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Abstract

We investigate the influence of weather anomalies on net migration in the Eastern United
States using a county-level panel for the period from 1970 to 2009. One major mechanism is
through the effect of weather on agricultural yields, which we examine in further detail using
an instrumental variables approach. Our preferred model uses the seasonality of the sensitiv-
ity of corn yields to extreme heat over the growing season, which peaks during corn flowering,
as instrument. The reduced-form estimate of the migration response to extreme heat closely
mirrors the seasonality of corn yield. Our IV approach will provide an unbiased estimate
of the responsiveness of outmigration to yield unless other determinants of migration, such
as peoples direct preference for weather, perfectly align with the pattern of corn flowering.
This is unlikely given that the exact dates of corn flowering vary from year to year. Our
estimated semi-elasticity ranges from -0.3 to -0.4 depending on the chosen time trend, i.e., a
one percent change in yields leads to an opposite 0.3-0.4 percentage point change in the net
migration rate. The migration response is strongest for young adults and not significant for
senior citizens. Extrapolating from this relationship, we project that climate change would
induce significant outmigration in the U.S. Corn Belt.
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We investigate the effect of weather variability on migration patterns of the U.S. population,

especially through its impact on agricultural productivity. The associations among changes in

climatic conditions, agricultural productivity, and human migration have been most vividly

illustrated by the famous “American Dust Bowl,” one of the greatest environmental catas-

trophes in U.S. history. In the 1930s, exceptional droughts (Schubert et al. 2004), amplified

by human-induced land degradation (Cook, Miller & Seager 2009), greatly depressed agricul-

tural productivity in the Great Plains and led to large-scale and persistent net outmigration

from those regions. Between 1935 and 1941, around 300,000 people migrated from the south-

ern Great Plains to California (McLeman 2006). Hornbeck (2009) compares counties with

different levels of soil-erosions in the Great Plains, and finds that the 1930s Dust Bowl gen-

erated persistent population loss in the following decades. In addition, the overall decline

in population did not occur disproportionately for farmers, but had ramifications beyond

the agricultural sector. This suggests a general economic decline that extends beyond the

direct effect on agriculture. Many other businesses in agricultural areas, e.g., banking and

insurance, are directly linked to the agricultural sector as they serve the agricultural com-

munity. Hornbeck (2009) argues that the economy mainly adapted through outmigration,

not adjustment within the agricultural sector or increases in industry.

The “American Dust Bowl” happened under very different conditions from today’s. It

overlapped the Great Depression and a lack of credit may have limited the local capacity for

adaptation. Since then, the American agricultural sector has undergone immense changes.

On the one hand, it is much more mechanized and uses great amounts of chemical fertilizer

and pesticides. As a result, it now accounts for a much smaller part of the overall economy

and a smaller fraction of the population directly depends on agricultural outcomes. On

the other hand, better communication and transportation networks may make the present

generation of Americans more mobile. In either case, one might expect today’s relationship

between migration and agricultural productivity to be different from the 1930s. To assess

the possible magnitudes of migration flows under future climate change, it is necessary to

base empirical work on more recent experience, which we do in this paper.

In particular, we examine whether net migration rates over five year intervals between

1970 and 2009, defined as the fraction of people leaving a county net of new arrivals and

deaths, are related to contemporaneous observed weather variations. We find a significant

relationship in counties of the Corn Belt (which include all Midwestern states and Kentucky),

but not outside the Corn Belt. We show that the main mechanism for the observed weather-

migration relationship in the Corn Belt is through agricultural productivity, and not a direct
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preference for climate. If anything, people tend to favor hotter and drier climates that are

detrimental for agricultural productivity. This poses a challenge to using traditional weather

variables as instruments, such as degree days and precipitation over the growing season

(Schlenker & Roberts 2009). A direct preference for climate will result in a biased estimate

of the migration responsiveness. To circumvent such a problem, our preferred model uses

novel instruments based on the seasonally varying sensitivity of corn yields to extreme heat

over the growing season, which is highest during corn flowering. Unless people’s distaste for

heat peaks the same time that corn flowers, changes in agricultural productivity rather than

some unobserved confounders drive the observed climate-migration relationship. Moreover,

we find that the relationship inside the Corn Belt is driven mainly by young adults, while

senior citizens, who are often believed to be more responsive to climatic conditions show no

responsiveness.

Based on our preferred model specification, we find a statistically significant semi-elasticity

of -0.3 to -0.4 between the net outmigration rate and yields for the population aged 15 to 59.

I.e., for every percent corn yields during a five-year interval were below the historic normal,

on net, 0.3-0.4 percent of a county’s population left the county. In view of the relatively small

proportion of people directly employed in agriculture,1 our estimated elasticity may seem

large. However, there might be considerable spillover effects from agriculture to other sectors

of the economy, similar to what Hornbeck (2009) observed for the Dust Bowl migrants. To

shed further light on this issue we examine the responsiveness of overall employment to crop

yields. Consistent with the literature on the “Dust Bowl,” we find that weather-induced

yield shocks significantly impact non-farm employment. During years when agriculture is

doing well, non-farm employment is expanding, while years with bad yields imply contrac-

tions in non-farm employment. The semi-elasticity for non-farm employment is larger than

for farm employment and statistically significant. Farm labor is shielded from agricultural

losses as we find an almost 1:1 increase in subsidy payments for weather-induced reduction

in agriculture yields. At the same time, decreasing yields lead farms to merge, which might

result in efficiency gains in the sense that less services or machinery are required, including

the labor to sell, finance, and maintain them.

Our estimated semi-elasticities are specific to the period of 1970-2009 and may change in

the future depending on many factors, such as the structures of the economy, demographic

profiles, and government policies. Nevertheless, we believe it is an informative exercise

1For counties in the Corn Belt, the median fraction of employment in agriculture is 4.6% according
to the 2000 decennial Census, based on data from Table QT-P30 of the Census 2000 summary file 3
(factfinder.census.gov).
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to use the best estimate available to make projections, in order to illustrate the possible

magnitudes of future outmigration flows for counties of the Corn Belt, as further warming

is expected to directly affect these agricultural areas in the United States. Our projections

are ceteris paribus in nature and should not be regarded as predictions of what will actually

happen in the future. Based on the Hadley III model B2 scenario, with other factors held

constant, we find that climate change would on average induce an additional 13 percent

of the adult (15-59) population in non-urban counties (less than 100,000 inhabitants) to

migrate out of Corn Belt counties in the medium term (2020-2049) compared to a baseline

of 1960-1989. For comparison, the standard deviation in historic migration rates for our

five-year intervals is 7 percent. The predicted effect equals two standard deviations. The

estimated outmigration effect increases to 30% in the long-term (2070-2099) as extreme

heat is predicted to significantly increase under continued warming. Of course, long run

projections should be interpreted with greater caution as people’s migration responses in the

longer term might be considerably different from short-term responses.

Since predicted changes in the climate of the Corn Belt vary more between climate model

runs than within a given model run, we also provide projections under uniform climate change

scenarios, i.e., assuming only one aspect of climate (either temperature or precipitation)

changes, and that the change is uniform across the whole Corn Belt. Specifically, we produce

projected outmigration rates for each degree increase in temperature (up to 5◦C) as well

as increases and decreases of precipitation up to 50%. These can be used to construct

corresponding migration estimates for any combination of temperature and precipitation

forecasts made for any future time period by any General Circulation model under any

emission scenario.

The rest of the paper is structured as follows. Section 1 reviews general internal U.S.

migration patterns and the role of U.S. agriculture. Section 2 introduces our empirical

methodology and data sources. The main estimation results are reported in Section 3.

Section 4 presents projections of future migration flows, and is followed by our conclusions

in section 5.

1 Background

Migration is a defining feature in the history of the United States, not just in terms of

arrival of immigrants, but also in terms of internal population movements. During the

last century, the mean center of the U.S. population moved about 324 miles west and 101
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miles south (Hobbs & Stoops 2002) and the fraction of the population living in rural areas

decreased significantly. One of the most important determinants of migration flows has

been identified as relative economic opportunities in source and destination regions (see e.g.,

Borjas, Bronars & Trejo (1992)). For example, during the “great migration” in 1910-1970,

millions from the South were attracted to the Northeast and Midwest, as farm and non-

farm economic opportunities dwindled in the South while demand for labor increased in

the industrializing destination regions (Eichenlaub, Tolnay & Alexander 2010). Empirical

research also studied the effects of industry composition (Beeson, DeJong & Troesken 2001),

natural characteristics such as oceans and rivers (Beeson, DeJong & Troesken 2001), and

weather (Rappaport 2007, Alvarez & Mossay 2006) on domestic migration flows.

Agriculture has traditionally been an important driver of U.S. domestic migration flows.

Early internal migrants were typically farmers seeking better farming opportunities, e.g.,

those who moved to the Ohio River Valley in the late eighteenth century and to the Great

Plains before the middle of the nineteenth century (Ferrie 2003). Later on, developments in

the manufacturing and service industries, together with technological changes in the agri-

culture sector, have prompted sustained rural-to-urban migration. Consequently, the rural

proportion of the U.S. population has declined from 60% in 1900 to around 20% in 2000

(Hobbs & Stoops 2002).

Besides all the urban “pull” forces such as increased availability of employment oppor-

tunities in non-agricultural sectors and the possibly more attractive urban lifestyle, several

“push” factors in the agricultural sector have been important in shaping this rural flight.

First of all, long-run increases in farm productivity due to changes in the economic structure,

technological progress, and better access to domestic and international markets, have dimin-

ished demand for labor in farms. Since the late 19th century, subsistence farming gradually

gave way to commoditized agriculture, with increased access to credit and transportation

(for example, railroads). This trend was further accelerated by mechanization starting in

the 1940s, and more recently, the use of chemical fertilizers and pesticides. Previous studies

showed that mechanization has had a significant impact on the relationship between agricul-

ture and migration. For example, White (2008) studied the Great Plains region for the period

of 1900-2000, and found that counties that witnessed an increased dependence on agriculture

were also more likely to experience positive population growth in the pre-mechanization era,

but the relationship reversed in the post-mechanization era (post-1940s).

Second, agricultural policy has also played an important role in rural-urban migration.

New Deal policies in the 1930s, such as the Agricultural Adjustment Act (AAA), the Works
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Progress Administration (WPA) and the Civilian Conservation Corps (CCC) proved critical

in preventing even larger outmigration in certain areas of the Great Plains (McLeman et al.

2008). Even after the 1930s, income support programs have likely slowed the movement of

labor out of the agricultural sector (Dimitri, Effland & Conklin 2005). On the other hand, the

risk-reduction effects of price supports and the planting rigidities imposed by supply controls

encouraged specialization, and may have facilitated outflow of farm labor. Since there has

been a long history of interventionist policies to manage migration patterns, policy makers

may be able to utilize migration forecasts under climate change to enhance local adaptive

capabilities to reduce unnecessary outmigration and manage any remaining migration flows

(Adger 2006, McLeman & Smit 2006).

Last but not least, variations and changes in environmental and climatic conditions affect

agricultural productivity and can induce significant migration responses. The most extreme

case we have witnessed so far occurred during the Dust Bowl in the 1930s. In those years,

productivity in the Great Plains dropped precipitously because of sustained droughts. This

triggered significant and sustained outmigration from the affected regions (Hornbeck 2009).

At the same time, local adaptive capacity was already at a very low level before the Dust

Bowl because of falling commodity prices and a general economic depression (McLeman

et al. 2008). Adjustments within the agricultural sector and between different economic sec-

tors were very limited due to a lack of credit, and the economy adjusted primarily through

mass outmigration (Hornbeck 2009). Nevertheless, it is important to note that people with

different demographic and socio-economic characteristics experienced very different levels of

vulnerabilities and exhibited different adaptation responses. For example, McLeman (2006)

found that migrants from rural Eastern Oklahoma to California in the 1930s were dispro-

portionately young tenant farmers.

While the Dust Bowl experience may be unique in American history, the extreme cli-

matic conditions witnessed in the 1930s may become more frequent in current century as

a consequence of global climate change. Recent researches suggests that climate change is

expected to have significant negative impacts on crop yields in the United States. Lobell &

Asner (2003) report that for each degree increase in growing season temperature, both corn

and soybeans yields would decline by roughly 17%. Similarly, Schlenker & Roberts (2009)

identify serious nonlinearities in the temperature-yield relationship. Increasing temperatures

are beneficial for crop growth up to a point when they switch to becoming highly detrimental.

These breakpoints vary by crop: 29◦C or 84◦F for corn, 30◦C of 86◦F for soybeans and 32◦C

or 90◦F for cotton. The effect of being 1 degree above the optimal breakpoint is roughly
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ten times as harmful as being 1 degree below it. Area-weighted average yields are predicted

to decrease by 30-46% before the end of this century under the slowest (B1) warming sce-

nario and by 63%-82% under the most rapid warming scenario (A1F1) based on the Hadley

III model. These newly available estimates were considerably larger than what previous

modeling studies have suggested (Brown & Rosenberg 1997, Reilly 2002, Cline 2007).2 It

should also be noted that these estimates are based on the existing statistical relationship

between yield and climate/weather, and have not incorporated CO2 fertilization effects and

adaptation possibilities beyond what is found in the historic time series. At the same time,

recent evidence suggests that the actual CO2 effect on crop yield is still uncertain and may

be considerably less significant than previously thought (Long et al. 2006). Assuming no

breakthroughs in technology, potential gains from adaptation may also be limited and may

require considerable financial investments.

The magnitudes of the possible impact of changing climate conditions on yields war-

rant careful examination of the weather-migration and yield-migration relationship. The

emerging empirical literature on climate-driven migration, as reviewed by Leighton (2009),

is interdisciplinary in nature. Most studies rely on qualitative analyses of fairly small scale

local phenomena. This paper contributes to the existing literature by utilizing a statis-

tical approach to estimate the semi-elasticity of outmigration with respect to crop yields.

Our approach is similar to Feng, Krueger & Oppenheimer (2010) who examine the effect of

climate-driven yield declines in Mexico on Mexico-U.S. cross-border migration.

2To assess the impact of climate change on U.S. agriculture, three different approaches have been used
in the literature, each with its own merits and shortcomings. The first one is the production function
approach, in which the impact of weather/climate on crop yields is derived using controlled laboratory or field
experiments. Some sort of CGE (Computed General Equilibrium) model is sometimes used to incorporate
price feedbacks. This approach is usually adopted by agronomists, see for example Rosenzweig & Hillel
(1998). The second one is the so called Ricardian approach, which estimates a cross-sectional relationship
between land values and climate while controlling for other factors. The underlying assumption is that the
value of farmland reflects the sum of discounted expected future earnings. This approach was originally due
to Mendelsohn, Nordhaus & Shaw (1994). It utilizes the fact that farmers have adapted to local climatic
conditions. The third and more recent approach is to use time series variations in climate to identify effect
of climate on agricultural profit (Deschênes & Greenstone 2007) or crop yields (Schlenker & Roberts 2009).
The advantage of this approach is that identification comes only from within variation. Other determinants
of yield, such as soil quality and land management practices, which are usually correlated with climate and
difficult to measure, would not bias the estimated weather-yield relationship.
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2 Methodology and Data

2.1 Empirical Methodology: Reduced Form Regression

We start by linking the net outmigration rate mit, defined as the fraction of people leaving a

county net of new arrivals and deaths, in county i during the five-year interval started with

year t to observed weather outcomes. Consecutive observations in our panel are five years

apart as the population data is reported every five years.

mit = πWit + f(t) + ci + ǫit (1)

Our baseline model examines the ratiomit of all people that were aged 15-59 at the beginning

of interval t that outmigrated over the next five years, net of any new arrivals. If weather

Wit explains migration, the coefficients π should be jointly significant.3 A set of unrestricted

county dummy variables, represented by ci, are included to capture time-invariant county

factors, such as proximity to urban centers and natural amenities. Time controls f(t) cap-

ture all aggregate-level factors that affect migration trends, such as technological progress

in agriculture, changes in agricultural policies, as well as changes in overall economic funda-

mentals in both source and destination counties. We use four time trends f(t): (a) a linear

time trend common to all counties; (b) a quadratic time trend common to all counties; (c)

state-specific quadratic time trends; and (d) county-specific time trends that allow for the

fact that the economic conditions might be trending differently in each location. The error

ǫit might be spatially and serially correlated, and we hence cluster in the baseline regres-

sions at the state level, which adjusts for arbitrary within-state correlations along both the

cross-sectional and time-series dimensions.4 In a sensitivity check, we also present results of

an unweighted regression where we use a grouped bootstrap routine and draw entire 5-year

interval with replacement, i.e., all counties that report in a given 5-year interval.

3The exact weather measures are further explained in the next section where we outline the instrumental
variable approach for yields.

4In a yearly panel regression of yields on weather, clustering by state or adjusting for spatial correlation
using Conley’s (1999) nonparametric routine gives comparable estimates (Fisher et al. 2012).
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2.2 Empirical Methodology: IV Regression

To investigate our hypothesis that the weather-migration relationship are driven by changes

in agricultural productivity, we use an instrumental variable approach:

mit = βxit + f(t) + ci + ǫit (2)

xit = γWit + g(t) + ki + νit (3)

We now regress the net migration ratiomit of all people that were aged 15-59 at the beginning

of interval t on the average log yield during the same 5-year period xit.
5 Our key parameter

of interest is β, the semi-elasticity of net outmigration with respect to log yields. Similar

to equation (1), we use a set of unrestricted county dummy variables, represented by ci and

time controls f(t). Error terms are clustered at the state level unless otherwise noted.

Because xit may be correlated with ǫit, we only use yield shocks that are due to presum-

ably exogenous variation in weather.6 We again include county fixed effects ki to control

for baseline differences as well as time trends g(t) as yields have been trending upward over

time. The coefficient β is identified by deviations of the weather variables Wit from their

time trends, which are presumably exogenous since we use the same time controls in both

the first and second stage. Figure A2 in the appendix displays annual corn and soybean

yields for the 13 states in the Corn Belt.7 The figure displays actual yields as well as pre-

dicted yields using the four weather variables of Schlenker & Roberts (2009): two degree

days variables as well as a quadratic in total precipitation.8 Yield growth is approximately

piecewise linear in temperatures: Moderate heat, as measured by degree days 10-29◦C for

corn and degree days 10-30◦C for soybeans, is beneficial for plant growth. Extreme heat, as

measured by degree days above 29◦C for corn and degree days above 30◦C for soybeans are

very harmful for crops. Our first model uses these four weather variables summed over all

days of the fixed growing season of March-August.

The best single predictor of yield among these four weather variables is extreme heat.

The effect of extreme heat varies over the growing season for corn, as corn is most damaged

5We first take the log of annuals yields (or adjusted average of more than one crop, see below) and then
average over the five years of each interval.

6In a sensitivity check in Table A7, we present results from a simple OLS regression for comparison, which
are different from the IV regression.

7We aggregated to the state level as it is impossible to display the time series for each county.
8Degree days are simply truncated daily temperature variables summed over the growing season (March-

August). For example, degree days above 30◦C measure temperatures above 30◦C, i.e., a temperature of
32◦C would give 2 degree days. The daily measure is summed over all days of the growing season.
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by heat during flowering (Berry, Roberts & Schlenker 2013). We therefore use a second model

that only relies on extreme heat (degree days above 29◦C for corn), but interacts (multiplies)

the variable with a restricted cubic spline with 5 knots in the phase of the growing season

that is normalized to length 1, i.e., 0 corresponds to the planting date and 1 to the harvest

date (see the data section 2.3 below). Therefore, although extreme heat enters both models

as instrument, in the first model the effect of an extra degree day above 29◦C is restricted

to be the same throughout the growing season, while the second model allows it to vary

smoothly over time.

Our empirical analysis uses log corn yields in the baseline regression, since it is the crop

with the largest growing area in the Corn Belt, which gave rise to the region’s name. In

a sensitivity check in the appendix we use log soybean yields, and the log of the adjusted

average of the two. Both corn and soybeans yields are measured in bushels/acre, yet average

productivity is significantly different. Corn yields are on average roughly three times as high.

Since changes in average yields should not be driven by changing compositions of soybean

and corn production, we need to adjust the yields to make them comparable. Regressions

that use the log of the adjusted average yield therefore transform soybean yields into corn

equivalents by multiplying them with the soybean to corn price ratio.9 This makes the two

crops comparable on a dollar/acre basis. Ultimately, agricultural returns are the difference

between revenues and cost. By prorating yields with the average price ratio, we make

them comparable on a revenue/acre basis, which would be an exact conversion under the

assumption that the revenue/cost rato is comparable for the two crops. After making the

yields comparable, we take the area-weighted average of the equivalent yields. Similarly, we

take the area-weighted average of the crop-specific weather variables Wit.

We estimate the model separately for (i) counties in the Corn Belt; and (ii) counties in

the eastern United States outside the Corn Belt and the state of Florida. Areas in the Corn

Belt predominately grow corn and soybeans. Our null hypothesis is that β is negative for

the Corn Belt, but approximately equals zero for areas outside the Corn Belt, where corn

and soybean production are less important as a fraction of overall economic activity. Eastern

areas outside the Corn Belt serve as a control group in our research design - if changes in

climate affect changes in outmigration through channels other than crop yield (i.e., the error

term ǫit is correlated with the instrument Wit), then β would also be non-zero for the sample

of counties outside the Corn Belt.

If people have a preference for warmer and drier climate as suggested by the establishment

9We use average prices over our sample period 1970-2009, so there is no endogenous price feedback.
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of retirement communities in the South, our estimate for β would be biased towards zero as

people might migrate for reasons that are detrimental to crop growth. This poses a serious

challenge to the exogeneity assumption of the instruments (growing season degree days and

precipitation) used in our first model. On the other hand, for the instruments used in our

second model, we can compare the seasonality of the sensitivity of corn yield to extreme heat

to the seasonality of the reduced form relationship between migration and extreme heat. If

migration is most sensitive to extreme heat when corn yield is most sensitive, the response

is most likely driven through the agricultural channel unless humans dislike heat the most

when corn flowers, which seems unlikely as the exact flowering time varies year-to-year.

2.3 Data and Summary Statistics

Since there is no accurate count of number of people migrated at the county level for the

40-year time period that we are focusing on, we use the residual approach to derive the

outmigration ratio mit for each county for each five-year period between 1970 and 2009.10

For example, for the 15-59 age group, in the baseline model in our analysis, we use

mit[15,60): net outmigration rate for those aged [15, 60) at time t in county i.

pit[15,60): total population aged [15, 60) in county i at the beginning of the

5-year interval that started in t.

pi[t+5][20,65): total population aged [20, 65) in county i at the end of the 5-year

interval that started in t.

dit[15,60): number of people aged [15, 60) in county i at the beginning of the

5-year interval t that died by the end of it.
To construct the net outmigration ratio

mit[15,60) =
pit[15,60) − pi[t+5][20,65) − dit[15,60)

pit[15,60)
(4)

We use publicly-available population data from U.S. Census Bureau for pit[15,60) and pi[t+5][20,65)

and state- and age-group-specific mortality data from National Center for Health Statistics

10There are two alternative approaches: First, the Census Bureau has county-level migration information
in each Decadal Census. Individuals are asked where they lived 5 years ago. Since the Census occurs every
10 years, there is no migration information for the 5-year period directly following the previous Census.
The Census data hence is not a full panel but misses every other 5-year interval. Second, the Internal
Revenue Service has yearly migration data between pairs of counties. The advantage of this data is that
it has information on the destination county. The downside is that the data are only available since 1992
(Duquette 2010). Moreover, it is based on tax returns, and hence might under-represent the poor and the
elderly.
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to estimate dit[15,60).

Annual yields for corn and soybeans between 1970 and 2009 are from the U.S. Department

of Agriculture’s National Agricultural Statistical Service (USDA-NASS), where yields equal

county-level production divided by harvested acres. For our main analysis, we use log corn

yields, and the appendix gives results for soybeans. Climate variables are constructed over

the growing season of corn and soybeans (March-August). We calculate total growing-season

degree days instead of mean temperatures to capture the nonlinear effect of temperature on

crop yields, as well as total precipitation in the growing period. More details on the sources

and reliabilities of yield and climate data can be found in Schlenker & Roberts (2009), which

are extended beyond 2005 in Berry, Roberts & Schlenker (2013). We follow the latter and

allow the effect of the extreme heat to vary over the growing season. The phase of the

growing season is defined from state-level planting and harvest dates that are available from

USDA-NASS. We define the beginning of the growing season as the Monday of the week by

the end of which at least 50% of the corn area in a state had been planted. Similarly, the

end of the growing season is the last day of a week when at least 50% of the growing area

had been harvested in a state.11 Since there are hardly any degree days above 29◦C towards

the end point, we allow the effect of extreme heat to vary according to a restricted cubic

spline with 5 knots between 0.1 and 0.75 of the growing season.12

We exclude all counties west of the 100 degree meridian and the state of Florida, as

agriculture in those areas is heavily dependent on subsidized irrigation (see Reisner (1993)

and Schlenker, Hanemann & Fisher (2005)). Figure 1 graphically displays all counties in

our study with corn data.13 We label counties in the following 13 states Corn Belt counties:

Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North

Dakota, Ohio, South Dakota, and Wisconsin.14 Counties outside these states that lie east of

the 100 degree meridian except Florida are labeled the “non-Corn Belt” areas.

11If a planting or harvest date is missing for a year in a county, we replace it with the average planting
and harvest date for that county.

12The average exposure to extreme heat over the growing season is shown in Figure A3. Note that there
is almost no occurrence of temperatures above 29◦C outside the interval [0.1, 0.75], i.e., in spring or late fall.

13Figure A1 gives the results for soybeans. Our analysis uses counties with planting dates (right graph
of each figure) even for the model with a fixed growing season March-August to keep the set of counties
consistent.

14According to USDA National Agricultural Statistics Service (http://quickstats.nass.usda.gov/), the fol-
lowing states have the largest combined planted acreages of corn and soybeans in 2000: Iowa (23 mil), Illinois
(21.7 mil), Minnesota (14.5 mil), Nebraska (13.15 mil), Indiana (11.2 mil), South Dakota (8.7 mil), Missouri
(8 mil), Ohio (8 mil), Kansas (6.4 mil), Wisconsin (5.05 mil), Michigan (4.25 mil), Arkansas (3.53 mil),
North Dakota (2.98 mil), and Kentucky (2.51 mil), i.e., we include all with the exception of Arkansas, which
is not part of the Corn Belt. However, our results are robust if we include Arkansas in the Corn-Belt sample.
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Table A1 presents sample summary statistics for the counties with planting and harvest

dates. We exclude all counties with more than 100,000 population in 2000 in our baseline

analysis as those counties are more likely to be urban centers and less dependent on agri-

culture.15 There are 1,336 counties in our sample, 892 in the Corn Belt sample and 444 in

the non-Corn Belt sample.16 For comparison purposes, we have averaged all variables over

each five-year period during 1970-2009. Panels A and B present sample means and standard

deviations for the Corn Belt and non-Corn Belt samples, respectively. There is substan-

tially more net outmigration for the Corn Belt sample than the non-Corn Belt sample as

the Midwest has lost population over the last 40 years. Average county-level crop acreages

in the Corn Belt states are also larger, especially for corn, as are average crop yields. For

example, during the most recent recent 5-year period (2005-2009), both corn and soybean

yields are around 30% higher in the Corn Belt sample than in the non-Corn Belt sample.

This likely reflects effects of various factors such as geographic/climatic conditions, technol-

ogy, and policies. Non-Corn Belt areas experience more extreme heat above 29◦C and more

precipitation.

3 Results

3.1 The Weather-Migration Relationship

We start with the reduced form relationship between our weather variables and net migra-

tion: do weather anomalies over 5-year intervals in a county, which are arguably exogenous,

influence net outmigration rates? The results of the regression specified in equation (1) above

are given in Table 1. Each column lists the results from a regression of the net outmigration

rate on the four classical weather variables that have been shown to influence corn yields,

summed over the fixed growing season March-August.17 Coefficients on the time trends and

county fixed effects are suppressed to save space. All regressions are population-weighted to

adjust for the heteroscedasticity of the data.18 The first four columns (1a)-(1d) of Table 1

15We present sensitivity checks where counties with more than 100,000 inhabitants are included in the
appendix. The results are unchanged in unweighted regressions, but do change if we weight by the population
in a county.

16In some alternative specifications we use either soybean yields or the average of corn and soybeans yields,
which results in a different number of counties in our sample as sometimes only one of the two crops is grown.

17The four weather variables are: extreme heat as measured by degree days above 29◦C, moderate heat
as measured by degree days 10-29◦C, as well as a quadratic in season-total precipitation.

18Outmigration ratios fluctuate less for counties with a larger population as individual decision to leave
are averaged over a larger base.
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give the results for counties inside the Corn Belt, while the last four columns use coun-

ties outside the Corn Belt. Within each set, columns differ by the included time controls:

columns (a) uses a common linear time trend for all counties, columns (b) use a common

quadratic time trend, columns (c) use a state-specific quadratic time trend, and columns (d)

use a county-specific linear time trend.

For counties inside the Corn Belt, there is a significant relationship between the net

migration rates and the two temperature measures. The table also gives the F-statistic

and p-values for a test for joint significance of all four weather variables, which are highly

significant for Corn Belt counties. Coefficients are rather robust to the chosen time trend.

Columns (d) rule out the possibility that climate and migration trends over time are driven by

omitted county-specific factors which result in a spurious correlation, as the county-specific

time trend would absorb such omitted trends.

While the measure on moderate heat is statistically significant, it has a counterintuitive

sign: moderate heat is good for crop growth as shown in columns (1a)-(1d) of Table 2, which

replicates columns (1a)-(1d) of Table 1 except that the dependent variable is no longer the

net migration rate but instead log corn yields. Similarly, Table A3 replicates the analysis

using an annual panel instead of 5-year intervals and finds that moderate heat is good for crop

growth. Moderate heat improves yields and the economic livelihood of an agricultural area,

which should decrease, not increase the net out-migration rate, as suggested by the positive

reduced-form coefficient on moderate heat. The likely reason for the counter-intuitive sign

in the reduced-form migration regression is a direct preference for climate that, which will

bias our IV estimates. This observation motivated our use of the seasonality of the effect

of extreme heat only as an instrument when we examine the yield-migration relationship in

the next subsection.

Counties outside the Corn Belt show no significant response in Table 1: no weather

measure is individually significant nor are they ever jointly significant at the customary

5% significance level. On the other hand, crops are significantly related to these weather

variables both inside and outside the Corn Belt. Columns (1a)-(1d) of Table A4 replicate

columns (2a)-(2d) of Table 1 using annual corn yields as the dependent variable instead

of migration rates. The effect of extreme heat, as shown in the first row of each table, is

statistically significant at explaining corn yields in both areas. As mentioned above, it is

the single best predictor of year-to-year variability of yields in both areas, yet net migration

only responds to extreme heat in Corn Belt areas.

One particularity of our “control” group on counties outside the Corn Belt is that they
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tend to be further in the South and hence hotter. We therefore further split these counties in

counties in the North-East (all counties outside the Corn Belt in the right graph of Figure 1

that have a latitude higher than the Southern bound of the Corn Belt, i.e., are in Virginia

or further North) and the South-East (remaining counties colored red in the right graph of

Figure 1). Results are given in Table A5: The first four columns (1a)-(1d) show the results

for counties in the Northeast, while the last four columns (2a)-(2d) show the results for

the Southeast. In the former, the four weather variables are not jointly significant. For the

Southeast, the four weather variables are jointly statistically significant and the driving force

seems to be moderate degree days, which is significant in all specifications, but again has a

counter-intuitive sign, suggesting that if people have a preference for climate, it goes against

what we observe for crop growth.

3.2 First Stage: The Weather-Yield Relationship

We replicate the weather-yield relationship of Schlenker & Roberts (2009), as formerly speci-

fied in equation (3) above, in columns (1a)-(1d) of Table 2. There are three notable differences

to earlier work: we aggregate the data to 5-year intervals, include only data for the Corn

Belt sample, and weight the regressions by the population in a county. Columns (a)-(d)

again vary the included temporal controls. Since year-to-year weather shocks are random,

there is considerably more variation in the yearly data than in 5-year averages. Still, Table 2

reports significant results using 5-year averages of log yields and climate data from 1970 to

2009. The results confirm the significant nonlinear relationship between weather/climate and

yields (Schlenker & Roberts 2009, Rosenzweig et al. 2002). An increase of 10 degree days in

moderate heat (between 10 and 29◦C) during the growing season would increase crop yields

by 0.64-0.79%. On the other hand, extremely hot temperatures are very harmful - each

degree day increase in extreme heat decreases yields by 0.50-0.58%, which is almost an order

of magnitude higher. More rainfall is initially beneficial for crops, but at a decreasing rate,

and becomes detrimental when it exceeds some optimum level. The null hypothesis that all

coefficients of climate variables are jointly zero is rejected at even the 0.1% significance level.

The second set of columns (2a)-(2d) no longer uses all four weather variables, but only

the effect of extreme heat and how it varies over the growing season (Berry, Roberts &

Schlenker 2013). Season-total sum of extreme heat has the largest explanatory power of

yields and is highly nonlinear as all temperature below 29◦C are discarded. We use restricted

cubic splines in time between one-tenth and three-quarters of the growing season that is

normalize to length one. The first-stage results are shown in columns (2a)-(2d) of Table 2.
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Columns (a)-(d) again vary the included temporal controls. The third row of the footer

lists the p-value for the test that all spline polynomials, i.e., excluding the constant term,

are significantly different from zero. This is not a test whether extreme heat is a significant

predictor as it excluded the constant term, but only whether it varies significantly over the

season, and it is significant at the 10% level in most regressions.

Since 5-year averages have less variation than annual data, measurement error might be

amplified, we also replicate the analysis using annual data on yields and weather in Table A3.

We find comparable relationships between weather and yield to what is reported in Table 2.

Moreover, the test whether the effect of extreme heat is constant throughout the season in

columns (2a)-(2d) can now be rejected at any significance level. Limiting the number of

observations from 40 to 8 when we aggregate the annual data to 5-year intervals does not

seem to impact the point estimates, but reduces significance somewhat.19 This is especially

true for the coefficient on extreme heat in columns (1a)-(1d), which explains most of the year-

to-year variation in yields, and the joint significance of the spline polynomials in columns

(2a)-(2d).

We plot the spline coefficient as black solid line in the bottom row of Figure 2. The 95%

confidence interval is added in grey. The four columns correspond to the regression results of

columns (2a)-(2d) in Table A3, respectively.20 The chosen time control has very little effect

on the shape of the seasonality: Extreme heat is most damaging around a third into the

growing season. We also add reference points for models where the effect of extreme heat is

forced to be uniform across the season (i.e., a horizontal line): A red line shows the constant

marginal effect if the extreme heat measure is summed over all days between March 1st and

August 31st. The blue line sums extreme heat over the variable growing season as defined

by state-level planting and harvest dates.

For comparison, we also display the seasonality of a reduced-form regression of the net

out-migration rate on the seasonality of extreme heat in the top row of Figure 2. The four

columns again use the four time controls used in columns (a)-(d) of our tables. Note the

clear mirror image: migration responds most strongly during time periods of the growing

season when corn is most susceptible.

19The other difference is that the first-stage regression in Table 2 are population-weighted as are the
migration regression in the second stage, while the annual results in the appendix are unweighted regression.

20The results are similar if we use the results of columns (2a)-(2d) in Table 2, but the confidence bands
are wider since we have fewer observations. We choose to display the more efficient estimates.
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3.3 Second Stage: Yield Shocks and Net Outmigration

We estimate equation (2) by two-stage-least-squares (2SLS) and show the second-stage re-

sults in Panel A of Table 3. Columns differ by included time controls to capture overall

trends in migration as well as yields. Columns (a) use a common linear trend (one variable),

columns (b) a common quadratic time trend (two variables), columns (c) a state-specific

quadratic time trend (26 variables, 13 states × two variables per state), columns (d) use

county-specific trends (892 variables, one for each county). We choose not to control for

year fixed effects, which would absorb most of the variation as 5-year weather averages are

highly correlated within the Corn Belt, more so than annual data. The reason is that the

5-year averages are driven by large-scale phenomena like El Nino / La Nina as idiosyncratic

annual weather shocks average out. If a half-decade is hotter than usual, it is so for most of

the Corn Belt. For example, the seven year (i.e., 5-year interval) fixed effects absorb more

variation than the 26 state-specific quadratic trends. Year fixed effects absorb variation that

we would like to use in our identification and amplify measurement error in the weather data

as most of the common signal is removed (Fisher et al. 2012). If weather is truly exogenous,

it should be orthogonal to other measures and hence not require period fixed effects.

Column (1a)-(1d) reports results for the Corn Belt sample when the net migration ratio

is regressed on instrumented log corn yield using the standard four weather measures that

have been shown to influence corn yields. The estimated semi-elasticity of outmigration

with respect to log yield ranges from -0.125 to -0.175, all of which are statistically significant

at the 1% level based on clustered standard error. Recall that the first stage F-statistics

are 23-46 in Table 2, much higher than the usual cutoff point of 10 to rule out concerns

about weak instruments. The semi-elasticity implies that a one percent reduction below

trend in corn yields during a 5-year induces an additional 0.125 to 0.175 percent of the adult

population to leave the county. As mentioned earlier, this semi-elasticity might be biased

towards zero as people show a distaste for moderate heat that is beneficial for corn. Columns

(2a)-(2d) therefore only use the seasonality of extreme heat over the growing season, that

is closely mirrored between corn and the reduced form migration regression. The estimated

semi-elasticity increases to -0.3 to -0.4 accordingly.

Table A6 replicates the analysis using corn yields in Panel A, but also presents results

when we instrument log soybeans yields in Panel B, or the weighted average of the two in

Panel C. Results in columns (1a)-(1d) are broadly comparable irrespective of which crop

we use. Note, however, how the results in columns (2a)-(2d) are much lower for soybeans,

which is not surprising as soybeans do not exhibit the same seasonality in the sensitivity to
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extreme heat as corn does. The revised weather measures that allow for heterogeneity of

the effect of extreme heat over the growing season hence do not give different results in the

case of soybeans. Therefore, instrumenting corn yields with the seasonality of extreme heat

avoids some of the bias that is due to a direct preference for climate. If we take the weighted

average of corn on soybeans to make them comparable on revenue-per-acre terms in Panel

C, the results lie in the middle.21

Table A7 reports the results of the OLS version of columns (a)-(d) of Table 3 where

migration rate, both inside and outside the Corn Belt, are regressed on yields that are

not instrumented on weather to illustrate the importance of instrumenting yields. The

estimated semi-elasticity are smaller (closer to zero) by an order of magnitude and generally

not significantly different from zero. It is consistent with a story where government policies

(or other factors like cheap energy) help to stabilize local economy when yield declines.

One might expect different demographic groups to have different migration responses

with respect to yield changes. For example, McLeman (2006) found that young people had

a larger migration response following the Dust Bowl. Panels B1 and B2 of Table 3 therefore

separate the migration response by sex, while Panels C1-C4 separate it by age, using the

same specifications as in Panel A. Males and females have quite similar migration elasticities,

suggesting that the relationship is not gender-specific. However, people in different age

groups have quite different migration elasticities. The youngest age group, those between

15 and 29, are most sensitive to yield shocks in their migration decisions. The estimated

elasticity ranges between -0.41 and -0.53 when we use the seasonality of the sensitivity to

extreme heat in columns (2a)-(2d). The semi-elasticities get progressively smaller as we look

at older age groups. The 30-44 age group has a semi-elasticity of -0.31 to -0.41, which is still

significant at the 1% level. The age group between 45 and 59 has a semi-elasticity is only

-0.09 to -0.12, which is only about a fourth of that for the 15-29 group. People aged 60 and

above do not have a significant semi-elasticity. Our finding is consistent with the general

observation that younger people are more mobile. The results also lend additional support to

the exclusion restriction in our instrumental variable setup. If weather fluctuations directly

impact migration decisions, one might expect larger responses for the older age group as

they care most about weather and climatic conditions, as shown by a sizable retirement

community in the Southern United States (McLeman & Hunter 2010).

21The weights are constant over time and hence end not endogenous to yield fluctuations.
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3.4 Sensitivity Checks

Our baseline regressions only include counties with a total population of less than 100,000 in

the 2000 Census for which yield information are observed for more than half of the years of

our sample period 1970-2009 (at least 21 out of the 40 years). Regressions are weighted using

the total population in a county to get a more efficient estimate. To explore the sensitivity

of our results to these restrictions, we conduct a set of robustness checks in the appendix.

Table A8 first addresses population cutoffs and weighting. Panel A of the Table shows the

baseline results for comparison, i.e., Panel A of Table 3. Panel B1 and B2 use the same data

set and specification except that the regressions are no longer weighted. The point estimates

change very little in the unweighted regressions. Panel B1 continues to cluster the error

terms at the state level, which adjusts for arbitrary within-state correlations along both the

cross-sectional (counties within a state) and time-series dimensions. One possible concern

stems from the fact that we are not using annual data, but 5-year averages. Idiosyncratic

weather shocks are averaged out, and the remaining variation is driven more strongly by

global phenomena like El Nino / La Nina. If a half-decade is hotter than usual, it is likely

hotter than usual for most of the Corn Belt. Panel B2 uses a grouped bootstrap procedure

where we resample entire 5-year intervals with replacement. While the error terms go up

significantly, our preferred estimates using the spline in extreme heat in columns (2a)-(2d)

remain significant at least at the 5% level.22 Since we only have eight intervals, using a

clustered bootstrap has its own drawbacks, and our baseline regression therefore clusters

by state.23 Finally, Panel C uses the same specification and clustered errors as B1, but

extends the data to also include urban counties. The point estimates again remain basically

unchanged.24

Table A9 examines the sensitivity of our results to the minimum number of observation

we require to have in a county before it is included in the analysis. Panel A again shows

the baseline results (Panel A of Table 3) for comparison. Panel B and C are the extreme

endpoints of the possible cutoffs: Panel B includes all counties if they have at least one

22Cameron, Gelbach & Miller (2008) call this procedure the pairs cluster bootstrap, the “standard method
for resampling that preserves the within-cluster features of the error.” While this procedure can lead to
inestimable model if regressors take on a limited range of values, it works in our case as there is enough
variation in climate. We are not aware of a study that tests the performance of the Wild-t bootstrap, their
preferred model, in an instrumental variables setting with clustered errors.

23Recall that we have 13 states in the Corn Belt sample, which is larger, but still a limited number of
clusters.

24Include urban counties in a population-weighted regression does make the point estimates smaller in
magnitude (closer to zero), as urban places like the counties comprising Chicago get weighted very heavily,
yet these places should be less dependent on agriculture.

18



observation in the years 1970-2009, while Panel C requires a perfectly balanced panel, i.e.,

observations for all 40 years. The number of counties included in the study is hence highest

in Panel B with 935 counties, and lowest in Panel C with 701 counties. The point estimates

remain very robust irrespective of what cutoff we use and hence are not driven by a particular

sample selection.

3.5 Further Results on Farm Size and Employment

Our estimated semi-elasticity may seem large as the population share directly employed

in the agriculture sector is small. One possibility is that there is considerable spillover

from agriculture to other sectors of the economy, as was observed for Dust Bowl migrants

(Hornbeck 2009). To shed further light on this issue, we regress comparable measures of

farm size and employment on instrumented yield shocks. The regressions are similar to the

previous IV regression except that we replace the dependent variable, net outmigration, with

other measures.

Panels A1 and A2 of Table 4 use data from the Agricultural Census. Since the Census of

Agriculture was not published exactly very five years, the time intervals now vary in length

as given by the time between consecutive Census years.25 Panel A1 use the rate of change in

the number of farms as dependent variable. The coefficients are all positive and statistically

significant, implying that during times when yields decreases, there is a contraction in the

number of farms. Such a contraction could be caused by mergers of farms that leave the

overall area unchanged, or by a retirement of farmland as farms go out of business. Panel A2

uses the relative change in the farmland area as dependent variable and finds no significant

effect. Taken together, these results show that there is consolidation in the farm business

when conditions are difficult, but the overall farmland area remains unchanged, it simply

changes hand.

Panel B1 and B2 analyzes farm and non-farm employment, respectively, using data from

the Bureau of Economic Analysis (BEA). The effect on farm employment is sometimes

marginally significant, but the sign of the coefficient flips between models.26 On the other

hand, the coefficients on non-farm employment are consistently positive and statistically

significant: If yields are going down, so is non-farm employment in the county. The estimated

25The eight intervals are between the nine Census years 1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002,
and 2007.

26If we use a grouped bootstrap in Table A10, none of the coefficients in the farm employment regression
are significant. They are marginally significant for our preferred model (2a)-(2d) for number of farms and
non-farm employment.
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elasticity of 0.33-0.44 in columns (2a)-(2d) is quite large.

Our results suggest that although a negative weather-induced yield shock does not sta-

tistically significantly effect farm employment, it reduced yields in the agricultural sector

and negatively affects local economic conditions, thereby triggering relatively large employ-

ment contractions in non-farm sectors. One possible explanation for such a finding is that

government programs insure farm income (e.g., disaster payments, price floors, and crop

insurance) and hence farmers receive enough income that keeps them farming. For example,

Key & Roberts (2007) have shown that larger government transfers increase the probability

of farm survival using Micro-level Census Data that links individual farms between three

Censuses. If government payments insure against yield losses, they will dampen responses

in farm labor. Especially since many of them are conditional on the farm remaining in op-

eration. At the same time, yield losses might induce farmers to purchase less outside goods

and result in fewer investments. Roberts & Key (2008) have shown that larger government

payments result in consolidation in the farm sector, thereby increasing average farm size,

which is consistent with our finding in Panel A1.

An increase in farm size might lead to efficiency gains and hence reduce the demand for

services and goods outside the agricultural sector. This would explain why we detect larger

employment effects outside of agriculture. At the same time, the U.S. agriculture sector is

already highly capital-intensive with a minimum level of farm workforce, thus it is difficult

to displace farm labor even at times with negative yield shocks.

We examine the effect of weather-induced yield shocks on government payments in Ta-

ble 5. The National Agricultural Statistics Service reports state-level annual data on gov-

ernment transfers. We regress the log of government transfer in each year on agricultural

yields.27 Panel A reports the results using OLS, while Panel B instruments corn yields with

temperature and precipitation (columns (1a)-(1c) in previous tables) and Panel C uses the

seasonality of the sensitivity to extreme heat as instrument (columns (2a)-(2c) in previous

tables). Panels B and C show that there is an almost 1:1 relationship between yield short-

falls and increases in government transfers. For example, using our preferred instrument

(Panel C) and the most flexible time controls (column 1c), a 1 percent decrease in yields will

increase government transfers by 0.97 percent. While these governments constitute highly

subsidized insurance, there seems to be no evidence of moral hazard: simply using observed

yield shocks in Panel A does not impact government transfers, while yields shocks that are

27Since the analysis is done at the more aggregate state level, model (d) in previous tables where we
include county-specific time trends is no longer feasible.

20



caused by weather shocks (and hence are not the result of moral hazard) due.

4 Projecting Future Net Outmigration

Like the rest of the world, the United States has already experienced climate change. Over

the past 50 years, U.S. average temperature has risen more than 1◦C and precipitation

has increased an average of about 5 percent (Karl, Melillo & Peterson 2009). Human-

induced emissions of heat-trapping gases have been largely responsible for such changes

on a worldwide basis, and will lead to additional warming in the future (Solomon et al.

2007). By the end of the century, the average U.S. temperature is projected to increase by

approximately 2.2 to 6◦C under a range of emission scenarios. Precipitation patterns are also

projected to change, with northern areas becoming wetter and southern areas, particularly

in the West, becoming drier. In addition, some extremes of weather and climate, such

as droughts, heavy precipitation and heat waves, are expected to increase in frequency or

geographic extent (Karl, Melillo & Peterson 2009).

We pair predicted changes in climate with our estimate of the elasticity of migration,

which is conditional on many factors specific to the U.S. for the period under study, such

as the population share of youths who are more likely to migrate, technology, the relative

importance of agriculture in the economy and rural areas in particular, and federal and state

farm policies, e.g., responses to droughts and other climatic events that adversely affect

crop yields. Keeping in mind that these idiosyncratic factors may change in the future,

we find it nevertheless instructive to project the effect of climate change on future migrant

flows for the Corn Belt sample to illustrate the magnitude of potential migration flows. Our

projection exercise does not depend on whether past climate variability in the United States

was caused by greenhouse gas emissions, as long as the migration responses are similar to

those that would occur with anthropogenic climatic changes. Also, we are using the reduced

form relationship between weather and migration of Table 1 to predict future migration

flows, which captures both responses to changes in productivity as well as a possible pure

preference for climate.

We first base our projections on the B2 scenario of the Hadley III model and project

net outmigration ratios of the adult US population (aged 15 to 59) for the medium term

(2020-2049) and for the long term (2070-2099). We follow a two step procedure. First, using

average climate during the 1960-1989 period as a baseline, we derive expected changes in

weather, which are the absolute changes in monthly minimum and maximum temperature
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as well as relative changes in precipitation in the climate model.28 The revised degree days

variables are calculated by adding the predicted changes in temperature to the historic

baseline and recalculating the nonlinear transformation of the new temperatures series.29 In

a second step, we project population migration ratios by multiplying the predicted changes

in the four weather variables in each county times the estimated coefficients of column (1d)

in Table 1. Table 6 presents the summary of the results for individual counties. The first

column displays the mean impact among counties, while the second through fourth column

give the standard deviation, minimum, and maximum of the impacts for the 892 counties

in the Corn Belt. The last four columns summarize how many counties will have increased

outmigration (displayed in green, yellow, and red in Figure 3) as well as how many counties

have decreased outmigration rates (shown in blue).30

The first row reports projections for the medium term. On average, by 2020-2049, 5-year

outmigration rates are expected to increase by 13 percentage points for the adult population

for rural counties in the Corn Belt, i.e., on average 13 percent of the adult population is

predicted to leave the county. For comparison, the standard deviation in migration rates

in Table A1 is 7 percent, so the average predicted increase equals two standard deviations

of the historic fluctuations. Not all counties are expected to experience similar changes in

outmigration as they vary between 4 and 24 percentage points. However, all rural counties in

the sample are predicted to experience statistically significant increases in the outmigration

rate. The second row of Table 6 reports long term projections. Compared to the medium

term, the projected increase in outmigration ratios are on average much larger. By 2070-

2099, 5-year outmigration rates of rural counties in the Corn Belt are expected to increase

by 30 percentage points. As shown in Panel B of Figure 3, counties in the southwestern

part of the Corn Belt are most likely to experience substantial increases in net outmigration,

while those in the northeastern part would be affected less.

To complement our use of the Hadley III model, which is just one of roughly 20 GCMs

(General Circulation Model, or Global Climate Model) and has above average predicted

warming, we also provide migration projections under uniform climate change scenarios, as-

suming temperature or precipitation changes are the same across all the Corn Belt region.

The sensitivity of our results to predicted changes in climatic conditions can then be ap-

28It is customary to consider relative changes in precipitation as a constant absolute decrease would cause
some dry areas to have negative precipitation.

29We merge each 2.5x2.5 mile weather grid with the four surrounding grid points of the coarser Hadley
model and take the inverse-distance weighted average of the projections at the Hadley grid.

30We use 10,000 bootstrap draws from the joint distribution of the coefficients of the regression results to
translate predicted changes in weather variables to a distribution of changes in outmigration rates.
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proximated from the uniform changes, especially since there is more variability in predicted

changes between models than within runs for the Corn Belt.31 We predict outmigration

rates corresponding to each Celsius degree rise in temperatures up to 5◦C (holding precipi-

tation constant) and between -50% and +50% change in precipitation (holding temperature

constant) in 20% intervals. Results are summarized in Table 6, and graphically shown in Fig-

ures A4 and A5. Consistent with our previous projections, we use 1960-1989 as the baseline

to which we compare future scenarios. Our results show that outmigration increases nonlin-

early with temperature increases. This is due to the fact that extreme heat as measured by

degree days above 29◦C is a highly nonlinear function of temperature. If temperature rises

by 1◦C, on average about 4.7% of each rural county in the Corn Belt would out-migrate,

yet a 5◦C rise in temperature would on average induce 31.2% of the adult population to

leave their county. This nonlinear relationship is in accordance with the general finding of

the impact literature that warming is likely to be increasingly harmful for human society in

virtually all aspects.

The impacts of precipitation changes on outmigration are relatively small. The projected

change in outmigration rates never exceeds 4% although precipitation levels change between

a decline of 50% and an increase of 50%. The impact of a precipitation increase will decrease

the migration rate in some counties and increase it in others, depending on how much

precipitation a county already has at the moment. While future changes in temperature

and precipitation are expected to be related, agricultural-related outmigration is much more

driven by the former. Our results suggest that focusing on predicted temperature changes

will give the bulk of the predicted impact.

5 Conclusions

This paper first establishes a reduced-form relationship between weather deviations and mi-

gration rates. The likely mechanism behind the observed weather-migration relationship is

the effect of weather on agricultural productivity. Our preferred model uses the seasonality in

the sensitivity of corn to extreme heat over the growing season as an instrument. Consistent

with previous theoretical studies that link migration decisions to economic opportunities in

source and destination counties, we find that county-level outmigration is negatively associ-

31One approach is to sample model predictions from different global climate models to approximate climate
uncertainty (Burke et al. 2011). Since these models are not stochastic in nature, we prefer to display the
range of predicted climate impacts using uniform scenarios as there is limited variation within each model
for a geographically confined area like the Corn Belt.
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ated with crop yields in the Corn Belt. The effect is largest for young adults, and we observe

no response for people 60 years or older. If we do not instrument yield shocks with weather,

the estimated relationship becomes much closer to zero, demonstrating the importance of

relying on yield shocks that are due to exogenous weather patterns.

Second, we extrapolate this relationship while holding every things else constant; our

results suggest a nontrivial effect of climate change on future internal U.S. population move-

ments. Based on the Hadley III model B2 scenario, using the 1960-1989 period as a baseline,

climate change is on average expected to induce 13 percent of the rural population aged 15-

59 to leave in the medium term (2020-2049). Long-run effects are likely to be considerably

greater but also much more uncertain due to growing uncertainty in climate projection with

progressively larger climate changes. While there is uncertainty about the exact amount of

future warming, the consensus estimates suggest that we will experience at least some warm-

ing. We present uniform climate change scenarios to show the possible range of migration

responses.

Historically, policy makers have tried to dissuade large-scale migration to preserve ru-

ral communities. Our research suggest that climate change will likely put further pressure

on outmigration from predominately agricultural rural areas. We believe that future re-

search should explore in more detail the underlying determinants of the yield-migration re-

lationship for the areas we highlighted. Our evidence suggest that adjustments in non-farm

employment, rather than farm employment, might be the main mechanism through which

weather-related yield shocks generate outmigration. One possible explanation is that farmers

themselves are already insured by government programs (e.g., crop insurance). In addition,

to accurately forecast future outmigration flows, a range of climate models (in addition to

Hadley III) should be used to improve confidence. Nevertheless, short-run projections are

likely to be similar because much of the warming under any model is already committed by

past emissions, with the inter-model differences due to differing climate sensitivities growing

strongly with time.
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Deschênes, Olivier, and Michael Greenstone. 2007. “The Economic Impacts of Climate
Change: Evidence from Agricultural Output and Random Fluctuations in Weather.”
American Economic Review, 97(1): 354–385.

25



Dimitri, Carolyn, Anne Effland, and Neilson Conklin. 2005. The 20th Century Trans-

formation of U.S. Agriculture and Farm Policy. United States Department of Agricul-
ture - Economic Research Service: Economic Information Bulletin Number 3.

Duquette, Eric N. 2010. “Dissertation: Choice Difficulty and Risk Perceptions in Envi-
ronmental Economics.” University of Oregon.

Eichenlaub, Suzanne C., Stewart E. Tolnay, and J. Trent Alexander. 2010. “Moving
Out but Not Up: Economic Outcomes in the Great Migration.” American Sociological

Review, 75(February): 101–125.

Feng, Shuaizhang, Alan B. Krueger, and Michael Oppenheimer. 2010. “Linkages
among climate change, crop yields and MexicoUS cross-border migration.” Proceedings

of the National Academy of Sciences of the United States, 107(32): 14257–14262.

Ferrie, Joseph P. 2003. Internal Migration. Vol. Historical Statistics of the United States:
Millennial Edition, New York:Cambridge University Press.

Fisher, Anthony C., W. Michael Hanemann, Michael J. Roberts, and Wolfram
Schlenker. 2012. “The Economic Impacts of Climate Change: Evidence from Agricul-
tural Output and Random Fluctuations in Weather: Comment.” American Economic

Review, 102(7): 3749–3760.

Hobbs, Frank, and Nicole Stoops. 2002. Demographic trends in the 20th century. U.S.
Census Bureau, Census 2000 Special Reports, Series CENSR-4,.

Hornbeck, Richard. 2009. “The Enduring Impact of the American Dust Bowl: Short
and Long-run Adjustments to Environmental Catastrophe.” NBER Working Paper No.

15605.

Karl, Thomas R., Jerry M. Melillo, and Thomas C. Peterson. 2009. Global Climate

Change Impacts in the United States. New York:Cambridge University Press.

Key, Nigel D., and Michael J. Roberts. 2007. “Do Government Payments Influence
Farm Size and Survival?” Journal of Agricultural and Resource Economics, 32(2): 330–
348.

Leighton, Michelle. 2009. Migration and Slow-Onset Disasters. Vol. Migration and Envi-
ronment: Assessing the Evidence, Geneva, Switzerland:International Organization for
Migration.

Lobell, David B., and Gregory P. Asner. 2003. “Climate and Management Contribu-
tions to Recent Trends in U.S. Agricultural Yields.” Science, 299(5609): 1032.

Long, Stephen P., Elizabeth A. Ainsworth, Andrew D. B. Leakey, Josef Nos-
berger, and Donald R. Ort. 2006. “Food for Thought: Lower-Than-Expected Crop
Yield Stimulation with Rising CO2 Concentrations.” Science, 312: 1918–1921.

26



McLeman, Richard, and Barry Smit. 2006. “Migration as an Adaptation to Climate
Change.” Climatic Change, 76(1-2): 31–53.

McLeman, Robert. 2006. “Migration Out of 1930s Rural Eastern Oklahoma: Insights for
Climate Change Research.” Great Plains Quarterly, 26(1): 27–40.

McLeman, Robert A., and Lori M. Hunter. 2010. “Migration in the context of vul-
nerability and adaptation to climate change: insights from analogues.” Wiley Interdis-

ciplinary Reviews: Climate Change, 1: 450–461.

McLeman, Robert, Dick Mayo, Earl Strebeck, and Barry Smit. 2008. “Drought
adaptation in rural eastern Oklahoma in the 1930s: lessons for climate change adapta-
tion research.” Mitigation and Adaptation Strategies for Global Change, 13(4): 379–400.

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. 1994. “The Impact
of Global Warming on Agriculture: A Ricardian Analysis.” American Economic Review,
84(4): 753–771.

Rappaport, Jordan. 2007. “Moving to nice weather.” Regional Science and Urban Eco-

nomics, 37(3): 375–398.

Reilly, John M. 2002. Agriculture: the potential consequences of climate variability and

change for the United States. Cambridge University Press.

Reisner, Marc. 1993. Cadillac Desert: The American West and Its Disappearing Water,

Revised Edition. Penguin.

Roberts, Michael J., and Nigel Key. 2008. “Agricultural Payments and Land Concentra-
tion: A Semiparametric Spatial Regression Analysis.” American Journal of Agricultural

Economics, 90(3): 627–643.

Rosenzweig, Cynthia, and Daniel Hillel. 1998. Climate change and the global harvest.

Oxford University Press.

Rosenzweig, Cynthia, Francesco N. Tubiello, Richard Goldberg, Evan Mills, and
Janine Bloomfield. 2002. “Increased crop damage in the US from excess precipitation
under climate change.” Global Environmental Change, 12(3): 197–202.

Schlenker, Wolfram, and Michael J. Roberts. 2009. “Nonlinear Temperature Effects
Indicate Severe Damages to U.S. Crop Yields under Climate Change.” Proceedings of

the National Academy of Sciences of the United States, 106(37): 15594–15598.

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher. 2005. “Will
U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the
Hedonic Approach.” American Economic Review, 95(1): 395–406.

27



Schubert, Siegfried D., Max J. Suarez, Philip J. Pegion, Randal D. Koster,
and Julio T. Bacmeister. 2004. “On the Cause of the 1930s Dust Bowl.” Science,
303(5665): 1855–1859.

Solomon, S., D. Qin, M. Manning, Z. Chen andM. Marquis, K.B. Averyt, M.
Tignor, and H.L. Miller, ed. 2007. Contribution of Working Group I to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Uni-
versity Press.

White, Katherine J. Curtis. 2008. “Population change and farm dependence: Temporal
and spatial variation in the U.S. great plains,19002000.” Demography, 45(2): 363–386.

28



Figure 1: Counties with Corn Yields (1970-2009)

Fixed Growing Season (Mar-Aug) Variable Planting and Harvest Dates

Notes: The left figure displays counties in the eastern United States (east of the 100 degree meridian except

for Florida) where migration and yield data are available. The right column furtherermore requires that

state-level planting and harvest dates are available for at least one year. States covering the corn belt are

shown in blue, while other states are shown in red. Different shading indicate the number of observations in

the county for which we have data.
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Figure 2: Seasonality in Response to Extreme Heat

A: Net Outmigration Rate − Common Linear Time Trend
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B: Net Outmigration Rate − Common Quadratic Time Trend
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C: Net Outmigration Rate − State−Specific Quadratic Time Trend
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D: Net Outmigration Rate − County−Specific Linear Time Trend

−
1

−
.7

5
−

.5
−

.2
5

0
.2

5
.5

M
ar

gi
na

l E
ffe

ct
 o

f D
eg

re
e 

D
ay

s 
ab

ov
e 

29
C

 (
10

0)

.1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75
Phase of Growing Season

A: Log Corn Yields − Common Linear Time Trend’
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B: Log Corn Yields − Common Quadratic Time Trend’
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C: Log Corn Yields − State−Specific Quadratic Time Trend’
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D: Log Corn Yields − County−Specific Linear Time Trend’
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Notes: Panels displays how the sensitivity to extreme heat (degree days above 29◦C) vary over the growing season, i.e., the marginal effect

of an extra degree day above 29◦C. The solid black line shows the point estimate and the 95% confidence band is added in grey. The top

row shows the sensitivity of the net outmigration rate to extreme heat over the season, while the bottom row shows the sensitivity of log corn

yields. The sensitivity is allowed to vary using a spline with 5 knots in the truncated growing phase. The blue line displays the constant

effect from a regression that includes season-total extreme heat over the variable growing season, while the red line uses a fixed growing season

March-August and also controls for moderate degree days as well as a quadratic in precipitation. All regressions use counties with at least 21

yield observations in the corn Belt. Columns differ by the included time control, which are respectively, a common linear time trend, a common

quadratic time trend, state-specific quadratic time trends, and county-specific linear time trends.
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Figure 3: Predicted Changes in Net Outmigration Under Hadley III - B2 Scenario

Panel A: Predicted Impact by Mid-Century (2020-2049)

Panel B: Predicted Impact by End of Century (2070-2099)

Notes: Panels display predicted changes in net outmigration rates under the Hadley III - B2 clmate change

scenario for counties in the Corn Belt using the regression results of column (1d) of Table 1. Panel A shows

predicted impacts by the middle of the century (2020-2049) compared to a 1960-1989 baseline. The bottom

panel shows predicted impacts by the end of the century (2070-2099) compared to 1960-1989. Appendix

Figures A4 and A5 show the results for uniform temperature and precipitation scenarios.

31



Table 1: Weather and Migration

Counties Inside Corn Belt Counties Outside Corn Belt
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Extreme Heat (100 degree days) 0.137∗∗∗ 0.127∗∗∗ 0.133∗∗∗ 0.148∗∗∗ -0.002 -0.016 -0.029 -0.008
(0.034) (0.033) (0.037) (0.038) (0.043) (0.044) (0.054) (0.064)

Moderate Heat (1000 degree days) 0.167∗∗∗ 0.167∗∗∗ 0.167∗∗∗ 0.176∗∗∗ 0.195 0.186 0.161 0.228
(0.053) (0.050) (0.047) (0.056) (0.146) (0.149) (0.148) (0.205)

Precipitation (m) 0.019 0.018 0.018 0.022∗ -0.016 -0.022 -0.030 -0.024
(0.011) (0.012) (0.013) (0.011) (0.016) (0.016) (0.020) (0.016)

Precipitation Squared (m2) -0.001 -0.001 -0.001 -0.002 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002)

F-stat (joint significance) 52 42 35 26 2 2 3 4
p-value (joint significance) 1.7e-07 5.6e-07 1.6e-06 7.1e-06 .2808 .286 .1623 .0925
R-squared 0.1039 0.1087 0.1302 0.3141 0.0079 0.0095 0.0236 0.1809
Observations 7078 7078 7078 7078 3371 3371 3371 3371
Counties 892 892 892 892 444 444 444 444
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Table displays reduced form regression of migration rates on weather for 5-year intervals 1970-2009 (using the bounds for the largest

crop corn). Columns (1a)-(1d) look at counties in the corn belt, while columns (2a)-(2d) focus on counties outside the corn belt as shown

in Figure 1. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear time trend, columns (b) include a

common quadratic time trend, columns (c) include state-specific quadratic time trends, and columns (d) include county-specific linear trends.

Regressions include counties with at most 100,000 inhabitants in 2000 that had at least 21 yield observations in 1970-2009 and are population

weighted. Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level,

respectively. The F-statistics (p-values) for joint significance of the weather variables is given at the bottom of the Table.
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Table 2: Weather and Crop Yields

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Extreme Heat (100 degree days) -0.569∗∗∗ -0.584∗∗∗ -0.525∗∗∗ -0.498∗∗∗ 0.644 0.715 1.682 1.426
(0.090) (0.095) (0.080) (0.086) (1.261) (1.397) (1.718) (1.435)

Extreme Heat x spline 1 -3.282 -3.702 -7.723 -6.295
(6.027) (6.845) (8.332) (6.856)

Extreme Heat x spline 2 2.430 4.494 12.999 11.724
(27.477) (30.958) (37.684) (34.019)

Extreme Heat x spline 3 2.211 -3.033 1.549 -16.209
(85.070) (91.950) (105.031) (106.492)

Extreme Heat x spline 4 -7.976 -3.792 -92.692 -1.703
(148.756) (151.046) (134.254) (169.408)

Moderate Heat (1000 degree days) 0.640∗∗∗ 0.640∗∗∗ 0.766∗∗∗ 0.791∗∗∗

(0.139) (0.142) (0.140) (0.145)
Precipitation (m) 0.178∗∗∗ 0.177∗∗∗ 0.152∗∗∗ 0.160∗∗∗

(0.026) (0.025) (0.025) (0.025)
Precipitation Squared (m2) -0.015∗∗∗ -0.015∗∗∗ -0.013∗∗∗ -0.014∗∗∗

(0.002) (0.002) (0.002) (0.002)

F-stat (1st stage) 24 27 23 46 22 24 13 23
p-value (1st stage) 1.2e-05 6.9e-06 1.6e-05 3.4e-07 1.3e-05 7.5e-06 1.4e-04 9.5e-06
Joint sig. splines (p-value) .0775 .076 .0763 .1023
R-squared 0.8370 0.8374 0.8623 0.8918 0.8275 0.8275 0.8524 0.8811
Observations 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Table displays first stage results of Table 3. Columns (1a)-(1d) use temperature and precipitation as instruments, while columns

(2a)-(2d) only uses the seasonal variation in the sensitivity to extreme heat. Columns (a)-(d) differ by the included time controls. Columns

(a) include a common linear time trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic time

trends, and columns (d) include county-specific linear trends. Regressions include counties with at most 100,000 inhabitants in 2000 that had

at least 21 yield observations in 1970-2009 and are population weighted. Errors are clustered at the state level. Stars indicate significance:
∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively. The F-statistics (p-values) for joint significance of the weather

variables is given at the bottom of the Table, as well as the p-value for the test whether the seasonality components of the splines are jointly

significant.

33



Table 3: Weather-Induced Yield Shocks and Net Outmigration in Corn Belt

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A - Baseline: Age [15,60)
Log Yield -0.175∗∗∗ -0.156∗∗∗ -0.125∗∗∗ -0.135∗∗∗ -0.320∗∗∗ -0.305∗∗∗ -0.337∗∗∗ -0.396∗∗∗

(0.026) (0.022) (0.030) (0.036) (0.071) (0.069) (0.093) (0.090)

Panel B1: Males Age [15,60)
Log Yield -0.164∗∗∗ -0.145∗∗∗ -0.107∗∗∗ -0.119∗∗∗ -0.325∗∗∗ -0.310∗∗∗ -0.342∗∗∗ -0.407∗∗∗

(0.025) (0.022) (0.031) (0.037) (0.073) (0.070) (0.095) (0.092)
Panel B2: Females Age [15,60)

Log Yield -0.186∗∗∗ -0.168∗∗∗ -0.141∗∗∗ -0.153∗∗∗ -0.316∗∗∗ -0.301∗∗∗ -0.331∗∗∗ -0.385∗∗∗

(0.027) (0.023) (0.029) (0.037) (0.071) (0.069) (0.091) (0.089)

Panel C1: Age [15,30)
Log Yield -0.281∗∗∗ -0.271∗∗∗ -0.220∗∗∗ -0.222∗∗∗ -0.421∗∗∗ -0.414∗∗∗ -0.454∗∗ -0.530∗∗∗

(0.068) (0.068) (0.083) (0.084) (0.121) (0.121) (0.179) (0.163)
Panel C2: Age [30,45)

Log Yield -0.171∗∗∗ -0.146∗∗∗ -0.130∗∗∗ -0.139∗∗∗ -0.336∗∗∗ -0.314∗∗∗ -0.351∗∗∗ -0.412∗∗∗

(0.014) (0.017) (0.029) (0.029) (0.054) (0.053) (0.067) (0.066)
Panel C3: Age [45,60)

Log Yield -0.026 -0.014 0.004 -0.018 -0.101∗∗∗ -0.092∗∗ -0.097∗∗ -0.120∗∗∗

(0.018) (0.023) (0.022) (0.015) (0.038) (0.042) (0.048) (0.045)
Panel C4: Age [60,oo)

Log Yield -0.009 -0.005 -0.002 -0.008 -0.018 -0.014 -0.008 -0.016
(0.011) (0.011) (0.014) (0.013) (0.014) (0.013) (0.019) (0.016)

Observation 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Tables regresses net outmigration on weather-instrumented yield shocks as well as county fixed

effects. Each panel is from a separate regression and varies which population (sub)group is considered.

Columns (1a)-(1d) use temperature and precipitation as instruments, while columns (2a)-(2d) only uses the

seasonal variation in the sensitivity to extreme heat. Columns (a)-(d) differ by the included time controls.

Columns (a) include a common linear time trend, columns (b) include a common quadratic time trend,

columns (c) include state-specific quadratic time trends, and columns (d) include county-specific linear

trends. Regressions include counties with at most 100,000 inhabitants in 2000 that had at least 21 yield

observations in 1970-2009 and are population weighted. Errors are clustered at the state level. Stars indicate

significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively.
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Table 4: Weather-Induced Yield Shocks and the Effect on Farms and Overall Employment

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A1: Number of Farms (USDA)
Log Yield 0.200∗∗∗ 0.188∗∗∗ 0.272∗∗∗ 0.326∗∗∗ 0.289∗∗ 0.293∗∗ 0.528∗∗∗ 0.563∗∗∗

(0.067) (0.063) (0.078) (0.084) (0.126) (0.125) (0.169) (0.166)
Observation 7076 7076 7076 7076 7076 7076 7076 7076
Counties 892 892 892 892 892 892 892 892

Panel A2: Total Farmlad Area (USDA)
Log Yield 0.060 0.059 0.084 0.084 -0.074 -0.075 -0.103 -0.082

(0.043) (0.044) (0.064) (0.062) (0.055) (0.056) (0.091) (0.089)
Observation 7076 7076 7076 7076 7076 7076 7076 7076
Counties 892 892 892 892 892 892 892 892

Panel B1: Farm Employment (BEA)
Log Yield -0.012 -0.129 -0.269∗ -0.229 0.272∗∗ 0.183∗ 0.064 0.231

(0.127) (0.117) (0.138) (0.152) (0.117) (0.097) (0.130) (0.161)
Observation 7074 7074 7074 7074 7074 7074 7074 7074
Counties 892 892 892 892 892 892 892 892

Panel B2: Non-Farm Employment (BEA)
Log Yield 0.160∗∗∗ 0.232∗∗∗ 0.251∗∗∗ 0.153∗∗∗ 0.331∗∗∗ 0.386∗∗∗ 0.435∗∗∗ 0.401∗∗∗

(0.057) (0.042) (0.047) (0.049) (0.083) (0.083) (0.124) (0.113)
Observation 7074 7074 7074 7074 7074 7074 7074 7074
Counties 892 892 892 892 892 892 892 892
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Table regresses changes in farmland and employment on instrumented yield shocks. Panels A1-A2

use changes between the 1969, 1974, 1978, 1982, 1987, 1992, 1997, 2002, and 2007 Census, while Panles

B1-B2 use the same 5-year intervals as the migration regressions. Columns (1a)-(1d) use temperature and

precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in the sensitivity to

extreme heat. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear

time trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic

time trends, and columns (d) include county-specific linear trends. Regressions include counties with at most

100,000 inhabitants in 2000 that had at least 21 yield observations in 1970-2009. Regressions in Panels A1-

A3 are weighted by the average cropland area in a county, while Panels B1-B2 use again population weights.

Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the

1%, 5%, and 10% level, respectively.
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Table 5: Yield Shocks and Government Transfers

(1a) (1b) (1c)
Panel A: OLS

Log Yield 0.036 -0.054 0.042
(0.256) (0.212) (0.230)

Panel B: IV with Temp / Prec
Log Yield -0.756∗∗ -0.598∗∗ -0.453∗

(0.328) (0.254) (0.259)

Panel C: Spline in Extreme Heat
Log Yield -1.356∗∗∗ -1.169∗∗∗ -0.967∗∗∗

(0.426) (0.313) (0.320)
Observation 520 520 520
States 13 13 13
Time Trend Linear Quad. State

Notes: Table regresses annual state-level log government transfers on yield shocks. Panel A uses unin-

strumented yield shocks, panel B instruments yield shocks with the temperature and precipitaion variables

of columns (1a)-(1c) in Table 3, respectively, and Panel C instruments yield shocks with the time-varying

sensitivity to extreme heat of columns (2a)-(2c) in Table 3. Columns (a)-(c) differ by the included time

controls. Column (a) includes a common linear time trend, column (b) includes a common quadratic time

trend, and column (c) includes state-specific quadratic time trends. Errors are clustered at the state level.

Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively.
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Table 6: Predicted Changes in Net Outmigration Under Climate Change

Increased Decreased
Predicted Outmigration Rate Outmigration Outmigration
Mean SDev Min Max Total N Sign. N Total N Sign. N

Hadley III-B2 (2020-2049) 12.69 (4.50) 4.24 23.63 892 892 0 0
Hadley III-B2 (2070-2099) 29.73 (7.84) 9.74 44.46 892 892 0 0
Uniform +1◦ C 4.67 (1.18) 2.12 7.61 892 892 0 0
Uniform +2◦ C 10.07 (2.48) 4.52 16.03 892 892 0 0
Uniform +3◦ C 16.26 (3.90) 7.26 25.32 892 892 0 0
Uniform +4◦ C 23.29 (5.42) 10.45 35.69 892 892 0 0
Uniform +5◦ C 31.19 (7.04) 14.17 47.20 892 892 0 0
Uniform -50% Precipitation -1.87 (0.29) -2.27 -0.83 0 0 892 461
Uniform -30% Precipitation -0.80 (0.27) -1.18 0.08 2 0 890 256
Uniform -10% Precipitation -0.16 (0.12) -0.35 0.22 114 0 778 147
Uniform +10% Precipitation 0.05 (0.16) -0.41 0.31 561 50 331 0
Uniform +30% Precipitation -0.17 (0.57) -1.80 0.84 373 27 519 0
Uniform +50% Precipitation -0.81 (1.11) -3.96 1.22 243 12 649 0

Notes: Tables displays predicted increases in net outmigration under various climate change scenarios for

the regression model in column (1d) of Table 3. The first two rows use medium and long-term projections

under the Hadley III - B2 scenario. The remaining columns display predicted changes under uniform climate

change scenarios. The first four columns summarize the predicted change in net outmigration rates. The

last four columns give the number of counties that are predicted to have an increase or a decrease in net

outmigration rates. For each category we give the total number of counties as well as the number of counties

that have a statistically significant increase or decrease. The spatial distribution of impacts is given in

Figures 3 for the first two rows and Figures A4 and A5 in the appendix for the remaining uniform scenarios.
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Figure A1: Counties with Soybean Yields (1970-2009)

Fixed Growing Season (Mar-Aug) Variable Planting and Harvest Dates

Notes: The left figure displays counties in the eastern United States (east of the 100 degree meridian except

for Florida) where migration and yield data are available. The right column furtherermore requires that

state-level planting and harvest dates are available for at least one year. States covering the corn belt are

shown in blue, while other states are shown in red. Different shading indicate the number of observations in

the county for which we have data.
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Figure A2: State-Level Log Yields and Weather
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Notes: State-level yields, yield trends, and predicted yields for the 13 states in the Corn Belt. Predicted yields are derived from the baseline

model using moderate degree days, extreme degree days as well as a quadratic in season-total precipitation for the fixed growing seaosn

March-August.
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Figure A3: Average Exposure to Degree Days above 29◦C Over Growing Season

Entire Growing Season Truncated Growing Season
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Notes: Both graphs display the average exposure to degree days above 29◦C over the growing season, where

0 corresponds to planting and 1 to harvest. The density is approximated using a restricted cubic spline with

5 knots. The left graph uses the entire growing season [0, 1], while the right graph uses a truncated season

[0.1, 0.75] as there is hardly any exposure to extremely hot temperatures outside this interval.
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Figure A4: Predicted Changes in Net Outmigration (Uniform Temperature Scenarios)

Panel A: Uniform Temperature Increase (+1◦C and +2◦C)

Panel B: Uniform Temperature Increase (+3◦C and +4◦C)

Panel C: Uniform Temperature Increase (+5◦C)

Notes: Panels display predicted changes in net outmigration rates under uniform temperature increases

ranging from +1◦C to +5◦C for counties in the Corn Belt using the regression results of column (1d) of

Table 1.
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Figure A5: Predicted Changes in Net Outmigration (Uniform Precipitation Scenarios)

Panel A: Uniform Precipitation Change (-50% and -30%)

Panel B: Uniform Precipitation Change (-10% and +10%)

Panel C: Uniform Precipitation Change (+30% and +50%)

Notes: Panels display predicted changes in net outmigration rates under uniform precipitation changes

ranging from -50% to +50% for counties in the Corn Belt using the regression results of column (1d) of

Table 1.
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Table A1: Descriptive Statistics: Counties with Corn Yields

Data Over 5-Year Periods
1970-74 1975-79 1980-84 1985-89 1990-94 1995-99 2000-04 2005-09

Panel A: 892 Counties in Corn Belt

Migration Rate Age [15,60) (%) -1.34 0.69 4.96 4.75 -1.22 -0.60 1.35 2.53
(s.d.) (7.75) (6.97) (4.72) (5.97) (5.63) (6.70) (5.75) (4.59)

Migration Rate Males [15,60) (%) -1.90 0.88 5.16 4.98 -1.09 -1.33 1.34 2.56
(s.d.) (8.10) (7.06) (5.21) (6.37) (6.02) (7.62) (5.94) (5.50)

Migration Rate Females [15,60) (%) -0.88 0.46 4.74 4.53 -1.35 0.15 1.34 2.46
(s.d.) (7.57) (7.04) (4.60) (5.74) (5.48) (6.41) (5.78) (4.59)

Migration Rate Age [15,30) (%) 0.10 4.84 10.25 11.08 4.25 5.68 3.09 15.17
(s.d.) (10.81) (9.81) (7.11) (9.12) (8.23) (11.30) (13.93) (9.64)

Migration Rate Age [30,45) (%) -3.48 -2.56 2.37 1.36 -4.24 -5.30 -0.12 -3.99
(s.d.) (6.94) (6.84) (4.42) (4.95) (6.41) (7.15) (3.93) (6.28)

Migration Rate Age [45,59) (%) -1.49 -2.49 -0.77 -0.49 -4.18 -1.17 1.24 -3.44
(s.d.) (6.78) (6.49) (5.39) (5.82) (6.36) (7.96) (2.70) (5.79)

Migration Rate Age [60,oo) (%) 2.80 1.52 2.29 3.01 2.72 1.14 2.78 1.22
(s.d.) (3.65) (3.14) (2.59) (2.93) (3.00) (3.63) (2.94) (3.98)

Corn Area (1000 acres) 48.8 55.2 54.0 52.5 56.0 57.7 60.1 65.9
(s.d.) (49.4) (56.0) (54.2) (52.1) (56.4) (56.9) (56.5) (61.2)

Corn Yield (bushel/acre) 77.0 86.9 89.7 101.7 107.7 114.5 128.8 139.9
(s.d.) (18.1) (19.7) (20.4) (21.0) (22.1) (20.5) (24.6) (27.0)

Degree Days 10-29◦ C 1432 1463 1435 1517 1418 1422 1453 1465
(s.d.) (250) (248) (240) (242) (262) (240) (265) (256)

Degree Days Above 29◦ C 34.8 35.5 44.8 42.2 27.0 31.4 32.0 32.1
(s.d.) (26.9) (26.0) (33.8) (21.7) (22.6) (22.4) (29.1) (24.8)

Precipitation (mm) 538.3 557.0 552.4 497.6 575.2 588.4 558.8 556.4
(s.d.) (112.2) (103.0) (96.8) (76.7) (84.8) (103.3) (101.4) (100.8)

Panel B: 444 Counties Outside Corn Belt

Migration Rate Age [15,60) (%) -4.32 -3.92 -0.97 0.39 -4.01 -7.99 -2.58 -2.26
(s.d.) (7.92) (18.33) (7.23) (8.30) (7.12) (9.18) (7.20) (6.99)

Migration Rate Males [15,60) (%) -4.59 -3.46 -0.87 0.63 -4.01 -9.59 -2.47 -2.17
(s.d.) (8.46) (18.58) (7.93) (8.58) (8.99) (13.22) (8.01) (8.93)

Migration Rate Females [15,60) (%) -4.17 -4.43 -1.09 0.16 -3.99 -6.46 -2.60 -2.36
(s.d.) (7.77) (18.24) (6.87) (8.22) (6.54) (8.56) (7.06) (6.52)

Migration Rate Age [15,30) (%) -1.76 0.91 2.97 4.68 0.41 -5.19 -6.87 9.52
(s.d.) (11.34) (19.35) (9.30) (11.74) (11.05) (14.68) (14.97) (11.79)

Migration Rate Age [30,45) (%) -7.31 -8.55 -3.07 -2.29 -7.40 -9.49 -2.01 -6.17
(s.d.) (7.22) (22.14) (7.89) (6.88) (6.87) (9.67) (6.55) (8.22)

Migration Rate Age [45,59) (%) -5.18 -7.23 -5.33 -2.98 -5.73 -9.04 0.30 -9.99
(s.d.) (6.04) (15.36) (6.72) (7.14) (6.87) (9.21) (3.62) (8.64)

Migration Rate Age [60,oo) (%) 0.39 -0.32 1.69 2.14 1.19 -0.98 1.88 -1.94
(s.d.) (4.71) (11.65) (3.91) (4.57) (4.16) (5.19) (3.96) (5.66)

Corn Area (1000 acres) 9.3 10.5 9.3 7.8 6.9 6.7 6.9 7.5
(s.d.) (11.3) (12.5) (11.1) (9.9) (9.3) (9.3) (9.9) (10.8)

Corn Yield (bushel/acre) 57.4 62.4 69.3 74.9 83.4 85.9 104.4 105.9
(s.d.) (15.7) (17.8) (15.5) (15.6) (16.7) (17.9) (21.6) (25.1)

Degree Days 10-29◦ C 1856 1892 1872 1927 1909 1907 1944 1943
(s.d.) (389) (382) (388) (374) (379) (397) (403) (391)

Degree Days Above 29◦ C 54.5 64.3 80.2 79.2 68.8 79.6 68.1 82.7
(s.d.) (46.5) (46.5) (58.3) (52.3) (49.5) (62.7) (57.1) (59.2)

Precipitation (mm) 675.8 654.6 631.0 567.0 649.6 605.9 657.9 561.6
(s.d.) (111.5) (97.6) (106.1) (80.3) (90.3) (107.6) (102.8) (87.5)

Notes: Sample means and standard deviations by 5-year periods for which we have migration data (1970-

2009). Counties with less than 100,000 people in 2000 that have at least 21 yield observations for corn yields

with time-varying planting dates are included.
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Table A2: Descriptive Statistics: Counties with Soybean Yields

Data Over 5-Year Periods
1970-74 1975-79 1980-84 1985-89 1990-94 1995-99 2000-04 2005-09

Panel A: 810 Counties in Corn Belt

Migration Rate Age [15,60) (%) -0.97 0.89 5.12 5.02 -0.95 -0.22 1.47 2.54
(s.d.) (6.99) (6.23) (4.51) (5.72) (5.35) (6.28) (5.72) (4.59)

Migration Rate Males [15,60) (%) -1.55 1.04 5.31 5.25 -0.81 -0.93 1.45 2.59
(s.d.) (7.31) (6.33) (5.03) (6.13) (5.69) (7.08) (5.90) (5.52)

Migration Rate Females [15,60) (%) -0.47 0.72 4.93 4.80 -1.09 0.50 1.47 2.45
(s.d.) (6.91) (6.33) (4.38) (5.47) (5.25) (6.03) (5.77) (4.60)

Migration Rate Age [15,30) (%) 0.37 4.82 10.29 11.30 4.45 5.94 3.36 14.99
(s.d.) (10.03) (9.16) (6.97) (8.97) (8.08) (10.93) (13.73) (9.50)

Migration Rate Age [30,45) (%) -3.09 -2.21 2.53 1.53 -3.97 -5.03 -0.06 -4.11
(s.d.) (6.35) (6.24) (4.29) (4.80) (6.15) (7.08) (3.92) (6.24)

Migration Rate Age [45,59) (%) -0.98 -2.06 -0.39 -0.03 -3.83 -0.52 1.26 -3.13
(s.d.) (5.79) (5.61) (4.93) (5.26) (6.09) (7.00) (2.73) (5.23)

Migration Rate Age [60,oo) (%) 2.87 1.59 2.29 3.01 2.71 1.40 2.78 1.25
(s.d.) (3.39) (2.96) (2.42) (2.85) (2.80) (3.37) (2.85) (3.51)

Soybean Area (1000 acres) 54.5 61.5 59.4 57.9 61.6 63.4 64.8 70.6
(s.d.) (49.7) (56.1) (54.3) (52.0) (56.4) (56.9) (56.3) (61.0)

Soybean Yield (bushel/acre) 80.3 89.1 91.4 103.9 110.0 116.9 131.1 142.3
(s.d.) (16.8) (18.8) (20.3) (20.7) (21.6) (19.9) (23.7) (26.2)

Degree Days 10-30◦ C 1456 1481 1450 1533 1432 1434 1464 1478
(s.d.) (237) (234) (229) (229) (251) (232) (257) (248)

Degree Days Above 30◦ C 36.3 37.0 46.6 43.8 28.1 32.5 33.2 33.1
(s.d.) (27.3) (26.6) (34.1) (21.7) (23.0) (22.8) (29.7) (25.5)

Precipitation (mm) 548.2 561.1 558.0 499.0 578.7 591.5 559.6 560.9
(s.d.) (112.3) (96.5) (95.9) (77.0) (81.5) (99.0) (98.4) (97.5)

Panel B: 459 Counties Outside Corn Belt

Migration Rate Age [15,60) (%) -2.03 -1.05 1.56 3.13 -1.14 -5.59 0.24 -1.17
(s.d.) (8.56) (7.21) (5.76) (6.94) (6.35) (8.40) (6.29) (7.56)

Migration Rate Males [15,60) (%) -2.11 -0.43 1.90 3.57 -0.76 -7.61 0.41 -1.25
(s.d.) (9.14) (7.53) (6.31) (7.37) (7.14) (12.09) (6.59) (8.85)

Migration Rate Females [15,60) (%) -1.98 -1.66 1.25 2.75 -1.47 -3.69 0.16 -1.08
(s.d.) (8.12) (7.10) (5.50) (6.68) (6.03) (7.28) (6.47) (7.52)

Migration Rate Age [15,30) (%) 1.54 4.31 5.63 8.37 3.52 -1.98 -0.31 8.28
(s.d.) (11.87) (10.00) (8.34) (9.94) (9.14) (13.64) (12.03) (10.75)

Migration Rate Age [30,45) (%) -5.70 -6.05 -0.85 -0.76 -4.70 -8.25 0.17 -4.92
(s.d.) (8.04) (7.07) (5.36) (5.81) (6.45) (8.70) (5.16) (7.90)

Migration Rate Age [45,59) (%) -4.02 -5.19 -3.07 -0.78 -3.38 -7.16 0.48 -7.10
(s.d.) (6.07) (5.66) (4.74) (5.54) (5.61) (7.68) (3.47) (8.38)

Migration Rate Age [60,oo) (%) 0.80 1.03 3.04 3.10 2.38 0.56 2.89 -0.31
(s.d.) (3.90) (3.58) (3.85) (3.84) (3.85) (4.23) (3.65) (5.99)

Soybean Area (1000 acres) 9.0 9.7 7.8 6.7 6.5 7.6 8.2 10.0
(s.d.) (11.9) (13.2) (11.1) (9.3) (8.8) (9.5) (10.8) (12.5)

Soybean Yield (bushel/acre) 48.9 54.0 62.8 74.8 84.0 90.2 111.1 116.4
(s.d.) (14.5) (13.6) (14.4) (18.1) (18.3) (20.1) (23.3) (27.4)

Degree Days 10-30◦ C 2040 2066 2046 2098 2064 2066 2077 2079
(s.d.) (198) (191) (195) (180) (189) (203) (193) (173)

Degree Days Above 30◦ C 67.1 78.1 95.0 91.1 77.6 88.7 73.7 91.8
(s.d.) (26.8) (24.5) (28.6) (26.3) (26.0) (34.3) (30.6) (29.0)

Precipitation (mm) 746.8 736.7 705.6 615.2 712.7 673.3 683.0 615.5
(s.d.) (62.3) (84.9) (84.7) (72.9) (72.4) (86.3) (72.4) (104.5)

Notes: Sample means and standard deviations by 5-year periods for which we have migration data (1970-

2009). Counties with less than 100,000 people in 2000 that have at least 21 yield observations for soybean

yields with time-varying planting dates are included.
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Table A3: Weather and Crop Yields - Panel of Annual Corn Yields For Counties of Corn Belt

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Extreme Heat (100 degree days) -0.731∗∗∗ -0.735∗∗∗ -0.732∗∗∗ -0.726∗∗∗ 0.436 0.468 1.081∗ 1.013∗

(0.112) (0.112) (0.109) (0.112) (0.531) (0.525) (0.543) (0.550)
Extreme Heat x spline 1 -2.704 -2.903 -5.905∗∗ -5.519∗∗

(2.700) (2.671) (2.529) (2.532)
Extreme Heat x spline 2 -9.644 -8.602 3.857 2.707

(13.373) (13.322) (11.189) (11.091)
Extreme Heat x spline 3 56.548 53.801 24.128 24.869

(37.746) (37.668) (29.765) (29.516)
Extreme Heat x spline 4 -103.322∗∗ -100.682∗∗ -79.254∗∗ -72.739∗∗

(45.244) (45.245) (31.165) (31.399)
Moderate Heat (1000 degree days) 0.427∗∗∗ 0.427∗∗∗ 0.449∗∗∗ 0.443∗∗∗

(0.104) (0.104) (0.103) (0.104)
Precipitation (m) 0.167∗∗∗ 0.166∗∗∗ 0.154∗∗∗ 0.156∗∗∗

(0.037) (0.038) (0.035) (0.034)
Precipitation Squared (m2) -0.015∗∗∗ -0.015∗∗∗ -0.014∗∗∗ -0.014∗∗∗

(0.003) (0.003) (0.003) (0.003)

Joint sig. splines (p-value) 8.5e-05 8.7e-05 4.6e-05 1.2e-04
R-squared 0.6126 0.6130 0.6325 0.6525 0.5931 0.5934 0.6164 0.6358
Observation 34788 34788 34788 34788 34788 34788 34788 34788
Counties 892 892 892 892 892 892 892 892

Notes: Table replicates Table 2 except that it uses annual log yields of counties in the Corn Belt and the regressions are unweighted. Columns

(1a)-(1d) use temperature and precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in the sensitivity to

extreme heat. The spline coefficients are shown in the bottom row of Figure 2. Columns (a)-(d) differ by the included time controls. Columns

(a) include a common linear time trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic

time trends, and columns (d) include county-specific linear trends. Regressions include counties with at most 100,000 inhabitants in 2000 that

had at least 21 yield observations in 1970-2009. Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for

significance at the 1%, 5%, and 10% level, respectively.
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Table A4: Weather and Crop Yields - Panel of Annual Corn Yields For Eastern Counties Outside Corn Belt

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Extreme Heat (100 degree days) -0.571∗∗ -0.604∗∗ -0.610∗∗∗ -0.574∗∗ 2.397∗ 2.290∗ 1.908∗ 2.227∗∗

(0.159) (0.160) (0.150) (0.163) (0.940) (1.009) (0.925) (0.848)
Extreme Heat x spline 1 -15.171∗∗ -14.607∗∗ -12.742∗ -14.376∗∗

(5.144) (5.574) (5.320) (5.060)
Extreme Heat x spline 2 64.222∗ 60.154 53.304 62.278

(30.760) (32.417) (32.740) (33.001)
Extreme Heat x spline 3 -152.684 -139.573 -126.621 -153.036

(94.368) (97.935) (100.207) (101.948)
Extreme Heat x spline 4 115.309 98.036 99.076 131.923

(124.602) (125.947) (127.865) (131.093)
Moderate Heat (1000 degree days) -0.160 -0.146 -0.075 -0.108

(0.152) (0.156) (0.126) (0.134)
Precipitation (m) 0.017 0.005 0.020 0.035

(0.040) (0.043) (0.048) (0.046)
Precipitation Squared (m2) -0.001 -0.000 -0.001 -0.002

(0.003) (0.003) (0.003) (0.003)

Joint sig. splines (p-value) 5.0e-03 1.5e-03 3.1e-05 2.4e-04
R-squared 0.4651 0.4760 0.5234 0.5409 0.4852 0.4972 0.5372 0.5536
Observation 15946 15946 15946 15946 15946 15946 15946 15946
Counties 444 444 444 444 444 444 444 444

Notes: Table replicates Table 2 except that it uses annual log yields of Eastern counties oustide the Corn Belt and the regressions are

unweighted. Columns (1a)-(1d) use temperature and precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in

the sensitivity to extreme heat. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear time trend, columns

(b) include a common quadratic time trend, columns (c) include state-specific quadratic time trends, and columns (d) include county-specific

linear trends. Regressions include counties with at most 100,000 inhabitants in 2000 that had at least 21 yield observations in 1970-2009. Errors

are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively.
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Table A5: Weather and Migration - Northern versus Southern Counties Outside Corn Belt

North-Eastern Counties South-Eastern Counties
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Extreme Heat (100 degree days) 0.136 0.089 0.066 0.118 -0.007 -0.019 -0.035 -0.015
(0.112) (0.082) (0.099) (0.110) (0.045) (0.048) (0.063) (0.072)

Moderate Heat (1000 degree days) -0.251∗ -0.251∗ -0.201∗∗ -0.291 0.352∗∗ 0.347∗ 0.315∗ 0.432∗

(0.026) (0.020) (0.014) (0.150) (0.110) (0.118) (0.126) (0.136)
Precipitation (m) 0.064 0.061 0.071 0.060 -0.023 -0.029 -0.035 -0.026

(0.034) (0.036) (0.040) (0.068) (0.021) (0.021) (0.021) (0.013)
Precipitation Squared (m2) -0.006 -0.006 -0.007 -0.006 0.001 0.002 0.002 0.001

(0.001) (0.002) (0.002) (0.004) (0.002) (0.002) (0.002) (0.001)
F-stat (joint significance) 1 1 0 4 90 131 16 16
p-value (joint significance) .4395 .4761 .6247 .3032 .002 .0011 .0228 .0235
R-squared 0.0123 0.0129 0.0171 0.1643 0.0484 0.0525 0.0683 0.2643
Observations 860 860 860 860 2511 2511 2511 2511
Counties 109 109 109 109 335 335 335 335
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Table displays reduced form regression of migration rates on weather (using the bounds for the largest crop corn). Columns (1a)-(1d)

look at northern-eastern counties outside the corn belt (east and north of corn belt), while columns (2a)-(2d) focus on south-eastern counties

outside the corn belt as shown in Figure 1. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear time

trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic time trends, and columns (d) include

county-specific linear trends. Regressions include counties with at most 100,000 inhabitants in 2000 that had at least 21 yield observations in

1970-2009 and are population weighted. Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance

at the 1%, 5%, and 10% level, respectively.
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Table A6: Weather-Induced Yield Shocks and Net Outmigration - Corn Verus Soybean Yields

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A: Instrumenting Corn Yields
Log Yield -0.175∗∗∗ -0.156∗∗∗ -0.125∗∗∗ -0.135∗∗∗ -0.320∗∗∗ -0.305∗∗∗ -0.337∗∗∗ -0.396∗∗∗

(0.026) (0.022) (0.030) (0.036) (0.071) (0.069) (0.093) (0.090)
Observation 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892

Panel B: Instrumenting Soybean Yields
Log Yield -0.183∗∗∗ -0.155∗∗∗ -0.144∗∗∗ -0.164∗∗∗ -0.176∗∗ -0.192∗∗ -0.196∗∗ -0.176∗∗

(0.064) (0.049) (0.049) (0.060) (0.088) (0.084) (0.091) (0.088)
Observation 6413 6413 6413 6413 6413 6413 6413 6413
Counties 810 810 810 810 810 810 810 810

Panel C: Instrumenting Weighted Average of Corn and Soybean Yields
Log Yield -0.176∗∗∗ -0.158∗∗∗ -0.145∗∗∗ -0.147∗∗∗ -0.281∗∗∗ -0.261∗∗∗ -0.272∗∗∗ -0.295∗∗

(0.045) (0.036) (0.043) (0.050) (0.093) (0.081) (0.105) (0.116)
Observation 7086 7086 7086 7086 7086 7086 7086 7086
Counties 892 892 892 892 892 892 892 892
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Panel A is the same as in Table 3. Panels B and C instead use log soybean yields, and the log of the weighted average of corn

and soybean yields, respectively. Columns (1a)-(1d) use temperature and precipitation as instruments, while columns (2a)-(2d) only uses the

seasonal variation in the sensitivity to extreme heat. Columns (a)-(d) differ by the included time controls. Columns (a) include a common

linear time trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic time trends, and columns

(d) include county-specific linear trends. Regressions include counties with at most 100,000 inhabitants in 2000 that had at least 21 yield

observations in 1970-2009 and are population weighted. Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand

for significance at the 1%, 5%, and 10% level, respectively.
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Table A7: Yield Shocks and Net Outmigration in Eastern United States - OLS Regressions

Counties in Corn Belt Counties Outside Corn Belt
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A: Corn Yields
Log Yield -0.018 -0.016 0.000 -0.013 -0.007 -0.009 0.008 0.004

(0.015) (0.013) (0.016) (0.022) (0.022) (0.021) (0.020) (0.014)
Observation 7078 7078 7078 7078 3371 3371 3371 3371
Counties 892 892 892 892 444 444 444 444

Panel B: Soybean Yields
Log Yield -0.012 -0.024 -0.019 -0.017 -0.032∗∗ -0.015 -0.020 -0.065∗∗∗

(0.018) (0.016) (0.018) (0.022) (0.016) (0.016) (0.018) (0.022)
Observation 6413 6413 6413 6413 3413 3413 3413 3413
Counties 810 810 810 810 459 459 459 459

Panel C: Weighted Average of Corn and Soybean Yields
Log Yield -0.028∗ -0.030∗∗ -0.014 -0.026 -0.015 -0.011 -0.002 -0.025

(0.015) (0.013) (0.016) (0.024) (0.021) (0.018) (0.019) (0.022)
Observation 7086 7086 7086 7086 5151 5151 5151 5151
Counties 892 892 892 892 693 693 693 693
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Tables regresses net outmigration on uninstrumented yield shocks as well as county fixed effects.

Columns (1a)-(1d) look at counties in the corn belt, while columns (2a)-(2d) focus on counties outside the

corn belt as shown in Figure 1. Columns (a)-(d) differ by the included time controls. Columns (a) include a

common linear time trend, columns (b) include a common quadratic time trend, columns (c) include state-

specific quadratic time trends, and columns (d) include county-specific linear trends. Regressions include

counties with at most 100,000 inhabitants in 2000 that had at least 21 yield observations in 1970-2009 and

are population weighted. Errors are clustered at the state level. Stars indicate significance: ∗∗∗, ∗∗, and ∗

stand for significance at the 1%, 5%, and 10% level, respectively.
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Table A8: Weather-Induced Yield Shocks and Net Outmigration - Unweighted Regressions and Population Cutoffs

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A: Weighted Regression - Less than 100,000 Inhabitants
Log Yield -0.175∗∗∗ -0.156∗∗∗ -0.125∗∗∗ -0.135∗∗∗ -0.320∗∗∗ -0.305∗∗∗ -0.337∗∗∗ -0.396∗∗∗

(0.026) (0.022) (0.030) (0.036) (0.071) (0.069) (0.093) (0.090)
Observation 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892

Panel B1: Unweighted Regression - Less than 100,000 Inhabitants
Log Yield -0.193∗∗∗ -0.181∗∗∗ -0.133∗∗∗ -0.129∗∗∗ -0.311∗∗∗ -0.310∗∗∗ -0.360∗∗∗ -0.431∗∗∗

(0.013) (0.013) (0.015) (0.014) (0.017) (0.017) (0.022) (0.023)
Panel B2: Same as B1 with Bootstrapped Errors

Log Yield -0.193∗∗ -0.181∗∗ -0.133 -0.129 -0.311∗∗∗ -0.310∗∗∗ -0.360∗∗ -0.431∗∗

(0.091) (0.088) (0.131) (0.173) (0.090) (0.104) (0.148) (0.184)
Observation 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892

Panel C: Unweighted Regression - All Counties
Log Yield -0.182∗∗∗ -0.170∗∗∗ -0.131∗∗∗ -0.128∗∗∗ -0.301∗∗∗ -0.299∗∗∗ -0.350∗∗∗ -0.415∗∗∗

(0.013) (0.012) (0.014) (0.013) (0.016) (0.016) (0.020) (0.021)
Observation 8069 8069 8069 8069 8069 8069 8069 8069
Counties 1016 1016 1016 1016 1016 1016 1016 1016

Notes: Panel A is the same as Table 3. Panels B1 and B2 use unweighted regression instead of population weighted regression. B1 continues

to cluster by state, while B2 uses 1000 grouped bootstrap draws where entire 5-year intervals are drawn with replacement. Panel C uses

an unweighted regression for all counties in the corn belt - the errors are again clustered by state. Columns (1a)-(1d) use temperature and

precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in the sensitivity to extreme heat. Columns (a)-(d) differ

by the included time controls. Columns (a) include a common linear time trend, columns (b) include a common quadratic time trend, columns

(c) include state-specific quadratic time trends, and columns (d) include county-specific linear trends. Regressions include counties that had

at least 21 yield observations in 1970-2009. Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level,

respectively.
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Table A9: Weather-Induced Yield Shocks and Net Outmigration - Minimum Number of Yield Observations

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A: Baseline Results - At Least 21 Yield Observations
Log Yield -0.175∗∗∗ -0.156∗∗∗ -0.125∗∗∗ -0.135∗∗∗ -0.320∗∗∗ -0.305∗∗∗ -0.337∗∗∗ -0.396∗∗∗

(0.026) (0.022) (0.030) (0.036) (0.071) (0.069) (0.093) (0.090)
Observation 7078 7078 7078 7078 7078 7078 7078 7078
Counties 892 892 892 892 892 892 892 892

Panel B: At Least 1 Yield Observations
Log Yield -0.175∗∗∗ -0.155∗∗∗ -0.126∗∗∗ -0.140∗∗∗ -0.316∗∗∗ -0.300∗∗∗ -0.333∗∗∗ -0.391∗∗∗

(0.026) (0.022) (0.029) (0.035) (0.071) (0.069) (0.092) (0.089)
Observation 7244 7244 7244 7244 7244 7244 7244 7244
Counties 935 935 935 935 935 935 935 935

Panel C: At Least 40 Yield Observations
Log Yield -0.157∗∗∗ -0.137∗∗∗ -0.103∗∗∗ -0.120∗∗∗ -0.392∗∗∗ -0.377∗∗∗ -0.429∗∗∗ -0.464∗∗∗

(0.029) (0.026) (0.037) (0.043) (0.084) (0.082) (0.103) (0.105)
Observation 5608 5608 5608 5608 5608 5608 5608 5608
Counties 701 701 701 701 701 701 701 701

Notes: Panel A is the same as Table 3. Panels B and C vary the required minimum number of yield observations in a county to be included

in the regression. Panel B uses all counties that have any observation, while Panel C requires a balanced panel with 40 yield observations.

Columns (1a)-(1d) use temperature and precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in the sensitivity

to extreme heat. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear time trend, columns (b) include a

common quadratic time trend, columns (c) include state-specific quadratic time trends, and columns (d) include county-specific linear trends.

Regressions include counties with at most 100,000 inhabitants in 2000 and are population weighted. Errors are clustered at the state level.

Stars indicate significance: ∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively.
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Table A10: Weather-Induced Yield Shocks and the Effect on Farms and Overall Employment
- Unweighted Regression with Bootstrapped Errors

Temperature and Precipitation Spline in Extreme Heat
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A1: Number of Farms (USDA)
Log Yield 0.265 0.257 0.416 0.429 0.396 0.395∗ 0.708∗ 0.741

(0.202) (0.173) (0.270) (0.447) (0.243) (0.209) (0.402) (0.455)
Observation 7076 7076 7076 7076 7076 7076 7076 7076
Counties 892 892 892 892 892 892 892 892

Panel A2: Total Farmlad Area (USDA)
Log Yield 0.067 0.075 0.152 0.137 -0.094 -0.089 -0.077 -0.055

(0.090) (0.078) (0.104) (0.138) (0.099) (0.094) (0.136) (0.201)
Observation 7076 7076 7076 7076 7076 7076 7076 7076
Counties 892 892 892 892 892 892 892 892

Panel B1: Farm Employment (BEA)
Log Yield 0.015 -0.044 -0.247 -0.233 0.231 0.232 0.058 0.187

(0.203) (0.185) (0.298) (0.212) (0.173) (0.180) (0.233) (0.415)
Observation 7074 7074 7074 7074 7074 7074 7074 7074
Counties 892 892 892 892 892 892 892 892

Panel B2: Non-Farm Employment (BEA)
Log Yield 0.171 0.200 0.184 0.111 0.334∗ 0.329∗ 0.439∗ 0.460

(0.184) (0.183) (0.268) (0.294) (0.200) (0.182) (0.264) (0.410)
Observation 7074 7074 7074 7074 7074 7074 7074 7074
Counties 892 892 892 892 892 892 892 892
Time Trend Linear Quad. State County Linear Quad. State County

Notes: Table replicates Table 4 except that regressions are unweighted and standard errors are constructed by

using a grouped bootstrap by resampling entire years with replacement. Columns (1a)-(1d) use temperature

and precipitation as instruments, while columns (2a)-(2d) only uses the seasonal variation in the sensitivity

to extreme heat. Columns (a)-(d) differ by the included time controls. Columns (a) include a common linear

time trend, columns (b) include a common quadratic time trend, columns (c) include state-specific quadratic

time trends, and columns (d) include county-specific linear trends. Regressions include counties with at most

100,000 inhabitants in 2000 that had at least 21 yield observations in 1970-2009. Stars indicate significance:
∗∗∗, ∗∗, and ∗ stand for significance at the 1%, 5%, and 10% level, respectively.
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