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Abstract 

Children exposed to pollutants like lead are more disruptive and have lower achievement. 

However, little is known about whether lead-exposed children affect the long-run outcomes of 

their peers. We estimate these spillover effects using new data on preschool blood lead levels 

(BLLs) matched to education data for all students in North Carolina public schools. We compare 

siblings whose school-grade cohorts differ in the proportion of children with elevated BLLs, 

holding constant school and peers’ demographics. Having more lead-exposed peers is associated 

with lower high-school graduation and SAT-taking rates and increased suspensions and absences. 

Peer effects are larger for same-gendered students. 
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I. Introduction 

A growing literature shows that early life exposure to pollution hinders 

health and human capital accumulation (Persico, Figlio, and Roth 2020; Alexander 

and Currie 2017). For example, lead poisoned children are more likely to be 

suspended and commit crimes (Aizer and Currie 2019; Reyes 2015) and have worse 

academic achievement (Ferrie, Rolf, and Troesken 2012; Grönqvist, Nilsson, and 

Robling 2020; Hollingsworth et al. 2020), consistent with lead’s impacts on 

children’s neurological development. These associations manifest at blood lead 

levels (BLLs) as low as 1–2 micrograms per deciliter (µg/dL) of blood (Aizer et al. 

2018; Feigenbaum and Mueller 2016). Lead may also affect children’s disability 

status (Gazze 2016). These negative effects of lead exposure are costly to children, 

families, and society in terms of reduced tax revenues and increased expenditure 

on special education, crime, and health care (Reyes 2014). Recent estimates suggest 

that at least 500,000 young children are still poisoned by lead each year in the US 

(Aizer et al. 2018). 1 Low-income children are up to 12 times more likely to have 

elevated BLLs (CDC 2005), and Black children are more than twice as likely to be 

lead poisoned than their White peers (CDC 2005). 

So far, the literature has focused on estimating the effects of pollution and 

lead poisoning on directly exposed children. However, these children interact daily 

with peers. Because children exposed to lead are more disruptive, have lower 

achievement, and engage in risky behavior, the effects of lead exposure might spill 

over to affect everyone in the classroom. While these spillovers may have long term 

consequences for students, few papers credibly document the long-run impacts of 

childhood peers. In this paper, we document these spillover effects of lead 

 
1 In this paper, we use the words lead poisoning and lead exposure interchangeably. We follow the 

CDC guidelines and define lead poisoning/elevated BLLs as BLLs above 5ug/dL. 
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poisoning on children who are not directly exposed to lead, but are exposed to lead 

poisoned school peers.  

In addition to considering the impacts of lead, a growing literature shows 

that various types of common pollution exposure (from highways, toxic sites, etc.) 

cause worse performance on exams and behavioral issues associated with 

suspensions from school (Heissel, Simon, and Persico 2021; Persico and Venator 

2021). If one child’s exposure to pollution causes negative long run spillover effects 

onto his peers, this increases the true costs of pollution and changes our 

understanding of how pollution might affect long run human capital attainment. 

When considering how common it is for low-income children to be exposed to 

pollution sources, the finding that there are spillovers from pollution exposure 

means that most children and public schools in the U.S. likely bear some of the cost 

of pollution. Our data indicate that in North Carolina public schools between 2000 

and 2017, 98.9 percent of middle school students without known lead exposure had 

at least one lead poisoned child in their school cohort, 79.9 percent were in a school 

cohort with at least 5 percent lead poisoned peers and 52.5 percent were in a school 

cohort with at least 10 percent lead poisoned peers.2 Thus, the spillover effects of 

lead exposure are a heretofore unexplored mechanism through which social 

context, pollution, and built environment could affect schools and children’s 

outcomes.  

Rigorously estimating peer effects is challenging because peers influence 

each other simultaneously, so it is unclear whether a disruptive child causes their 

classmates to misbehave, or whether the classmates cause them to be disruptive 

(i.e., the reflection problem). In addition, peer groups are not randomly assigned; 

 
2 National Childhood Blood Lead Surveillance Data from the Centers for Disease Control and 

Prevention suggest that lead exposure might be even more pervasive in the rest of the US. Indeed, 

while the share of children tested for lead poisoning in North Carolina between 2012 and 2017 was 

similar to the national average, the percent of NC children with BLLs above 5ug/dL was 0.4-0.7% 

compared to 2-3% in the US overall. 
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they are selected based in part on unobserved characteristics (i.e., the selection 

problem). We overcome these identification challenges by using a novel data set 

and rigorous identification strategy. We use rich education data from public schools 

in North Carolina linked to data on children’s BLLs measured by age six and 

compare siblings whose cohorts happen to randomly differ in the proportion of 

children with high preschool BLLs in their grade-cohort in the same school. Our 

preferred specification includes family, school, grade, birth month, birth order, and 

year fixed effects, and controls for a broad set of time varying child and cohort 

demographic characteristics, as well as school quality. Since lead poisoning has 

been linked to behavioral incidents, criminality, and lower test scores, we use it as 

a proxy for peers with potentially disruptive behavior and lower academic 

achievement. This methodology avoids the reflection problem because a child 

cannot affect the BLLs of their peers, but lead poisoning might affect children 

negatively, which in turn might affect peers. Including family fixed effects 

mitigates the selection problem by controlling for unobserved family characteristics 

that could be correlated with both peers’ quality and a child’s outcomes, such as 

selection into schools with fewer lead poisoned children. Controlling for peers’ race 

and socioeconomic status suggests that our estimated effects are due to lead 

poisoning and not peer demographics.  

We find that a ten percent increase in the share of peers in a child’s cohort 

that are exposed to lead is associated with a 0.2 percentage point increase in the 

likelihood of suspension from school, a 1.6 percent increase. A ten percent increase 

in the share of peers in a cohort exposed to lead is also associated with a 1.7 

percentage point decrease in the likelihood that a child graduates high school, a 2 

percent decrease in the graduation rate. We also find that having more lead-exposed 

children in a child’s cohort is associated with a higher likelihood of chronic 

absenteeism and dropping out of school, and a decrease in the likelihood of taking 

the SAT. Disruptive peers disproportionally affect the outcomes of Black students, 
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suggesting that the spillover effects of pollution could be contributing to persistent 

inequality in human capital accumulation. These findings generally hold in samples 

limited to locations where we measure lead exposure and sibling matches less 

noisily, and where students are less likely to switch schools in response to 

disruptive peers. Our results are also largely robust to further testing for school-

switching directly and by including sibling-by-school fixed effects.  

We also find that disruptive peers disproportionally affect same-gendered 

and, in the short run, same-race students. Furthermore, we find that students going 

to school with a higher share of lead-exposed peers are more likely to be involved 

in behavioral incidents with these disruptive students. Finally, exposure to 

disruptive peers in middle school, rather than elementary school, appears to drive 

long-run outcomes. We interpret our results as suggestive that homophily in 

network formation might drive the spillover effects of lead poisoning through peers 

influencing each other to engage in similar disruptive behavior. 

This paper makes three main contributions. First, this is the first study to 

investigate the spillover effects of lead exposure on peers’ academic achievement, 

behavior, and long-run outcomes. By exploiting rich individual-level data, we 

assess the costs of the spillover effects of lead exposure. Furthermore, our findings 

have implications for more than just lead: our estimates imply that the true costs of 

pollution are likely higher than the direct costs alone, especially for pollutants that 

are known to affect behavior and suspensions from school.  

Second, this is among the first studies to examine the long-run impacts of 

disruptive peers, as well as the channels through which these effects manifest. 

Current evidence on the long-run effects of peers is mixed. While Carrell, Hoekstra, 

and Kuka (2018) show that having peers exposed to domestic violence lowers 

wages and educational attainment, Bietenbeck (2020) finds positive long-run 

effects from peers who repeat kindergarten. We show that exposure to lead 

poisoned peers can have long term consequences, including dropping out of high 
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school, even for those children who were not themselves exposed to lead. We also 

find suggestive evidence on the mechanisms – that homophily within groups and 

exposure to disruptive peers in middle school might drive some of these effects 

through the development of noncognitive skills. In particular, our robust results on 

suspensions and chronic absenteeism strengthen the suggestive evidence provided 

by Carrell, Hoekstra, and Kuka (2018) that noncognitive skills are a mechanism 

through which disruptive peers affect long-term outcomes.  

Third, we contribute to a growing literature documenting the importance of 

neighborhood effects for health, education, and behavior outcomes. Our findings 

on the long-term effects of exposure to lead poisoned children might help explain 

why high-poverty and high-pollution neighborhoods have persistent effects 

(Chetty, Hendren, and Katz 2016). Low-income children are more likely to live 

near sources of toxic waste (Persico, Figlio, and Roth 2020; Banzhaf, Ma, and 

Timmins 2019), and neighborhood characteristics contribute significantly to health 

disparities, for example in asthma rates (Alexander and Currie 2017). Our paper 

presents another channel through which inequalities in prevalence of pollutants at 

the neighborhood level contribute to the persistence of inequality in the US.  

II. Background 

Lead Exposure 

Ingestion or inhalation of lead causes lead poisoning, which, if severe, can 

induce widespread brain damage (Meyer, McGeehin, and Falk 2003). Small 

children are especially exposed to lead-contaminated soil and dust from paint due 

to normal hand-to-mouth activity. Moreover, lead is most damaging to small 

children: they absorb and retain more lead than adults and their neurological 

development is particularly susceptible to neurotoxins (Meyer, McGeehin, and Falk 

2003). Specifically, lead causes the axons of nerve cells to degenerate and lose their 

myelin coats (Meyer, McGreehin and Falk, 2003). Early life exposure to lead has 
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been shown to cause cognitive disabilities, lower test scores, increase suspensions 

from school, and even affect crime and wages in adulthood (Persico, Figlio, and 

Roth 2020; Gazze 2016; Grönqvist, Nilsson, and Robling 2020). Lead has also been 

associated with problems in cognition, executive functioning, abnormal social 

behavior (including aggression), and fine motor control (Cecil et al. 2008). Reyes 

(2014) estimates that lead poisoning costs $200 billion for a single birth-year 

cohort. 

Peer Effects in the Classroom 

Peer effects can work through different channels, both positively and 

negatively. Children teaching each other is an example of a positive peer effect, 

while disruptive behavior can negatively affect the learning of all children in a 

classroom (Carrell and Hoekstra 2010; Figlio 2007; Hoxby 2000; Lazear 2001). 

Using the random assignment of roommates in college, Sacerdote (2001) finds that 

roommates can influence college grade point averages positively or negatively. A 

variety of mechanisms link peer composition and academic outcomes, including 

differential curricular offerings and instructional practices in classes with higher 

average ability (Jackson 2013); social dynamics in a student’s reference group 

(Hoxby 2000; Brenøe and Zölitz 2020); and low performing students not keeping 

up with higher-achieving peers (Imberman, Kugler, and Sacerdote 2012). Peers 

might also draw disproportionately on a teacher’s time and influence class culture 

and standards.  

One strand of the literature examines how low-performing and disruptive 

children affect peers. Having more low achieving peers or peers with learning 

disabilities is associated with lower achievement (Hoxby 2000; Fletcher 2010). 

Moreover, boys with feminine sounding names and children exposed to domestic 
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violence are both more likely to be disruptive and negatively affect peers’ 

achievement and behavior (Figlio 2007; Carrell and Hoekstra 2010).3 

Less is known about the long-term impacts of disruptive peers or the 

mechanisms through which disruptive peers affect long-run outcomes. Carrell, 

Hoekstra, and Kuka (2018) find that having more disruptive peers in elementary 

school leads to lower earnings in adulthood and lower college attendance. Bifulco, 

Fletcher, and Ross (2011) find that a higher percentage of high school classmates 

with college-educated mothers increases school completion and college attendance. 

Bobonis and Finan (2009) find that the PROGRESA program in Mexico increased 

college attendance of non-eligible peers. Black, Devereux, and Salvanes (2013) 

find that a higher share of girls in ninth grade reduces educational attainment and 

the likelihood of selecting an academic track for college but lowers teen birth rates.4 

By contrast, Anelli and Peri (2019) find that peers’ gender in high school does not 

affect college major choice, college performance, or income in Italy.   

In this paper, we show that children who were exposed to lead are associated 

with both short- and long-run negative outcomes for their peers. We provide fresh 

evidence on the spillover effects of lead, the long-run effects of having disruptive 

peers, and the mechanisms through which peers affect long-run outcomes. 

III. Data Description 

Education Data 

We use 1997-2017 population-level data on every child attending public 

school in North Carolina, including charter schools, linked to blood lead test 

records when available. These unique data include home address identifiers that 

 
3 There are many excellent papers on short run peer effects. See Epple and Romano (2011) and 

Sacerdote (2011) for overviews of the literature on peer effects. 
4 Relatedly, Balestra, Eugster, and Liebert (2020) find that having peers with special needs lowers 

performance, the probability of entering post-compulsory education, and income.  
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enable us to match siblings. To our knowledge, this is the first state-level data set 

linking individual BLLs to schooling records that allow the matching of siblings 

and students to classrooms. The data also include detailed information on students’ 

race and economic disadvantage status in a given year, annual standardized test 

scores administered by the state, suspensions, absences, high school dropout and 

completion information, college intentions, as well as teacher characteristics.  

While we use the entire sample to calculate the number of children per 

school-grade-year cohort who have elevated BLLs (as well as all of our cohort 

controls), for our main analysis we drop children who do not have siblings, as well 

as children who live in large buildings since we cannot reliably identify families in 

those buildings. In Section V, we show how omitting sibling fixed effects and using 

the whole sample affects our estimates and we test for whether error in sibling 

matches affects the results. Our main analysis also drops students who themselves 

have an elevated BLL and estimates the spillover effects of lead exposure on 

children without known lead poisoning. The Data Appendix provides more 

information on the linkage performed by the North Carolina Education Research 

Data Center (NCERDC) and our sibling identification algorithm.  

For our contemporaneous outcomes, we use the average of standardized 

mathematics and reading end-of-grade (EOG) test scores administered in grades 3-

8, indicators for being absent for more than 21 days,5 and having at least one out-

of-school (OOS) suspension,6 as well as the number of days the child was 

suspended out-of-school each year in grades 6-12. We also construct indicators for 

being suspended on the same day and for being involved in a behavioral incident 

with a lead-exposed cohort peer. Because EOG exams and exam scales changed 

 
5 The data break down absences into 0-7, 8-14, 15-21, and more than 21 days. We focus on the last 

bin as an indicator of chronic absenteeism.  
6 We focus on OOS suspensions because the reporting requirements for these did not change 

during the sample period, while in-school suspension reporting became more stringent over time. 
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multiple times over the sample period, we limit our analysis to exams taken 

between 1996-1997 and 2004-2005, which were administered to all children and 

had a similar structure.7  

For our long-term outcomes, we use indicators for high school graduation, 

dropping out,8 community and four-year college intentions in 12th grade, and 

whether the student took the SAT in high school. The Data Appendix provides more 

details on the construction of our outcome variables.  

We construct various individual, cohort, and time-varying school 

covariates. Individual-level covariates include indicators for gender, race, being 

economically disadvantaged in a year, having a blood lead level test, birth month, 

and birth order. Our cohort level covariates include the share of cohort peers that 

are non-white, economically disadvantaged, and tested for lead. The school-year 

covariates include the share of teachers with a Master’s degree, school size, and the 

stability rate which is defined as the percentage of students from the October 

membership count who are still present in the second semester (90 days later). 

 

Blood Lead Levels Data  

 We obtained individual blood lead test records for children up to age six 

from the North Carolina Department of Health and Human Services for the years 

1992-2016. Test records include the date of blood draw, test result in µg/dL, and 

the child’s identifier. We define a child as having an elevated BLL (EBLL) if their 

 
7 During our sample period, the scale for the math EOG exam changed in 2001-2002. The reading 

EOG exam scale changed in 2002-2003. 
8 The data include separate variables for dropping out and graduating. Dropping out of school is 

distinct from school switching, death, moving, promotion, graduation, and other confounding 

factors, and specific reason codes are given for dropping out. If a student is ever observed as 

graduating, we count them as graduating and not dropping out. 



11 

highest BLL is ≥5 µg/dL, the upper reference interval value per the 2012 guidelines 

by the Centers of Disease Control and Prevention (CDC 2013).9 

Childhood lead screening is not mandatory in North Carolina. However, 

federal guidelines mandate that all children on Medicaid are screened for lead 

poisoning at ages one and two. Thus, we expect screening to be higher among low-

income children, who have a higher likelihood of lead exposure. We construct 

indicators for children missing blood lead tests and include these children in our 

analysis. We compute the share of a child’s peers with EBLLs using all children in 

the cohort or classroom as the denominator, independently of whether they have a 

blood lead test. Figure 1 plots the share of children with blood tests and the share 

of children with EBLLs by birth cohort in our sample, showing that as lead 

screening increases over time, the incidence of lead poisoning decreases. Despite 

this secular trend, Appendix Figure A1 shows that first-born children have only 1.5 

percentage points more lead-exposed peers than their younger siblings, suggesting 

that our identification strategy is not likely to be driven by differences in outcomes 

between older and younger siblings. Given the large literature on birth order 

showing that earlier-born siblings typically have better outcomes (see, e.g., Black 

et al., 2005; Conley and Glauber, 2006; Price, 2008; and Booth and Kee, 2009), it 

is unlikely that birth order effects would be driving our results since this would 

require that later-born siblings would have better outcomes than earlier-born 

siblings. Moreover, in our regressions on the siblings sample we control for birth 

order fixed effects. 

Sample Description 

 
9 This value is the 97.5th percentile of BLLs in U.S. children aged 1–5 years from the combined 

2007–2008 and 2009–2010 cycles of the National Health and Nutrition Examination Survey. 

Starting in 1991 and prior to 2012, CDC defined BLLs ≥10 µg/dL as the "level of concern" for 

children aged 1–5 years. In robustness checks, we define a child as having an elevated BLL if 

alternatively the mean of their BLLs is ≥5 µg/dL or their highest BLL is ≥10 µg/dL. 
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Since our blood lead level data begin in 1992 and include children tested up 

to age 6, we restrict our sample to children born after 1986. Table 1 presents 

summary statistics for the sample of all children attending public schools in North 

Carolina (3.3 million children, Column 1) and our analysis sample of siblings (1.3 

million children, Column 2). The Data Appendix details our sample selection 

criteria. 39.6 percent of children in our analysis sample have a blood lead test, and 

10.9 percent have at least one test greater or equal than 5 µg/dL, slightly higher 

shares than in the full sample in Column 1. Children in our sibling sample are also 

marginally more likely to be economically disadvantaged, less likely to be Black, 

attend schools with slightly larger cohorts but have slightly more teachers with a 

Master’s degree, and have slightly better outcomes. Overall, children with siblings 

are fairly similar to the full sample, and our results are very similar when we include 

all children in a model using school-grade and grade-year fixed effects, which lends 

support to the external validity of our results.  

Children with EBLLs are more likely to be Black, be economically 

disadvantaged (ED) as measured by an indicator for having ever received free or 

reduced-price lunch, and have teachers without Master’s degrees (Columns 4 and 

5). The average cohort in our sample includes 225 children. Children who spend at 

least one elementary school year in a cohort with above median share of lead-

exposed children (or >10.1 percent of cohort peers) have lower test scores, higher 

suspension rates, lower graduation and SAT taking rates, and have a lower 

probability of intending to attend a four-year college (Columns 6 and 7). These 

children are also more likely to be Black, be economically disadvantaged, have 

teachers without Master’s degrees, and have a blood lead test themselves. Our 

identification strategy controls for family background with family fixed effects, 

assuaging concerns of omitted variable bias due to these differences. 
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IV.  Identification Strategy 

Rigorously estimating peer effects has proven difficult methodologically 

and due to limitations of existing data. First, peers influence each other 

simultaneously, so it is unclear whether a disruptive child causes their classmates 

to misbehave, or whether the classmates cause them to be disruptive. This is called 

the reflection problem (Manski 1993). Second, peer groups are not randomly 

assigned; they are selected based in part on unobserved characteristics (Angrist 

2014). Children in the same classroom often share similar backgrounds. Moreover, 

attentive parents might remove their children from classrooms with more disruptive 

peers. Because of this self-selection into groups, it is challenging to determine 

whether the outcome is a causal effect of the peers or the reason the individuals 

joined the peer group (Carrell and Hoekstra 2010; Hoxby 2000). Third, unobserved 

factors might simultaneously cause students and their peers to perform poorly.  

We solve the reflection problem by finding a predetermined proxy for peer 

ability: lead exposure. Consistent with the literature on lead exposure and academic 

outcomes, being exposed to lead is strongly associated with worse academic 

achievement, a higher likelihood of suspension, and a lower probability of 

graduating or intending to attend a four-year college in our sample (Figure 2). 

Previous research has proxied for peer ability and behavior using 

preexisting measures such as peers’ race and gender (Hoxby and Weingarth 2006; 

Hoxby 2000), feminine-sounding names of male peers (Figlio 2007), peers’ 

retention status (Lavy, Paserman, and Schlosser 2012), peers’ disability (Fletcher 

2010), or peers’ exposure to domestic violence (Carrell and Hoekstra 2010). Our 

approach is similar in that we use the presence of peers with elevated blood lead 

levels to estimate how early health shocks (i.e., lead exposure) spill over within 

school contexts to exacerbate inequality through peer effects. This is a valid 

approach as a student cannot affect their peers’ elevated blood lead levels. 
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Yet, a child’s lead exposure could be correlated with their socioeconomic 

status, which in turn has been associated with peers’ learning disruptions (Hoxby 

and Weingarth 2006; Hoxby 2000). Thus, to causally identify the spillover effect 

of a child’s lead exposure on their peers we further control for the share of cohort 

peers who are non-White or economically disadvantaged. We also control for the 

share of the student’s peers who have been tested for lead exposure. Because 

screening rates are higher among low-socioeconomic status students, additionally 

controlling for screening rates mitigates concerns about selection into testing. 

Finally, we exclude children with known EBLLs so that we can isolate the spillover 

effects of lead poisoning on peers who are not lead poisoned. 

We first examine how lead exposure affects contemporaneous outcomes, 

that is test scores, suspensions from school, and absences of peers without known 

EBLLs. To start, we compare students who attend the same school but whose grade 

cohorts randomly happen to have different proportions of children with EBLLs. 

This specification closely follows the one used by Carrell, Hoekstra, and Kuka 

(2018) and includes school-by-grade and grade-by-year fixed. The school-by-grade 

fixed effects control for unobservable characteristics of students who attend the 

same school and grade. Grade-year fixed effects account for common shocks to a 

cohort. This estimating equation is as follows: 

(1) 𝑌𝑖𝑠𝑔𝑡 = 𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
+ 𝜋𝑋𝑖𝑡 + 𝜔𝑆𝑠𝑔𝑡 + 𝜂𝑠𝑔 + 𝜙𝑔𝑡 + 𝛾𝑒 + 휀𝑖𝑠𝑔𝑡 

where 𝑌𝑖𝑠𝑔𝑡 is some outcome for child i who either has not been screened for lead 

exposure or has always tested below 5 µg/dL, attending school s, in grade g and in 

year t. 
∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
 is the share of students in a child’s school-grade-year 

cohort (or school-classroom-grade-year cohort) with known EBLLs not including 

the student themselves. The coefficient 𝛽1 on  
∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
 captures the 

effect of having 100 percent of a child’s peers in a given year with known EBLLs. 
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Xit is a vector of child-specific control variables, including gender, race, birth 

month fixed effects,  economically disadvantaged (ED) status in each year, and an 

indicator for whether a child was tested for lead. The vector 𝑆𝑠𝑔𝑡 controls for 

time-varying school-grade characteristics: the percent non-White students by 

school-grade-year, the percent economically disadvantaged by school-grade-year, 

and the share of students who have been tested for lead exposure by school-grade-

year. We also control for school time-varying characteristics: annual school size, 

the share of teachers with Master’s degrees and the school-level stability rate. 𝜂𝑠𝑔 

is a school-by-grade fixed effect to account for school-by-grade-specific shocks. 

𝜙𝑔𝑡 is a grade-by-year fixed effect to account for secular cohort-level trends. 𝛾𝑒  is 

an exam type fixed effect that restricts our comparison to children who took the 

same exam. We cluster standard errors at the school level to account for arbitrary 

correlation in the error terms. 

However, this specification does not account for two potential sources of 

bias. First, school composition may change over time, and perhaps in response to 

peers’ quality. In addition, families select into schools. Thus, in our preferred 

specification, we compare siblings whose grade cohorts randomly happen to have 

different proportions of children with EBLLs. Including family fixed effects 

mitigates the selection problem by controlling for unobserved family characteristics 

that could be correlated with both peer quality and child’s outcomes, such as 

parents’ propensity to move their children to schools with fewer lead poisoned 

children. Moreover, an advantage of the North Carolina setting is that over most of 

our study period there were relatively few options for choosing public schools – 

there was no statewide voucher program (until quite recently) and relatively few 

charter schools, which accept students independently of catchment areas (and 

whose students we observe). Thus, the only way to attend a different school than 

the one assigned by catchment zone in most places was by moving or attending, 
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and fully paying for, private school. Only 5.3 percent of all North Carolina children 

attended private school over this time period (NC DPI 2020). Thus, as we will 

show, selection into schools was minimal. Including school fixed effects further 

controls for students’ characteristics that are common to the school’s catchment 

area. Remaining idiosyncratic variation in the BLLs of siblings’ cohorts offers 

plausibly exogenous variation to identify the spillover effects of lead and the effects 

of peer quality more broadly.10 Our main estimation equation is thus given by:  

(2)  𝑌𝑖𝑗𝑠𝑔𝑡 = 𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
+ 𝜋𝑋𝑖𝑡 + 𝜔𝑆𝑠𝑔𝑡 + 𝜃𝑗 + 𝛿𝑠 + 𝜏𝑔 + 𝜎𝑡 + 𝛾𝑒 +

휀𝑖𝑗𝑠𝑔𝑡  

which is identical to equation (1) except for the fact that we substitute the school-

by-grade fixed effects 𝜂𝑠𝑔 and grade-by-year fixed effects 𝜙𝑔𝑡 with family (𝜃𝑗), 

grade (𝜏𝑔), school (𝛿𝑠), and year (𝜎𝑡) fixed effects, and include birth order fixed 

effects in Xit.  

 There are three main threats to the internal validity of our estimates. First, 

our estimates would be biased if a child’s peers’ BLLs were correlated to the child’s 

own BLLs, or their ability, other than through classroom interactions. To address 

this issue, we measure lead exposure prior to school entrance. Moreover, family 

fixed effects account for omitted variables such as unobserved lead exposure or 

parental characteristics that could confound the effects of peer quality. School fixed 

effects help us account for selection into schools. Second, our estimates could be 

biased in the presence of common shocks that are systematically correlated with 

the proportion of peers with BLLs in a school-grade-year. Time-varying school and 

teacher controls help assuage concerns that these channels drive our results. Third, 

bias could arise if high-quality students systematically select out of schools when 

 
10 97.9 percent of sibling groups in our sample present variation in the share of lead-poisoned peers, 

suggesting that selection into treatment might not be a concern in our sample (Miller, Shenhav, and 

Grosz 2019).  
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there are more students with EBLLs. We test for school switching across siblings 

in Section VD, where we also show that our results are largely robust to including 

school-by-family fixed effects.   

 Finally, it is important that we have enough variation in our regressor of 

interest, the share of children with EBLLs in a school-grade-year, after partialling 

out our preferred set of controls and fixed effects. Appendix Figure A3 shows the 

distribution of the residuals obtained from a regression of the share of a student’s 

peers with EBLLs at the school-grade-year level on our preferred set of controls 

and fixed effects, including family, school, grade, and year fixed effects.  

V. Results 

A. The Contemporaneous Effects of Peers Exposed to Lead on Child Outcomes  

We begin by showing the effects of peers with elevated BLLs on 

contemporaneous standardized test scores, out-of-school suspensions, and 

absences. Figure 3 shows that the share of a child’s peers with EBLLs is negatively 

correlated with the child’s test scores, and positively correlated with their likelihood 

of receiving a suspension in the raw data. Table 2 confirms these patterns are causal. 

Panel A  presents the results for the effect of additional cohort peers who are lead 

poisoned on a child’s outcomes using equation (1), while Panel B uses our preferred 

specification in equation (2) with family, school, grade, and year fixed effects.11 

The two panels show a very similar pattern of results: a higher share of peers with 

EBLLs is associated with a higher likelihood of, and longer, out-of-school 

suspensions, as well as a higher likelihood of absences. Generally, within-siblings 

comparisons appear to estimate slightly smaller effects than comparisons within a 

 
11 The sample size is smaller than in Column 1 of Table 1 due to singletons and missing outcomes. 
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school-grade, suggesting that family fixed effects better control for endogenous 

selection.12 

In Panel B, we find that a ten percent increase in the proportion of cohort-

level peers with elevated BLLs in a given year leads to a 0.2 percentage point 

increase in the likelihood of out-of-school suspension, compared to siblings in the 

same school. In other words, attending school with 10 percent more lead poisoned 

peers increases the suspension rate by 1.6 percent above the mean of 12.4 percent, 

and increases the suspension duration by one hour based on a 8-hour school day. 

Moreover, these increased suspensions appear to be driven at least in part by 

suspensions on the same day as suspensions for lead poisoned children and 

behavioral incidents including lead poisoned children.13 Finally, we note that the 

effect of lead poisoned peers on suspensions is similar to the effect of economically 

disadvantaged peers, while the coefficient on non-White peers is negative.  

Increased suspensions for peers of lead poisoned children could be due to 

more punitive policies at the cohort-level. For example, teachers might be more 

prone to suspending students for minor misbehavior in cohorts with more disruptive 

students. To disentangle peers’ behavior from school policies, we look at the effects 

of lead poisoned peers on absences, which should not be driven by school policies. 

We find that a 10 percent increase in the proportion of cohort-level peers with 

elevated BLLs increases the likelihood of chronic absenteeism by 0.4 percentage 

points, or 10 percent on a base of 4.2 percent, suggesting that our results are driven 

by students misbehaving more when they have more lead poisoned peers and not 

blanket-style school policies. Finally, some specifications show a decrease in test 

 
12 Appendix Table A1 estimates the same specification as in Panel A of Table 1 on the sibling 
sample to see if results differ when restricting to siblings. We find similar results using the sibling 

sample compared with the sample using all children. 
13 Placebo estimates in Appendix Figure A.2 show that we estimate effects of higher shares of 

peers with EBLLs on the likelihood of being suspended or involved in an incident with a student 

with EBLL that are 154-165% of what the mere size of the proportion of children with EBLLs in a 

given cohort implies. 
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scores among students with more lead poisoned peers, although the point estimate 

is positive and not statistically significant at conventional levels in our preferred 

specification. This suggests that the effects of having lead poisoned peers on the 

long run outcomes described in Section VB may operate through noncognitive 

skills and behavior, rather than a learning channel.14 However, it is difficult to fully 

disambiguate between these explanations. 

While we use cohort-level variation in our primary specification to avoid 

the issue of selection into classrooms by students, Panel C of Table 2 presents the 

estimates of the effect of having more lead poisoned peers in the same classroom 

using family, school, grade, and year fixed effects and all controls specified in 

equation (2). We define peer exposure at the classroom level by averaging the 

number of peers with EBLLs across all classes a child takes in that year. Thus, if 

students switch classrooms, they will have more peers overall.15 We find that 

classroom peers have a larger effect on suspensions and absences than cohort peers. 

These results could be due to both stronger connections with classroom peers and 

selection into classrooms.  

B. Long Term Effects of Peers Exposed to Lead 

We next examine whether a child’s lead poisoned peers in elementary and 

middle school affect that child’s long-run outcomes. Table 3 presents estimates of 

these long-run effects by estimating the following regressions at the student level: 

(3)  𝑌𝑖𝑠𝑔𝑡  =  𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 + 𝜋𝑋�̅� + 𝜔𝑆𝑠𝑡

̅̅ ̅̅ + 𝜂𝑠𝑔 + 𝜙𝑔𝑡 +   휀𝑖𝑠𝑔𝑡 

 
14 Several recent papers have shown that noncognitive skills are very important to long run outcomes 
over and above test scores, such as Chetty et al. (2011) and Jackson (2018). 
15 We only have classroom-level data for a subset of the children in the sample from 2006 to 2017, 

whereas the cohort level variation is available from 1997-2017. Since we restrict test scores to 1997-

2005, we cannot estimate the effects of classroom peers on test scores. Children in grades 6 and up 

usually switch classrooms, so they are counted as many times as the number of classes they take 

with each student. 
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(4)  𝑌𝑖𝑗𝑠𝑔𝑡  =  𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 + 𝜋𝑋�̅� + 𝜔𝑆𝑠𝑡

̅̅ ̅̅ +  𝜃𝑗 + 𝛿𝑠 + 𝜏𝑔 + 𝜎𝑡 +   휀𝑖𝑗𝑠𝑔𝑡  

where 𝑋�̅� and 𝑆𝑠𝑡
̅̅ ̅̅  include all of the individual-level controls from our primary 

specification, as well as the average share of non-White peers, the average share of 

economically disadvantaged peers, the average share of peers tested for lead, and 

the average school size, school stability rate and share of teachers with masters 

degrees over elementary and middle school. Equation (3) mirrors equation (1) by 

including school-by-grade (𝜂𝑠𝑔) and grade-by-year (𝜙𝑔𝑡) fixed effects. In equation 

(4), 𝜃𝑗, 𝛿𝑠, 𝜏𝑔 and 𝜎𝑡  are family, school, grade, and year fixed effects as in equation 

(2). Grade and year are measured during the child’s last observation. The 

coefficient 𝛽1 captures the effect of having 100 percent of peers with known EBLLs 

in elementary and middle school. 

Panels A and B of Table 3 present estimates of 𝛽1 from equations (3) and 

(4) respectively. We examine the effect of elementary and middle school peers with 

EBLLs on graduation and dropout rates, 4- and 2-year college intentions, and SAT 

taking. As with short-run outcomes, within-siblings comparisons appear to estimate 

slightly smaller effects than comparisons within a school-grade, suggesting that 

family fixed effects better control for endogenous selection. 

Our preferred specification in Panel B of Table 3 shows that a child whose 

average cohort in elementary and middle school has 10 percent more lead poisoned 

peers has a 1.7 percentage point lower likelihood of graduating high school, 

representing a 2 percent decrease on the mean graduation rate of 89 percent. We 

also find that having 10 percent more lead poisoned peers increases the likelihood 

of dropping out by 0.48 percentage points and decreases the likelihood of taking 

the SAT while in high school by 2.3 percentage points, or a 4.3 percent decrease on 

the mean rate of 53.2 percent. Finally, a higher share of lead poisoned peers 

decreases the likelihood that a student intends to attend a four-year college in Panel 
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A, although this result is not statistically significant at conventional levels in our 

preferred specification. 

 Panel C of Table 3 estimates the long-run effect of lead poisoned peers in 

elementary and middle school cohorts separately. We find that long-run outcomes 

are largely driven by middle school peers. This result is in line with our findings in 

Table 2—that exposure to disruptive peers affects behavior in middle school, which 

in turn could set students on a path to lower graduation and college attendance rates. 

Peers in middle school also could be especially impactful for long-run outcomes if 

middle school is a time when some students are deciding whether to remain in 

school. Finally, student learning and behavior in middle school might be especially 

important for college readiness (Naven 2019). 

While we find mixed evidence of peer effects on test scores, we estimate 

effects on college going that are similar in magnitude to those obtained by Carrell, 

Hoekstra, and Kuka (2018). Those authors find that one male peer exposed to 

domestic violence increases the number of suspensions by 0.01 (although this result 

is not statistically significant) and decreases four-year college going by 1.4 

percentage points. Using our cohort results and assuming that there are 25 students 

in a class, we calculate that adding an additional lead poisoned peer to each class, 

a 0.04% increase in the share of lead poisoned peers, would lead to a 0.08 

percentage points increase in the probability of being suspended, a 12-minutes 

increase in the suspension duration, a 0.92 percentage point reduction in the 

likelihood of taking the SATs, a proxy for college intentions, and a 0.67 percentage 

point reduction in graduating high school.   

C. Mechanisms and Heterogeneity of Estimated Effects 

We hypothesize that children friends’ groups might drive peer effects. As 

we lack data on friendship networks, we exploit the fact that children likely sort 

into groups with similar characteristics (Jackson 2010). Table 4 presents both the 
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effect of exposure to a higher share of lead poisoned peers and the additional effect 

of exposure to a higher share of lead poisoned peers of the same gender (Panel A), 

race (Panel B), and same gender and same race (Panel C). We find that same gender 

peers with EBLLs have larger effects on both short-run outcomes (suspensions) and 

long-run outcomes (high school graduation and SAT taking), while same-race peers 

have larger effects on suspensions only. The limited effects of same-race peers on 

long-run outcomes suggest the effects of homophily in networks might diminish 

over time, potentially due to selection.  

Because exposure to lead poisoned peers could interact with a child’s 

background to shape their outcomes, we next study heterogeneity in peer effects by 

demographic subgroups. For example, students of different socioeconomic status 

might have differential access to resources, such as academic help outside of 

school, that could ameliorate the effects of peers with EBLLs. Table 5 presents our 

preferred estimates by race/ethnicity (White, non-Hispanic in Panel A, Black 

students in Panel B, and Hispanic students in Panel C), by economically 

disadvantaged status (never economically disadvantaged in Panel D, sometimes 

economically disadvantaged in Panel E, and always economically disadvantaged in 

Panel F), and by gender (girls in Panel G and boys in panel H). 

We find some evidence of heterogeneous effects of lead poisoned peers on 

graduation by race and gender. Black students see the largest decrease in high 

school graduation from lead poisoned peers. Boys also seem more affected than 

girls by lead poisoned peers, although the difference is not statistically significant. 

Black and male students have lower graduation rates to start with, so our results 

suggest that these students’ learning and behavior might be disproportionally 

affected when there are disruptive peers. Panel A of Appendix Table A2 shows that 

lead poisoned boys have larger negative effects on their peers than lead poisoned 

girls for suspensions from school and SAT taking. Together, these results support 
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the hypothesis that peer effects are mediated by assortative matching of peer 

groups, as shown in Table 4. 

We find little systematic evidence of heterogeneity by socioeconomic 

status. Students who are economically disadvantaged only in some grades appear 

to have larger increases in suspensions and decreases in graduation rates than 

students who are either never or always economically disadvantaged, but this 

difference is not statistically significant. Appendix Table A3 presents estimates of 

the effects of lead poisoned peers for children in schools with different levels of 

poverty. We find stronger negative peer effects on suspensions in schools with the 

highest share of economically disadvantaged students, but mixed evidence of 

heterogeneity in long-run outcomes. This finding suggests that poverty might 

exacerbate the effects of having lead poisoned peers. 

D. Additional Threats to Internal Validity 

This section discusses and tests for threats to internal validity, including 

spurious correlation, selection into lead testing, measurement error, and 

endogenous sorting. 

If our results are driven by increases in peers’ blood lead levels, we would 

expect students exposed to a higher percentage of cohort peers with elevated BLLs 

to do worse. Figure 4 plots estimates from equations (2) and (4) using bins for 

different percentages of cohort peers with elevated BLLs (0-5%, 5%-10%, 10%-

15%, 15%-20%, 20%-100%).16 We find a stronger effect of lead poisoned peers on 

suspensions and graduation rates as the percentage of peers with elevated BLLs 

increases. Moreover, Figure 5 shows that our estimates are unlikely to be due to 

random chance. This figure plots the results from estimating 500 placebo 

specifications in which we assign a random share of lead poisoned peers to each 

 
16 We omit the indicator for having 0-5% of cohort peers with elevated BLLs from the regression. 
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school-grade-year cohort drawn from a distribution with the same mean and 

standard deviation as the empirically observed peers’ distribution. Our true 

estimates for the effects of lead poisoned peers on suspensions and graduation rates 

fall well outside the distribution of estimates from the placebo specifications. 

However, we do not observe lead exposure for all children and there may 

be selection in who is tested for lead, implying that we measure the share of lead 

poisoned children in each cohort with error. Since we compute the share of lead 

poisoned peers over all students in a cohort, irrespective of whether they have a 

blood lead test, unknown lead poisoned peers would attenuate our results. North 

Carolina requires screening for all children living in zip codes where at least one 

block group within the zip code has 27 percent or more homes built prior to 1950.17 

Column 1 of Table 6 shows the effects of lead poisoned peers on children in these 

high-risk zip codes, where screening rates are 16 percent higher than average. We 

find only a slightly larger effect on graduation than in the full sample suggesting 

attenuation bias due to measurement error is a minor concern. 

Furthermore, we identify siblings based on home addresses, which could 

lead to error, particularly in multi-family homes. Thus, Column 2 of Table 6 shows 

results on the sample of Census tracts where the majority of homes are single family 

homes. Again, we find only a slightly larger effect on graduation than in the full 

sample. 

In addition, if parents of high-achieving students pull their children out of a 

cohort with particularly disadvantaged or lead poisoned students, such nonrandom 

selection could lead us to misattribute poor peers’ performance to the larger 

presence of lead poisoned students. Importantly, most of North Carolina did not 

offer school choice options for public schools over our sample period: with one 

exception, up until the 2014-2015 school year, students could only switch schools 

 
17 The designation also adjusts for prevalence of elevated BLLs (Hanchette 1999). 
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if they switched into a charter or magnet school, which we observe in our data.18 

Column 3 of Table 6 shows that our results are larger for children in zip codes with 

no charter schools or other school choice options (at the time), which are effectively 

no-choice zip codes, suggesting our results in Table 3 are a lower bound on the true 

spillovers of lead poisoning.  

Table 7 formally investigates the association between a student’s share of 

lead poisoned peers and school switching. We find limited evidence of increased 

switching to public or charter schools of students with higher shares of lead 

poisoned peers or of their siblings, and if anything the coefficients are negative. 

Thus, differential sorting does not appear to drive our results. To further test 

whether differential school switching biases our results, Column 4 of Table 6 

controls for siblings-by-school fixed effects, effectively comparing siblings only in 

grades during which they attend the same school.19 We find spillover effects of lead 

poisoned peers that are two-thirds the size of our main result. 

Our estimates could also be biased if the share of peers with EBLLs in a 

school-grade-year is systematically correlated with students’ or peers’ 

characteristics other than those included in equation (4). Column 5 of Table 6 

controls for the share of a student’s peers who live in block groups with above-

median income, share Black and Hispanic residents, share in poverty, and share 

with a high school degree. The estimate of the effects of lead poisoned peers is 

virtually indistinguishable from our main estimate in Table 3, suggesting that we 

are capturing the true effect of lead exposure, and not other correlates. Column 6 of 

Table 6 adds fixed effects for the Census block group where students reside when 

 
18 In the 2014-2015 school year, North Carolina implemented the Opportunity Scholarships 

program, a voucher program for low income children. Children whose families make less than 133 

percent of the qualifying amount for the federal free or reduced-price lunch program qualify for the 

voucher, which can be used for any school. In addition, the Charlotte Mecklenburg Public School 

district has had a school choice program from 2002 so we exclude that district.  
19 Bertoni, Brunello, and Cappellari (2020) use this design to study the effects of privileged peers. 
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they first appear in the school data. The results are similar to those in our main 

specification despite the sample size being smaller due to missing block group 

information, suggesting that neighborhood characteristics, including 

contemporaneous pollution exposure not captured by BLLs by age 6, do not drive 

the results. Column 7 of Table 6 further shows that estimates using more stringent 

school-grade fixed effects are similar to our main results that include school and 

grade fixed effects. 

Finally, because the incidence of lead poisoning has decreased over time 

(Figure 1), our primary estimates might capture similarly occurring trends in 

outcomes despite controlling for grade and year fixed effects. To assuage this 

concern, in Column 8 of Table 6, we control for school-year fixed effects and find 

peer effects that are larger than our main results, suggesting that differential trends 

in neighborhood-level removal of lead hazards might lead us to underestimate the 

spillover effects of lead poisoning, if anything. 

To address the concern that blood lead levels are measured with some error, 

in Panels B and C of Appendix Table A2, we show that our results are largely robust 

to using different measures of lead-exposed peers, although when we define EBLLs 

as BLLs≥10 µg/dL we find larger effects on long-run outcomes, suggesting that the 

severity of lead poisoning might affect the magnitude of these peer effects.20 In 

Panel D we include all students, even those who are exposed to lead, and control 

for one’s own lead exposure. The estimates are largely similar to our main results.  

Finally, Appendix Table A4 shows the robustness of our specification to 

different sets of controls. Panel A shows that when omitting all controls other than 

family, school, grade, and year fixed effects, we would find larger 

 
20 We estimate a small and insignificant effect of peers with BLLs≥10 µg/dL on suspensions. One 

potential explanation is that interventions targeted at children with BLLs above this intervention 

threshold successfully improve these children’s short-run outcomes, but do not completely mitigate 

damages in the long-run. 
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contemporaneous but smaller long-run peer effects, suggesting that spurious 

correlations might arise even with our conservative specification. Reassuringly, 

Panel B shows that once we add individual and school-level time-varying controls, 

omitting the share of students in a school-grade-year who are non-White and the 

share of students who are economically disadvantaged does not affect our estimates 

compared to our main results. In other words, peers’ characteristics other than lead 

poisoning do not appear to explain much of the variation in students’ outcomes 

after controlling for the set of fixed effects that provides our identification.21 This 

finding suggests that the share of lead poisoned peers does not just capture the effect 

of non-White or poor peers. Panel C shows that excluding school fixed effects 

yields slightly larger peer effects on suspensions compared to our main results. 

These results suggest that our more conservative primary specification controls for 

unobserved time invariant school characteristics. 

VI. Conclusion 

This is the first study documenting the spillover effects of lead onto school 

peers. By comparing siblings who attend the same school, we find that a child’s 

own lead exposure spills over to affect other children’s behavior and long-run 

outcomes. A ten percent increase in middle school peers with elevated BLLs in a 

given year leads to a 1.6 percent increase above the mean in the likelihood of being 

suspended out of school and a ten percent increase in chronic absenteeism. A ten 

percent increase in peers with elevated BLLs over a student’s elementary and 

middle school career causes a 2 percent decrease in the likelihood of graduating 

high school, and a 4.3 percent decrease in the likelihood of taking the SAT. These 

large effects suggest that the social cost of lead exposure has been underestimated 

 
21 Related, Appendix Table A5 shows limited evidence that peers’ composition at the cohort level 

is related to school quality in a way that could confound our estimates. Cohorts with higher share of 

students with EBLLs appear to be in school-years with higher stability rate, if anything, and larger 

student bodies.  
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so far. Our results suggest that environmental hazards are an important factor 

contributing to human capital accumulation even for children who are not 

themselves exposed to these hazards. In addition, we show that peers can have long 

term consequences on human capital formation and reveal some mechanisms 

through which peer effects manifest, namely homophily in network formation and 

behavior shaping while in middle school likely through noncognitive skills. 

Furthermore, our findings have implications for other types of common pollution 

that are known to cause suspensions from school, such as traffic and industrial 

pollution (Persico and Venator 2020; Heissel, Persico, and Simon 2020), 

suggesting that the true cost of pollution has been underestimated.   

We likely estimate a lower bound of the effect of lead poisoned peers. We 

find strong evidence of worse outcomes for children exposed to more lead poisoned 

peers despite their siblings are likely exposed to disruptive peers as well and despite 

potential spillovers within siblings, too. Moreover, missing BLLs for some lead 

poisoned children would attenuate our findings.  

While external validity issues make it difficult to extrapolate how lead 

exposure might affect labor market outcomes, we attempt a back of the envelope 

calculation for the effect of one lead poisoned peer in a cohort of 220. We find that 

being exposed to one additional lead poisoned peer is associated with $71 in lost 

earnings per student from lower graduation rates alone.22 This estimate does not 

include the additional costs of behavioral issues, yet, it implies a spillover effect of 

 
22 Following Heckman, Lochner, and Todd (2006), we estimate the net present value of graduating 

high school to be $93,188. We estimate a schooling-experience-earnings profile non-parametrically 

in the 2018 March Current Population Survey data and predict earnings conditional on years of 

schooling at each age between 18 and 65, assuming a growth rate of real labor productivity growth 
of 1.9 percent and a discount rate of 3.38 (i.e., the 30-year Treasury bond rate).  As 1 in 220 students 

is a 0.46% increase in the share of peers with elevated BLLs, we multiply that by our estimate of 

the effect of 100% of peers with elevated BLLs on graduation (-16.63 percentage points) to obtain 

the impact of one child with EBLLs through elementary and middle school on graduation rates: -

0.076 percentage points, or a decrease in the probability of 0.00076. Thus, one child with EBLLs in 

a cohort would decrease the net present value of lifetime earnings by 0.00076*$93,188=$71.  
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a lead poisoned child of $15,549 on their 219 school peers. As half a million young 

children appear to still be poisoned by lead each year (Aizer et al. 2018) and lead 

poisoned students appear to be quite dispersed across schools, these spillovers total 

almost $8 billion per birth-year cohort. Reyes (2014) estimates the direct social cost 

of lead poisoning at $200 billion per birth-year cohort. Thus, our, likely lower-

bound, estimates suggest that the social cost of lead has been underestimated by at 

least 4 percent by not including these spillover effects. Importantly, our analysis 

suggests that most public school children in the United States are likely affected by 

the spillover effects of lead.  

Our results imply some important lessons for policy. Remediating lead 

hazards is likely to be more cost effective than previously supposed since lead 

exposure affects everyone in the classroom. Lead remediation efforts have shown 

positive impacts on children’s blood lead levels and test scores (Sorensen et al. 

2019). In addition, Billings and Schnepel (2018) show that offering early 

interventions for lead poisoned children improves their outcomes. Thus, early 

interventions might help both lead poisoned children and their peers.  

Finally, school segregation by race and socioeconomic status likely 

exacerbates these peer effects, suggesting that additional efforts to desegregate 

students might be beneficial. Low-income schools have some of the largest 

achievement gaps (e.g., see Reardon 2015). Our results suggest that peer effects 

and lead exposure contribute to low performance in high-poverty schools, as well 

as to the negative long-run outcomes associated with poverty. Lead exposure and 

exposure to lead poisoned peers are both mechanisms through which poverty 

produces worse human capital outcomes. Understanding how the organization of 

schools mitigates these negative effects is crucial to design policies that curb the 

negative consequences of lead poisoning and pollution exposure. 
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Table 1: Characteristics of children and schools 

 Sample: 

(1)  

All children 

attending public 
school in North 

Carolina 

(2) 

Children in sibling 

sample 

(3) 

Children with 

BLL test 

(4) 

Children with 

EBLLs 

(5) 

Children without 

known EBLLs 

(6) 

Children with 

above-median 
share of EBLL 

peers in at least 

one elementary 

grade 

(7) 

Children with 

below-median 
share of EBLL 

peers in all 

elementary 

grades 

Average test score 0.001 0.063 -0.117 -0.288 0.128 -0.094 0.265 

Any out-of-school  
suspension 

0.265 0.258 0.305 0.404 0.238 0.314 0.202 

Ever graduated 0.837 0.872 0.866 0.816 0.881 0.848 0.895 

4-year college 

intentions 
0.418 0.454 0.398 0.346 0.471 0.387 0.516 

Has taken the SAT 0.434 0.466 0.411 0.366 0.482 0.405 0.522 

Cohort size 220 225 199 203 229 193 261 

Share of teachers 
with an MA 

degree 
0.338 0.356 0.346 0.335 0.359 0.337 0.377 

Share 

economically 
disadvantaged 

0.438 0.441 0.512 0.521 0.429 0.528 0.343 

Stability rate 0.929 0.957 0.957 0.953 0.958 0.955 0.960 

Share Black 0.272 0.249 0.308 0.432 0.226 0.308 0.188 

Share Hispanic 0.122 0.124 0.144 0.107 0.126 0.136 0.112 

Share with a BLL 

test 
0.338 0.396 1 1 0.322 0.534 0.255 

Share with EBLL 0.071 0.079 0.200 0.725 0 0.118 0.040 

N Students 3,334,365 1,326,622 525,535 144,957 1,181,665 670,386 656,236 
Notes: The table presents summary statistics for selected variables in our sample. Observations are at the student-year level. Cohort is defined as student-grade-year. Column 1 shows 

the means for all children in our original sample. Column 2 shows means for children with siblings, that is our main sample. Column 3 shows means for children that have a blood 

lead level test. Column 4 shows means for children with elevated blood lead levels (EBLLs), and Column 5 shows means for children without elevated blood lead levels. Column 6 

shows means for children whose share of elementary school peers with elevated BLLs was above the median share at the grade-year level in at least one grade, while Column 7 

shows means for children whose share was below the median in all elementary grades. Test scores are standardized at the grade-year level. The stability rate is defined as the 

percentage of students from the October membership count who are still present in the second semester (90 days later). 
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Table 2: Contemporaneous Effects of Attending School with an Increased Share of 

Children with Elevated BLLs  

 

Dependent Variable: 

(1) 

Average 

Test Score 

(2) 

Out of 

School 

Suspension 
(OSS) 

(3) 

Days 

Suspended 

(4) 

OSS Same 

Day as 

Lead-
Exposed 

Child  

(5) 

Incident 

with  

Lead-
Exposed 

Child 

(6) 

Absent 22 

or More 

Days 

Panel A: Cohort Peers with School-Grade and Grade-Year Fixed Effects 

Share of peers with 
BLLs over 5 µg/dL  

-0.0354 
(0.0351) 

0.0691*** 
(0.0187) 

1.1348*** 
(0.2426) 

0.2263*** 
(0.0143) 

0.1105*** 
(0.0118) 

0.0239** 
(0.0091) 

Observations 3,303,025 7,924,730 7,924,730 7,196,034 6,542,610 8,135,286 

N Students  932,753 1,907,865 1,907,865 1,884,925 1,765,517 1,903,431 

Mean of outcome 0.0572 0.1049 0.7744 0.0318 0.0202 0.0612 

Panel B: Cohort Peers with Family, School, Grade and Year Fixed Effects 

Share of peers with 

BLLs over 5 µg/dL  

0.0193 

(0.0360) 

0.0202+ 

(0.0117) 

0.6305*** 

(0.1804) 

0.1933*** 

(0.0106) 

0.1040*** 

(0.0082) 

0.0440*** 

(0.0072) 

Share of Non-White 

Children in School-
Grade-Year 

-0.0194 

(0.0212) 

-0.0186+ 

(0.0103) 

-0.0071 

(0.1660) 

0.0007 

(0.0101) 

-0.0045 

(0.0075) 

0.0136* 

(0.0053) 
 

Share of 

Economically 
Disadvantaged 

Children in School-

Grade-Year 

0.0243* 

(0.0121) 

0.0204*** 

(0.0061) 

0.3224*** 

(0.0819) 

0.0166*** 

(0.0050) 

0.0055 

(0.0058) 

0.0077** 

(0.0030) 

Observations 1,414,124 4,290,255 4,290,255 3,921,543 3,673,505 4,397,906 

N Students 374,137 944,681 944,681 933,835 891,487 939,623 

Mean of outcome 0.1169 0.1238 0.5041 0.0285 0.0187 0.0424 

Panel C: Peers in the Same Classroom with Family and School Fixed Effects 

Share of peers with 
BLLs over 5 µg/dL 

-------- 0.0568*** 
(0.0133) 

0.3820+ 
(0.2146) 

0.2250*** 

(0.0119)  
0.1489*** 
(0.0091)  

0.0947*** 
(0.0095) 

Observations -------- 3,700,650 3,700,650 3,416,626 3,416,626  3,679,226 

N Students -------- 877,934 877,934 824,400  824,400  884,139 

Mean of outcome -------- 0.0931 0.6325 0.0138  0.0082 0.0507 

Notes: The table reports the effect of a child’s share of peers with EBLLs on the child’s school outcomes. Panels A 

and B use the share of peers with maximum BLLs over 5 µg/dL at the school-grade-year level as the main explanatory 

variable, while panel C use the share of peers with maximum BLLs over 5 µg/dL at the classroom level. Panel A 
includes school-by-grade, grade-by-year and birth month fixed effects. Panels B and C instead include family, school, 

grade, and year fixed effects, controlling for birth order. In Column 1, we take the average of math and reading test 

scores and additionally control for subject-by-type test fixed effects. In Columns 2-6 we limit the sample to grades 6 

and above. All regressions control for individual and cohort controls, which include indicators for gender, race, 

economically disadvantaged status, whether the student has a blood lead level test, the share of non-White peers, share 

of children with a lead test, and the share of peers who are economically disadvantaged at the school-grade-year level. 

We also control for school size, the stability rate, and the percent of teachers with an MA degree. Standard errors are 

in parentheses and clustered at the school level.  +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 3: Long-Run Outcomes of Exposure to Peers with Elevated BLLs by Timing of 

Exposure 

 (1) (2) (3) (4) (5) 
Dependent Variable: Ever 

graduated 

Ever 

dropped out 

Intention to 

Attend a 4-

Year College 

Intention to 

Attend a 

Community 

College  

Took SAT 

 Panel A: Share of All Peers with EBLLs Over Elementary and Middle School 

with School-Grade and Grade-Year Fixed Effects  

Share of peers with 

BLLs over 5 µg/dL 

-0.1558*** 

(0.0173) 

0.1468*** 

(0.0150) 

-0.1257*** 

(0.0362) 

-0.0098 

(0.0344) 

-0.2778*** 

(0.0350) 

Mean of outcome 0.8491 0.0597 0.4406 0.3544 0.4588 

N Students 831,386 1,157,178 666,821 666,159 657,878 

 Panel B: Share of All Peers with EBLLs Over Elementary and Middle School 

with Sibling, School, Grade and Year Fixed Effects 
Share of peers with 

BLLs over 5 µg/dL 

-0.1663*** 

(0.0351) 

0.0476+ 

(0.0245) 

-0.1126 

(0.0720) 

0.0464 

(0.0785) 

-0.2289** 

(0.0740) 

Mean of outcome 0.8904 0.0529 0.5068 0.3288 0.5319 

N Students 283,032 415,049 205,833 205,761 201,784 

 Panel C: Share of Elementary Versus Middle School Peers with EBLLs with 

Sibling, School, Grade and Year Fixed Effects  

Share of peers with 
BLLs over 5 µg/dL 

in Elementary 

School 

-0.0614* 
(0.0295) 

-0.0025 
(0.0216) 

-0.0100 
(0.0671) 

0.0216 
(0.0687) 

-0.0020 
(0.0669) 

Share of peers with 

BLLs over 5 µg/dL 

in Middle School 

-0.1169** 

(0.0415) 

0.0680* 

(0.0298) 

-0.0546 

(0.0906) 

-0.0073 

(0.0990) 

-0.2204* 

(0.0872) 

Mean of outcome 0.8944 0.0519 0.5108 0.3299 0.5380 
N Students 248,478 355,238 182,351 182,294 178,875 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s long-run 

outcomes. We restrict the sample to the highest grade a student is observed in. Column 1 reports the effects on the 

likelihood a student ever graduates from high school, and column 2 shows the effects on the likelihood of ever 

dropping out of school. Columns 3 and 4 show the effects on self-reported intention of enrolling in a four-year college 

and community college, respectively. Column 5 shows the effects on the likelihood of taking the SAT test by grade 

12. Panel A includes school-by-grade and grade-by-year fixed effects. Panels B and C instead include family, school, 

grade, and year fixed effects, controlling for birth order and birth month. All regressions include individual controls 

for gender, race, economically disadvantaged status, and whether the student has a blood lead level test. We also 

control for the average share of elementary and middle school peers that are non-White or economically 

disadvantaged, average share of children with a lead test, school size, the stability rate, and the percent of teachers 

with an MA degree averaged over elementary and middle school. Standard errors are in parentheses and clustered at 

the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 4: Heterogeneity by Peer Gender and Race 

 Short Run Outcomes  Long Run Outcomes 

 
Dependent Variable: 

(1) 
Out of School 

suspension 

 

 

 

(2) 
Ever 

graduated 

(3) 
Took the 

SAT  

Panel A: By Same-Gender Lead Poisoned Peers 

Share of same-gender peers with BLLs 

≥5 µg/dL 

0.0771*** 

(0.0176) 

 -0.1012+ 

(0.0536) 

0.0409 

(0.1302) 
     

Share of peers with BLLs ≥5 µg/dL -0.0199 

(0.0146) 

 -0.1155** 

(0.0425) 

-0.2496* 

(0.0978) 

Panel B: By Same-Race Lead Poisoned Peers (White) 

Share of same-race peers with BLLs ≥5 

µg/dL 

0.0628*** 

(0.0158) 

 0.0300 

(0.0580) 

-0.1657 

(0.1196) 
     

Share of peers with BLLs ≥5 µg/dL -0.0196 
(0.0145) 

 -0.1867*** 
(0.0482) 

-0.1156 
(0.1112) 

Panel C: By Same Gender-Race Lead Poisoned Peers (White) 

Share of same gender-race peers with 

BLLs ≥5 µg/dL 

0.0994*** 

(0.0173) 

 -0.0295 

(0.0610) 

-0.0827 

(0.1416) 
     

Share of peers with BLLs ≥5 µg/dL -0.0123 

(0.0124) 

 -0.1562*** 

(0.0373) 

-0.2003* 

(0.0884) 

     

N Students 944,678  283,032 201,784 
Mean of outcome 0.1037  0.8904 0.5319 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Panel A reports the effect of a child’s share of same-gendered peers with elevated blood lead levels on the 

child’s school outcomes, Panel B reports the reports the effect of a child’s share of same-race peers with elevated 

blood lead levels, and Panel C reports the effect of a child’s same-race and same-gender share of peers with elevated 

blood lead levels. All regressions include the cohort, school-level and individual controls listed in equation (2), as 

well as family, birth month, birth order, school, grade, and year fixed effects. Cohort and school controls are averaged 

over elementary and middle school in Columns 2-3. Standard errors are in parentheses and clustered at the school 

level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 5:  Heterogeneity by Demographic Subgroups 

 Short Run Outcomes  Long-run Outcomes 

 

Dependent Variable: 
(1) 

Out of School 
suspension 

 (2) 

Ever Graduated 
(3) 

Took the SAT 

Panel A: White, non-Hispanic students 
Share of peers w/ BLLs 
≥5µg/dL  

0.0095 
(0.0110) 

 

 
-0.1445*** 
(0.0404) 

-0.1196 
(0.0873) 

Panel B: Black non-Hispanic students 
Share of peers w/ BLLs 
≥5µg/dL 

-0.0045 
(0.0244) 

 

 
-0.3133*** 
(0.0772) 

-0.3698* 
(0.1679) 

p-val. =White 0.60  0.05 0.19 

Panel C: Hispanic students 
Share of peers w/ BLLs 

≥5µg/dL 
-0.0009 

(0.0257) 
 

 
-0.1362 

(0.1251) 
-0.4186+ 

(0.2413) 

p-val. =White 0.71  0.95 0.24 

Panel D: Never Economically Disadvantaged students 
Share of peers w/ BLLs 

≥5µg/dL 
0.0006 

(0.0100) 
 

 
-0.0911* 

(0.0402) 
-0.0170 

(0.1108) 

Panel E: Sometimes Economically Disadvantaged students 
Share of peers w/ BLLs 

≥5µg/dL 
0.0229 

(0.0177) 
 

 
-0.1815** 

(0.0682) 
-0.2745* 

(0.1358) 

p-val. =Never 0.27  0.25 0.14 

Panel F: Always Economically Disadvantaged students 
Share of peers w/ BLLs 
≥5µg/dL 

0.0103 
(0.0213) 

 

 
0.0249 
(0.1033 

-0.1424 
(0.2021) 

p-val. =Never 0.68  0.30 0.59 

Panel G: Girls 
Share of peers w/ BLLs 

≥5µg/dL 
0.0180 

(0.0127) 
 

 
-0.1117+ 

(0.0606) 
-0.2350+ 

(0.1309) 

Panel H: Boys 
Share of peers w/ BLLs 

≥5µg/dL 
0.0334* 

(0.0165) 
 

 
-0.2469*** 

(0.0668) 
-0.2065 

(0.1361) 

p-val. =Girls 0.46  0.13 0.88 
 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes for children with different observable characteristics in each panel. For each outcome, results are from three 

regressions, one for each characteristic (race, economic status, gender). All regressions include cohort and individual 

controls, as well as family, birth month, birth order, school, grade, and year fixed effects. Individual controls include 

indicators for whether the student has a blood lead level test, gender, race, and economically disadvantaged status. 

Cohort controls include the share of non-White peers, share of children with a lead test, and the share of peers who 
are economically disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and 

the percent of teachers with an MA degree. Cohort and school controls are averaged over elementary and middle 

school in Columns 2-3. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 6: Results for Alternative Samples and Alternative Specifications 

 Ever Graduated   

 (1) 

Zip Codes 
with 

Universal 

Screening  

(2) 

>50% of 
Homes in 

Census Tract 

are Single 
Family 

(3) 

Zip Codes 
with No 

School 

Choice 
Options  

(4) 

Adding 
Sibling-

School 

Fixed 
Effects 

(5) 

Adding Cohort 
Block Group 

Characteristics 

(6) 

Adding 
Block Group 

Fixed Effects 

(7) 

Adding  
School-

Grade 

Fixed 
Effects 

(8) 

Adding 
School-

Year Fixed 

Effects 

Share of peers with 

BLLs over 5 µg/dL 

-0.1854*** 

(0.0454) 

-0.1866** 

(0.0721) 

-0.2681*** 

(0.0715) 

-0.1035*** 

(0.0267) 

-0.1704*** 

(0.0345) 

-0.2214*** 

(0.0594) 

-0.1462*** 

(0.0309) 

-0.2282*** 

(0.0449) 

N Students 146,599 84,729 175,973 228,036 283,032 118,747 282,582 281,851 

Mean of outcome 0.8800 0.8830 0.8934 0.8904 0.8904 0.8904 0.8904 0.8925 

School FEs X X X  X X   

Sibling FEs X X X  X X X X 

Year FEs X X X X X X X  

Grade FEs X X X X X X  X 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school outcomes. Each column reports results from a 

separate regression. Column 1 restricts the sample to students who live in zip codes that are subject to universal lead screening. Column 2 restricts the sample to 

Census tracts where more than half of homes are single family homes. Column 3 restricts the sample to zip codes without charter schools or voucher programs. 

Columns 4-8 add controls and alternative sets of fixed effects as specified at the top and bottom of each column. Block group characteristics of cohort peers include 

share of peers that live in block groups with above median income, above median percent Black and Hispanic population, above median percent of the population 

living in poverty, and with above median percent population with a high school degree. All regressions include cohort and individual controls, as well as birth 

month and birth order fixed effects. Individual controls include indicators for gender, race, economically disadvantaged status, and whether the student has a blood 

lead level test. Cohort controls include the share of non-White peers, share of children with a lead test, and the share of peers who are economically disadvantaged 

at the school-grade-year level. We also control for school size, the stability rate, and the percent of teachers with an MA degree. Cohort and school controls are 

averaged over elementary and middle school. Standard errors are in parentheses and clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table 7: The Effects of Peers on Switching Schools 

 (1) 

Changed Schools 

(2) 

Changed to a 

Charter School 

(3) 

Child’s Sibling 

Changed Schools 

(4) 

Both Siblings 

Changed Schools 

(5) 

Consecutive Younger 

Sibling is in a Different 

School for the Same 
Grade 

Share of peers with BLLs 
over 5 µg/dL 

0.0026 
(0.0131) 

-0.0038* 
(0.0015) 

-0.0093 
(0.0226) 

-0.0095 
(0.0137) 

-0.0335* 
(0.0149) 

Observations 6,555,045 6,452,608 1,576,604 840,101 4,193,920 

N Students 1,094,875 1,089,551 491,901 309,887 587,149 

Mean of outcome 0.3063 0.0050 0.3464 0.1310 0.1858 

Notes: The table reports the association of a child’s share of peers with elevated blood lead levels with the child’s own likelihood of switching schools (Columns 

1 and 2), the child’s sibling’s likelihood of switching schools conditional on attending the same school (Column 3), both children switching schools conditional on 

attending the same school (Column 4), and the likelihood that a consecutive younger sibling attends a different school than the child’s school for the same grade 

(Column 5). All regressions include cohort and individual controls, as well as family, birth month, birth order, school, grade, and year fixed effects. Individual 

controls include indicators for gender, race, economically disadvantaged status, and whether the student has a blood lead level test. Cohort controls include the 

share of non-White peers, share of children with a lead test, and the share of peers who are economically disadvantaged at the school-grade-year level. We also 

control for school size, the stability rate, and the percent of teachers with an MA degree. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** 

p<0.01, *** p<0.001. 
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Figure 1: Share of Children with Blood Lead Levels at or above 5µg/dL by Birth Cohort 

and Share of Children with Blood Lead Tests by Cohort 

 

Notes: The figure plots the share of children in a school-grade-year cohort with at least one blood lead test (blue 

dashed line) and with a blood lead level of at least 5µg/dL (red solid line) 
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Figure 2: The Relationship Between a Child’s Own Blood Lead Levels and Test Scores, Out-of-School Suspensions, High 

School Graduation, and SAT Taking 

Panel A: Test scores    Panel B: Likelihood of Out of School Suspension 

                          
Panel C: Ever Graduated 

 

Panel D: SAT Taking 

 

Notes: The figure plots average test scores (Panel A), out-of-school suspension rates (Panel B), graduation rates (Panel C), and SAT taking rates 

(Panel D) by students’ blood lead levels and adds the line of best fit.  
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Figure 3: The Relationship Between Peers’ Blood Lead Levels and Test Scores, Out-of-School Suspensions, High School 

Graduation, and SAT Taking 

 

Panel A: Test scores 

 

Panel B: Likelihood of Out-of-School Suspensions 

 
 

Panel C: Ever Graduated 

 

Panel D: SAT Taking 

 

Notes: The figure plots average test scores (Panel A), out-of-school suspension rates (Panel B), graduation rates (Panel C), and SAT taking rates 

(Panel D) by vigintile of students’ share of peers with blood lead levels at or above 5µg/dL.  
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Figure 4: Binned Effects of Share of Peers with Blood Lead Levels above 5 µg/dL 

Panel A: Likelihood of Out-of-School Suspension 

 

Panel B: Ever Graduated 

 
 

Notes: Each figure plots non-parametric estimates of the effect of having different proportions (binned) of peers with BLLs 5+ in a child’s cohort on out-of-school 

suspension rates (Panel A) and graduation rates (Panel B). The omitted category is an indicator for share of peers with BLLs 5+ that is lower than 0.05. We control 

for all fixed effects and controls in our primary specification (which includes family, school, year, and grade fixed effects, and individual and demographic controls 

by cohort, averaged over elementary and middle school in Panel B). Vertical bars represent 95% confidence intervals based on standard errors clustered at the 

school level.
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Figure 5: Placebo Estimates 

 

Notes: Distribution of results from 500 placebo tests per outcome. Our main estimates for our preferred specification 

are represented with a vertical line on the placebo effect size distribution. The lightly shaded gray region is the 

region of the graph where there is 5% in the tail of the distribution. The darker shaded gray region represents 10% in 

the tail of the distribution. For each placebo, school-grade cohorts were randomly assigned a percent of peers with 

EBLLs from the empirically observed distribution and we estimated our main specification.   
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APPENDIX A: Additional Tables and Figures 

Table A1: Results with School-grade and grade-year fixed effects on sibling sample  

 Short-run Outcomes  Long-run Outcomes 

 

Dependent 
Variable: 

(1) 

Out of School Suspension 

(2) 

Ever Graduated 

(3) 

Took the SAT  

Share of peers 

with BLLs over 5 

µg/dL 

0.0584*** 

(0.0170) 

-0.1060*** 

(0.0203) 

-0.2587*** 

(0.0516) 

Observations 4,290,161 282,782 201,719 

N Students 944,679 282,782 201,719 

Mean of outcome 0.0942 0.8911 0.5320 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. The sample is limited to children with siblings who would be included in a regression with sibling fixed 

effects. Each column reports results from a separate regression. All regressions include school-by-grade, grade-by-

year, and birth month fixed effects. All regressions include the cohort, school-level and individual controls listed in 

equation (1). Cohort and school controls are averaged over elementary and middle school in Columns 2-3.  Standard 

errors are in parentheses and clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A2: Alternative measures of peers’ BLLs and sample including lead poisoned 

students 

 Short Run Outcomes  Long-run Outcomes 

 (1) 

Out of School 
Suspension 

 (2)  

Ever Graduated 

(3) 

Took the SAT 

Panel A: Share of Male and Female Peers with Max BLL over 5 µg/dL 

Share of male 

peers with BLLs 

over 5 µg/dL 

0.0565*** 

(0.0158)  

-0.1489** 

(0.0454) 

-0.2523* 

(0.1021) 

Share of female 

peers with BLLs 

over 5 µg/dL 

-0.0255 

(0.0171)  

-0.1861*** 

(0.0467) 

-0.1942+ 

(0.1066) 

Panel B: Mean BLL is over 5 µg/dL 

Share of peers 

with BLLs over 5 

µg/dL 

0.0177 

(0.0133)  

-0.2073*** 

(0.0352) 

-0.2320** 

(0.0740) 

Panel C: Max BLL is over 10 µg/dL 

Share of peers 

with BLLs over 10 
µg/dL 

0.0006 

(0.0339) 
 

 

-0.4047*** 

(0.0849) 

-0.4660** 

(0.1503) 

N Students 944,681  281,098 200,186 

Mean of outcome 0.1037  0.8902 0.5316 

Panel D: Including Students with Elevated Blood Lead Levels 
Share of peers 

with BLLs over 5 

µg/dL 

0.0268* 

(0.0121)  

-0.1764*** 

(0.0327) 

-0.2031*** 

(0.0596) 

N Students 1,081,179  361,787 257,202 

Mean of outcome 0.1125  0.8768 0.5031 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school outcomes 
using different measures of peer exposure based on blood lead levels. Panel A uses the share of male and share of female 

peers with maximum BLL over 5 µg/dL. Panel B uses the share of peers with average BLL above 5 µg/dL. Panel C uses 

the share of peers with maximum BLL over 10 µg/dL. Panel D includes children who have maximum BLL over 5 µg/dL. 

All regressions include cohort and individual controls, as well as family, birth month, birth order, school, grade, and year 

fixed effects. Individual controls include indicators for gender, race, economically disadvantaged status, and whether the 

student has a blood lead level test. Cohort controls include the share of non-White peers, share of children with a lead test, 

and the share of peers who are economically disadvantaged at the school-grade-year level, school size, the stability rate, 

and the percent of teachers with an MA degree. Cohort and school controls are averaged over elementary and middle school 

in Columns 2-3. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A3:  Heterogeneity by School-Level Demographics 

 Short Run Outcomes Long-run Outcomes 

 
Dependent 

Variable: 

(1) 

Out of School 
Suspension 

(2) 
Ever Graduated 

(3) 
Took the SAT  

Panel A: Schools in Lowest Tercile of Share Students who are Economically Disadvantaged 

Share of peers with 

BLLs over 5 µg/dL  

0.0249 

(0.0238) 

-0.1251+ 

(0.0674) 

-0.0926 

(0.1656) 

 
Panel B: Schools in Middle Tercile of Share Students who are Economically Disadvantaged 

Share of peers with 
BLLs over 5 µg/dL 

0.0365+ 
(0.0201) 

 

-0.1452+ 
(0.0796) 

-0.0626 
(0.1464) 

p-val = First 
Tercile 

0.33 
 

0.85 0.89 

Panel C: Schools in Highest Tercile of Share Students who are Economically Disadvantaged 

Share of peers with 

BLLs over 5 µg/dL 

0.0324+ 

(0.0193) 

-0.1049 

(0.0652) 

-0.2013 

(0.1346) 

p-val = First 

Tercile 

0.06 

 

0.83 0.61 

N Students 931,381 222,894 162,137 

Mean of outcome 0.1034 0.8964 0.5454 
Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes for children in schools with different shares of children who are economically disadvantaged in each panel. 

For each outcome, results are from a single regression. All regressions include cohort and individual controls, as well 

as family, birth month, birth order, school, grade, and year fixed effects. Individual controls include indicators for 

gender, race, economically disadvantaged status, and whether the student has a blood lead level test. Cohort controls 

include the share of non-White peers, share of children with a lead test, and the share of peers who are economically 
disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and the percent of 

teachers with an MA degree. Cohort and school controls are averaged over elementary and middle school in Columns 

2-3. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A4: Results with Fewer Controls  

 Short-run Outcomes  Long-run Outcomes 

 
Dependent 

Variable: 

(1) 
Out of School Suspension 

(2) 
Ever Graduated 

(3) 
Took the SAT  

Panel A: No controls 

Share of peers 

with BLLs over 5 
µg/dL 

0.0433*** 

(0.0102) 

-0.0170 

(0.0241) 

-0.0770 

(0.0560) 

Observations 4,290,255 283,032 201,784 

N Students 944,681 283,032 201,784 

Panel B: All Controls Except for Share Non-White and Share Educationally Disadvantaged 

Share of peers 

with BLLs over 5 
µg/dL 

0.0249* 

(0.0115) 

-0.1609*** 

(0.0349) 

-0.1718* 

(0.0769) 

Observations 4,290,255 248,478 178,875 

N Students 944,681 248,478 178,875 

Panel C: Family Fixed Effects 

Share of peers 
with BLLs over 5 

µg/dL 

0.0368** 
(0.0117) 

-0.1578*** 
(0.0372) 

-0.2331** 
(0.0739) 

Observations 4,290,270 283,236 201,814 

N Students 944,682 283,236 201,814 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Each cell reports results from a separate regression. All regressions include sibling, birth month, grade, 

year and birth order fixed effects. Panel A shows our results with no control variables except for our fixed effects and 

school fixed effects. Panel B includes school fixed effects and controls for gender, race, economically disadvantaged 

status, whether the student has a blood lead level test, the share of children with a lead test at the school-grade-year 

level, as well as school size, the stability rate, and the percent of teachers with an MA degree. We omit cohort-level 

controls for share of non-White peers and share of peers who are economically disadvantaged. Panel C includes our 

fixed effects together with all controls in our main specification but omits school fixed effects. Cohort and school 

controls are averaged over elementary and middle school in Columns 2-3. Standard errors are in parentheses and 

clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A5: Correlation of Cohort Composition and Measures of School Quality 

 (1) (2) (3) (4) (5) 
Dependent Variable: Share of teachers 

with Masters or 

higher in school-

year 

School-year 

stability rate 

Missing teachers’ 

education in 

school-year  

Missing school-

year stability rate 

Number of 

students in school-

year 

Share of peers with BLLs 

over 5 µg/dL 
-0.0104 

(0.0077) 

0.0049* 

(0.0020) 

0.0041 

(0.0035) 

-0.0003 

(0.0003) 

127.6286*** 

(22.1179) 

      

Observations 7,611,499 7,760,468 7,760,559 7,760,559 7,760,559 

Mean ofoutcome 0.3657 0.9575 0.0191 0.0000 782.1071 

N Students 1,171,476 1,177,800 1,177,800 1,177,800 1,177,800 
Notes: The table reports the correlation of a child’s share of peers with EBLLs in a cohort with school-year characteristics. Regressions include family, school, 

grade, and year fixed effects, controlling for birth order. All regressions control for individual and cohort controls, which include indicators for gender, race, 

economically disadvantaged status, whether the student has a blood lead level test, the share of non-White peers, share of children with a lead test, and the share 

of peers who are economically disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and the percent of teachers with an 

MA degree when those are not the dependent variable. Standard errors are in parentheses and clustered at the school level.  +  p<0.10, * p<0.05, ** p<0.01, *** 

p<0.001. 
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Figure A1: Share of Lead-Exposed Peers by Birth Order 

 

Notes: This figure plots the average share of cohort peers with blood lead levels at or above 5µg/dL by a student’s 

birth order. Birth order is set to 0 for only children and children for which we are not able to match siblings.   
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Figure A2: Identifying Variation: Residual Variation in Share of Peers with Elevated 

Blood Lead Levels 

 

    

Notes: This figure plots the distribution of the residuals from a regression of our variable of interest, share of peers 

with blood lead levels at or above 5µg/dL on the fixed effects and controls included in our preferred specification. We 

include family, birth month, birth order, grade, school, and year fixed effects. Individual controls include indicators 

for gender, race, economically disadvantaged status, and whether the student has a blood lead level test. Cohort 

controls include the share of non-White peers, share of children with a lead test, and the share of peers who are 

economically disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and the 

percent of teachers with an MA degree. The black solid line plots the kernel density of these residuals, while the blue 

dashed line plots a normal distribution. 
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Figure A3: Placebo Estimates: Out-of-School Suspensions and Incidents with Students with EBLLs 

 

Panel A: OSS Same Day as Student with EBLL  Panel B: Incident with Student with EBLL 

  

Notes: Distribution of results from 500 placebo tests per outcome. Our main estimates for our preferred specification are represented with a vertical line on the 

placebo effect size distribution. The lightly shaded gray region is the region of the graph where there is 5% in the tail of the distribution. The darker shaded gray 

region represents 10% in the tail of the distribution. For each placebo, we randomly selected a share of student equal to the observed share of students in EBLLs 

in that school-grade cohort and construct indicators for their peers being suspended out-of-school on the same day as one of these random students and having an 

incident together with one of these random students. We then estimated our main specification with these placebo outcomes  


