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Abstract

This paper examines the impact of early-life exposure to air pollution on children’s health

from their in utero period to school enrollment. We use administrative public health insur-

ance records covering one third of the population of children in Germany. For identifica-

tion, we exploit air quality improvements caused by the implementation of Low Emission

Zones across German counties. Our results indicate that children born just before and

just after the policy adoption exhibit persistent differences in medication usage for at

least five years after treatment. We document that a slight improvement in air quality in

a single year reduces spending for respiratory medication for children born between 2008

and 2017 by about 26.5 million Euros over their pre-school years. The initially latent

health response materializes only gradually in lower medication usage, leaving important

but subtle health benefits undetected in studies of contemporaneous health.

Keywords: policy evaluation, cohort study, air pollution, health, children, Low Emission

Zone
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1 Introduction

Poor air quality is a major public health concern worldwide. Various policy interventions have

curbed ambient air pollution considerably over recent decades (Shapiro and Walker 2018).

To further improve air quality, policymakers in high-income countries increasingly focus on

clean air programs in urban areas where motor vehicles are the major source of emissions.

For instance, more than 200 European cities with already moderate pollution levels have

implemented Low Emission Zones (LEZs) banning emission-intensive vehicles from entering

city areas to achieve additional air pollution reductions. However, this raises questions about

the returns to investments in such ancillary clean air regulations which impose significant

costs while the specific health benefits from slight improvements in air quality remain uncer-

tain. In particular, important latent health effects are likely to remain undetected. First, it

is difficult to isolate causal effects in the presence of a health stock that changes slowly over

time (Almond and Currie 2011, Currie et al. 2014). Estimates of contemporaneous pollution

impacts may substantially underestimate “fully formed” health benefits. Few studies address

this issue indirectly by connecting pollution exposure at birth to productivity and earnings

in adulthood (Isen et al. 2017). However, quasi-experimental evidence for the longer-term

dose-response relationship between air pollution and physical health is missing. Second, in

contexts characterized by a combination of high baseline population health, universal access

to health care, and comparatively low pollution levels, health benefits are likely to take sub-

tle forms that are hard to detect in the most widely used health measures such as low birth

weight, hospitalizations, or mortality.

In this paper, we examine the persistence of the impact of early-life exposure to air pollution

on children’s health stock from birth to school enrollment. Using quasi-experimental varia-

tion in the roll-out of LEZs in Germany and administrative health insurance data covering

one third of the entire population, we test whether children born just before and just after

policy-induced reductions in particulate matter concentrations exhibit persistent differences

in rarely studied medication usage for up to five years after treatment. We characterize how

health benefits accumulate over the course of pre-school childhood and disentangle immedi-

ate from longer-term health effects in response to lower pollution levels. By doing so, this

paper provides novel evidence on the adjustment trajectory of the health stock in the “mid-

dle years” between birth and school enrollment that have not been studied before (Almond

et al. 2018). Our findings suggest that moderate improvements in air quality due to the adop-

2



tion of LEZs persistently reduce the number and cost of prescriptions for respiratory diseases.

Our work draws on a data set and a setting which allow us to gain insight into whether pol-

lution reductions below levels that are already low by the standards of high-income countries

have lasting health benefits.1 Using medical records provided by Germany’s largest public

health insurer (AOK), we track children from birth to school enrollment and move beyond the

usual measures of infant health. Our preferred outcome variables are the cumulative number

and the cumulative costs of prescriptions for pharmaceuticals. Prescriptions are a sensitive,

real-time, and monetizable health measure that captures subtle effects, e.g. slightly reduced

medication requirements manifesting only over a prolonged time frame. Because medication

alleviates morbidity, its effects are likely undetectable when using the usual indicators such

as hospitalizations. The German context is well suited for the analysis of pharmaceutical

prescriptions because Germany’s universal public health care system covers all prescription

costs without any deductibles for minors. Mandatory insurance coverage implies that we

observe health care for the general population rather than for a specific group with insur-

ance, as is the case in pioneering studies using pharmaceutical data for the U.S. (Deschênes et

al. 2017, Williams and Phaneuf 2019, Deryugina et al. 2019) and China (Barwick et al. 2018).

The identification of causal effects rests on the staggered implementation of LEZs across

49 counties in Germany. De facto, LEZs constitute a ban of old, emission-intensive diesel

vehicles from city areas.2 Previous research has shown that LEZs are robust predictors of

statistically significant reductions in local concentrations of particulate matter smaller than

10 µm (PM10), which are however moderate in magnitude (Wolff 2014, Gehrsitz 2017, Pes-

tel and Wozny 2019, Margaryan 2021). Thus, we exploit the staggered policy introduction

as an instrumental variable for exogenous variation in PM10 exposure from motor vehicles.

To isolate health effects, we follow Isen et al. (2017) and compare cohorts of children born

just before and just after the policy-induced improvements in air quality. That way, cohorts

experience different levels of pollution exposure in early life but the same levels throughout

subsequent years. Our sample is limited to children from “non-attainment” counties that

violated EU air quality standards regarding PM10. While treated counties introduce LEZs,

1Notably, even prior to LEZ implementation, the annual mean concentration of particles smaller than 10 µm
(PM10) of 26.4 µg/m3 is close to the corresponding WHO guideline level of 20 µg/m3.

2Restrictions are generally based on the Euro emission standards for gasoline and diesel vehicles. However,
German LEZs have banned very few gasoline vehicles because of the prevalence of catalytic converters that
transform pollutants into less toxic gases (Cyrys et al. 2014).

3



control counties comprise late-adopters and not-to-date-adopters.

Our research design accommodates important methodological advances in difference-in-

differences (DID) settings with staggered policy introduction (Goodman-Bacon 2018). We

implement a “stacked DID” estimator (Fadlon and Nielsen 2019, Deshpande and Li 2019)

that deals with the challenge of heterogeneous treatment effects inherent in the standard two-

way fixed effect DID estimator. The stacked design aligns treatment events by event-time not

calendar time. Therefore, it allows us to exploit a richer fixed effect structure: We remove

(i) event-time trends caused by policymakers relying on local pollution or socio-economic

trends in the years prior to the policy introduction as criteria to decide whether or when to

introduce an LEZ, and (ii) time-invariant unobservables that may influence outcomes and the

decision if or when to introduce an LEZ. Using this design, we demonstrate that pre-trends

run parallel for all outcomes studied.

We produce three key findings. First, we present evidence that the number of prescriptions

for children decreases significantly over early childhood in response to a moderate air quality

improvement caused by the adoption of LEZs. A one µg/m3 reduction in the concentration

of PM10 in utero and in the first year of life decreases the total number of prescriptions

for respiratory diseases over the five pre-school years by about 0.55 or by 3.9% in relative

terms. The number of prescriptions decreases by up to 6.8% when analyzing the subgroup

of pharmaceuticals closely tied to asthma. A decreasing share of children diagnosed with

asthma (i.e. the extensive margin) drives the total reduction of asthma drug prescriptions

and, thereby, also reduces prescriptions for respiratory diseases in general. However, we also

find that children suffering from any kind of respiratory disease require less medication. This

additional effect at the intensive margin suggests positive effects on children’s respiratory

health beyond asthma. Unconditional quantile regressions (Firpo et al. 2009) reveal sugges-

tive evidence for substantial heterogeneity at the intensive margin. With a point estimate of

2.8 fewer prescriptions, children who suffer most from respiratory diseases may benefit nearly

fives times as much from LEZs as the average sufferer.

Second, when analyzing prescriptions for each pre-school year separately, we find that con-

temporaneous reductions in medication needs account for only about 6–20% of the cumulative

savings over the first five years of life. For asthma, the contemporaneous effect remains sta-

tistically insignificant. It is only from the second year of life that the initially latent health
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response materializes in fewer children diagnosed with asthma and, thus, fewer total prescrip-

tions. This finding is consistent with the common notion of a health stock that adjusts slowly

to changes in pollution levels which has rarely been documented because of a lack of real-time

health measures. The observed delay in adjustment may also explain why prior studies on

LEZs could not provide evidence for improved infant health measured by low birth weight

(Gehrsitz 2017, Pestel and Wozny 2019). We corroborate this conjecture by using hospital

data on fetal development disorders as alternative outcome variables for which treatment

effects remain statistically insignificant.

Third, the identified health benefits yield economically meaningful cost savings for public

health insurers. We find that a reduction of one µg/m3 PM10 reduces costs by 10.54 Euro

per child in their first five years of life. LEZs reduce PM10 levels by 1.37 µg/m3 so that

cost savings are 14.44 Euro per child. With average pre-treatment costs of 218.62 Euro per

child, LEZs cause an economically relevant relative cost reduction of 6.6%. With 1, 836, 434

children protected by LEZs in their in utero period and their first year of life, treatment re-

duces pharmaceutical spending for children born between 2008 and 2017 over their pre-school

years by approximately 26.5 million Euros, or 42.4 million Euros when accounting for positive

spillover effects. Because all children benefit from LEZs from their second year of life onward,

cost savings originate from a single life year with slightly improved air quality. While these

savings represent only a fraction of the total policy benefits, they already account for about

22% (or 35% when accounting for spillovers) of the up-front costs of owners of vehicles that

fail to meet LEZ standards calculated by Rohlf et al. (2020). Finding considerable health

benefits, even at overall low pollution levels, suggests that reducing pollution can have large

positive effects on children’s respiratory health in many settings.

This paper makes several contributions. First, our study is an important step forward in

credibly estimating the sustained health benefits of lower exposure to air pollution in early

life. There is robust evidence for particularly severe impacts of contemporaneous air pollu-

tion on infant and fetal health (Chay and Greenstone 2003a, Chay and Greenstone 2003b,

Currie and Neidell 2005, Currie et al. 2009, Sanders and Stoecker 2015, Knittel et al. 2016).

Motivated by the “fetal origins hypothesis,” a few papers investigate the persistent effects of

early-life exposure to air pollution on economic outcomes such as human capital formation

(Sanders 2012, Bharadwaj et al. 2017) and labor market outcomes (Isen et al. 2017) in the

long-run. Relatedly, Simeonova et al. (2019) exploit the sequential introduction of Stock-
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holm’s congestion charge to demonstrate that health benefits increase with the duration of

exposure to cleaner air. In comparison, we present evidence for the persistence of health

benefits from exposure to cleaner air in a fixed period of time, i.e. the period before age one.

By doing so, we provide a first quasi-experimental estimate for the longer-term dose-response

relationship between PM pollution and physical health. We reveal a slowly adjusting health

response over the middle years between birth and school that suggests that commonly used

contemporaneous infant health measures may be too rough to detect health benefits from

mild air quality improvements in the context of already low pollution levels.

Second, we provide the first quasi-experimental study that links moderate improvements in

air quality from banning high-emission vehicles to health benefits across the child population.

The few seminal papers on the health impact of traffic pollution focus on rare health outcomes

(infant mortality, Knittel et al. 2016) and more disadvantaged populations (children living

next to highway toll stations, Currie and Walker 2011). Alexander and Schwandt (2019)

exploit the dispersion of emissions-cheating diesel cars in the U.S. to quantify the morbidity

costs of diesel pollution for a broader population of children. Given the low single-digit diesel

share in U.S. passenger vehicles (only 1.5% of all light duty vehicles in 2014, DOT 2015) it is

unclear whether their estimates are generalizable. In contrast, we examine the link between

child morbidity and diesel pollution in the context of German cities where (i) diesel vehicles

are pervasive (45.9% in 2016, KBA 2017) and a major source of PM, and (ii) initial pollution

levels are low. Both characteristics are widespread in Europe and unaccounted for in prior

work.3

The third feature that sets this study apart is its focus on the use and the costs of pharma-

ceuticals. Guided by the medical literature (Fanta 2009) and a seminal paper by Deschênes

et al. (2017), we argue that direct morbidity and mortality conditions are a function of pol-

lution and compensatory adaptation in terms of drug therapy. Failing to account for the

pharmaceutical expenditures means to underestimate the benefits of clean air policies. With

the notable exceptions of Deschênes et al. (2017), Williams and Phaneuf (2019), and Deryug-

ina et al. (2019), the effect of air quality on defensive pharmaceutical expenditures remains

largely unevaluated. In our setting in Germany with universal health care access, our finding

of significant longer-term reductions in defensive spending is relevant from a public finance

3He et al. (2018) provide a careful study in the context of exceptionally high pollution levels, showing a
decrease in hospitalizations after the opening of a beltway diverting diesel trucks from passing through São
Paulo.
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perspective. Reduced pharmaceutical expenditures may lower insurance contributions, lower

labor costs for employers, and increase net income for households.4 The quantified policy

benefits in terms of persistently lower defensive spending for children’s medication are a com-

plement to recent estimates of Pestel and Wozny (2019) and Margaryan (2021), indicating

that LEZs also lead to contemporaneous reductions in hospital treatments and ambulatory

care claims related to cardiovascular and respiratory diseases for all age groups. While hos-

pitalizations and outpatient treatments of adults may also reflect medical histories linked to

pollution exposure and confounding influences in the distant past, such confounders can be

ruled out for infants observed from birth onward.

2 Low Emission Zones as a Research Design

In Europe, LEZs are the main instrument for cities to meet EU air quality standards which

are among the strictest worldwide. To improve air quality and protect public health, the EU

enacted several directives that set legally binding limits for criteria pollutants. Since 2005,

for example, the annual mean of PM10 pollution must not exceed 40 µg/m3. Moreover, daily

PM10 readings must not exceed 50 µg/m3 more than 35 times per year at any measuring

station (Directive 2008/50/EC). For PM2.5, the EU implemented legally binding limits only

in 2015. EU Member States that violate these limits face considerable fines. In Germany, the

16 federal states are responsible for compliance with the EU air quality standards. In case of

violations, state governments are obliged to develop city-specific Clean Air Plans (Luftrein-

haltepläne). The implementation of LEZs is by far the most tangible compliance strategy the

Clean Air Plans offer. LEZs explicitly target PM10 pollution. To date, 65 counties imple-

mented them in a staggered process where the time of introduction of each individual LEZ

depended on several idiosyncratic factors. First, the decision-making process usually involves

the respective city administrations and city councils as well as other stakeholders, but state

governments ultimately have to approve local Clean Air Plans.5 They may overrule the de-

cisions of local authorities and force cities to implement LEZs. Because of often conflicting

interests between state and local policymakers, the length of the decision-making process

regarding the introduction of an LEZ varies. Second, NGOs and private citizens frequently

appeal to the courts to advocate against air quality regulations which creates further plausi-

4Presently, health care contributions are set to 14.6% of gross wages equally shared between employers and
employees.

5At the federal level, regulations first had to (1) establish vehicle emission categories and (2) designate an
official road sign for LEZs. This was done in late 2007.
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bly exogenous variation in the timing of LEZ introductions. Court rulings based on EU air

quality legislation have generally sped up the adoption of LEZs.6

Figure 1 shows that almost every year since 2008 there have been waves of new LEZ in-

troductions. Some LEZs cover entire counties while others rather ban emission-intensive

vehicles from inner-cities. To secure access to LEZs, a vehicle must display an appropri-

ately colored windscreen sticker based on EU-wide tailpipe emissions categories. The most

emission-intensive diesel vehicles up to Euro1 standards (equivalent to 0.14g PM10 per km)

are banned from LEZs. Petrol-driven vehicles are banned if they do not have a catalytic

converter, which is very rare in Germany. Therefore, LEZs are de facto bans of old, emission-

intensive diesel vehicles.7 Police and local public order authorities enforce the policy with

penalties for its violation of currently 100 Euros.

Figure 1: The Staggered Implementation of LEZs

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Berlin, Hannover, Köln, Landkreis Heilbronn, Ludwigsburg, Mannheim, Ostalbkreis, Reutlingen, Stuttgart, Tübingen
Bochum, Bottrop, Dortmund, Duisburg, Essen, Frankfurt, Gelsenkirchen, Mühlheim, München, Oberhausen, Recklinghausen

Böblingen, Bremen, Düsseldorf, Enzkreis, Heilbronn, Karlsruhe, Pforzheim, Ulm, Wuppertal
Augsburg

Neu-Ulm
Bonn, Freiburg, Heidelberg, Landkreis Karlsruhe, Münster, Osnabrück

Neuss
Krefeld, Leipzig

Halle, Magdeburg, Wesel
Hagen, Heidenheim, Herne, Rems-Murr-Kreis

Erfurt
Mainz, Mettmann, Mönchengladbach, Remscheid, Wiesbaden

Esslingen
Rottweil

Offenbach, Siegen-Wittgenstein
Darmstadt-Dieburg

Aachen
Marburg-Biedenkopf

Zollernalbkreis
Rheinisch-Bergischer Kreis

Limburg, Regensburg

The figure depicts introduction dates for all counties with an LEZ. The eleven implementation waves considered in this
paper are marked in grey.

We exploit the temporal and spatial variation in the introduction of LEZs to break well-

known sources of endogeneity in the link between health and pollution. For instance, local

6Examples from Wiesbaden and Halle shed light on the different paths leading to the introduction of LEZs.
In late 2010, Wiesbaden’s city council proposed the introduction of an LEZ which the state government
of Hesse rejected. After the appeal of an environmental interest group, Wiesbaden’s administrative court
ruled that the state government had to approve the LEZ in order to comply with air quality standards as
fast as possible (Wiesbadener Tagblatt 2011). In contrast, the city of Halle appealed plans by the state
government of Saxony-Anhalt to implement an LEZ. The city council decided to abandon their case against
an LEZ after it was made clear that the EU would otherwise penalize the city almost a million Euros per
day (Mitteldeutsche Zeitung 2011).

7Less emission-intensive vehicles with Euro2 and 3 standard are eligible for red or yellow stickers while cars
that meet Euro4 standards are eligible for green stickers.
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economic conditions not only affect ambient air pollution (Chay and Greenstone 2003b) but

also infant health (Dehejia and Lleras-Muney 2004, Lindo 2011). Therefore, we instrument

changes in PM10 with the implementation of LEZs. Prior research finds that LEZ implemen-

tation decreased local PM10 concentrations by 4 – 9% (Wolff 2014, Malina and Scheffler 2015,

Gehrsitz 2017, Pestel and Wozny 2019, Margaryan 2021). Our approach of using a policy

intervention as an instrumental variable is similar to the identification strategy by Chay and

Greenstone (2005), Bento et al. (2015), and Isen et al. (2017) who use county attainment

status under the U.S. Clean Air Act as an instrument for changes in pollutant concentrations.

To address concerns that LEZs are not introduced randomly but in areas where air quality is

deteriorating, we follow Wolff (2014) and include in our sample only non-attainment counties,

that failed to meet the PM10 limits. Of these counties (i) 65 implemented an LEZ and (ii)

63 have not implemented an LEZ to date despite non-compliance. Only the 49 counties that

implement their LEZ until 2012 count towards the treated because we want to be able to

follow children after LEZ implementation for five years. From the sample of non-attainment

counties, we construct for each group of treated counties that introduces LEZs in a given

year-quarter a different “clean” control group consisting of later-adopting counties and not-

to-date-adopters (see Section 3.2). Our identifying assumption is that in the absence of LEZ

introduction, air pollution and health outcomes in treated counties would have evolved sim-

ilarly to the control counties.

To test the validity of our identifying assumption, we use a dynamic difference-in-differences

design that aligns treatment events by event-time and not calendar-time, which allows for a

richer fixed effect structure (see Section 3.2). First, we can remove LEZ wave-specific time

trends that may result if policymakers use local pollution or socio-economic trends in the

years prior to implementation as criteria for introducing LEZs in a given year-quarter. Sec-

ond, we are able to remove time-invariant differences between treatment and control groups

from each wave of LEZ implementation that could be driving outcomes and selection into

LEZ adoption and earlier or later adoption. Conditional on our fixed effects, we consistently

show that there are no differences in the trends of air pollution and health outcomes across

the treatment and control groups before LEZ implementation.
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3 Methodology

3.1 Isolating Early-Exposure Effects

Our goal is to estimate the causal effect of PM exposure in the in utero period and the first

year of life on later life health outcomes measured before school enrollment. Due to rapid cell

proliferation and an intense phase of epigenetic programming, children in the prenatal and

immediate postnatal development period are especially vulnerable to the toxicological effects

of pollution (Holt 1998, Šrám et al. 2005, Gluckman et al. 2008, Baccarelli and Bollati 2009).

While the staggered introduction of LEZs provides us with an instrument to address concerns

regarding the endogeneity of pollution exposure, the additional empirical challenge is to iso-

late the long-term effect of PM exposure before age one from any exposure throughout the

subsequent lifetime. We want to compare individuals who are exposed to different levels of

PM pollution up to age one but who are exposed to the same levels of PM pollution thereafter.

To this end, we resort to a cohort study design as proposed by Isen et al. (2017). Our analysis

compares differences in health outcomes of children born just before and just after LEZ im-

plementation relative to the difference in health outcomes between children from the control

group born at the same times. We restrict our sample so that within each county all children

experience the same pollution levels after age one. Of the cohorts born after LEZ implemen-

tation we include all those born at least four quarters post-treatment. LEZs protect these

children from conception onward. Of the cohorts born pre-treatment we include the cohort

born exactly four quarters prior to LEZ implementation. These children are not protected

before age one but they are protected thereafter (see Figure 2). We exclude children born in

the three quarters prior or post to LEZ implementation from the sample because they are

partly treated in utero or during their first year of life. Note that to ensure equal exposure

after age one, we would need to exclude all cohorts born more than four quarters prior to

LEZ implementation. To avoid limiting ourselves to a single pre-treatment observation of

the treated counties, we keep the two cohorts born five and six quarters prior to LEZ imple-

mentation in our sample and ensure that this does not influence our results in a robustness

check.

10



Figure 2: Isolating early-exposure effects

-3 -2 -1 0 1 2 3 4 5
3 3 3 33 3 3 33 3 3 33 3 3 3 3777777773777777

partly un-
treated after

1st year

partly treated
in 1st year

partly treated
in utero

LEZ

The figure shows which cohorts are included in a given implementation wave. The numbers on the timeline measure
years with respect to the introduction date defining the implementation wave of interest. The green marks indicate the
post-treatment cohorts while the red mark indicates the pre-treatment cohort.

3.2 Stacked DID Design

In what follows, we describe our research design that combines the cohort data with the

staggered introduction of LEZs as an instrumental variable. To this end, we use a stacked

DID design (Deshpande and Li 2019, Cengiz et al. 2019, Fadlon and Nielsen 2019) that is well

suited to deal with the challenge of heterogeneous treatment effects in settings with staggered

policy introductions.

Of the 65 counties that implemented LEZs, 49 adopted them at some point between 2008

and 2012. We estimate treatment effects for these 49 counties to ensure that we can fol-

low children born after the implementation of the ban for at least five years. The 16 other

counties that adopt LEZs after 2012 are potential controls. For the period between 2008 and

2012, there are 11 distinct LEZ implementation waves, i.e. year-quarters in which at least one

county implemented an LEZ. Subscript j denotes these unique implementation waves. We

create an individual data set for each implementation wave. Counties that introduce LEZs

in the year-quarter defining the respective implementation wave count towards the treatment

group. Of these counties we include cohorts of children born in the pre- and post-treatment

periods defined in Figure 2.8 Counties that do not introduce an LEZ in implementation wave

j, either because they do so at a different point in time or never, are eligible for the control

group. Because we expect that the LEZ treatment effect on PM concentrations levels off

8The number of included cohorts varies across implementation waves because our sample only comprises
children born between 2006 and 2012.
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one year after implementation9 and because we want to have a balanced control group (see

discussion in Section 5.5), we define an exclusion window to further refine the selection of

control counties. Given our choice of an event time window of up to three years prior and five

years subsequent to LEZ implementation in the event study specification, we determine the

exclusion window to start one year earlier (-4 to +5 years). For the control group, we keep

only the counties that do not implement an LEZ within this period. Thus, our control group

only holds LEZ-counties that implement the policy measure at least four years before or five

years after treatment wave j. For instance, the county Mainz serves as a control unit for

Mannheim because it implements its own LEZ more than five years later, in 2013. Likewise,

Mannheim serves as a control unit for the county Hagen because it implemented its own LEZ

already four years earlier (see Figure 1). We stack the data sets for the 11 implementation

waves j for a pooled regression.

The selected event time window of three years pre-treatment and five years post-treatment

is subject to an important trade-off. The longer the time window, the longer we can observe

deviations from the parallel trend assumption and effects of LEZs post implementation. The

shorter the time window the higher the statistical power. However, the event time window

also determines the length of our exclusion window which defines our control group. A shorter

event time window, thus, also means that a higher number of LEZ adopters serve as con-

trol observations. Our preferred choice of the event time window is based on the dates of

the implementations of the LEZs, the availability of data, and the observation of cumulative

benefits over five years. To rule out that this choice drives our results, we provide estimates

for alternative time-window specifications in the robustness analysis.

Our stacked DID design addresses concerns about bias arising from the combination of poten-

tially heterogeneous treatment effects and the weighting implied by the two-way fixed effects

regression in DID settings with staggered policy introduction (Goodman-Bacon 2018, Athey

and Imbens 2018, de Chaisemartin and d’Haultfoeuille 2020). Goodman-Bacon (2018) shows

that the two-way fixed effect DID estimator consists of comparisons between all combinations

of early treated, late treated, and untreated units. Each comparison is weighted by the size

of the subgroup and the variance of treatment. If treatment occurs either early or late, this

results in lower treatment variance and, hence, a lower weight. Thus, units that are treated in

the middle of the study period have higher weights in the regression than those treated at the

9Results are almost identical if we instead exclude all already-treated from the control group to allow for
persistent dynamics. See Figure A.1 in the Appendix.
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beginning or at the end. Because the effectiveness of treatment may vary across implementa-

tion waves j, e.g. early adopted LEZs may be more effective at reducing PM emissions than

the later adopted as the stock of old diesel vehicles decreases over time, we have to ensure

that the weighting of cohorts does not bias our average treatment effect. Our stacked DID

design aligns treatment events by event-time, not calendar time. This results in a setting

that is equivalent to one where the treatment events occur all at the same time instead of in a

staggered fashion. This prevents the unintended weighting of events driven by the variance of

treatment (see also Abraham and Sun 2020). Regression weights now mainly depend on the

size of the subgroup. In addition, the stacked DID design prevents potential bias from using

units as controls that have been treated shortly before and might yet be on differential trends.

3.3 Estimation equations

First-Stage Estimation

The first-stage regression of the instrumental variable (IV) estimator is a stacked DID regres-

sion model specified as

Pctj = α(Treatedcj × Posttj) +
∑
τ

δτjD
τ
tj + λjDcj +W ′ctjρ+X ′ct̄jπt + γc + ηst + νctj (1)

where the dependent variable Pctj is the mean PM10 exposure in µg/m3 during the first quar-

ter of life of a cohort born in county c and year-quarter t for treatment wave j. The binary

variable Treatedcj is equal to 1 if county c introduces an LEZ in implementation wave j.

Posttj is a binary variable equal to 1 if quarter t is after the implementation quarter of wave

j. For every implementation wave, the indicators Dτ
tj are equal to 1 if quarter t is τ quarters

before or after the quarter of LEZ implementation j, where τ ∈ {−6,−5,−4, 4, 5, 6, . . . , 19}

(see Section 3.1).10 Every wave j also has its own indicator Dcj which is equal to 1 if county

c introduces an LEZ specifically in that implementation wave. The vector W ′ctj comprises

weather controls in the county of birth c. Weather controls are exogenous and, thus, included

for every year of life. The county fixed effects γc control for time-invariant, unobserved de-

terminants of pollution exposure for children born in county c. The fixed effects ηst account

for time-varying determinants of pollution exposure that are common to all children born in

10For instance, τ = 4 refers to the fourth quarter after LEZ implementation. Similarly, τ = −4 refers to the
fourth quarter prior to LEZ implementation.
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state s in year-quarter t; we refer to them as birth state–birth quarter fixed effects.11 The

coefficient α̂ provides a difference-in-differences estimate of the impact of LEZ implementa-

tion on quarterly PM10 levels at the county level.

In some specifications, we also include pre-treatment controls for socio-economic characteris-

tics (e.g. population density, employment, income, and transfers) interacted with year-quarter

fixed effects denoted by X ′ct̄j . We generate these controls by interacting year-quarter dummies

with terciles of the variables measured in t̄ = 2007, the year prior to the first LEZ imple-

mentations (Barrot and Sauvagnat 2016).12 Observing that the estimated treatment effect

changes significantly after allowing for these trends that vary with the levels of the exogenous

covariates would suggest that the results are driven by differential trends in pollution across

socio-economic characteristics (see Jaeger et al. (2020) and Hoynes et al. (2016) for similar

approaches).

Our stacked DID design enables us to remove important unobservables that may simulta-

neously drive treatment selection and outcomes. First, the indicators Dτ
tj in Equation (1)

remove LEZ wave-specific unobservables that appear in event-time rather than calendar-time.

This eliminates trends that emerge, for instance, if policymakers use local pollution or socio-

economic trends in the years prior to implementation as decision criteria whether and when

to introduce LEZs. Accommodating calendar time effects will not eliminate such pre-trends.

One could restrict the effect of the wave-specific event-time binary variables Dτ
tj to be equal

across treatment waves, that means replacing δτj by δτ . However, we would then only remove

the variation in event-time pooled over all implementation waves. Second, by including Dcj

and allowing its effect to vary by implementation wave, we remove time-invariant differences

between treatment and control groups for each LEZ implementation wave j and between

different implementation waves.13 This accounts for time-invariant unobservables that may

drive outcomes and selection into LEZ adoption and earlier or later adoption. In case we

only included one wave-unspecific binary variable Treatedcj , we would only control for these

differences between the pooled treatment and the pooled control group.

11Note that the counties of Berlin, Hamburg, and Bremen are states in their own right. Including state–quarter
fixed effects absorbs the variation explained by the treatment in these counties. Therefore, we allocate these
three counties to neighboring states, i.e. we assign Berlin to Brandenburg, Hamburg to Schleswig-Holstein,
and Bremen to Lower Saxony. We ensure that this allocation does not determine the results by estimating
alternative specifications.

12Appendix C.1 holds a detailed description of the control variables.
13The latter is only true because we include Dτ

tj as well.
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Second-Stage Estimation

In the second stage, predicted values for PM10 from Equation (1) serve as an explanatory

variable in

Hctj = βP̂ctj +
∑
τ

στDτ
tj + ψjDcj +W ′ctjκ+X ′ct̄jµt + γc + ηst + εctj (2)

where the coefficient of interest β describes the marginal effect of a one µg/m3 LEZ-driven

increase in PM10 exposure on the average health outcome Hctj of a cohort born in county c

and year-quarter t. The health outcome is accumulated over the first five years of a child’s

life and is averaged over the children in cohort ct. We obtain the health outcome through

an auxiliary regression that exploits the available information at the level of the individual

child (i.e. gender and area of residence within a county at the five-digit zip code), which

controls for some of the observed heterogeneity in individual health when aggregating the

data.14 All regressions are weighted by the number of children in a cohort (see Appendix

B). We cluster standard errors at the county level, the level at which the treatment is assigned.

The unbiasedness of β̂ depends on two crucial assumptions. First, LEZs need to be a strong

instrument for changes in particulate matter pollution. We subsequently present evidence for

a strong first-stage, showing that PM10 levels decline significantly and persistently in response

to LEZ implementation. Second, for consistency, it must be the case that LEZ introduction

affects health outcomes only via its impact on air pollution and not, for instance, through

changes in the population’s composition or behavior. Given that our results are largely insen-

sitive to the choice of controls, and conditional on the full set of fixed effects, we believe that

the exclusion restriction holds. While we cannot conclusively show its validity, we conduct

various indirect tests. First, we comprehensively assess whether LEZs shift the composition

in the underlying population in LEZ counties but find no evidence thereof. Second, we re-

estimate our IV model for medical conditions unrelated to air pollution. These placebo tests

provide further evidence in favor of the validity of our IV design. Third, we explore the

unlikely possibility that the compliance costs of LEZs reduce industrial activity and, thereby,

emissions of other health-damaging local pollutants, most notably sulfur dioxide (SO2). We

14Aggregating individual level data via auxiliary regressions and conducting regressions on the obtained ag-
gregates is a common approach in the literature (e.g. Baker and Fortin 2001, Shapiro 2006, Albouy 2009a,
Albouy 2009b, Angrist and Lavy 2009, Currie et al. 2015, Isen et al. 2017, Notowidigdo 2020) and asymptot-
ically equivalent to using the individual level data itself (e.g. Donald and Lang 2007). We provide a detailed
description of the procedure in the Appendix B.
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find no evidence for any statistically significant effects on SO2. Finally, the exclusion restric-

tion may be violated if LEZs affect pollutants other than PM10 that also have a direct impact

on respiratory health (see discussion in Section 5.5). This is a potential threat to all analyses

in which a single instrument could affect multiple pollutants. In fact, we show that LEZs

reduce both PM and NO2. However, we also show that the policy exclusively affects these

pollutants and argue that our identification strategy suffices to identify the health effects of

pollutants from motor vehicles rather than of PM10 in particular. Similarly, other studies

attribute estimated IV-effects to air pollution more generally rather than to a particular pol-

lutant (Chay and Greenstone 2003a, Currie and Neidell 2005, Arceo et al. 2016, Knittel et al.

2016, Deryugina et al. 2019, Sager 2019, Colmer et al. 2020).

Event-Study Specification

We estimate event-study specifications of our stacked DID model to assess the parallel trends

assumption. To this end, we expand the pre-treatment window of our sample to include all

observations up to three years prior to LEZ implementation. Furthermore, we include obser-

vations from the three quarters before and the three quarters after LEZ implementation, so

that τ ∈ {−12, . . . , 19}. To gain precision and prevent noise potentially linked to estimating

32 quarter coefficients, we group the event study coefficients at the year level throughout our

paper. By doing so, the first stage becomes

Pctj =
∑
υ

θυ(Treatedcj ×Dυ
tj) +

∑
τ

δτDτ
tj + λjDcj +W ′ctjρ+X ′ct̄jπt + γc + ηst + ωctj (3)

with υ = bτ
4
c

The parameter of interest is θυ. It captures the marginal effect of LEZs on the mean PM10

concentration in year υ prior or post to treatment. We set θ0 = 0 so that the year prior to LEZ

implementation is the reference category. The figures presented in the following sections plot

the θυ estimates in event time. The main difference between the standard two-way fixed effect

event study and our dynamic estimator in Equation (3) is that we eliminate time-invariant

unobservables both within and between LEZ implementation waves by including Dcj as well

as wave-specific event-time trends that do not appear in calendar time by including Dτ
tj .
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We also estimate an event study specification that explores the treatment effect dynamics for

the long-run health outcomes. Replacing the dependent variable in Equation (3) with Hctj

results in a reduced-form event study model. This specification allows us to examine how

LEZs affect long-run health depending on a child’s age at the time of exposure. Because the

year prior to LEZ implementation is the reference category, we essentially test for differential

effects of exposure relative to exposure at age one and older.

4 Data

Air Pollution and LEZ Data

The German Environment Agency (UBA) provides data on air pollution for the years 2006

through 2013 for 128 counties that violated EU-wide limits for PM10. Specifically, monitoring

stations record daily concentrations of regulated air pollutants particulate matter (PM10),

nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2). For the sample period, there

is no consistent data on fine particulate matter (PM2.5) concentrations available from UBA

because there were no legally binding thresholds for PM2.5 before 2015. Stations located

at the roadside primarily measure peak pollution exposure from traffic, while the remain-

ing stations measure the permanent exposition to pollution in residential areas (UBA 2019).

We combine measurements from both types of stations and interpolate the point measures

into county space using Inverse Distance Weighting (Currie and Neidell 2005, Karlsson and

Ziebarth 2018). Based on the daily records, we construct a weighted average of quarterly

levels of PM10, NO2, O3, and SO2. Following recent studies (i.e. Chay and Greenstone 2003a,

Isen et al. 2017), we use weights proportional to the number of monitor observations within

a quarter and limit our data to stations with at least 60 measurements per quarter (see Ap-

pendix C.2 for a detailed description). UBA also provides data on the exact dates at which

LEZs are implemented.

Health Care Data

The health data comes from Germany’s largest public health insurer AOK and is at the level

of the individual child and the individual quarter. It provides us with information on pharma-

ceutical prescriptions and in-hospital doctoral care.15 We obtained access to the anonymized

15Note, that we only observe stationary hospital treatments that accommodate overnight cases.
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data through the “AOK Research Institute” (WIdO). The data holds information on about a

third of all children born in Germany, approximately 200,000 annually. The sample includes

the full medical records of all children born between January 1, 2006, and December 31, 2012

until the end of 2017, exploiting the full range of data available at WIdO when conducting

this research. This allows for observing all children in the sample from birth until age five.

Because our analysis focuses on early childhood pollution effects, we exclude children from

our sample who move out of their birth county within the first year of life. Likewise, we ex-

clude children who are not continuously insured with AOK until the age of five. Overall, our

sample holds observations on about 1.1 million children across all counties in Germany. The

sample of counties underlying our analysis that either implement or consider implementing

an LEZ comprises 550,000 children.

The focal point of our analysis are respiratory health outcomes. It is well established in

the medical literature (e.g. Li et al. 2003) that PM pollution causes inflammations in the

respiratory tract that may irreversibly reduce lung growth and function. In consequence,

affected children are more vulnerable to suffer from respiratory problems in general and are

at a higher risk of developing severe chronic diseases such as asthma later in life. Because

respiratory diseases are primarily treated with pharmaceuticals, we restrict the main analysis

to prescriptions. Pharmacies electronically provide health insurers with data on prescriptions

(Swart et al. 2005). These data hold information on costs and pharmaceutical substances

classified according to the ATC-Code system.16 In Germany’s universal public health care

system, all prescription costs are covered by the insurance without any co-payments for chil-

dren. This applies to over-the-counter drugs as well, as public insurances are legally obligated

to bear the expenses for children up to the age of 12 (§34 Abs. 1 Satz 5 SGB V).

Prescription data are not linked to ICD-10 codes17 that reveal the diagnoses for which phar-

maceuticals are prescribed. Therefore, it is necessary to identify the relevant pharmaceutical

substances for the therapy of respiratory diseases. To this end, we follow two different ap-

proaches. First, we use a publication akin to the Red Book (“Gelbe Liste”) to link pharma-

ceuticals and diagnoses for more than 120,000 drugs. This provides us with a broad group

16The Anatomical Therapeutic Chemical (ATC) classification system categorizes drugs based on their active
ingredients according to the organ or the system on which they act as well as their therapeutic, pharmaco-
logical, and chemical properties. It is compiled by the World Health Organization (WHO) and adapted to
the German market on an annual basis (Swart et al. 2005).

17The ICD-10-Code is an international system for the statistical classification of diseases and related health
problems provided by the WHO. Germany uses the extended version ICD-10-GM. Outpatient and inpatient
physicians are legally required (§§295 and 301 SGB V) to classify diagnoses accordingly.
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of pharmaceuticals used to treat respiratory diseases. Second, we consider the 20 most often

prescribed substances for asthma and chronic obstructive pulmonary disease (ATC R03) in

a given year. This returns a small, strict subset of the pharmaceuticals identified in the first

approach. Appendix C.3 describes the procedures in detail. Costs of prescriptions are in real

values normalized to the fourth quarter of 2017 and account for market price changes, such

as expiring patents (see Appendix C.3).

We complement the analysis of respiratory health outcomes with placebo tests. To this end,

we consider three outcomes that are independent of air pollution but correlated with socio-

economic status: hospital treatments of injuries of the head (S00-S09), the arm (S40-S49),

or several body parts (T00-T07). Additionally, we use hospital data on pregnancy duration

and fetal growth (ICD-10 codes P05, P07, and P08) in our analysis of common infant health

measures.18 On the insured themselves, the medical records additionally offer information

about the birth dates, gender, and the precise location of residence within a county at the

five-digit zip code.

Table 1 provides summary statistics of the prescription data for respiratory diseases and pol-

lution levels at the county and quarter level. Overall, the cross-sectional dimension of our

data covers 128 counties, while the longitudinal dimension covers 28 quarters from 2006 to

2012. A detailed description is provided below the table.

18In accordance with common practice, we consider the discharge diagnosis as the main reason for hospital-
ization (Swart et al. 2005).
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Table 1: Summary Statistics of Pollution and Health Outcomes

(1) (2) (3) (4) (5)

mean sd min max N

Air pollution

PM10 (µg/m3) 23.7 6.2 9.0 57.3 3,584

Prescriptions for respiratory diseases

Number of prescriptions over five years per child 12.7 2.8 4.4 23.8 3,584

Prescription expenditures over five years per child (€) 195.8 54.1 63.6 635.3 3,584

Share of sufferers per cohort (%) 76.1 7.5 38.3 94.6 3,584

Prescriptions for asthma

Number of prescriptions over five years per child 2.0 0.8 0.1 6.1 3,584

Prescription expenditures over five years per child (€) 62.2 33.9 1.6 489.8 3,584

Share of sufferers per cohort (%) 18.3 6.1 1.3 50.6 3,584

Number of children per cohort 159.3 171.6 10 1,593 3,584

The table reports summary statistics of PM10 pollution (measured in µg/m3) and of cumulative prescriptions over the
five pre-school years linked to a broad group of respiratory diseases and asthma specifically. The variables are defined
for our study period from 2006 to 2012 and our sample of 128 German counties that violated EU-wide limits for PM10.
Cumulative prescriptions are calculated based on data until 2017. Health measures are in terms of the number or the
costs of prescriptions per child. Costs of prescriptions are in real values normalized to the fourth quarter of 2017. The
share of sufferers reflects the share of children in the cohort that require at least one prescription for a respiratory disease
or asthma, respectively.
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Additional Data on Weather and County Characteristics

Weather is a strong correlate of pollution and health (Karlsson and Ziebarth 2018). There-

fore, we obtain data from the German Weather Service (DWD) on a battery of weather

phenomena at the level of the individual weather station as well as in an interpolated grid

format. We combine weather, pollution, and health data at the county level. In the re-

gressions, we include linear and quadratic terms of precipitation as well as 12 temperature

bins19 in addition to mean temperature, sunshine duration, relative humidity, pressure, and

wind speed. We include additional control variables from the Federal Institute for Research

on Building, Urban Affairs and Spatial Development (BBSR) such as socio-economic and

demographic characteristics as well as information on the age of mothers giving birth. We

use pre-treatment measures of these variables in 2007 and categorize them into terciles. For

a detailed description see Appendix C.1.

5 Results

5.1 Ambient Air Pollution

First, we present evidence that the relationship between LEZ implementation and particulate

matter levels is strong. Table 2 shows estimates of the effect of LEZ introduction on aver-

age quarterly PM10 concentrations following Equation (1) for three different sets of control

variables that increase in stringency from left to right. All regressions include birth county

and birth state–birth quarter fixed effects. Standard errors clustered at the county level are

in parentheses. The reported mean outcomes represent weighted averages for the dependent

variable in the pre-treatment period over all treated counties with weights equal to the num-

ber of children per county.

Our most stringent specification shows that the presence of an LEZ reduces mean quarterly

PM10 concentrations by about 1.37 µg/m3. This estimate is statistically significant at the

0.1% level and robust across control sets. The stability of our treatment effect estimates after

including heterogeneous trends that vary with the pre-treatment levels of the socio-economic

controls (see Section 3.3) suggests that the LEZ effect is not driven by differential trends in

pollution across socio-economic characteristics. Compared to the mean pollution exposure of

19Temperature bins count the number of days with temperatures above 0, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33
and 34 degrees Celsius.
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26.44 µg/m3, an LEZ decreases particulate matter by about 5.2%, which is in line with the

LEZ literature. An F -statistic of 20.14 provides evidence for a fairly strong first stage rela-

tionship. To accommodate remaining concerns about potential bias from weak instruments

(Andrews et al. 2019, Lee et al. 2020), we subsequently also report robust Anderson-Rubin

(AR) confidence intervals for our IV-estimates.

Table 2: The Effect of LEZ Implementation on PM10 Concentrations

First Stage Estimation

PM10 Pollution (in µg/m3)

(1) (2)

LEZ treatment -1.30∗∗∗ -1.37∗∗∗

(0.34) (0.30)

Mean outcome 26.44 26.44

First stage F-statistic 14.25 20.14

Weather controls x x

Socio-economic controls x

This table reports coefficients from two variants of the first stage regression in equation (1). The dependent variable is
the quarterly mean PM10 concentration in a given county and year in µg/m3. Both columns include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls
are added sequentially moving from left to right. The regressions are weighted by the birth county–birth quarter cell
size. Standard errors in parentheses are clustered at the county level. The sample size is 9, 609.
* p < .05, ** p < .01, *** p < .001.

Figure 3 plots the event-study results for the effect of LEZs on PM10.20 The post-treatment

patterns suggest that LEZs cause a level shift to persistently lower PM10 concentrations with

a strong immediate effect. Moreover, coefficients prior to treatment are close to zero and sta-

tistically insignificant, which is in line with common trends in LEZ and non-LEZ counties in

the years preceding the policy interventions. Recall that our reported event study coefficients

exploit a rich fixed effect structure to remove (i) event-time trends caused by policymakers

relying on local pollution or socio-economic trends as criteria to decide whether and when to

introduce an LEZ and (ii) time-invariant unobservables that may drive outcomes and selec-

tion into LEZ adoption and earlier or later adoption.

20Table A.1 in the Appendix provides the full regression results.
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Figure 3: Event-study Estimates of the Effect of LEZ Implementation on PM10 Concentra-
tions
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The figure presents event-study coefficients from equation (3) that show how LEZs affect the quarterly mean PM10

concentration in µg/m3 in the years before and after LEZ implementation. The grey shaded area indicates the pre-
treatment period. The coefficient in the year prior to implementation is normalized to zero. The regression includes
county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as
well as weather and socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered
at the county level. Confidence intervals refer to the 5% level of significance.

5.2 Medication of Respiratory Diseases

In the following, we show the persistent effects of lower PM10 pollution on the medication

of respiratory diseases. Our analysis comprises two groups of prescriptions to detect health

effects of varying severity. To comprehensively capture respiratory health effects, we con-

sider a broad group of pharmaceuticals. To capture effects related to asthma specifically,

we consider a subset of pharmaceuticals that is closely linked to the therapy of this chronic

disease. For both groups of prescriptions, we provide reduced form estimates that indicate

the health effect of LEZ implementation (upper panel) and IV estimates representing the

health effect of a one µg/m3 increase in PM10 levels (lower panel) in Table 3. The dependent

variable is either the number of prescriptions (left side) or their costs in Euro (right side)

that accumulate on average over the first five years of a child’s life.

All regression estimates show that LEZs benefit child health. The magnitude of our results

is robust and statistically significant across control sets. For the broad group of respiratory

diseases the most stringent IV estimate in column (2), for instance, shows that an LEZ-caused

decrease in pollution of one µg/m3 in utero and in the first year of life reduces the number

of medical prescriptions by about 0.55 per child, on average. With a standard error of 0.17,
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the estimate is statistically significant at the 1% level. Relating the treatment effect to the

pre-treatment average of 14.14 prescriptions per child reveals a relative reduction of 3.9%.

Likewise, the coefficient in column (4) shows that the costs of prescriptions decrease by 10.54

Euro (4.8%) over the first five years of a child’s life on average. The relative reductions are

even higher in magnitude when considering the subset of prescriptions for asthma. While

the number of prescriptions decreases by about 6.8%, the costs decrease by about 8.0% on

average. Moreover, comparing the estimated coefficients for respiratory diseases in general

and asthma specifically, we find that about 56% (5.86/10.54) of the cost savings accrue due

to changes in chronic asthma diseases, while about 31% (0.17/0.55) of the reduction in the

number of prescriptions is attributable to asthma. AR confidence intervals (CIs) for the

IV-estimates reported in Table A.2 of the Appendix corroborate that all average effects are

positive and significantly different from zero.

Table 3: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood

A. Number of prescriptions B. Costs of prescriptions (€)

Reduced Form Estimation

(1) (2) (3) (4)

Respiratory diseases -0.65∗∗∗ -0.75∗∗∗ -10.98∗∗ -14.41∗∗

(0.17) (0.18) (3.58) (4.32)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.21∗∗ -0.23∗∗ -6.34∗ -8.01∗

(0.07) (0.08) (2.57) (3.22)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.50∗∗ 0.55∗∗ 8.46∗ 10.54∗∗

(0.16) (0.17) (3.36) (3.97)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.16∗∗ 0.17∗ 4.88∗ 5.86∗

(0.06) (0.07) (2.19) (2.74)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 14.25 20.14 14.25 20.14

Weather controls x x x x

Socio-economic controls x x

This table reports reduced form estimates that indicate the health effect of LEZ implementation (upper panel) and
IV estimates from equation (2) representing the health effect of a one µg/m3 increase in PM10 levels during the in
utero period and the first life year (lower panel). The dependent variable is either the number of prescriptions per
child (left side) or their costs in Euro per child (right side) that accumulate over the first five years of a child’s life
on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. The dependent
variable is composition-adjusted for the birth county–birth quarter cell. All regressions include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls
are added sequentially moving from left to right. The regressions are weighted by the birth county–birth quarter cell
size. Standard errors in parentheses are clustered at the county level. The sample size is 9, 609.* p < .05, ** p < .01,
*** p < .001.
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Based on the reported results we approximate the total cost savings from LEZ protection

during the in utero period and the first year of life. The most recent birth statistics tell us

that 1, 836, 434 children are protected by LEZs in utero and in the 12 months after birth.

Multiplying this number with 14.41 Euro in cost savings per child, the first reduced form

coefficient in column (4), we find that treatment reduces long-run pharmaceutical costs by

approximately 26.5 million Euro in children born until 2017.21 Similarly, the calculation

linked to asthma medication highlights cost savings of about 14.7 million Euro.

These specific savings represent an important component for a cost-benefit analysis of the

policy but only a fraction of the total health benefits that need to be included. In particular,

our study considers only new-born children rather than the whole population, only physical

rather than behavioral effects, and only prescriptions rather than doctor visits, hospitaliza-

tions, and fatalities. Moreover, the estimated savings derive exclusively from early-exposure

effects measured until school enrollment. Benefits that persist over half a decade, however,

are unlikely to cease suddenly with enrollment. Nonetheless, the estimated 26.5 million Euro

already account for about 22% of the up-front costs of owners of vehicles that fail to meet LEZ

standards calculated by Rohlf et al. (2020). In combination with other empirically identified

LEZ-benefits, namely reduced hospitalizations (Pestel and Wozny 2019), ambulatory care

claims (Margaryan 2021), and prescriptions (Rohlf et al. 2020) in the general population, it

is realistic to conclude that LEZ-costs can be recovered within a few years. Our IV estimates

may also serve to approximate the counterfactual situation of implementing the WHO’s PM10

guideline of 20 µg/m3 already in 2008. Holding constant health benefits at 10.54 Euro per

child per µg/m3 and assuming all children born into LEZ-counties until 2017 had benefited,

the 6.4 µg/m3 PM10 reduction from the annual mean of 26.4 µg/m3 could potentially have

reduced longer-run pharmaceutical costs by about 6.4 × 10.54 Euro × 2, 301, 305 children

≈ 155 million Euro.

Figure 4 plots the event-study results for the number and the costs of prescriptions for res-

piratory diseases.22 They allow us to examine how LEZs affect long-run health depending

on a child’s age at the time of exposure. Because the year prior to LEZ implementation

is the reference category, we essentially test for differential effects of exposure relative to

exposure at age one and older. Therefore, the significant post-treatment decrease in the

21This back-of-the envelope calculation does not account for potential differences between those insured with
AOK and the general population and is based on the assumption that children born after 2012 benefit
equally from the policy.

22Table A.1 in the Appendix provides the full regression results.
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number and the costs of prescriptions suggests additional benefits of exposure to cleaner air

between conception and age one relative to exposure at age one and later. Also note that

children born two (three) years prior to implementation are treated no later than from age

two (three) onward. Therefore, significant pre-treatment coefficients could indicate differen-

tial benefits from exposure beginning at age two or three relative to exposure at age one.

However, they could also indicate that the common trends assumption is violated. The fact

that pre-treatment coefficients are close to zero, suggests that neither of the two scenarios

apply. The event-study plots for asthma prescriptions are similar to the ones for respiratory

diseases in general (see Figure A.2 in the Appendix).

Figure 4: Event-study Estimates of LEZ Effects on Medication for Respiratory Diseases

(a) Number of prescriptions
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(b) Costs of prescriptions
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The figure presents event-study coefficients based on the specification in equation (3) that show how LEZs affect
the medication of respiratory diseases depending on the time between birth and LEZ implementation in years. The
dependent variable is the number of prescriptions per child (Panel A) or their costs in Euro per child (Panel B) that
accumulate over the first five years of a child’s life on average. The gray shaded area indicates the pre-treatment period.
The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed effects,
state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather and
socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.

Disaggregation by Year of Life

Using outcome measures that aggregate medication over the first five years of life neither

reveal whether health effects are persistent nor whether their intensity is constant over time.

To gain further insights in how early pollution exposure propagates through early life, we an-

alyze the pharmaceuticals prescribed in each of the five years separately in Panel A of Table

4. Because numbers and costs of prescriptions have shown to exhibit very similar behavior
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with respect to LEZ implementation, we focus on the number of prescriptions from here on.

With regards to respiratory diseases in general, the reduced form and the IV estimations con-

sistently reveal that early pollution exposure persistently and statistically significantly affects

medication. For instance, the IV estimates indicate that a one µg/m3 decrease in PM10 ex-

posure in utero and in the first year of life decreases the average number of prescriptions per

child in each of the five pre-school years. However, the coefficient in year five is statistically

significant only at the 10% level. Contemporaneous reductions in medication needs in the

first year of life account for only about 20% of the cumulative savings on prescriptions over

the first five years of life (0.11/0.55). With regards to asthma related prescriptions, this share

reduces to 6% (0.01/0.17). Moreover, the contemporaneous effect on asthma medication re-

mains statistically insignificant and effects occur only from the second year on. This suggests

that it requires time for improvements in chronic diseases to materialize. Note that the sum

of the coefficients estimated for each individual pre-school year is identical to the cumula-

tive effect over all five years presented previously and presented again in column (1) of Table 4.

Disentangling the Extensive from the Intensive Margin

We assess how the extensive and the intensive margin drive the overall treatment effect in

Panel B and C of Table 4. The dependent variable in Panel B is the share of children in

the cohort that require at least one prescription for either a respiratory disease or asthma

specifically (i.e. extensive margin). The dependent variable in Panel C is the average number

of prescriptions a child diagnosed with any respiratory disease or asthma specifically requires

(i.e. intensive margin).

For respiratory diseases in general, our IV estimate shows that a one µg/m3 decrease in PM10

pollution in utero and in the first year of life reduces the share of sufferers by 1 percentage

point (column 7). This finding is statistically significant at the 5% level. In addition, the

lower pollution level decreases the number of prescriptions in children diagnosed with any

kind of respiratory disease on average by about 0.42 over the five pre-school years (column

13). For asthma specifically, we find a 1 percentage point reduction in the share of children

newly diagnosed with asthma (column 7). The prescription requirements of children suffering

from asthma, however, are not affected in a statistically significant way (column 13), which

may reflect that existing chronic diseases need constant treatment. Because the medication

27



of respiratory diseases comprises that of asthma and because we find clear treatment effects

at the intensive margin for respiratory diseases in general, our findings suggest that lower

PM10 levels have positive effects on children’s respiratory health beyond asthma. While we

cannot positively identify these effects, we are able to make tentative inferences. For example,

Beatty and Shimshack (2014) find that air pollution affects upper respiratory infections such

as sinusitis and lower respiratory infections such as acute bronchitis or acute bronchiolitis.

Note that the estimated coefficients for the extensive and intensive margin confirm the overall

effect presented in column (1) of Table 4. For instance, for asthma the overall effect given

by the IV-coefficient in column (1) is approximated by the sum of the product of the exten-

sive margin coefficient in column (7) and the pre-treatment mean at the intensive margin

in column (13) and the product of the intensive margin coefficient in column (13) and the

pre-treatment mean at the extensive margin in column (7) (0.01 × 11.32 + 0.24 × 0.22 ≈

0.17).23 Moreover, analyzing the health effects at the extensive and intensive margin for each

year separately, we mostly observe initially latent effects that become prominent only after

the first year of life. This finding once more suggests that the health stock adjusts slowly.

Overall, our results are robust to controlling the false discovery rate following Benjamini and

Hochberg (1995) for the 76 hypotheses we test (Table A.11 in the Appendix).

23The formal relation is given as d(P/N)
d(x)

= d(P/S)
d(x)

× S
N

+ d(S/N)
d(x)

× P
S

, where P is the number of prescriptions
per child over the five pre-school years, N is the total number of children in the cohort and S is the share
of children in the cohort suffering from the disease.
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Because the degree of suffering may vary substantially among children afflicted by respiratory

diseases, we deepen our analysis of heterogeneous treatment effects at the intensive margin by

applying unconditional quantile regressions (Firpo et al. 2009) at the level of the individual

child. For computational tractability, the estimation is based on a reduced-form standard

DID.24 Our estimates in Figure 5 provide suggestive evidence that children who suffer worst

from respiratory diseases may benefit the most from LEZs. For example, with 2.8 fewer pre-

scriptions, point estimates for children in the 99th percentile indicate that they may benefit

nearly fives times as much from LEZs as the average sufferer with 0.58 fewer prescriptions

(Table 4).25

Figure 5: Unconditional Quantile Treatment Effects of LEZs on Medication for Respiratory
Diseases

10th 25th 50th 75th 90th

−4

−2

0

before treatment with treatment

Percentiles

Prescriptions

The figures present coefficients from unconditional quantile regressions (Firpo et al. 2009) at the level of the individual
child (Appendix D for further information). The dependent variable is the number of prescriptions for respiratory
diseases that accumulate over the first five years of a child’s life. The severity of suffering increases from left to right.
The bars indicate the 95% confidence interval.

24For further information on the unconditional quantile estimator see Appendix D.
25Table A.3 in the Appendix features all coefficients and standard errors.
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Comparison to the Literature

To provide context for the magnitude of our findings, we compare our estimates to related

epidemiological and economic research that focuses on asthma.

In a meta-study, Khreis et al. (2017) summarize the available epidemiological research on

the impact of early life exposure to air pollution on the prevalence of asthma in children.

Overall, the research suggests odds ratios of 1.025 for associations between PM10 and asthma

at any age. Taking the odds ratio as an approximation of relative risk, we can compare

the magnitude of our estimates for the share of sufferers to these results. Our estimate for

asthma in column (7) in Table 4 implies a risk ratio of 1.045 at the mean, which is outside

the meta-study’s 95% confidence interval for studies that consider children from age three to

young adults up to age 21. However, odds ratios from analyses limited to the ages three to

six come very close to our estimates (Clark et al. (2010): 1.068, Deng et al. (2016): 1.048,

Liu et al. (2016): 1.029).

Economic studies focus on contemporaneous improvements in child health. Using the case

of the Stockholm congestion charge, Simeonova et al. (2019) show that persistently lower

PM10 exposure reduces asthma-related hospital admissions of children below six years of age

with an implied elasticity of 3.7. The elasticities we estimate for asthma drug prescriptions

(1.8), expenditures (2.1), and the share of sufferers (1.2) are smaller.26 This difference could

be attributed to the fact that Simeonova et al. (2019) examine contemporaneous benefits of

persistently improved air quality over a longer time period, while we study longer run health

benefits from exposure to cleaner air in a single year.

Other economic studies consider short-run variations in air pollution exposure, but mainly

focus on PM2.5.27 Alexander and Schwandt (2019) study the impact of emissions cheating

by car manufacturers on PM2.5 and child health outcomes. Their estimates imply that a

one µg/m3 increase in PM2.5 increases asthma related hospital admissions of children aged

four and younger by 0.42 per 1, 000. Evaluated at the reported means, the elasticity is 3.01.

Barwick et al. (2018) study changes in health-related consumption in China for PM2.5 using

data on bank card transactions. They estimate that a 10 µg/m3 decrease in PM2.5 reduces

26The calculations are based on the IV estimates for asthma in columns (2) and (4) of Table 3 and in column
(7) of Table 4, respectively. These point estimates are then multiplied with the mean PM10 exposure and
divided by the mean of the outcome to obtain elasticities.

27Beatty and Shimshack (2014) is a notable exemption. Based on data from young children in England, they
relate respiratory treatments for children to monthly PM10 exposure. The estimated coefficient on PM10 is,
however, statistically insignificant but would imply an elasticity of only 0.1.
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health spending in children’s hospitals by 1.13%, implying an elasticity of 0.06.

5.3 Common Infant Health Measures

Health effects may be subtle if changes in pollution exposure are small and health effects

may be latent if the health stock only adjusts slowly. Our results indicate that this could

be the case in the context of LEZ implementation. To assess this hypothesis further, we

estimate the effect of a one µg/m3 decrease in PM10 exposure during the prenatal period on

fetal development. The outcome variables are postpartum stationary hospitalization due to

abnormal birth weight, unusual pregnancy duration, and fetal malnutrition.28 The estimated

treatment effects in Table 5 remain statistically insignificant. Given our findings for respi-

ratory health, this indicates that infant health measures revolving around hospitalizations

immediately postpartum may be too coarse or too focused on the short-term to detect health

effects. Moreover, it might explain why prior studies on LEZs could not provide evidence for

improved infant health measured in the form of low birth weight (Gehrsitz 2017, Pestel and

Wozny 2019).

Table 5: Severe Effects of Exposure to PM10 During the Perinatal Period on Fetal Develop-
ment

IV Estimation

Hospital treatments per 1,000 children

developmental
disorder and
malnutrition

short gestation
period and low

birth weight

long gestation
period and high

birth weight

(1) (2) (3)

Mean PM10 (µg/m3) -0.03 1.50 0.12

(0.61) (2.49) (0.39)

Mean outcome 2.93 50.22 1.14

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates from three variants of the IV regression in equation (2). The dependent variable
is the number of stationary hospital treatments of three different disorders linked to abnormal fetal development per
1,000 children. It is the composition-adjusted average for a birth county–birth quarter cell. All regressions include
birth county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects. Weather and socio-
economic controls are added sequentially moving from left to right. The regressions are weighted by birth county–birth
quarter cell size. Standard errors in parentheses are clustered at the county level. The first stage F -statistic is 24.39.
The sample size is 9,609.
* p < .05, ** p < .01, *** p < .001.

28As before, the sample comprises three cohorts born prior to and all cohorts born up to five years subsequent
to LEZ implementation. However, we exclude the first three cohorts born after implementation which are
only partially protected by LEZs in utero.
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5.4 Effect Mechanisms

Different mechanisms may explain the effects of LEZs on pollution and health. First, overall

traffic could have decreased because of mode switching to public transport. Second, individ-

uals could have substituted their banned vehicles with “greener” vehicles. To assess these

two potential channels we draw on additional annual data at the county level provided by the

Federal Highway Research Agency (BAST) and the German Federal Motor Transport Au-

thority (KBA). The BAST data provides information on the number of passing vehicles on

all freeways (Autobahnen) and federal roads (Bundesstraßen) recorded by traffic monitors.

The KBA data provides information on the number of registered private and commercial

passenger vehicles by fuel type (diesel and gasoline) and emission class.

Table 6 shows that LEZ implementation has no statistically significant effect on the traffic

volume on an average day (column 1).29 However, it reveals a shift in the composition of the

vehicle fleet. As expected, we observe a significant 20% decrease (e0.18 − 1) in the number

of old diesel vehicles classified as Euro1 and lower that are banned by the LEZs (column

2). Even vehicles with emission classes Euro2 through Euro4 decrease significantly (column

3). The banned vehicles seem to be replaced by used gasoline vehicles with the emission

standards Euro2 through Euro4 (column 6). We find no significant changes in the number of

the newest diesel and gasoline cars (column 4 and 6).

In combination, these findings provide tentative evidence on the emission source of the policy-

induced PM10-reduction. Because overall traffic is not affected, particles from wear and tear

of brakes, tires, and road surfaces are unlikely to have changed upon LEZ implementation.

The “de-dieselization” of the vehicle fleet, however, suggests that after implementation the

same amount of traffic is caused by fewer dirty diesel vehicles and more cleaner gasoline

vehicles.30 Thus, diesel exhaust may be the main driver of the observed PM10-reductions.

Toxicological and epidemiological studies suggest that PM from diesel exhaust is particularly

harmful because it mainly consists of small particles that can penetrate far into the human

body (Krzyżanowski et al. 2005, HEI 2010).

29Given that LEZs usually cover city centers, it is possible that traffic from within the LEZ shifts to other,
unregulated areas of the county. While the data from BAST do not allow a closer examination, Wolff (2014)
and Gehrsitz (2017) provide evidence against this hypothesis.

30Diesel vehicles with Euro1 may emit up to 140 µg tailpipe PM10 per km. Gasoline vehicles with Euro2-4
emit about 1-2 µg PM10 per km according to HBEFA.
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Table 6: The Effect of LEZ Implementation on Traffic Volume and the Vehicle Fleet

Traffic
volume
(vehi-

cles/24
hours)

Diesel
vehicles
Euro1
and

worse

Diesel
vehicles
Euro2-4

Diesel
vehicles
Euro5
and

better

Gasoline
vehicles
Euro1

Gasoline
vehicles
Euro2-4

Gasoline
vehicles
Euro5
and

better

(1) (2) (3) (4) (5) (6) (7)

LEZ treatment -0.01 -0.18∗∗∗ -0.03∗ -0.01 0.04 0.02∗∗ -0.01

(0.02) (0.02) (0.01) (0.05) (0.06) (0.01) (0.15)

Sample size 5,584 6,514 6,514 5,418 6,514 6,514 5,418

Weather controls x x x x x x x

Socio-economic controls x x x x x x x

The dependent variable is the number of motor vehicles counted over the 24 hours of an average day in column (1),
the number of vehicles with a diesel engine in the emission class Euro1 or worse in column (2), in emission class Euro2
through Euro4 in column (3), and in emission class Euro5 or better in column (4), and the number of vehicles with
a gasoline engine in emission class Euro1 in column (5), in emission class Euro2 through Euro4 in column (6), and
in emission class Euro5 or better in column (7). The sample in column (4) and (7) is limited to the period after
2008 because the emission class Euro5 was only introduced in 2009. All outcome variables are transformed with the
inverse hyperbolic sine function. Accordingly, the percentage change in the outcome variable is given by (eβ − 1) · 100.
All regressions include county, state–year, LEZ wave–event time, LEZ wave–treated fixed effects, as well as weather
and socio-economic controls. The weather variables comprise only precipitation, temperature, and sunshine duration
because they are available for the entire period in which we observe the BAST and KBA data. The regressions are
weighted by the average cohort size. Standard errors in parentheses are clustered at the county level. * p < .05, **
p < .01, *** p < .001.

5.5 Robustness Checks

Alternative Control Groups

Changes in the composition of the control group do not alter our results. Our baseline esti-

mates rely on a control group that comprises counties that implement LEZs at some point

and counties that violate EU PM10 standards but have no LEZ to date. Neither of the event-

study plots in Figure 3 or 4 point to differential trends in air pollution and health outcomes

across the treatment and control groups before policy introduction. This alleviates concerns

that LEZ adoptions are determined by any omitted local conditions or shocks that simulta-

neously affect air pollution and health outcomes. Nonetheless, we additionally restrict our

sample to counties that actually introduce LEZs to ensure that our results are not determined

by deliberate selection of counties into treatment. Recall that our full sample comprises 128

counties of which 65 actually implement LEZs; 49 between 2008 and 2012. Figure A.3 in the

Appendix shows event-study estimates based on the sample of the 65 ever-adopter counties.

Although the restriction to ever-adopters nearly slashes our sample in half, the event-study

plots for the first stage and the reduced form continue showing well-behaved patterns that

are similar to those in Figure 3 and 4.
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In our preferred DID setting, we observe cohorts born up to five years after treatment and

exclude all cohorts from counties that implement LEZs in this time period from the control

group in each of the stacked data sets. By choosing a five-year time window after treatment,

we are able to identify longer-run effects of LEZ introduction. However, the length of the time

window has implications for the composition of the control group. The shorter the window,

the more comparable are the control and the treatment group. This is because more control

units that introduce an LEZ with close proximity in time are eligible to the control group.

In Table A.4 in the Appendix we show that treatment effects remain robust when shortening

the time window after treatment sequentially from five to two years.

Spillover effects

Some of the counties in our control group directly neighbor counties implementing an LEZ.

These counties may be subject to positive or negative spillovers. This would bias our es-

timated effects on pollution and health. In particular, we are concerned that drivers may

change their routes to circumnavigate the LEZ such that traffic would merely be displaced. In

this case, LEZs would have worsened air pollution in neighboring counties and our estimates

would overestimate the policy‘s effectiveness. To address this concern, Table 7 replicates the

estimations from Tables 2 and 3. The only difference is that we include a binary variable

that takes on a value of 1 if a neighboring county implements an LEZ.31

We find negative but statistically insignificant policy effects in neighboring counties with

regard to either PM10 pollution, prescriptions for respiratory diseases, or asthma. In line

with these findings, Wolff (2014) and Gehrsitz (2017) show that treatment effects on pollu-

tion measuring stations outside of the LEZs are negative but insignificant. However, when

controlling for neighboring counties, the effect of LEZs on air pollution within LEZ counties

is −2.18 (Table 7) while our main estimate is −1.37 (Table 2). The reduced form effects of

LEZs on the number and costs of prescriptions are also higher when controlling for neigh-

boring counties compared to our preferred estimates in Table 3, the only exception being the

coefficient for the number of prescriptions for asthma. However, the IV effects remain almost

unchanged given that the difference in the estimated effects on pollution and health are of

31In alternative tests, we exclude all neighboring counties from each treatment wave in the sample and account
for the number of neighboring LEZs when estimating spillover effects. In either case, the results remain
almost identical.
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similar proportion.

While we cannot recover statistically significant effects on neighboring counties, the higher

magnitude of the reduced form treatment effects when controlling for neighboring counties

indicates that positive spillover effects are likely present. This conjecture is corroborated

when testing whether the policy-induced “de-dieselization” of the vehicle fleet identified in

Section 5.4 expands across county borders. In line with Wolff (2014), we find that neighboring

counties also exhibit a statistically significant reduction (−0.04∗, t = −2.06) in the number

of banned diesel cars classified as Euro1 and lower. This effect can be plausibly linked to the

fact that LEZs cover city centers where many workplaces and points of interest are located.

Individuals living in the neighboring counties have an incentive to ensure that their vehicles

allow access.

Overall, the findings alleviate concerns about overestimating and instead mark our main

analysis as conservative. In fact, when accounting for positive spillover effects the estimated

effectiveness of the policy could be considerably greater. While in Section 5.2 we estimate

that treatment reduces long-run pharmaceutical costs by approximately 26.5 million Euro in

children born until 2017, the estimates in Table 7 suggest cost savings of 42.4 million Euro

(1, 836, 434 children × 23.10 Euro).
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Table 7: Air Pollution and Health Effects on Neighboring Counties

A. Reduced Form Estimation

PM10 Pollution Number of prescriptions Costs of prescriptions

(in µg/m3) Respiratory
diseases

Asthma Respiratory
diseases

Asthma

(1) (2) (3) (4) (5)

LEZ effect on -2.18∗∗∗ -1.09∗∗∗ -0.24∗ -23.10∗∗∗ -14.34∗∗

LEZ-counties (0.53) (0.28) (0.12) (6.38) (5.39)

LEZ effect on -0.41 -0.16 -0.03 -1.56 -0.54

neighbor-counties (0.25) (0.13) (0.07) (3.56) (2.83)

B. IV Estimation

PM10 Pollution - 0.49∗∗ 0.11 10.34∗∗ 6.38∗

(0.15) (0.06) (3.47) (2.73)

Weather controls x x x x x

Socio-economic controls x x x x x

This table replicates the first stage regression in Table (2) and the reduced form and IV regressions in Table (3). In
addition, the treatment effect on counties adjacent to those that implement an LEZ is estimated. All regressions include
birth county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects, as well as weather
and socio-economic controls. The regressions are weighted by the birth county–birth quarter cell size. Standard errors
in parentheses are clustered at the county level. The sample size is 7,665. * p < .05, ** p < .01, *** p < .001.

Accounting for Changes in Population Characteristics

A potential threat to identification in our IV design is that improved air quality might change

the composition of the cohorts in LEZ counties, leading to changes in the unobservable char-

acteristics of the children born there. This occurs if the implementation of LEZs changes how

individuals move in and out of the county which would invalidate the exclusion restriction.

For example, if LEZs either attract good health risks or induce bad health risks to locate

to other counties, improvements in child health may result from the changed socio-economic

structure of counties rather than from reduced pollution. While there exists no evidence

in the literature that LEZs affect the socio-economic structure of counties, we nevertheless

report a range of additional estimates that strengthen our confidence that the exclusion re-

striction holds.

First, we analyze whether LEZ implementation significantly affects how individuals migrate

in and out of counties (Appendix Table A.5) and we conduct placebo tests (Appendix Table

A.6). To estimate treatment effects on mobility patterns we consider net migration in the

overall county population, net migration among families, and the fraction of AOK-insured

children moving out of their birth county. As placebo health outcomes we use hospital treat-
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ments of injuries of the head, the arm, and of other body parts. All outcomes are typical

health issues in children and strongly correlated with socio-economic status (e.g. Faelker et

al. 2000, Birken and MacArthur 2004, Yates et al. 2006), while the air pollution literature

does not indicate a relationship. Table A.5 and Table A.6 in the Appendix do not reveal any

statistically significant policy effects on migration patterns and placebo outcomes. However,

because the coefficients are estimated imprecisely, we turn to another indirect test on changes

in the socio-economic composition of cohorts.

If unobservable population characteristics adjust gradually over time, comparing treated and

untreated cohorts will suffer less bias the closer they are in the time dimension. Therefore,

we reuse our previous robustness analysis in which we sequentially reduced the five-year time

window after treatment to two years. It is unlikely that population characteristics change

markedly within just two years. In the absence of gradual changes in unobserved characteris-

tics, the estimates for the limited samples should be close to those in the main analysis. Table

A.4 in the Appendix shows that treatment effects remain indeed robust as the post-treatment

time window decreases.

Effect on Other Air Pollutants

We use PM10 as a measure for PM exposure. By definition, PM10 includes particles below

10µm, including the finer PM2.5 particles. We rely on PM10 because policymakers in Europe

are highly focused on this pollutant, and LEZs explicitly target PM10. Moreover, the EU only

set legally binding limits for PM2.5 in 2015. To evaluate whether LEZs also decrease PM2.5,

in a first robustness check, we resort to satellite-based PM2.5 estimates from van Donkelaar

et al. (2019).32 This data is available on a fine resolution grid (0.01 degrees) but only at

the annual level.33 Thus, we lose quarterly observations and the corresponding fixed effects.

Table 8 shows that the introduction of LEZs reduces mean PM2.5 concentrations by about

2%. The relatively modest magnitude compared to that for PM10 may reflect attenuation

bias from non-classical measurement error.

32Data from the German air monitoring network for PM2.5 is very limited. We have about 70% fewer obser-
vations for PM2.5 than for PM10.

33van Donkelaar et al. (2019) merge satellite measurements of aerosol optical depth with a particulate transport
model, and combine them with data from air monitoring stations to obtain estimates of PM2.5 for Europe.
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Table 8: The Effect of LEZ Implementation on Different Pollutants

(1) (2) (3) (4)

PM2.5 NO2 O3 SO2

LEZ treatment -0.30∗ -3.27∗∗ -0.04 -0.12

(0.12) (1.07) (0.56) (0.25)

Mean outcome 15.51 40.81 39.27 4.3

First stage F-statistic 5.79 9.44 0.01 0.24

Weather controls x x x x

Socio-economic controls x x x x

This table reports coefficient estimates for the effect of LEZs on four different air pollutants. The dependent variable
is either the mean concentration of PM2.5, NO2, O3, or SO2 in µg/m3. All regressions include birth county, birth
state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic
controls. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are
clustered at the county level. The sample size is 3, 466 in column (1) and 9, 609 in columns (2) through (4).
* p < .05, ** p < .01, *** p < .001.

Our second robustness check is motivated by the fact that diesel vehicles emit significant

quantities of nitrogen oxides. In fact, road traffic emissions of nitrogen dioxide (NO2), which

serve as an indicator for different nitrogen oxides, are caused primarily by diesel vehicles.34

Therefore, we assess whether LEZ implementation also leads to notable changes in ambient

NO2 concentrations using our data from the German air monitoring network. Table 8 shows

that LEZs significantly reduce NO2 by about 3.27 µg/m3 (8.0%) on average. This finding is

consistent with the fact that LEZs are de facto bans of old diesel vehicles.

Because LEZs reduce both PM and NO2, we cannot conclusively infer that PM10 determines

our observed health effects alone. Therefore, we caution against interpreting our IV results as

a causal estimate of the health effects of PM10 as a stand-alone pollutant. Instead, we argue

that our IV results represent health effects linked to air pollutants from diesel vehicles. Sim-

ilarly, other papers generalize their results to air pollution effects (c.p. Chay and Greenstone

2003a, Currie and Neidell 2005, Arceo et al. 2016, Knittel et al. 2016, Deryugina et al. 2019,

Colmer et al. 2020). We subsequently show that the policy does not affect other pollutants.

First, we examine whether LEZs have unintended effects on ozone (O3) concentrations. O3 is

negatively correlated with other local air pollutants, in particular with NO2 which is one of its

precursors. Therefore, we may be concerned that the implementation of LEZs increases O3

concentrations. However, Table 8 does not provide evidence for an unintended increase in O3.

34In Germany, about 72.5% of NO2 emissions from on-road traffic are from diesel vehicles (UBA 2017).
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Second, environmental regulation can have adverse impacts on firm output and productivity.

Therefore, we may be concerned that LEZs decrease industrial activity and, thereby, reduce

emissions of industrial pollutants, most notably SO2. To rule out that health effects are

subject to this channel, we also estimate effects for SO2 concentrations. Table 8 does not

reveal any statistically significant effects. Because transport only accounts for about 2% of

total SO2 emissions, this robustness check also serves as a placebo test, suggesting that our

first-stage results are not driven by confounding factors.

Accounting for Treatment Differences After the First Year of Life

In our main analysis, we compare children who experience different pollution exposure levels

in utero and over their first year of life but the same exposure levels afterwards. A strict

implementation of this comparison requires that we restrict ourselves to cohorts born exactly

four quarters prior to LEZ implementation. However, to avoid limiting ourselves to a single

pre-treatment observation of the treated, we additionally include the two cohorts born five

and six quarters prior to treatment in our main analysis. The drawback of this approach is

that it neglects potentially different exposure levels in the second year of the children’s lives.

However, our event-study estimates in Figure 4 do not indicate additional benefits from ex-

posure at age one relative to exposure at age two and three. As a further robustness check,

we limit pre-treatment observations to cohorts born four quarters before implementation.

The results in Table A.7 in the Appendix show that our findings are robust with respect

to this sample restriction. The reduced form and the IV point estimates are very similar in

magnitude to the ones reported in Table 3.

Accounting for Increases in Policy Stringency

Our treatment estimate identifies the effect of LEZ introduction. Upon implementation,

LEZs ban the most emission-intensive diesel vehicles with tailpipe emission category Euro1

or lower (no sticker). However, LEZs become more stringent over time so that they eventually

also ban vehicles with Euro2 (red sticker) and Euro3 (yellow sticker) standards. This grad-

ual adoption of more stringent restrictions raises the concern that children born after LEZ

implementation benefit from cleaner air for longer throughout their pre-school years than

children born just before LEZ implementation. This would imply that children in our pre-
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and post-treatment comparison differ not only in exposure during their in utero period and

their first year of life. Reassuringly, our event-study results for the number and the costs of

prescriptions in Figure 4 provide no evidence that differences in exposure after age one have

any additional health benefits. If there were differential benefits from exposure beginning

at age two or three relative to exposure at age one, we would expect positive pre-treatment

coefficients. Instead, we observe statistically insignificant coefficient estimates close to zero.

As a further robustness check we enrich our event study specification for prescriptions in

Equation 3 by eight additional binary variables:
∑5

y=2 f
Euro2
cy +

∑5
y=2 f

Euro3
cy , where fEuro2cy

(fEuro3cy ) is equal to one if Euro2 (Euro3) vehicles are banned in year of life y of cohort

c. These dummy variables should absorb potential additional health benefits in year of life

two through five linked to the two more stringent LEZ regimes banning Euro2 and Euro3

vehicles, respectively. If there were additional benefits from Euro2 and 3 vehicle bans, we

would expect post-treatment coefficients to decrease in event time.35 However, Figure A.4

in the Appendix exhibits very similar patterns to our event study in Figure 4 that lacks the

additional dummies capturing changes in stringency. This suggests there are no additional

benefits from the increasing stringency of LEZs.

Two-way Fixed Effect DID Estimation

We also estimate the two-way fixed effect equivalent of our stacked difference-in-differences

estimator. The coefficient estimates in Table A.8 show similar, robust effects of PM10 on child

health. However, they tend to be lower in magnitude. For instance, the IV coefficient for

respiratory diseases is 0.55 in the stacked DID estimation in column (2) of Table 3 while it is

only 0.39 in the two-way fixed effect DID estimation in Table A.8. We expect that part of this

attenuation stems from the weighted aggregation of heterogeneous treatment effects revealed

in Goodman-Bacon (2018). It may also indicate violations in common trends that result

from including already-treated units in the control groups for the newly treated, although

they are on differential trends from prior treatment. Also note that it is impossible in the

two-way fixed effect setup to include fixed effects that absorb implementation wave-specific

unobservables in event-time and time-invariant differences between treatment and control

groups within and across implementation waves.

35We do not expect shifts in post-treatment patterns because the timing of Euro2 and 3 vehicle bans varies
across counties relative to the implementation date.
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Functional form

We also test the robustness of our results with respect to the functional form. The outcome

variables in our baseline specifications are in levels. Using per capita prescriptions as out-

come, we implicitly assume that prescriptions per child would have evolved with the same

absolute changes in the absence of treatment. However, if prescriptions per child changed at

the same rate in the absence of any LEZ intervention instead, the parallel trends assumption

would be violated. Although our event-study plots do not reveal pre-trends that differ in a

statistically significant manner, we re-estimate our main results with logged outcome vari-

ables in Table A.9 in the Appendix. We find that the estimated relative effects are nearly

identical to the ones derived from Table 3.

6 Conclusion

This paper provides a quasi-experimental study that links moderate improvements in air

quality in a single year from banning emission-intensive vehicles to substantial health benefits

across children’s pre-school years. The context of our study are urban counties in Germany,

where motor vehicles are a major source of air pollution. Yet, average pre-treatment pol-

lution levels are low. These characteristics are widespread in Europe, so that our results

are most likely generalizable. Exploiting unique public health insurance data at the patient

level on one million children, we examine whether individuals born just before and just af-

ter reductions in PM concentrations caused by the adoption of Low Emission Zones exhibit

persistent differences in rarely studied medication use up to five years after treatment. We

focus on children’s pharmaceutical prescriptions as a sensitive, real-time health measure that

overcomes the challenge of capturing health effects that may be both subtle if changes in

pollution exposure are moderate and initially latent if the health stock adjusts slowly.

We present strong evidence that the cumulative number and the cumulative costs of pharma-

ceutical prescriptions over early childhood decrease significantly after LEZ implementations

improve air quality. For instance, the number of prescriptions for asthma decreases by 6.8%

and their costs decrease by about 8.0% on average for every one µg/m3 reduction in PM10

concentration. Our findings provide strong support for the notion of health as a stock that

changes relatively slowly over time. It is only from the second year of life that the initially

latent health response materializes in fewer children diagnosed with asthma and, thus, fewer
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total prescriptions. Contemporaneous reductions in prescriptions of asthma medication ac-

count for less than 6% of the cumulative savings over the first five years of life. This highlights

that estimates of contemporaneous pollution impacts may substantially underestimate ‘fully

formed’ health benefits. We identify economically meaningful cost savings for public health

insurers. With 1, 836, 434 children protected by Low Emission Zones in utero and during their

first year of life, treatment reduces costs for prescriptions in children born between 2008 and

2017 for respiratory diseases by about 26.5 million Euros over their pre-school years, or 42.4

million Euros when accounting for positive spillover effects. Because we compare children

who differ only in their pollution exposure during their in utero period and their first year

of life, these cost savings originate from a very short period with slightly improved air quality.

Our results inform contentious policy debates. Across Europe, vintage- and fuel-specific driv-

ing bans are a widespread and ever more stringent policy intervention. Major metropolitan

areas, including Paris, Madrid, and Rome, are even committed to full diesel bans by 2025.

Yet, opponents of driving restrictions prominently question whether a narrow focus on diesel

bans is a rational choice to effectively improve air quality and public health. Our study seeks

to provide first answers by quantifying an important fraction of the reduction in the public

health burden accomplished by LEZs - Germany’s flagship policy at the local level to comply

with air quality standards set by the EU clean air directives. Finding meaningful health im-

provements, even at low pre-treatment pollution levels, suggests that vintage-specific driving

bans that target particularly old and emission intensive diesels can have large and long-lasting

positive effects on children’s respiratory health in many settings.

Our study cannot assess whether additional restrictions for newer vehicles would yield fur-

ther health improvements. This is an important policy question for future research. Another

research question is how treatment effects progress through life. In our study, health effects

are latent in the first year before materializing. It is far from obvious whether health effects

persist permanently and how they impede cognitive or non-cognitive skill formation. To ad-

dress the progression of effects, we would need to follow the children in our study and rerun

our estimations at later points in time, for example at the end of elementary school, at the

end of high school, and some years into their professional lives.
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A Additional Figures and Tables

Figure A.1: Event-study Estimates of LEZ Effects - Excluding All Already Treated Counties
from the Control Group
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The figure presents event-study coefficients that show how LEZs affect PM10 concentration and the medication of
respiratory diseases for a sample that excludes all already treated counties from the control group. The dependent
variable is the mean quarterly PM10 level (Panel a), the number (Panel b) or the costs (Panel c) of prescriptions that
accumulate over the first five years of a child’s life on average. The grey shaded area indicates the pre-treatment period.
The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed effects,
state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather and
socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.
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Figure A.2: Event-study Estimates of LEZ Effects on Medication for Asthma
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The figure presents event-study coefficients that show how LEZs affect the medication of asthma depending on the
time distance between birth and LEZ implementation in years. The dependent variable is the number (Panel a) or the
costs (Panel b) of prescriptions that accumulate over the first five years of a child’s life on average. The grey shaded
area indicates the pre-treatment period. The coefficient in the year prior to implementation is normalized to zero. The
regression includes county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated
fixed effects as well as weather and socio-economic controls. It is weighted by the county–quarter cell size. Standard
errors are clustered at the county level. Confidence intervals refer to the 5% level of significance.
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Figure A.3: Event-study Estimates Excluding the Never Treated

(a) PM10
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The figure presents event-study coefficients that show how LEZs affect PM10 pollution and the medication of respiratory
diseases for a sample that excludes all never treated counties from the control group. The dependent variable is the
average PM10 level in µg/m3 (Panel a) or the number of prescriptions that accumulate over the first five years of a
child’s life on average (Panel b). We reduce the time window that defines our control group to 4 years post-treatment
and 3 years pre-treatment to avoid that the control groups for the later treated become very small. The grey shaded
area indicates the pre-treatment period. The coefficient in the year prior to implementation is normalized to zero. The
regression includes county fixed effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated
fixed effects as well as weather and socio-economic controls. It is weighted by the county–quarter cell size. Standard
errors are clustered at the county level. Confidence intervals refer to the 5% level of significance.
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Figure A.4: Event-study Estimates of LEZ Effects - Accounting for Increases in Policy Strin-
gency

(a) Number of prescriptions
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The figure presents event-study coefficients that show how LEZs affect the medication of respiratory diseases based
on equation 3 enriched by eight additional dummies

∑5
y=2 f

Euro2
cy +

∑5
y=2 f

Euro3
cy , which should absorb potential

additional health benefits in life years two to five linked to the two more stringent LEZ regimes banning Euro 2 and
Euro 3 vehicles, respectively. The dependent variable is either the number (Panel a) or the costs of prescriptions (Panel
b) that accumulate over the first five years of a child’s life on average. The grey shaded area indicates the pre-treatment
period. The coefficient in the year prior to implementation is normalized to zero. The regression includes county fixed
effects, state–quarter fixed effects, LEZ wave–event time fixed effects, LEZ wave–treated fixed effects as well as weather
and socio-economic controls. It is weighted by the county–quarter cell size. Standard errors are clustered at the county
level. Confidence intervals refer to the 5% level of significance.
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Table A.1: Event-study Estimates – The Effect of LEZ Implementation on PM10 Concentra-
tions and Health Outcomes by Year

PM10 Pollution
(µg/m3)

Number of
prescriptions

Costs of
prescriptions

(1) (2) (3)

LEZ treatment (θ = −2)) 0.026 -0.079 -3.094

(0.411) (0.137) (3.659)

LEZ treatment (θ = −1)) 0.007 0.034 -0.455

(0.284) (0.116) (3.694)

LEZ treatment (θ = 1)) -0.896∗∗∗ -0.304∗ -8.006∗∗

(0.254) (0.122) (2.969)

LEZ treatment (θ = 2)) -1.269∗∗∗ -0.480∗∗ -10.13∗

(0.249) (0.166) (3.969)

LEZ treatment (θ = 3)) -1.613∗∗∗ -0.674∗∗∗ -14.897∗∗∗

(0.289) (0.189) (3.852)

LEZ treatment (θ = 4)) -2.040∗∗∗ -0.675∗∗∗ -12.34∗∗

(0.387) (0.17) (3.967)

LEZ treatment (θ = 5)) -1.929∗∗∗ -0.788∗∗∗ -14.192∗∗

(0.388) (0.200) (4.243)

Weather controls x x x

Socio-economic controls x x x

This table reports estimated event-study coefficients underlying Figure 3 and Figure 4. The dependent variables are
the average PM10 level in µg/m3, the number or the costs in Euro of prescriptions that accumulate over the first
five years of a child’s life on average, respectively. The dependent variables are composition-adjusted for the birth
county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ wave–event time, and
LEZ wave–treated fixed effects as well as weather and socio-economic controls. The regressions are weighted by the birth
county–birth quarter cell size. They are based on an expanded pre-treatment window including all observations up to
three years prior to LEZ implementation. Furthermore, observations from the 3 quarters before and the 3 quarters after
LEZ implementation are included. The resulting sample size is 19, 290. Standard errors in parentheses are clustered at
the county level.* p < .05, ** p < .01, *** p < .001.

Table A.2: Anderson Rubin Confidence Sets

A. Number of prescriptions B. Costs of prescriptions (€)

Respiratory diseases

CSAR [0.25 - 1.03] [0.28 - 1.04] [3.01 - 19.31] [4.07 - 22.07]

FAR 15.11 16.72 9.41 11.10

p-value 0.0001 0.0000 0.0022 0.0009

Asthma

CSAR [0.06 - 0.33] [0.06 - 0.34] [1.05 - 11.44] [1.20 - 13.48]

FAR 8.83 9.04 6.07 6.18

p-value 0.0030 0.0026 0.0138 0.0129

Weather controls x x x x

Socio-economic controls x x

This table reports weak-instrument-robust inference for the IV-estimates in table 3. The AR-confidence sets (CSAR)
provide robust confidence intervals with a coverage probability of 95%. The F-distributed AR-statistic (FAR) and its
p-value test the null hypothesis that the coefficient of the endogenous variable PM10 in the structural equation is equal
to zero.
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Table A.3: Unconditional Quantile Regression Estimates of the Effect of Early-Life Exposure
to LEZs on Respiratory Prescriptions throughout Childhood

(1) (2) (3) (4) (5) (6) (7)

Q-5 Q-10 Q-15 Q-20 Q-25 Q-30 Q-35

LEZ treatment −0.166∗ −0.310∗∗ −0.406∗∗ −0.470∗∗∗ −0.514∗∗∗ −0.547∗∗∗ −0.597∗∗∗

(0.065) (0.106) (0.129) (0.135) (0.146) (0.161) (0.176)

(8) (9) (10) (11) (12) (13) (14)

Q-40 Q-45 Q-50 Q-55 Q-60 Q-65 Q-70

LEZ treatment −0.662∗∗∗ −0.746∗∗∗ −0.814∗∗∗ −0.844∗∗∗ −0.853∗∗∗ −0.861∗∗∗ −0.922∗∗∗

(0.186) (0.197) (0.213) (0.228) (0.239) (0.244) (0.246)

(15) (16) (17) (18) (19) (20) (21)

Q-75 Q-80 Q-85 Q-90 Q-95 Q-97.5 Q-99

LEZ treatment −1.039∗∗∗ −1.146∗∗∗ −1.284∗∗∗ −1.498∗∗∗ −1.707∗∗∗ −1.899∗∗ −2.848∗∗

(0.261) (0.292) (0.314) (0.369) (0.480) (0.730) (0.969)

This table reports regression coefficients from unconditional quantile regressions. The dependent variable is the number
of prescriptions for respiratory diseases that accumulate over the first five years of a child’s life. All regressions include
birth county and birth state–birth quarter fixed effects. Standard errors in parentheses are clustered at the county level.
The sample size is 556, 898. * p < .05, ** p < .01, *** p < .001.
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Table A.4: The Effect of Early-Life PM10 Exposure – Different Post-Treatment Time Win-
dows

(1) (2) (3)

∆ = 2 ∆ = 3 ∆ = 4

A. First Stage Estimation

Mean PM10 -1.14∗∗∗ -1.53∗∗∗ -1.55∗∗∗

(0.3) (0.3) (0.3)

Mean outcome 26.44 26.44 26.44

B. Reduced Form Estimation

Respiratory diseases -0.44∗∗ -0.50∗∗ -0.62∗∗∗

(0.16) (0.17) (0.17)

Mean outcome 14.14 14.14 14.14

Asthma -0.16∗ -0.21∗∗ -0.22∗∗

(0.07) (0.07) (0.07)

Mean outcome 2.5 2.5 2.5

C. IV Estimation

Respiratory diseases 0.39∗ 0.32∗ 0.40∗∗

(0.16) (0.13) (0.12)

Mean outcome 14.14 14.14 14.14

Asthma 0.14∗ 0.13∗∗ 0.14∗∗

(0.07) (0.05) (0.05)

Mean outcome 2.5 2.5 2.5

First stage F-statistic 14.50 25.92 27.19

Sample size 6,922 8,727 9,575

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates for shorter post-treatment windows. The time window increases sequentially
from two years (column 1) to four years (column 3). Panel A presents coefficients from first stage, Panel B the
coefficients from reduced form and Panel C coefficients from IV estimations. The dependent variable in Panel A is the
PM10 concentration; in panel B and C it is the number of prescriptions for respiratory diseases in general or asthma
specifically that accumulate over the first five years of a child’s life on average. The dependent variable in Panel B and
C is composition-adjusted for the birth county–birth quarter cell. All regressions include birth county, birth state–birth
quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic controls. The
regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are clustered at the
county level.* p < .05, ** p < .01, *** p < .001.
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Table A.5: The Effect of LEZ Implementation on Migration Patterns

(1) (2) (3)

Total net
migration

Net migration
among families

Movers among
AOK children

LEZ treatment 0.66 -0.07 -0.56

(0.47) (0.55) (0.33)

Mean outcome 2.93 -1.86 9.44

Weather controls x x x

Socio-economic controls x x x

This table reports coefficient estimates for the effect of LEZ implementation on county migration. The dependent
variable in column (1) is net migration per 1,000 inhabitants of the total county population. The dependent variable in
column (2) is net migration per 1,000 inhabitants of the total county population younger than 18 years old and 30 to 50
years old. The dependent variable in column (3) is the fraction of AOK-insured children moving out of the birth county
after their first and before their sixth year of life in percent. All columns include birth county, birth state–birth quarter,
LEZ wave–event time, and LEZ wave–treated fixed effects as well as weather and socio-economic controls. Observations
of LEZ counties in the three quarters prior and subsequent to implementation are included. The regressions are weighted
by the birth county–birth quarter cell size. Standard errors are clustered at the county level and are in parentheses.
The sample size is 12, 865.
* p < .05, ** p < .01, *** p < .001.
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Table A.6: The Effect of Early-Life PM10 Exposure on Placebo Health Outcomes (per 1,000
children)

(1) (2) (3)

Arm injuries Head injuries Several injuries

A. Reduced Form

LEZ treatment 0.58 -0.97 -0.09

(1.04) (4.64) (0.11)

Mean outcome 5.7 68.81 0.12

B. IV Estimation

PM10 mean -0.43 0.71 0.06

(0.75) (3.39) (0.08)

Mean outcome 5.7 68.81 0.12

Weather controls x x x

Socio-economic controls x x x

This table reports reduced form estimates (Panel A) and IV estimates (Panel B) for three different placebo health
outcomes. The dependent variable is either the number of stationary hospital treatments of arm injuries, head injuries
or injuries involving several body parts, that accumulate over the first five years of a child’s life on average and per
1,000 children. The dependent variable is composition-adjusted for the birth county–birth quarter cell. All regressions
include birth county, birth state–birth quarter, LEZ wave–event time, and LEZ wave–treated fixed effects as well as
weather and socio-economic controls. The regressions are weighted by the birth county–birth quarter cell size. Standard
errors in parentheses are clustered at the county level. The sample size is 9, 609.* p < .05, ** p < .01, *** p < .001.
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Table A.7: The Effect of Early-Life PM10 Exposure when limiting pre-treatment observations
to cohorts born four quarters before implementation

A. Number of prescriptions B. Costs of prescriptions (€)

Reduced Form Estimation

(1) (2) (3) (4)

Respiratory diseases -0.63∗∗ -0.78∗∗ -10.85∗ -16.02∗

(0.21) (0.25) (4.70) (6.70)

Mean outcome 13.94 13.94 213.11 213.11

Asthma -0.30∗∗∗ -0.31∗∗ -9.29∗∗ -13.12∗∗

(0.08) (0.1) (3.53) (4.87)

Mean outcome 2.46 2.46 71.96 71.96

IV Estimation

Respiratory diseases 0.49∗ 0.49∗ 8.48 10.2∗

(0.22) (0.21) (4.51) (5.13)

Mean outcome 13.94 13.94 213.11 213.11

Asthma 0.23∗ 0.20∗ 7.26∗ 8.35∗

(0.09) (0.08) (3.59) (3.9)

Mean outcome 2.46 2.46 71.96 71.96

First stage F-statistic 9.05 12.75 9.05 12.75

Weather controls x x x x

Socio-economic controls x x

This table reports reduced form estimates (Panel A) and IV estimates (Panel B) for health effects when we use only
cohorts born four quarters prior to LEZ implementation as pre-treatment observations of the treated. The dependent
variable is the number of prescriptions that accumulate over the first five years of a child’s life on average. It refers to
either prescriptions for respiratory diseases in general or asthma specifically. The dependent variable is composition-
adjusted for the birth county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ
wave–event time, and LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially
moving from left to right. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in
parentheses are clustered at the county level. The sample size is 7, 893.* p < .05, ** p < .01, *** p < .001.
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Table A.8: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood - Two-Way Fixed Effect Estimation

A. Number of prescriptions B. Costs of prescriptions (€)

Reduced Form Estimation

(1) (2) (3) (4)

Respiratory diseases -0.50∗∗∗ -0.52∗∗ -9.13∗∗ -11.83∗∗

(0.15) (0.18) (2.97) (3.80)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.18∗∗ -0.23∗∗ -6.04∗∗ -8.43∗∗

(0.06) (0.07) (2.14) (2.67)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.41∗∗ 0.39∗ 7.53∗ 8.84∗∗

(0.16) (0.15) (3.03) (3.32)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.15∗∗ 0.17∗∗ 4.99∗ 6.30∗∗

(0.06) (0.06) (2.09) (2.35)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 13.26 17.23 13.26 17.23

Weather controls x x x x

Socio-economic controls x x

This table replicates our main results in Table 3 using two-way fixed effect estimation. The dependent variable is either
the number (panel A) or the costs in Euro (panel B) of prescriptions that accumulate over the first five years of a child’s
life on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. In each panel,
coefficients from reduced form and IV estimations are presented. The dependent variable is composition-adjusted for
the birth county–birth quarter cell. All regressions include birth county and birth state–birth quarter fixed effects.
Weather and socio-economic controls are added sequentially moving from left to right. The regressions are weighted by
the birth county–birth quarter cell size. Standard errors in parentheses are clustered at the county level. The sample
size is 2, 904.* p < .05, ** p < .01, *** p < .001.
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Table A.9: The Effect of Early-Life PM10 Exposure on Medication of Respiratory Diseases
throughout Early Childhood - Logged outcomes

A. Number of prescriptions B. Costs of prescriptions (€)

Reduced Form Estimation

(1) (2) (3) (4)

Respiratory diseases -0.05∗∗ -0.06∗∗∗ -0.06∗∗ -0.07∗∗

(0.02) (0.02) (0.02) (0.02)

Mean outcome 14.14 14.14 218.62 218.62

Asthma -0.09∗∗ -0.10∗∗ -0.11∗ -0.12∗

(0.03) (0.04) (0.05) (0.05)

Mean outcome 2.5 2.5 73.27 73.27

IV Estimation

Respiratory diseases 0.04∗∗ 0.04∗∗ 0.05∗∗ 0.05∗

(0.01) (0.01) (0.02) (0.02)

Mean outcome 14.14 14.14 218.62 218.62

Asthma 0.07∗∗ 0.07∗ 0.08∗ 0.09∗

(0.02) (0.03) (0.04) (0.04)

Mean outcome 2.5 2.5 73.27 73.27

First stage F-statistic 14.25 20.14 14.25 20.14

Weather controls x x x x

Socio-economic controls x x

This table replicates our main results in Table 3 using logged outcome variables. The dependent variable is either the
number (panel A) or the costs in Euro (panel B) of prescriptions that accumulate over the first five years of a child’s
life on average. It refers to either prescriptions for respiratory diseases in general or asthma specifically. In each panel,
coefficients from reduced form and IV estimations are presented. The dependent variable is composition-adjusted for
the birth county–birth quarter cell. All regressions include birth county, birth state–birth quarter, LEZ wave–event
time, and LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially moving from left
to right. The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are
clustered at the county level. The sample size is 9, 609.* p < .05, ** p < .01, *** p < .001.
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Table A.10: The Effect of LEZ Implementation on PM10 Concentrations - no IDW interpo-
lation

First Stage Estimation

PM10 Pollution (in µg/m3)

(1) (2)

LEZ treatment -1.30∗∗ -1.50∗∗∗

(0.41) (0.40)

Mean outcome 27.26 27.26

First stage F-statistic 10.27 14.12

Weather controls x x

Socio-economic controls x

This table replicates our main results in Table 2 when we do not interpolate the pollution data but include only counties
with own measuring stations in the sample. The dependent variable is the quarterly mean PM10 concentration in a
given county and year in µg/m3. All columns include birth county, birth state–birth quarter, LEZ wave–event time, and
LEZ wave–treated fixed effects. Weather and socio-economic controls are added sequentially moving from left to right.
The regressions are weighted by the birth county–birth quarter cell size. Standard errors in parentheses are clustered
at the county level. The sample size is 8, 286. * p < .05, ** p < .01, *** p < .001.
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B Composition-Adjusted Health Outcomes

For the estimation of Equation (2), health outcomes observed at the level of the individual

child (Hict) are aggregated to the cohort level (Hct). We define a cohort by its birth county c

as well as its birth year and birth quarter t. However, additional information at the level of

the individual such as the individual’s sex or the precise location of residence within a county

at the five-digit zip code is available. To exploit this information, we conduct auxiliary

regressions that are commonly used in the literature (e.g. Currie et al. 2015).

In a first step, we regress the children’s health outcomes on individual-level covariates as well

as birth county–birth quarter fixed effects:

Hict = W ′ictζ + φct + ξict (B.1)

where the dependent variable Hict is the accumulated health outcome over the first five years

of life for individual i born in county c and year and quarter t. W ′ict is a vector of individual-

level covariates that includes gender and location of residence within a county at the five-digit

zip code. Additionally, Equation (B.1) controls for a full set of birth county–birth quarter in-

dicators φct. Their coefficient estimates φ̂ct are orthogonal to the covariates at the individual

level. In other words, they give the average health outcomes for a birth county–birth quarter

cohort after controlling for gender and residence. In line with Isen et al. (2017), we refer to

the predicted cohort means obtained by this approach as composition-adjusted. We use the

composition-adjusted outcomes as the dependent variable in Equation (2).

The use of composition-adjusted group means is asymptotically equivalent to using the indi-

vidual level data (e.g. Donald and Lang 2007) if the sampling variance of the composition-

adjusted group estimates is taken into account. In accordance with other studies (e.g. Angrist

and Lavy 2009, Albouy 2009b, Currie et al. 2015, Isen et al. 2017), we estimate all regres-

sions by weighted least squares using the number of individuals in each birth county–birth

quarter cell as weights. This is assumed to be a reasonable approximation of weighting by

inverse sampling variance. Compared to running regressions on the individual level data, the

estimation of models collapsed to the level of variation ensures that tests are of correct size

given serial correlation in the within-group errors (Isen et al. 2017). Additionally, it requires

substantially less computational power.
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C Data

C.1 Control Variables

The following table gives an overview of the county-specific control variables used in the

estimations. We observe cohorts over a five-year period and we include weather controls for

all of these years. The 2007 values of socio-economic demographic controls are categorized

in terciles and interacted with year-quarter dummies in the regressions.

Variable Definition Source

Weather Controls

Precipitation Sum of the precipitation height in mm DWD

Sunshine Total sunshine duration in hours DWD

Temperature Mean, minimum and maximum temperature, DWD

12 separate terms that count the number of days with

temperatures above 0, 5, 10, 15, 20, 25, 29, 30, 31, 32, 33 and

34 degree Celsius

Wind Average windspeed 10 m above ground in m/s DWD

Relative humidity Relative humidity at 2 m above ground in % DWD

Pressure Mean vapor pressure in hpa DWD

Socio-economic Demographic Controls

Average age Average age of the county population BBSR

Population density Residents per km2 BBSR

Migration in People moving out of county per 1,000 inhabitants BBSR

Migration out People moving into county per 1,000 inhabitants BBSR

Moving AOK children Share of AOK-insured children moving out of county WIdO

Women share Female to male population ratio BBSR

Share of foreigners Percentage of people without German citizen-ship BBSR

Women share in foreigners Share of female foreigners among foreigners BBSR

Employment Employees subject to social insurance contributions per 100 in-

habitants of working age

BBSR

Gross Value Added (GVA) Total gross value added in 1,000 Euro per employed person BBSR

GVA share in primary sector Share of gross value added in the primary sector in % BBSR

GVA share in tertiary sector Share of gross value added in the tertiary sector in % BBSR

Household income Average household income in Euro per inhabitant BBSR

Housing transfers Number of households receiving housing benefits, per 1,000

households

BBSR

Education Share of students graduating with higher education entrance

qualification

BBSR

Marriages Marriages per 1,000 inhabitants 18 years and older BBSR

Share of young mothers Births of mothers in the age group 15 to under 20 years per

1,000 women in the age group

BBSR

Share of older mothers Births of mothers 40 years and older per 1,000 women aged 40

to under 45

BBSR
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C.2 Aggregating the Pollution Data

We aggregate the pollution data by averaging the daily PM10 readings of all measuring sta-

tions in a county and quarter. We weight each observation by the number of station readings

in that period (c.p. Chay and Greenstone 2003a, Isen et al. 2017).

In the few counties in our sample without measuring stations, we interpolate pollution expo-

sure from surrounding stations using Inverse Distance Weighting (IDW). Following Karlsson

and Ziebarth (2018), we consider all stations within a 60 km (37.5 miles) radius of the county’s

centroid. We then calculate the weighted average using both the number of station measure-

ments and the inverse distance of the monitors to the centroid as weights.

To avoid fluctuations in pollution levels linked to stations not being active regularly, we gen-

erate the quarterly averages including only stations with at least 60 measurements. Moreover,

to avoid bias from interpolating pollution levels from treated to nearby untreated counties,

we only use stations outside of LEZ counties for the interpolation. We show that our results

are robust when we do not interpolate the pollution data and include only counties with own

measuring stations in the sample in Table A.10.

C.3 Prescription Data

The identification process of pharmaceutical substances that are relevant in the therapy of

respiratory diseases and asthma specifically is as follows:

i) Pharmaceuticals for Respiratory Diseases

We use a publication akin to the Red Book called “Gelbe Liste” by the ISO 9001:2015 certified

Medizinische Medien Informations GmbH which serves as a source of information for medical

and pharmaceutical professionals. For more than 120,000 drugs, it links ATC-code classi-

fied pharmaceutical substances to ICD-10-code classified clinical diagnoses. By linking ATC

to ICD codes, we can determine for which diseases different pharmaceutical substances are

commonly prescribed. From the registered information we draw 6,479 unique links, of which

we select only those related to respiratory diseases (150 substances). While this approach

is comprehensive, it suffers from the drawback that it may also cover substances generically
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administered for a broad variety of diseases.

ii) Pharmaceuticals for Asthma

Additionally, we define a smaller list of pharmaceuticals that are closely tied to asthma. To

this end, we consult annually updated lists of the substances prescribed most often for asthma

in a given year, that is substances in the ATC category R03. The lists are prepared by IGES

institute for the years 2006 to 2017.36 In our analysis, we consider only prescriptions of the

20 most often prescribed substances in the year the prescription is issued. Note, that the

top 20 substances cover almost the entire market of substances prescribed for asthma and

COPD, however, they may not include substances prescribed in rare cases. The pharma-

ceuticals identified according to this procedure represent a strict subset of those compiled in

approach i).

The prescription costs are adjusted to allow for intertemporal comparisons as if the aver-

age cost per prescription had not changed. In other words, we take both inflation but also

ATC-specific market price changes, such as expiring patents, into account. To this end, we

calculate ATC-specific price indices normalized to the fourth quarter of 2017 using available

prescription data for all children in Germany. Based on the generated price indices we adjust

the prescription costs observed in our sample to real values, before aggregating them to the

cohort level.

D Unconditional Quantile Regression

We estimate an unconditional quantile regression (Firpo et al. 2009) to flexibly estimate LEZ

treatment effects across the unconditional distribution of our health outcomes. The approach

is based on the use of the re-centered influence function (RIF) defined in Equation (D.1). It

is the sum of the influence function (IF) and the θth quantile of the unconditional distribu-

tion of the health variable H denoted as qθ. The IF indicates the marginal influence of an

observation Hi on the quantile qθ. It is determined by fH , the empirical density function

evaluated at qθ, and by the indicator 1(h ≤ qθ) which is equal to 1 if Hi is below or equal to

36More information on the underlying data and aggregation methodologies are provided on the IGES website
and in the latest published report Häussler and Höer (2016).
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qθ. Thus, an observation’s influence is negative if its health status lies below and positive if

it lies above the health status at the θth quantile.

RIF (Hi, qθ) = qθ + IF (Hi, qθ) = qθ +
θ–1(Hi ≤ qθ)

fH(qθ)
(D.1)

The expected value of the RIF equals the quantile of the unconditional distribution.37 By

the law of iterated expectations and integration over the conditional mean, the unconditional

quantile qθ can be expressed as

qθ = E[RIF (Hi, qθ)] = E[E[RIF (Hi, qθ)|Xi]] =

∫
E[RIF (Hi, qθ)|Xi]dFX (D.2)

where X is the vector of covariates and FX is the marginal distribution function of X. To

obtain the marginal treatment effects on the unconditional quantile qθ, we take the sample

quantile q̂θ and retrieve the density f̂H using a gaussian kernel method.38 To obtain R̂IF ,

we substitute both into Equation (D.1). Secondly, we apply RIF-OLS regression to obtain

the coefficients representing the marginal ceteris paribus effect of an infinitesimal shift in the

distribution of the covariates X on the unconditional θth quantile of H:

β̂θ = (

N∑
i=1

X
′
iXi)

−1
N∑
i=1

X
′
iR̂IF (Hi, q̂θ) (D.3)

The identifying assumption is that in the absence of treatment, the change in the health

outcome at each quantile would have been the same in the treatment and the control group.

Because endogenous regressors cannot be addressed by the conventional unconditional quan-

tile regression framework, and because estimation times are prohibitively long when using a

stacked design, we limit our quantile regression analysis to reduced form estimations using

37E[RIF (Hi, qθ)] = E[qθ] + θ–E[1(Hi≤qθ)]
fH (qθ)

= qθ + θ–θ
fH (qθ)

= qθ
38f̂H(q̂θ) = 1

N·bH
·
∑N
i=1KH(Hi−q̂θ

bH
), where KH is the kernel function and bH is a positive scalar bandwidth.
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a standard DID design knowing that some caveats may apply. For example, Section 5.5

shows that a standard-two-way DID estimator leads to results slightly smaller in magnitude

compared to our stacked DID estimator. We regard our unconditional quantile estimates as

suggestive evidence that children who suffer worst from respiratory diseases may benefit the

most from LEZs. Table A.3 in the Appendix features all coefficients and standard errors

which are bootstrapped using 1,000 repetitions and clustered at the county level.
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