e.g., PM2.5 at 6 am of school day t) and,

more generally, lagged-day exposure, Ztp, where p = 0, 1, ..., P indexes the lag in calendar

days relative to t, starting with p = 0, the period concurrent to school day t, and P ≥ 0.

For example, a model with P = 1 restricts only prior-day (and same-day) pollution to
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influence absences. Ztp can be a non-parametric or parametric function of exposure, e.g.,

a dummy for PM2.5 above a threshold, or a cubic function of PM2.5.18

Vector Wt consists of concurrent weather covariates, namely, ground-level temperature,

relative humidity and rain.19 Wt can affect both direct and opportunity costs of attending

school. For instance, cold and rain may raise the effort required to get out of bed and

commute to school, including through any health channels. At the same time, bad weather

can reduce the value of outdoor activities that may compete with school. Following Section

2, Xit captures time-varying student-level determinants or correlates of absences, such as

granular age bins and functions of time since first enrolling at the school, e.g., indicators

for the student’s first two semesters of enrollment. Student fixed effect αi captures the

unobserved characteristics that affect an individual’s utility from not attending school.

To account for systematic annual and weekly cycles and other time-varying drivers of

absences, vector αt includes year-month (month-of-sample) fixed effects and day-of-week

fixed effects (this includes an indicator for public holidays when the student’s school was

in session). To capture travel ahead of, or extended beyond, longer periods in which school

closes, αt further includes indicators for each of the five school days that lead up to, or

that follow, a winter or summer vacation or a break.20

We then estimate a linear probability model of student absences:

P (Ait = 1) = α0 + Ztβ +Wtα1 +Xitα2 + αi + αt + εit (2)

Distributed lag structure for PM2.5 exposure. Following a literature in epide-

miology (Zanobetti et al., 2002, 2003), we estimate models with distributed lag structures

increasing from P = 1 to P = 14 days prior to the observed student absence decision,

to capture the cumulative impact from more prolonged exposure to particle pollution.

18Other pollutants such as CO, NOx or ozone are not available over the sample period, but in our setting
PM2.5 dominates the official Air Quality Index (AQI). The interpretation we offer is that of PM2.5 as
a wider “indicator” (Dominici et al., 2010) of the severity of atmospheric pollutants, including ultrafine
particles (PM 0.01 to 0.1) that are not routinely monitored in China or even the US (He et al., 2018a).

19We include linear and quadratic terms for: the 24-hour means of temperature, humidity and rain on
the previous day t − 1, and 6 am readings for these variables on day t. We further include indicators for
any rain on day t− 1 and rain at 6 am on day t. In a robustness test, we model temperature in bins.

20These indicators can be interacted with nationality. We further add indicators for each of the two
school days that lead up to, or that follow, a short holiday (one or two successive weekdays without school).
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For example, in a model in which P PM2.5 covariates enter linearly, we estimate 1 + P

parameters βp in (2), and report the cumulative shift in the probability of absence from a

given PM2.5 increase sustained in each of 1 + P concurrent and lagged days of exposure,∑P
p=0 βp. This model is the unconstrained distributed lag, UDL(P ). Although serial cor-

relation in Z can make estimation of the individual βp challenging, the cumulative effect

can be precisely estimated (Wooldridge, 2015, p.316).

Alternatively, in a polynomial distributed lag PDL(P,Q) model, the 1 +P coefficients

on the lag structure are disciplined according to a smooth polynomial function of degree

Q < P , such that the exposure coefficients satisfy βp =
∑Q

k=0 ηkp
k, p = 0, 1, ..., P , where

ηk are parameters constraining the βp. As an alternative to UDL models, we estimate

PDL(P, 2) models constraining the βp to follow a quadratic, and find a similar cumula-

tive impact
∑P

p=0 βp. Constraining the shape of variation in the lagged dose-response

coefficients may improve precision relative to the UDL, at the expense of minimal bias

(Schwartz, 2000). For comparison, in studies of daily aggregate elementary school absen-

ces, Ransom and Pope (2013) specify 7-day lagged averages for PM10 (and CO) as the

measure of exposure, whereas Gilliland et al. (2001) allow acute pollution effects to be

distributed over up to 30 days.

Endogenous PM2.5 exposure. Besides OLS, we estimate models by 2SLS to al-

leviate concern that PM2.5 exposure is measured with error, leading to attenuation bias,

or endogenous.21 The exclusion restriction is that ventilation in the lower atmosphere,

V , only affects absences through its effect on air pollution. Specifically, V includes the

atmospheric thermal gradients and surface wind speed and direction variables reported in

Table 1. To account for the build-up of particles when ventilation is poor, we include an

indicator for wind speed less than 1 m/s interacted with each of three indicators denoting

inversions in the three layers closest to the surface.22 Such variables are key determinants

21For instance, unobserved shifts in the value of activities that compete with school, a popular concert
say, might raise absences as well as traffic congestion and emissions, leading to upward bias. Similarly,
shocks to road congestion might raise vehicle emissions and absences.

22For continuous variables, we include squares. We include 24-hour mean ventilation conditions on the
day and in each of the two prior days (or, for sensitivity, one prior day). Ransom and Pope (2013) use
a “clearing index which measures the level of ventilation or air movement in the atmosphere...defined as
mixed layer depth...times the wind speed” (p.7); a day is “stagnant” when the clearing index on the day
and the two prior days stays below a threshold.
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of PM2.5 and are unlikely to correlate with unobserved absence shocks, εit. Recall from

Figure 3 that PM2.5 is higher the less negative (or more positive) is the temperature-

altitude gradient, since warmer air overhead traps PM2.5 that is emitted or formed near

the ground, and similarly when the air is still and horizontal ventilation is poor. We use

ventilation V to form an instrument, Ẑ, for measured 24-hour PM2.5, Z, by fitting:

Zt = δ0 + Vtδ1 + δt + νt, (3)

where δt are time fixed effects (year-month, day-of-week) and (3) is implemented on daily

observations t between August 2008 and December 2014.

To be clear, (3) is not the first-stage equation. This ventilation-pollution model pro-

duces fitted values Ẑ that, together with covariates in the absences model (2) such as

weather (Wt), student age (Xit) and fixed effects, comprise our first stage.23 With regard

to the exogeneity of wind speed (a component of V ) and thus of Ẑ, the routinely mild

wind in our setting,24 while clearing the atmosphere, is unlikely to impact behavior. In

a robustness test, we add wind speed to other ambient weather conditions (temperature,

humidity and rain) that are allowed to affect absences directly.

4 Pollution’s effect on international children’s lives

We first examine the relationship between absences on a given school day and PM2.5 levels

on the day before, and then subsequently enrich the lag structure of the model to allow for

more prolonged PM2.5 exposure to explain absences. We obtain our preferred estimation

sample from the original student-day observations as follows. For each school by age group

pair (three schools each with preschool, primary, middle and high school divisions, totaling

12 pairs), we compute the fraction of students absent on each school day. Observations

pertaining to a school day in which the student’s school-division specific absence rate

exceeds 30% are dropped from the estimation sample, since the very high absence rate is

23Isen et al. (2017) instrument for pollution using fitted pollution, imputed from a policy rather than
atmospheric intervention. An alternative to instrumenting for Z using V -induced Ẑ is to use V . Results
should be similar in linear models such as ours (Angrist and Krueger, 2001), as we confirm (Table 6).

24Wind speeds in Chicago and Los Angeles average, respectively, 4.6 m/s and 3-4 m/s compared to 2.0
in our sample (Herrnstadt and Muehlegger, 2015; Anderson, 2016).
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likely due to recording error. This drops only 0.7% or 17,547 out of 2,528,567 observations

in the original sample.25 We further exclude the second and subsequent adjacent absence

days for every observed student absence spell in the original sample, since these follow-on

absence days typically stem from the same decision that drove the first absence day in the

spell, for example, health or travel, including remedial or defensive responses to pollution.

We examine spell-adjusted absences, where an absence is the first school day of an absence

spell. We show that estimates are fairly robust to keeping 62,504 observed second and

subsequent absence days within absence spell in the estimation sample; intuitively, effects

are higher.26 The estimation sample consists of 2,448,516 observations.

Table 2 estimates linear probability model (2) of student absences and, as alternative

measures of immediate exposure to severe PM2.5, considers: (columns 1 and 2) an indi-

cator that daily mean PM2.5 on the day before the absence decision exceeded 200 µg/m3;

(column 3) a count of the days in which daily mean PM2.5 exceeded 200 µg/m3 in the

three days prior to the absence decision (zero, one, two or three); (column 4) a linear spline

function of daily mean PM2.5 on the day before the absence decision; and (columns 5 to

7) a quadratic function of daily mean PM2.5 on the day before the absence decision. In

column 1, severe PM2.5 on the day before, defined here as a mean above 200 µg/m3, raises

the probability that an absence spell is initiated by a precisely estimated 0.20 percentage

point. Relative to a sample mean of 3.83 percent, this is a 5.2% increase (0.2/3.83). In

column 2, we instrument for the severe PM2.5 dummy using fitted ventilation-induced

PM2.5 and its square.27 We obtain a 2SLS estimate of the effect of severe PM2.5 that

is about double the OLS estimate. The occurrence of severe PM2.5 yesterday raises the

probability that an absence spell is initiated today by 0.43 percentage point, i.e., an 11%

increase relative to a sample mean of 3.83 percent. Again, the exclusion restriction is

that absences respond to atmospheric thermal gradients and surface wind only indirectly,

through these variables’ effect on particle levels. A higher absence response estimated by

25Figure 1(a) shows low density already at an absence rate of 20%. Table 5 shows that estimates
are robust to: not dropping observations on these very high absence days, or instead to only dropping
observations pertaining to days in which the absence rate exceeds 50%.

26Gilliland et al. (2001) examine “incident” (first-day) absences as opposed to “prevalent” absences.
27This is conventional 2SLS (Angrist and Pischke, 2009), with the first-stage a linear regression of the

severe PM2.5 dummy on fitted ventilation-induced PM2.5 and its square (and exogenous covariates).
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2SLS compared to OLS, as in column 2 versus column 1, is a result we obtain throughout.

Consistent with column 1, column 3 reports OLS estimates that each additional severe

PM2.5 day in the preceding three days raises the incidence of absences by 0.13 percentage

point. Thus, for example, the incidence of severe PM2.5 in all three preceding days raises

the probability that an absence spell is initiated today by 0.39 percentage point, or 10%

of the sample mean. A higher estimated absence response on allowing sustained PM2.5

exposure to drive absences, as in column 3 versus column 1 (0.13 × 3 versus 0.20), is

another result we obtain throughout.

Column 4 reports OLS estimates of a linear spline function of prior-day PM2.5, with

three knots set at 50, 100 and 200 µg/m3. Perhaps surprisingly, the likelihood that an

absence spell is initiated falls as prior-day PM2.5 increases over the 50 to 100 µg/m3

range, only to grow as prior-day PM2.5 increases beyond 100 µg/m3. To illustrate the

point estimates, a shift from 50 to 100 µg/m3 lowers the absence incidence by 0.43 ×

(100− 50)/100 = 0.22 percentage point; a shift from 100 to 200 µg/m3 raises the absence

probability by 0.16× (200− 100)/100 = 0.16 percentage point. One interpretation is that

on “blue sky days” when air quality is relatively good, say, below 50 µg/m3, students

are more likely to skip school to go to the park or to run errands outdoors.28 A non-

monotonic absence response, by which absences initially fall as pollution rises from low

levels to subsequently rise, as in column 4, is yet another result we obtain throughout.

The non-linearity in the pollution-absence relationship in our setting can be seen di-

rectly in the data, in Figure 4: in panels (a) to (c) we document the incidence of absences

over prior-day PM2.5 bins of width 20 µg/m3, i.e., 0-20, 20-40, etc. We plot the pro-

portion of students initiating an absence spell both in the original sample, as well as in

the estimation sample that excludes observations jointly yielding school-division absence

rates over 30%. We also show alternative bins of width 30 µg/m3. The absence incidence

falls over the first several bins and then rises. To highlight variation in the 50-100 µg/m3

range, panels (d) to (f) show the proportion of students initiating an absence spell against

28Shi and Skuterud (2015) find employees in Canada calling in sick when weather is of high recreational
quality. Also see Connolly (2008). Wong (2013) cites a senior at a local high school in north China: “The
days with blue sky and seemingly clean air are treasured, and I usually go out and do exercise.”
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percentiles of the PM2.5 distribution. Moreover, panels (g) to (i) of Figure 4 show percen-

tiles of the PM2.5 distribution after partialling out co-variation with all the other absence

shifters in the model (e.g., weather Wt, time fixed effects αt).

The parametric specification in columns 5 to 7, in which we include both linear and

quadratic terms in prior-day PM2.5, similarly yields a non-monotonic pollution-absence

relationship, e.g., OLS estimates in column 5. Comparing column 6 to column 5, estimated

coefficients on prior-day PM2.5 change little if we include the same-day PM2.5 reading at

6 am, a few hours before classes start, to the model of absences. This specification, which

has a falsification test flavor, suggests that the decision to miss school is taken prior to 6

am on the same day, for example, on the evening before the school day. Again, the 2SLS

estimate of the absence response is about double the OLS estimate as PM2.5 becomes

increasingly severe (column 7 versus column 5).29

We also observe that the share of absence spells lasting one day grows as the severity

of pollution increases. For example, take the distribution of the past-three-day severe

PM2.5 count over all student-day observations (with year and month-of-year partialled

out) and compare the duration of absence spells initiated in the top decile of this PM2.5

distribution compared to those initiated in the bottom decile. One-day absences account

for 73% of absence spells initiated under severe PM2.5 compared to 63% of absence spells

initiated under lower pollution. We tentatively interpret this evidence as being consistent

with a compositional change in absences, toward shorter pollution-induced (biological or

behavioral) absences as PM2.5 rises relative to longer predetermined absences.

In sum, Table 2 shows that the estimated student absence response to PM2.5 is: (i)

stronger if one allows for endogenous PM2.5 exposure, e.g., due to attenuation bias, (ii)

stronger if one allows for a more delayed response than the day (or a few hours) before

the school day, and (iii) non-monotonic, at least over the initial range of PM2.5 variation

in our urban China setting where skies are routinely not blue.

Heterogeneity and robustness. Table 3 implements the 2SLS estimator of the

prior-day severe PM2.5 dummy (as in Table 2, column 2) on separate subsamples based

29We instrument for PM2.5 and its square using fitted ventilation-induced PM2.5 and its square.
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on: (column 1) the time elapsed since first enrolling at the school, with the first and second

semesters of enrollment jointly accounting for 32% of student-day observations; (column

2) academic year, with school days in the 2012/13 and subsequent years accounting for

43% of observations; (column 3) nationality group; (column 4) age group; and (column

5) quintile of the distribution of individual absence rates across the 6,545 students in the

sample (Figure 1(b)), i.e., over 80th percentile absentee, 60th to 80th percentile, etc.30 As

a measure of individual vulnerability in general, Currie et al. (2009) state that “there is a

long tradition of using absence from school to define disability among children” (p.684).

As a less flexible alternative to Table 3’s subsample analysis, Table 4 reports on 2SLS

regressions implemented on the full sample but now interacting the prior-day severe PM2.5

dummy with nationality group or with absenteeism quintile. We instrument for the severe

PM2.5 measure and its interactions with levels and corresponding interactions of fitted

ventilation-induced PM2.5 and its square. As further sensitivity analysis, we specify the

past-three-day severe PM2.5 count as an alternative measure of pollution severity. We

also show OLS estimates.

Estimates for all implementations in Tables 3 and 4 suggest that Chinese nationals

display lower absence responses to PM2.5 than US/Canada nationals. We reject equal re-

sponses for these two nationality groups with a p-value of 0.009 (Table 4, column 2). Both

flexible and less-flexible implementations indicate that the sensitivity of absences to severe

PM2.5 is stronger among students who exhibit higher absenteeism overall. The estimated

coefficient on the severe PM2.5 dummy increases as we separately consider subsamples of

children in higher absenteeism quintiles (Table 3, column 5). Similarly, estimates on the

severe PM2.5 × absenteeism quintile interactions increase in the absenteeism quintile (Ta-

ble 4, column 4). A child in the highest absenteeism quintile is 1.3 percentage point more

likely to initiate an absence spell on the school day following a severe PM2.5 day compared

to a child in the lowest quintile. To check whether this result may be driven in part by

students with short duration in the sample, who tend to be absent more (Figures A.1

30Column 5 uses an endogenous variable to stratify the sample. The purpose is descriptive. Moreover,
we show below that PM2.5 explains a small share of overall absenteeism. Findings are similar if we correct
for age before grouping students by overall absenteeism quintile.
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and A.2), we re-estimated Table 4, column 4’s specification on a subsample restricted to

students with over 200 school days (about one academic year) of observation. This shrinks

the number of children from 6,545 to 4,390. Estimates on the severe PM2.5 × absenteeism

quintile interactions (not shown for brevity) are very similar to those reported in Table 4,

where the sample included the short-duration students.

Moreover, Table 3 provides weak evidence that the sensitivity of absences to severe

PM2.5 is lower: (i) in the first semester of enrollment compared with subsequent semesters

(column 1), and (ii) among students aged 5 to 12 years compared with younger and

older children (column 4). However, differences are not statistically significant. Figure 5

plots the heterogeneous absence response to PM2.5 by nationality group, age group and

absenteeism quintile estimated in Table 3.

Tables 5, 6 and A.1 show several robustness tests: (i) varying the estimation sample,

e.g., not dropping the very high absence days, not dropping the second and subsequent

absence day within absence spell, restricting to students with over 200 school days; (ii)

varying the set of controls, e.g., controlling for temperature with granular bins 3 ◦C wide,

adding week-of-year dummies for finer seasonal controls, interacting year-month fixed

effects with school-division fixed effects; and (iii) varying the set of excluded instruments.

In particular, keeping all days of an extended absence raises estimates; keeping the very

high absence days lowers estimates, as does specifying granular temperature bins.

More prolonged pollution exposure. We now enrich the lag structure of our model

of PM2.5 as a driver of absences. Importantly, 24-hour PM2.5 fluctuates substantially

from day to day (the 75th percentile is a 68 µg/m3 swing) and there is large variation

in exposure even as we aggregate over several days (the 7-day average ranges from 25 to

346 µg/m3). Table 7 and Figure 6 report cumulative effects of past P days of PM2.5 on

the decision to initiate an absence spell, for alternative: distributed lag models (lagged

exposure coefficients disciplined or not); PM2.5 measures (non-parametric or parametric);

identifying restrictions (all measured PM2.5 variation or only that induced by atmospheric

ventilation); and estimation samples (full sample or specific to child’s nationality or overall

absenteeism level). Consistent with the above findings, estimated responses are generally

20



higher under 2SLS than OLS, higher as we allow a longer delay up to a fortnight (fixing

the average dose over the lags), higher for US/Canada (and Europe) than for Chinese

nationals, and higher for students who generally miss school the most.

Panels A and C of Table 7 specify daily lags of severe particle pollution, each lag

characterized by a dummy indicating 24-hour PM2.5 in excess of 200 µg/m3. A large shift

in exposure over the preceding week, from 0 to 7 days of severe PM2.5, raises the incidence

of absences by: 1.14 percentage point in the full sample (panel A, right and Figure 6(b),

row/horizontal axis marked P = 7); 1.17 percentage point among US/Canada nationals

(panel C, left); and 2.50 percentage points for children in the top quintile of the absenteeism

distribution (panel C, right).31

To quantify the empirical importance of PM2.5 fluctuations around a severe threshold

at explaining absences overall, we can take each estimated model and predict absences in

the counterfactual scenario that 24-hour PM2.5 were not to exceed 200 µg/m3. Mecha-

nically, we set the severe PM2.5 dummy to zero once the model has been estimated. We

find that in-sample severe PM2.5 variation explains considerably less than one percentage

point (one-quarter) of student absences in the overall population. An alternative defini-

tion of severe PM2.5, using a threshold of 100 rather than 200 µg/m3 for each lagged day,

yields similar estimates (panel D versus panel C).

Panel B of Table 7 specifies daily lags of 24-hour PM2.5, its square and its cube. A

sizable shift in week-long exposure, from 100 to 200 µg/m3 sustained over 7 days, raises

the probability that an absence spell is initiated by 0.98 percentage point (panel B, right

and Figure 6(f), row/horizontal axis marked P = 7).32 Taking each estimated model and

predicting aggregate absences under the counterfactual scenario that the 24-hour PM2.5

distribution were truncated at 100 µg/m3, close to the sample mean, we again find that

in-sample severe PM2.5 variation explains less than one percentage point of overall student

absences. Mechanically, we replace 24-hour PM2.5 above 100 µg/m3 by 100 µg/m3 once

312SLS estimates based on a UDL(7). Figure 6(d) reports on an alternative quadratic PDL(7,2).
322SLS estimates based on a quadratic PDL(7,2). The caption to the table or figure describes how the

lagged exposure coefficients are disciplined, as well as the functional form of the excluded instruments.
Denoting 24-hour PM2.5 in daily lag p of school day t by Ztp, and using β1p, β2p and β3p to denote the
coefficients on Ztp, its square Z2

tp and its cube Z3
tp, the cumulative effect of the 100 to 200 µg/m3 shift in

week-long exposure is calculated as
∑7

p=1(200 − 100)β1p + (2002 − 1002)β2p + (2003 − 1003)β3p.
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the model has been estimated.

5 Discussion

We find that the severity of particle pollution drives school absences in a 1,234-school day

panel of 6,545 high-income students attending international schools in north China. A

2SLS model with 7 lagged days of exposure indicates that the incidence of absences is 1.1

percentage point higher in the wake of daily PM2.5 exceeding 200 µg/m3 seven days in

a row compared to a less polluted week in which daily PM2.5 remains below 200 µg/m3

throughout (95% CI = [0.7,1.5]). A model with a smoother cubic PM2.5 specification,

also allowing up to 7 days of delay and identification similarly based on exogenous shifts in

atmospheric ventilation, indicates that raising the preceding week’s dose from a constant

100 µg/m3 to a constant 200 µg/m3—still a sizable variation in the sustained dose—raises

the absence incidence by 0.6 percentage point (95% CI = [0.3,0.9]).

Such illustrative responses of +1.1 and +0.6 percentage point, amounting to +30%

and +15% over a sample mean absence incidence of 3.8 in every 100 school days, are

significant. However, when paired with empirically observed short-run PM2.5 fluctuation,

and despite PM2.5 fluctuating widely within season in the sampled location,33 particle

pollution still explains only 0.1 to 0.2 absence among 3.8 overall absences per 100 school

days. It is possible that the generally high levels of ambient PM2.5 in north China (the

5th percentile is 17 µg/m3) already raise the baseline absence rate, as conjectured by

Hales et al. (2016). We note, however, that absenteeism in our sample lies within the

range reported for the US. The absence response we estimate from short-run variation

in pollution is modestly sloped compared to estimates at sustained lower concentrations

encountered in the US, which is consistent with the “supralinearity” hypothesis for the

concentration-response function (Pope et al., 2015). Perhaps the main reason explaining

the moderate absence response to the excessive pollution, first documented here, is that the

affluent population we examine is largely able to adapt, for example, by shifting life indoors,

behind windows that shut properly and where air is sucked in through air conditioners and

33For example, the median two-day difference in daily 24-hour PM2.5 is 51 µg/m3 (note 17).
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filters.34 Other than—or because of—life shifting away from outdoor air, daily routines

appear quite normal when viewed from the window of school absences.

The heterogeneity that we uncover is revealing. The lower absence response to PM2.5

that we estimate among Chinese nationals (9% of the sample) compared to the majority

share of US, Canadian and European citizens, is consistent with longer-run adaptation,

since the degraded environment may be more familiar to Chinese children’s physiology as

well as parental behavior. We do not find differential sensitivity of absences to PM2.5 over

time of residence in China, as proxied by time of enrollment at the school. The pattern

is also consistent with compensatory inter-temporal reallocation of schooling. Western

parents may tolerate higher absenteeism during their temporary residence in China in

anticipation of a near-term return to a less polluted home-country environment, whereas

Chinese parents view residence in a polluted environment as less temporary. We also

observe a markedly stronger absence response to PM2.5 among students who generally

miss school the most. We view this pattern as being consistent with the epidemiological

literature that broadly finds health outcomes to be driven in large part by chronically

unhealthy individuals in the population (Pope and Dockery, 1992; Peters et al., 1997).

Excluding days surrounding vacations and breaks, the in-sample absence incidence

in January is 4.2% compared with 3.2% in May and 2.9% in September. North China’s

January is colder, drier and tends to be more polluted than May or September. An extreme

environment might call for extreme measures, such as expanding the winter vacation by six

weeks until Chinese New Year in early February, for most students to remain in their home

countries, and instead shorten the long summer vacation, when environmental quality in

north China is relatively higher. The policy might abate absences to the tune of one school

day for every three students each year (6 weeks × 5 school days/week × 0.01). While such

a school policy is unlikely to be popular in the west, and such avoidance unaffordable

among low-income children, the policy and the avoidance it enables might be welcomed

by the informed, affluent and adaptive transnational families studied here.

34For example, see the “Q&A on air quality” posed by TimeOut (2015) nine international schools in
Beijing, surveying air quality controls that are in place, including thresholds for outdoor play.
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Table 1: Descriptive statistics

Variables N Mean Std.dev. Min. Max.

Enrolled student is absent on school day (yes=1)... 2,528,567 0.066 0.248 0.000 1.000
...& National of US/Canada (yes=1) 620,852 0.061 0.240 0.000 1.000
...& National of Europe (yes=1) 778,501 0.071 0.257 0.000 1.000
...& National of Japan/Korea/Singapore (yes=1) 448,206 0.047 0.212 0.000 1.000
...& National of China (yes=1) 231,037 0.072 0.259 0.000 1.000
...& National of other countries (yes=1) 423,363 0.074 0.262 0.000 1.000
...& First year of enrollment (yes=1) 801,706 0.067 0.250 0.000 1.000
...& Not the 2nd or subsequent day of absence spell (yes=1) 2,460,033 0.040 0.195 0.000 1.000
Number of days since first enrolling at school (days) 2,513,076 852.69 820.62 0.00 5387.00
First 180 days of enrollment (yes=1) 2,513,076 0.18 0.39 0.00 1.00
181 to 360 days from first enrolling (yes=1) 2,513,076 0.14 0.34 0.00 1.00
Academic year 2012/13 onward (yes=1) 2,528,567 0.43 0.49 0.00 1.00
National of US/Canada (yes=1) 2,501,959 0.25 0.43 0.00 1.00
National of Europe (yes=1) 2,501,959 0.31 0.46 0.00 1.00
National of Japan/Korea/Singapore (yes=1) 2,501,959 0.18 0.38 0.00 1.00
National of China (yes=1) 2,501,959 0.09 0.29 0.00 1.00
National of other countries (yes=1) 2,501,959 0.17 0.37 0.00 1.00
Age (years) 2,518,364 11.13 4.10 1.00 21.00
Student over 12 years old (yes=1) 2,518,364 0.40 0.49 0.00 1.00

Particle pollution, Z
PM2.5 concentration, daily 24-hour mean (µg/m3) 2,172 98.04 75.91 2.92 568.57
PM2.5 concentration, 6 am reading (µg/m3) 2,105 95.46 82.42 2.00 532.00
PM2.5 concentration, prior 2 days’ mean (µg/m3) 2,145 98.09 67.22 8.96 492.41
PM2.5 concentration, prior 7 days’ mean (µg/m3) 2,022 98.52 44.54 25.29 345.95
PM2.5 concentration, prior 14 days’ mean (µg/m3) 1,870 98.84 33.77 34.36 270.49

Weather, W
Temperature at the surface (daily 24-hour mean, ◦C) 2,327 11.47 11.66 -18.19 33.21
Relative humidity at the surface (daily 24-hour mean, %) 2,327 49.52 19.30 0.00 100.15
Precipitation at the surface (daily 24-hour mean, mm/hour) 2,327 0.06 0.26 0.00 4.69
Any precipitation on the day (yes=1) 2,327 0.17 0.37 0.00 1.00

Atmospheric ventilation, V
Temperature difference (◦C) for increasing altitudes at standard atmospheric pressure levels
...from surface to 1000 mb 2,326 0.30 1.41 -3.50 7.25
...from 1000 to 925 mb 2,327 -3.26 1.78 -6.50 7.70
...from 925 to 850 mb 2,327 -3.97 1.91 -7.00 9.15
...from 850 to 700 mb 2,327 -8.93 3.20 -15.70 5.25
...from 700 to 500 mb 2,327 -15.40 2.83 -25.30 -4.80
Wind speed at the surface (daily 24-hour mean, m/s) 2,326 2.04 1.07 0.00 9.00
Wind direction at the surface (all hours from a given direction=1)
...from North 2,327 0.32 0.30 0.00 1.00
...from East 2,327 0.24 0.30 0.00 1.00
...from South 2,327 0.27 0.28 0.00 1.00
...from West 2,327 0.16 0.23 0.00 1.00

Notes: An observation is a student by school day pair (student-day for short) or, for pollution, weather
and atmospheric ventilation variables, a day. The periods of observation for the three schools,
all located in the same city, are: (1) September 2008 to June 2014, (2) April 2010 to December
2014, and (3) April 2013 to June 2014. The sample period for environmental data is August 18,
2008 (14 days prior to September 1, 2008) to December 31, 2014.
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Table 2: Student absences and concurrent pollution: Non-parametric and parametric
PM2.5 specifications estimated by OLS or 2SLS

PM2.5 specification: (1) (2) (3) (4) (5) (6) (7)
Severe Severe Severe Spline Quadr. W/ 6 am Quadr.

(Dependent variable is 1 if prior day prior day past 3 d function prior day same day prior day
absence spell is initiated) OLS 2SLS OLS OLS OLS OLS 2SLS

Prior-day PM2.5 > 200 µg/m3 (yes=1) 0.20*** 0.43***
(0.05) (0.10)

Count of past 3 days PM2.5>200 µg/m3 0.13***
(0.02)

Prior-day PM2.5 3-50 µg/m3 (×100) -0.07
(0.16)

Prior-day PM2.5 50-100 µg/m3 (×100) -0.43***
(0.10)

Prior-day PM2.5 100-200 µg/m3 (×100) 0.16***
(0.06)

Prior-day PM2.5 200-569 µg/m3 (×100) 0.14***
(0.05)

Prior-day PM2.5 (×100 µg/m3) -0.24*** -0.28*** -0.55***
(0.05) (0.05) (0.09)

Prior-day PM2.5 squared 0.08*** 0.08*** 0.18***
(0.01) (0.01) (0.03)

Same-day PM2.5 (×100 µg/m3, 6 am) 0.02
(0.05)

Same-day PM2.5 squared (at 6 am) 0.01
(0.01)

Flexible weather controls Yes Yes Yes Yes Yes Yes Yes
Student age bins (width 1 year) Yes Yes Yes Yes Yes Yes Yes
Bins for first 2 semesters of enrollment Yes Yes Yes Yes Yes Yes Yes
Student fixed effects Yes Yes Yes Yes Yes Yes Yes
Year-month fixed effects Yes Yes Yes Yes Yes Yes Yes
Day-of-week fixed effects Yes Yes Yes Yes Yes Yes Yes
Bins for days around vacation/break Yes Yes Yes Yes Yes Yes Yes
Bins for days around short holiday Yes Yes Yes Yes Yes Yes Yes
Observations 2,297,246 2,291,723 2,244,876 2,297,246 2,297,246 2,245,573 2,291,723
Number of students 6,439 6,439 6,439 6,439 6,439 6,439 6,439
Number of regressors 118 118 118 121 119 121 119
R-squared (within) 0.006 0.006 0.006 0.006 0.006 0.006 0.006
First-stage F-statistic 405,262 116,615
Mean value of dependent variable (%) 3.83 3.83 3.83 3.83 3.83 3.83 3.83

Notes: The sample consists of all students enrolled at three international schools in a major city of
China, over a combined period from September 2008 to December 2014. An observation is a
student by school day. The dependent variable is 1 if the student initiates an absence spell
on the day, and 0 otherwise; the estimation sample thus excludes the second and subsequent
adjacent absence days within each observed absence spell. We also drop observations pertaining
to a school day in which the student’s school-division specific absence rate exceeds 30%. OLS
estimates or 2SLS estimates, where we instrument for measured PM2.5 (both non-parametric
and parametric specifications) using PM2.5 fitted by atmospheric ventilation conditions (note
22) and the square of these ventilation-induced fitted values. Weather controls are flexible
functions of temperature, relative humidity and rain observed on the previous day and at 6 am
on the day (note 19). Standard errors, in parentheses, are clustered by student. Alternative
standard errors, with two-way clustering by student and by school-age-day, are slightly larger.
∗∗∗Significant(ly different from zero) at (the) 1% (level), ∗∗at 5%, ∗at 10%.
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Table 3: Student absences and concurrent pollution: A non-parametric PM2.5 specifica-
tion with heterogeneous effects, estimated by 2SLS flexibly by subsample

Coefficient on prior-day PM2.5 > 200 µg/m3 (yes=1). Standard error in parentheses.

Restrict estimation to subsample (1) (2) (3) (4) (5)
defined on: Time since Academic Nationality Age Absenteeism

first enrolling year quintile

First 180 days of enrollment 0.34 (0.21)
Mean value of DV (%) 3.70

181 to 360 days from first enrolling 0.57** (0.25)
Mean value of DV (%) 3.70

Over 360 days from first enrolling 0.43*** (0.12)
Mean value of DV (%) 3.89

Academic year 2011/12 or before 0.58*** (0.13)
Mean value of DV (%) 3.75

Academic year 2012/13 onward 0.30** (0.15)
Mean value of DV (%) 3.92

Nationals of US/Canada 0.54*** (0.19)
Mean value of DV (%) 3.86

Nationals of Europe 0.54*** (0.18)
Mean value of DV (%) 3.98

Nationals of Japan/Korea/S’pore 0.34* (0.19)
Mean value of DV (%) 2.96

Nationals of China -0.14 (0.33)
Mean value of DV (%) 4.12

Nationals of other countries 0.41 (0.26)
Mean value of DV (%) 4.20

Students aged up to 4 years 0.41 (0.59)
Mean value of DV (%) 5.58

Students aged 5 to 8 years 0.05 (0.18)
Mean value of DV (%) 3.03

Students aged 9 to 12 years 0.24 (0.15)
Mean value of DV (%) 2.71

Students aged 13 to 16 years 0.72*** (0.19)
Mean value of DV (%) 4.24

Students aged 17 years and over 1.04*** (0.37)
Mean value of DV (%) 7.01

Students in absenteeism quintile 1 0.10 (0.13)
Mean value of DV (%) 1.05

Students in absenteeism quintile 2 0.15 (0.15)
Mean value of DV (%) 2.11

Students in absenteeism quintile 3 0.52*** (0.20)
Mean value of DV (%) 3.28

Students in absenteeism quintile 4 0.55** (0.24)
Mean value of DV (%) 4.74

Students in absenteeism quintile 5 0.96*** (0.36)
Mean value of DV (%) 8.96

Notes: The table shows estimates for 20 2SLS regressions, separately implemented on subsamples defi-
ned on: (1) the time elapsed since first enrolling at the school, (2) academic year, (3) nationality,
(4) age, and (5) overall absenteeism quintile. An observation is a student by school day. The
dependent variable (DV) is 1 if the student initiates an absence spell on the day, and 0 other-
wise. Controls include flexible weather controls, student age bins (width 1 year), bins for first
2 semesters of enrollment (except in column 1), student fixed effects, year-month fixed effects,
day-of-week fixed effects, bins for days around vacations/breaks, and bins for days around short
holidays. Other notes to Table 2 apply. For brevity, we omit the number of observations, the
number of regressors and other regression statistics. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table 4: Robustness to estimating non-parametric specifications for prior-day PM2.5, that
allow for heterogeneous effects, on the full sample (OLS or 2SLS)

Interaction with PM2.5 Nationality Absenteeism quintile

(Dependent variable is 1 if (1) (2) (3) (4) (5) (6)
absence spell is initiated) OLS 2SLS OLS 2SLS OLS 2SLS

Prior-day PM2.5 > 200 µg/m3 (yes=1) 0.22** 0.63*** -0.13** 0.10
(0.10) (0.18) (0.06) (0.11)

... × national of US/Canada 0.10 -0.02
(0.13) (0.20)

... × national of Europe -0.05 -0.26
(0.12) (0.20)

... × national of Japan/Korea/Singapore -0.04 -0.39*
(0.13) (0.20)

... × national of China -0.31* -0.63**
(0.17) (0.26)

... × student in absence rate quintile 2 0.16* 0.05
(0.08) (0.12)

... × student in absence rate quintile 3 0.16* 0.22
(0.09) (0.15)

... × student in absence rate quintile 4 0.53*** 0.31*
(0.11) (0.17)

... × student in absence rate quintile 5 0.91*** 1.29***
(0.16) (0.24)

Count of past 3 days PM2.5>200 µg/m3 0.00 0.17*
(0.03) (0.09)

... × student in absence rate quintile 2 0.06* 0.01
(0.04) (0.06)

... × student in absence rate quintile 3 0.05 0.09
(0.04) (0.08)

... × student in absence rate quintile 4 0.15*** 0.13
(0.05) (0.09)

... × student in absence rate quintile 5 0.44*** 0.65***
(0.07) (0.12)

Observations 2,274,381 2,268,906 2,297,246 2,291,723 2,244,876 2,239,353
Number of students 6,267 6,267 6,439 6,439 6,439 6,439
Mean value of dependent variable (%) 3.83 3.83 3.82 3.83 3.83 3.83

Notes: The table takes the non-parametric PM2.5 specifications implemented on the full sample in
Table 2 and interacts PM2.5 with either the student’s nationality group, in columns 1 and
2, or the student’s overall absenteeism quintile, in columns 3 to 6. The reference category is a
National of other countries, in columns 1 and 2, or the first absenteeism quintile, in columns 3 to
6. An observation is a student by school day. The dependent variable is 1 if the student initiates
an absence spell on the day, and 0 otherwise. Controls include flexible weather controls, student
age bins (width 1 year), bins for first 2 semesters of enrollment, student fixed effects, year-month
fixed effects, day-of-week fixed effects, bins for days around vacations/breaks, and bins for days
around short holidays. Other notes to Table 2 apply. For brevity, we omit the number of
regressors and other regression statistics. Standard errors are in parentheses. ∗∗∗Significant at
1%, ∗∗at 5%, ∗at 10%.
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Table 7: Student absences and more prolonged pollution exposure: Non-parametric and
parametric PM2.5 specifications, with P daily lags, estimated by OLS or 2SLS

Panel A: 24-h PM2.5 > 200 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in OLS 2SLS

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 2,297,246 0.20 (0.05) -0.02 pct pt 2,294,741 0.57 (0.12) -0.07 pct pt
3 2,232,217 0.45 (0.07) -0.05 pct pt 2,226,694 0.89 (0.13) -0.10 pct pt
5 2,152,799 0.48 (0.09) -0.06 pct pt 2,147,276 1.24 (0.17) -0.15 pct pt
7 2,090,242 0.45 (0.10) -0.05 pct pt 2,079,629 1.14 (0.20) -0.13 pct pt
9 2,019,035 0.70 (0.12) -0.08 pct pt 2,003,332 0.89 (0.21) -0.10 pct pt
11 1,961,415 1.09 (0.14) -0.13 pct pt 1,943,169 1.19 (0.23) -0.14 pct pt
13 1,905,311 1.25 (0.15) -0.15 pct pt 1,884,494 1.34 (0.24) -0.16 pct pt

Panel B: 24-h PM2.5, PM2.5 squared, PM2.5 cubed (each lag) & Constrained exposure coefficients, PDL(P, 2)

Lags in OLS 2SLS

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations 100→200 µg/m3 Truncate 100 µg/m3 observ. 100→200 µg/m3 Truncate 100 µg/m3

3 2,238,487 0.21 (0.04) -0.07 pct pt 2,232,964 0.73 (0.13) -0.19 pct pt
5 2,170,142 0.34 (0.05) -0.10 pct pt 2,164,619 0.73 (0.12) -0.21 pct pt
7 2,108,047 0.37 (0.07) -0.10 pct pt 2,097,434 0.59 (0.15) -0.14 pct pt
9 2,024,965 0.45 (0.08) -0.12 pct pt 2,009,262 1.08 (0.19) -0.21 pct pt
11 1,976,146 0.48 (0.09) -0.14 pct pt 1,957,900 0.33 (0.22) -0.12 pct pt
13 1,920,944 0.61 (0.11) -0.18 pct pt 1,900,127 0.90 (0.30) -0.23 pct pt

Panel C: 24-h PM2.5 > 200 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in 2SLS: US/Canada nationality subsample 2SLS: 5th absenteeism quintile subsample

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 563,855 0.69 (0.24) -0.08 pct pt 367,307 1.34 (0.44) -0.16 pct pt
3 545,265 0.94 (0.27) -0.11 pct pt 357,393 2.46 (0.46) -0.28 pct pt
7 508,177 1.17 (0.41) -0.14 pct pt 333,932 2.50 (0.70) -0.31 pct pt
13 458,450 1.69 (0.50) -0.20 pct pt 303,045 2.48 (0.85) -0.31 pct pt

Panel D: 24-h PM2.5 > 100 µg/m3 (Yes=1, each lag) & Unconstrained exposure coefficients, UDL(P )

Lags in 2SLS: US/Canada nationality subsample 2SLS: 5th absenteeism quintile subsample

model, Obser- Cumulative effect Absence counterf.: Obser- Cumulative effect Absence counterf.:
P vations No→Yes all lags PM2.5 always No vations No→Yes all lags PM2.5 always No

1 563,855 0.15 (0.15) -0.06 pct pt 367,307 0.39 (0.28) -0.16 pct pt
3 545,265 0.45 (0.22) -0.19 pct pt 357,393 1.40 (0.37) -0.57 pct pt
7 508,177 0.99 (0.29) -0.40 pct pt 333,932 2.15 (0.48) -0.88 pct pt
13 458,450 2.33 (0.45) -0.94 pct pt 303,045 3.40 (0.76) -1.39 pct pt

Notes: The dependent variable is 1 if the student initiates an absence spell on the day, and 0 otherwise.
Distributed lag models, estimated by OLS or 2SLS (as labeled), include P lags of the daily
PM2.5 measure given by: (panels A and C) 1 if the respective 24-hour PM2.5 > 200 µg/m3 and
0 otherwise; (panel D) 1 if the respective 24-hour PM2.5 > 100 µg/m3 and 0 otherwise; and
(panel B) the respective concentration, its square and its cube. In the cubic PM2.5 specification
of panel B, we constrain the P coefficients on the PM2.5 lags to follow a quadratic, the P
coefficients on the squared PM2.5 lags to follow another quadratic, and the P coefficients on the
cubed PM2.5 lags to follow yet another quadratic. Panels C and D restrict the 2SLS estimation
sample to nationals of US/Canada or to students in the top absenteeism quintile (as labeled).
An observation is a student by school day. All controls and notes reported in Table 2 apply (the
cubic PM2.5 specifications additionally includes cubes of fitted ventilation-induced PM2.5). For
brevity, we omit the number of regressors and other regression statistics. Standard errors (SE)
are in parentheses. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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(a) Absence rates, over school days

(b) Absence rates, across individual students

(c) School days per absence spell, across students

Figure 1: Distribution of absence rates: (a) over school days, and (b) across individual
students in the sample (shown up to 40% for better visualization). Panel (c) reports the
distribution across individuals of the ratio of a student’s total school days to total absence
spells (shown up to 150 days/absence spell). An observation is: (a) a school day, and (b),
(c) an enrolled student.
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(a) By student age (b) By day of the week

(c) By days to/from vacation or break (d) By calendar month, by year of enrollment

Figure 2: Absence rates over student-days in the sample: (a) by student age, (b) by day of
the week, (c) by the number of days leading up to, or following, a vacation or break, and
(d) by calendar month. In panel (d), we separately plot absence rates over the calendar
months in a student’s first year of enrollment versus subsequent years.
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(a) PM2.5 distribution (b) PM2.5 distribution: Deaseasoned

(c) Day to day shift (up or down) in PM2.5 (d) PM2.5 & temp. inversion layer 1

(e) PM2.5 & temp. inversion layer 2 (f) PM2.5 & wind speed

Figure 3: Variation in 24-hour mean PM2.5 concentration (µg/m3) in the sample: (a)
PM2.5 distribution (shown up to 500 µg/m3 for better visualization); (b) residual PM2.5
distribution, once systematic temporal variation (year-month and day-of-week) is parti-
aled out (shown up to 300 µg/m3); (c) distribution of the absolute shift in PM2.5 from
one day to the next (shown up to 250 µg/m3); (d) to (f) residual PM2.5 against residual
temperature gradients in the lower atmosphere (◦C from ground-level to 1000 mb equi-
valent altitude, and from 1000 to 925 mb), and residual wind speed (m/s). An inversion
describes a positive temperature-altitude gradient in the raw (non-deseasoned) series.
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(a) Heterogeneous effects over nationality

(b) Heterogeneous effects over age

(c) Heterogeneous effects over absenteeism quintile

Figure 5: Heterogeneous sensitivity of absences to concurrent pollution: (a) by student
nationality, (b) by student age, and (c) by student absenteeism quintile. 95% confidence
intervals on the effect of severe PM2.5 (defined as prior-day 24-hour mean > 200 µg/m3)
on the probability that an absence spell is initiated. Source: 2SLS estimates implemented
separately by subsample, reported in columns 3 to 5 of Table 3; 2SLS estimate implemented
on the full sample, reported in column 2 of Table 2.
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(a) Severe PM2.5, UDL(P ), OLS (b) Severe PM2.5, UDL(P ), 2SLS

(c) Severe PM2.5, PDL(P, 2), OLS (d) Severe PM2.5, PDL(P, 2), 2SLS

(e) Cubic PM2.5, PDL(P, 2), OLS (f) Cubic PM2.5, PDL(P, 2), 2SLS

Figure 6: Cumulative impact of more prolonged PM2.5 exposure on the probability that
an absence spell is initiated. Panels (a) to (d) show estimates, for a severe PM2.5 dummy
(24-hour mean > 200 µg/m3) specification, of the cumulative effect on absences from P
preceding days of severe PM2.5, relative to zero days of severe PM2.5. Panels (e) and (f)
show estimates, for a cubic PM2.5 (24-hour mean, its square, its cube) specification, of
the cumulative effect on absences from shifting PM2.5 on each of the P preceding days
from 100 to 200 µg/m3. Panels (a) and (b) (resp., panels (c) to (f)) implement unconstrai-
ned UDL(P ) (resp., quadratic PDL(P, 2)) distributed lag models. For the cubic PM2.5
specification, the PDL(P, 2) constrains the P coefficients on the PM2.5 lags to follow a
quadratic, the P coefficients on the squared PM2.5 lags to follow another quadratic, and
the P coefficients on the cubed PM2.5 lags to follow yet another quadratic. Distributed
lag models in panels: (a), (c) and (e) are estimated by OLS; (b), (d) and (f) are estimated
by 2SLS. In each panel, we implement a different distributed lag model as we raise P along
the horizontal axis. Point estimates and 95% confidence intervals are shown. All controls
and notes reported in Table 2 apply (the cubic PM2.5 specification additionally includes
cubes of fitted ventilation-induced PM2.5).
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A Appendix

Table A.1 reports additional robustness tests, as explained in the text. The figures that

follow provide further description of the data, and are referenced in the text.
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(a) Days enrolled in the sample, across students

(b) Total duration at the school, across departed students

Figure A.1: Distribution of enrollment across students: (a) school days observed in the
sample, and (b) time from student’s arrival at the school to departure from the school.
An observation is: (a) an enrolled student, and (b) an enrolled student who departed
in-sample.
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(a) Absence rate & days enrolled in the sample, across students

(b) Absence rate & duration at the school, across departed students

Figure A.2: A student’s overall absence rate (as in panel (b) of Figure 1) against en-
rollment, as measured by: (a) school days observed in the sample, and (b) time from
student’s arrival at the school to departure from the school. An observation is: (a) an
enrolled student, and (b) an enrolled student who departed in-sample.
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(a) Day to day shift (up or down) in ground temperature

(b) Day to day shift (up or down) in ground humidity

Figure A.3: Ground-level weather conditions persist from one day to the next. Distribution
of the absolute shift in daily mean ambient: (a) temperature, and (b) relative humidity,
from one day to the next. We partial out systematic temporal variation (year-month and
day-of-week), though doing so makes little difference.
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