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Abstract
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1 Introduction.

Following seminal work by Shavell and Weiss (1979) on optimal unemployment in-

surance (UI) with hidden job search effort, a large literature has asked whether UI

payments should stop after 6 months unemployment (as in the U.S.), one year (as in

the U.K.) or be paid indefinitely (e.g. Davidson and Woodbury (1997), Millard and

Mortensen (1997), Fredriksson and Holmlund (2001), Cahuc and Lehmann (2002),

Coles (2006)). Recent work, however, extends the analysis to allow (hidden) savings

(e.g. Werning (2002), Kocherlakota (2004), Lentz and Tranaes (2005)). Introducing

savings into the analysis is important not only because employed workers can use a

savings strategy to self-insure against layoff risk, but also because ruling out savings

by assumption leads to distorted policy prescriptions. Indeed Werning (2002) argues

that when workers can save:

• “optimal unemployment benefits are not necessarily decreasing, and, in fact,
are typically increasing with unemployment durations.”

This suggests UI payments should be backloaded with duration, rather than front-

loaded. In contrast, I show UI payments should instead be frontloaded even more

than is suggested by Shavell and Weiss (1979): the laid-off worker is given a lump

sum severance payment and continuation payments b(.) are set low thereafter.

The literature on optimal UI with hidden search effort and hidden savings is com-

plex. With no savings, Hopenhayn and Nicolini (1997) show that setting income tax

premia (on re-employment) which depend on the length of the completed unemploy-

ment spell can generate large welfare gains. Their proposed program is not unlike a

loans program, where benefits received while unemployed are repaid though higher

taxes when re-employed. But in the more realistic case that workers can save, and

if in addition there are perfect capital markets (i.e. no liquidity constraints) then

one can normalise the Hopenhayn/Nicolini tax premia to zero in the optimal pol-

icy (e.g. Fudenberg et al (1990), Werning (2002)). In this no liquidity constraints

case, Werning (2002) further argues that UI payments should increase with dura-

tion.1 Kocherlakota (2004) instead assumes liquidity constraints and for a special

1Werning (2002) allows liquidity constraints in the description of the model but for the most part
(from page 10 onwards) assumes this constraint never binds on the optimal program

2



case - linear search costs - argues that the Planner pays constant UI during the un-

employment spell, and a re-employment bonus which does not depend on the length

of the unemployment spell. Unfortunately to derive this result Kocherlakota (2004)

makes a possibly counterfactual assumption which I discuss fully in the text. The

underlying difficulty with this literature is that the principal’s programming problem

is not concave and so the first order approach as developed in Werning (2002) is not

valid (see Kocherlakota (2004) for a full critique).

This paper instead builds on the analytic insights obtained in Coles (2006), using

numerical examples to demonstrate the argument. Coles (2006) characterises opti-

mal unemployment policy in a standard Pissarides (2000) matching equilibrium with

hidden search effort but where workers cannot save. An important finding there is

that the first UI payment received when laid-off, denoted b(0), equals the wage w;

i.e. optimal unemployment insurance implies consumption is smooth across the job

destruction shock.2 Shavell and Weiss (1979) do not identify this result as the UI

budget there is exogenous. Indeed this is the case with much of the insurance lit-

erature - the budget level is not determined optimally, the focus instead is on how

UI payments vary within the spell. But optimal unemployment insurance not only

smooths consumption within the unemployment spell, it also smooths consumption

across job destruction shocks and re-employment shocks.

A useful perspective then is that unemployment risk has two separate components.

First being laid-off implies a drop in permanent income and the employed worker

would like to buy insurance against layoff risk. Second there is re-employment risk

- finding a job implies an increase in permanent income and re-employment is also

a stochastic process. Thus the risk averse worker would like to purchase insurance

against both types of risk. The central insight here is that benefits received while

unemployed, b(.), insure unemployed job seekers against re-employment risk, while a

severance layoff payment B0 insures employed worker’s against the drop in permanent

income through being laid-off. If the layoff payment B0 fully compensates for the drop

in permanent income by being laid-off, then an optimal dissavings strategy while

unemployed not only smooths consumption across the unemployment spell, it also

smooths consumption across the job destruction shock.3 Of course the optimal UI

2this result requires additively separable preferences
3also see Abdulkadiroglu et al (2002)
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program co-ordinates B0 and b(.) to maximise worker welfare given worker search and

savings strategies.

Augmenting the UI program with a lump sum severance payment which fully

compensates for the drop in permanent income is welfare improving for three reasons:

(i) employed workers are fully insured against the drop in permanent income when

laid-off through a job destruction shock;

(ii) re-entitlement effects imply unemployed workers have improved search incen-

tives and;

(iii) the employed have weaker incentives to over-accumulate assets and so more

likely to search actively for work when laid-off.

Point (iii) is related to Kocherlakota’s explanation for why the Planner’s programming

problem is not concave: unemployed workers have the incentive to underconsume and,

by saving some of their early UI payments for later consumption, choose lower search

effort. An important insight here is that employed workers have the same incen-

tive: the precautionary savings motive while employed implies they over-accumulate

savings and choose too little search effort when laid-off. Somewhat surprisingly, the

lump sum severance payment reduces this incentive so much that the asset over-

accumulation problem largely disappears. The simulations find that co-ordinating

policy choices b(.) and B0 optimally yields welfare payoffs which are surprisingly

close to the full information benchmark

There are several related literatures. A different optimal UI approach assumes

instead that search effort is exogenously fixed but job offers are not observed. Thus

a worker might reject a low wage offer and continue search. But with no UI, workers

might have too low reservation wages and it is then efficient to subsidise search.

Papers in this literature include Mortensen (1977), van den Berg (1990), Mortensen

and Pissarides (1999), Marimon and Zilibotti (1999), Shimer and Werning (2005).4

Some papers instead have considered how, with unobserved job offers, a duration

dependent UI program distorts wages either with wage posting by firms (Albrecht

and Vroman (2005)) or when wages are determined by strategic bargaining and UI

payments raise the option value of remaining unemployed (e.g. Coles and Masters

(2006a), (2006b)).

4Also see Acemoglu and Shimer (1999) who consider efficient UI within a directed search frame-
work.
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This paper also provides an important link with the firing cost literature. Es-

sentially the paper shows that the Shavell and Weiss (1979) optimal UI problem,

extended to allow hidden savings, implies lump sum severance payments are optimal.

The firing cost literature typically considers how firing costs protect employment lev-

els (e.g. Bentolila and Bertola (1990), Hopenhayn and Rogerson (1993)). Lazear

(1990) argues that if workers are risk neutral then a legislated firing cost, which is

paid to the worker on layoff, has no real effects - wage bargaining at the point of hire

implies the negotiated wage falls one-for-one with the firing cost, while the worker

is only laid-off when a separation is jointly efficient. Fella (2006) extends Lazear’s

insight to the case when workers are risk averse and shows that legislated firing costs

have real effects, but those effects have little welfare significance (and are not welfare

improving).5 But an important insight, both here and in Pissarides (2004) and Fella

(2006) is that severance payments paid to laid-off workers have valuable insurance

properties. I discuss further the parallels between these approaches in the conclusion.

Finally the results identified here are closely linked to Stevens (2004) and Burdett

and Coles (2003)). Those papers consider optimal wage tenure contracts where the

principal offers a contract whose wage paid w(τ) depends on tenure τ . That problem

is isomorphic to the optimal UI problem. Rather than minimise the cost of the UI

program given the search incentives of unemployed workers, the wage-tenure contract

problem instead maximises firm profits given the quit propensities of employees. In

that framework, Stevens (2004) establishes an optimal contract either charges lump

sum entry fees when the new hire first starts work, or charges a lump sum exit fee

should the worker quit. Her results are strongly resonant of the findings here: that

in the optimal UI program workers should either be given a lump sum severance

payment when laid-off, or given a re-employment bonus when next finding work.

The paper has two main parts. The first part describes a simplified model which

allows me to critique the recent literature on optimal UI with hidden search effort

and savings. The second part considers optimal layoff insurance in an economy where

workers face multiple unemployment spells during a working lifetime. Using simu-

lations, the second part establishes that a constant UI program with low b and a

lump sum layoff payment which fully compensates for the drop in permanent income

5A different way to generate real effects is to assume some type of wage rigidity; e.g. Alvarez
and Veracierto (2001), Garibaldi and Violante (2005).
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by being laid off yields welfare payoffs which are close to those obtained in the full

information benchmark.

2 Model and Overview of the Optimal UI Prob-
lem.

The model in this section is a simplified version of that considered in Section 3. In

this section workers are initally unemployed with an exogenous level of assets A0,

and becoming re-employed is an absorbing state; i.e. there is only a single spell of

unemployment. Shavell and Weiss (1979), Hopenhayn and Nicolini (1997), Werning

(2002), Kocherlakota (2004) all adopt this approach. The aim of this first section

is to understand and reconcile the results in this literature. The second section

then considers a steady state framework where workers face job destruction shocks

while employed and so experience multiple unemployment spells over a lifetime. The

second section shows how the UI program, in addition to distorting search effort while

unemployed, distorts savings behaviour while employed.

Throughout the paper time is continuous and has an infinite horizon. Workers

are ex-ante identical, strictly risk averse and have subjective rate of time preference ρ

which is also the market interest rate.Workers are finitely lived and die according to a

Poisson process with parameter λ > 0. λ also describes the inflow of new entrants into

the labour market and so implies a unit mass of workers in a steady state. To avoid

bequest behaviour I assume workers save in a competitive annuity market which offers

rate of return ρ + λ where, on death, the worker’s assets pass to the annuity seller.

The positive death rate implies all will discount the future at gross rate r = ρ+ λ.

The model uses a principal/agent framework where the Planner insures risk averse

workers against unemployment risk. There is a moral hazard problem - the job search

effort of an individual job seeker is not observed by the Planner. This hidden action

problem implies UI payments b(.) cannot be conditioned on search effort. There are

also hidden savings. At any unemployment duration τ , an unemployed worker has

financial assets A which are unobserved by the Planner. The unemployed worker

also faces liquidity constraints: an unemployed worker with no assets, and hence

no colateral, is unable to borrow against future earnings. Thus liquidity constraints

imply assets A cannot become negative.
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At each unemployment duration a job seeker chooses search effort k and consump-

tion x ≥ 0. The job seeker chooses k ∈ {0, 1} and so either does not search or searches
for work. Typically it is instead assumed that k is a continuous choice variable with

search cost c(k). It is important to note, however, that the model is also consistent

with k being a continous choice variable k ∈ [0, 1] with linear search costs.6 Thus the
results obtained in Kocherlakota (2004) are pertinent.

Given effort k ∈ {0, 1}, the job seeker becomes employed according to a Poisson
process with parameter γk. γ describes how easy it is to find work and, in a matching

equilibrium, it depends on labour market tightness. Coles (2006) provides a complete

description of optimal unemployment policy for the case when γ is endogenously

determined but workers cannot save. To abstract from those policy issues I assume

here that γ > 0 is exogenous. The flow cost of search is zero if k = 0 and is c > 0

if k = 1. If the worker is indifferent between choosing k = 0 or 1 assume the worker

chooses k = 1. This tiebreaking assumption plays no important role. In this section,

once re-employed the worker earns wage w > 0 forever (until death).

Preferences are additively and time separable. If the job seeker consumes x∆ ≥ 0
and searches with effort k ∈ {0, 1} over arbitrarily small time period [t, t +∆), the

worker obtains utility payoff [u(x)− ck]∆ over that period. u(.) describes the utility

from consumption, is strictly increasing, strictly concave, satisfies limx→0+ u0(x) =∞
and is twice differentiable for all x > 0.

The UI program is denoted B = {B0, b(.),D(.)} and has three components:
(i) B0 ≥ 0 is a lump sum layoff payment which an unemployed worker receives at

duration τ = 0;

(ii) b(τ) ≥ 0 describes the flow UI payment to job seekers at unemployment

durations τ > 0 and

(iii) D(τ) is a lump sum tax deduction on re-employment which depends on the

length τ of the completed unemployment spell. The tax is implemented by setting

an income tax premium bt(τ) on future wages such that btw = rD(τ); e.g. Hopenhayn

and Nicolini (1997).

Thus the worker begins the unemployment spell with initial assets A(0) = A0+B0

where A0 ≥ 0 are the assets carried over from the previous employment spell. For now
6The worker can always convexify search effort by choosing k = 1 for fraction θ of any time

period ∆.
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A0 is exogenously given. While unemployed the worker’s assets evolve with duration

according to
dA(τ)

dτ
= rA(τ)− x+ b(τ) (1)

where x is contemporaneous consumption. If the job seeker becomes re-employed

at duration τ with assets A ≥ 0, the optimal savings strategy implies consumption
equals permanent income w + r(A − D(τ)) from then onwards. Thus given B, the

expected lifetime value of becoming re-employed at duration τ with assets A ≥ 0 is

WE(A, τ |B) = u(w + r(A−D(τ)))− d

r
,

where d ≥ 0 is the disutility of labour. Given B and initial assets A0 ≥ 0, each unem-
ployed worker chooses a consumption and job search strategy to maximise expected

lifetime utility.

2.1 Optimal Job Search and Consumption.

Conditional on being unemployed and the UI program B, let WU(A, τ | B) denote
the worker’s expected lifetime utility using an optimal savings and job search strategy

given current assets A ≥ 0 and unemployment duration τ ≥ 0. Over arbitrarily small
time period ∆ > 0, the Bellman equation describing WU is

WU(A, τ | B) = max
x≥0

k∈{0,1}

½
[u(x)− ck]∆

+e−r∆
£
(1− e−γk∆)WE(A0, τ +∆|B) + e−γk∆WU(A0, τ +∆|B)¤

¾
(2)

subject to

A0 = er∆[A− x∆+ b(τ)∆] ≥ 0.
The first term in (2) describes the flow payoffwhile unemployed. The second describes

the expected continuation payoff where, conditional on survival, the worker has con-

tinuation assetsA0 and with probability (1−e−γk∆) finds employment over the next in-
stant [τ , τ+∆) and so enjoysWE(.), otherwise he remains unemployed and continues

search. Note that WE(.) has already been determined. Thus in the limit as ∆→ 0,

the Bellman equation implies a pair of policy rules x = x∗(A, τ |B), k = k∗(A, τ |B)
which describe optimal consumption and optimal search while unemployed.

Given B and initial assetsA0 at the start of the unemployment spell, letA(τ |A0, B)
describe how assets evolve with duration τ ≥ 0 when the worker uses the optimal
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strategy. Thus I can define

x = x(τ |A0, B), the optimal consumption path
k = k(τ |A0, B), the optimal search path

for durations τ ≥ 0, where these paths are obtained by substituting A = A(τ |A0, B)
into the above policy rules x∗, k∗. Also with A = A(τ |A0, B) define

µ(τ |A0, B) =
∂WU(A, τ | B)

∂A
V (τ |A0, B) = WU(A, τ | B)

so that µ describes the marginal value of savings and V describes the value of being

unemployed along the optimal path. This notation makes explicit that job seekers

with different initial assets A0 make different consumption and search decisions while

unemployed.

In the limit as ∆→ 0, the Bellman equation implies k = 1 is privately optimal if

and only if

c/γ ≤ £WE(A, τ |B)−WU(A, τ |B)¤
where c/γ is referred to as the effective cost of search. Define the no-holiday

constraint as the condition

WE(A(.), τ |B)−WU(A(.), τ |B) ≥ c/γ for all τ ≥ 0, (3)

with A(.) = A(τ |A0, B). Thus the no-holiday constraint implies the worker chooses
k = 1 along the optimal path. Conversely the worker chooses k = 0 whenever

WE(.)−WU(.) < c/γ.

I first describe the worker’s savings strategy along the opitmal path, given the

optimal search path k = k(.). The Inada condition u0(0) = ∞ implies consumption

x > 0 at all durations. There are two cases depending on whether the liquidity

constraint is binding or not.
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(i) Unconstrained consumption (A0 > 0).

If the liquidity constraint A0 ≥ 0 is not binding at duration τ , standard arguments
imply optimal consumption x is

u0(x) =
∂WU(A, τ |B)

∂A
; (4)

i.e., the marginal utility of consumption equals the marginal value of savings. The

Envelope Theorem implies over (arbitrarily small) time period ∆ > 0, the marginal

value of savings evolves according to

∂WU(A, τ | B)
∂A

= (1− e−γk∆)
∂WE(A0, τ +∆ | B)

∂A0
+ e−γk∆

∂WU(A0, τ +∆ | B)
∂A0

(5)

where k = k(.) ∈ {0, 1} is the optimal search effort choice and A0 = er∆[A − x∆ +

b(τ)∆] is the continuation asset level given the optimal consumption choice x(.).

Thus an optimal savings strategy implies today’s marginal value of savings equals

tomorrow’s expected marginal value of savings. Rearranging appropriately and letting

∆ → 0, recalling that µ(.) is defined as ∂WU/∂A along the optimal path yields the

following differential equation for µ(.):

γkµ(τ |.)− dµ(τ |.)
dτ

= γk
∂WE(A(.), τ |B)

∂A
(6)

where k = k(τ |A0, B) along the optimal path. Note for what follows that whenever
k(.) = 0, (6) implies µ(.) is (locally) constant and so optimal consumption x(.) is

constant during such phases.

(ii) Liquidity constrained consumption (A0 = 0). If the liquidity constraint

binds at τ , then optimal consumption x = b(τ) and the Kuhn-Tucker condition for

optimality is

u0(b(τ)) ≥
·
∂W (0, τ |B)

∂A

¸
(7)

so that the marginal utility of today’s consumption exceeds the marginal value of

savings. The Envelope theorem then implies

∂W (0, τ |B)
∂A

= u0(b(τ)).

Thus µ(τ |.) = u0(b(τ)) when the liquidity constraint binds. The above establishes the

following Claim.
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Claim 1. Optimal Consumption.

Given the optimal search effort path k = k(.), the optimal consumption path x(.|A0, B)
satisfies

u0(x) = µ (8)

where µ = µ(.|A0, B) evolves according to

µ = u0(b(τ)) while A(.) ≥ 0 is binding

γkµ− dµ

dτ
= γku0(w + r(A−D(τ)) while A(.) ≥ 0 is non-binding (9)

and A(.) ≥ 0 evolves according to the differential equation:

rA− dA

dτ
= x− b(τ) (10)

subject to the initial condition A(0) = A0 +B0.

The optimal search effort choice k is not determined in claim 1. If A0, B satisfy

the no-holiday constraint then V evolves according to

rV − dV

dτ
= u(x)− c+ γ

·
u(w + r(A−D))− d

r
− V

¸
,

where the flow value of being unemployed equals the flow payoff while unemployed

(using the optimal strategy) plus the expected capital gain by finding work. Of course

the no holiday constraint must then hold with WU replaced by V.

2.2 An Illustrative Example

Anticipating the arguments below, it is worth illustrating the optimal strategy for a

scheme with b(.) = b > 0 and B0 > 0,D = 0; i.e. flow UI payments b are duration

independent and there are no income tax premia when re-employed. As UI payments

are not duration dependent, the worker’s optimal job search and consumption problem

is stationary. We can simplify the above notation by defining WU(A|b) as the value
of being unemployed with assets A (noting that A(0) = A0 +B0).

Unfortunately stationarity is not sufficient to establish that programming prob-

lems of this type are globally concave; e.g. Lentz and Tranaes (2005). Nevertheless the
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discrete choice structure for search effort allows a relatively straightforward charac-

terisation of the policy optimum. The proof of Theorem 1 below essentially considers

two possibly optimal strategies. One is a “retirement strategy” where the unem-

ployed worker never seeks employment. The second is a “holiday” strategy where the

unemployed worker seeks employment at some future (finite) duration, including the

case that he/she searches immediately.

The characterisation of the optimal retirement strategy is simple: the unemployed

worker always consumes permanent income b+ rA. Part III of Theorem 1 establishes

that the retirement strategy is optimal for sufficiently high assets A > AR.

The proof of Theorem 1 fully characterises the optimal “holiday strategy”. The

proof establishes there is a holiday level of assets, denoted AH , where a worker with

inital assets A0 + B0 ≤ AH subsequently chooses k = 1 until a job is found; i.e. the

no holiday constraint is satisfied for low A0 +B0. For intermediate assets A0 +B0 ∈
(AH , AR) the worker takes a “holiday”: the worker initially chooses zero search effort

but, as consumption exceeds income during this phase, assets A(.) eventually decline

to AH whereupon the worker switches to active search. For high assets A0+B0 ≥ AR,

the unemployed worker never searches for work and instead consumes permanent

income b+ r[A0 +B0].

Theorem 1. Optimal Job Search and Consumption

Given UI scheme D = 0 and b(.) = b > 0 where b also satisfies u(b) < u(w)−d−rc/γ,
then optimal job search and consumption is characterised by a pair of asset thresholds

AH(b), AR(b) ≥ 0 such that:

(I) for A ≤ AH , the optimal policy rules are k∗ = 1 and x∗ = xU(A; b) where xU

is a continuous and strictly increasing function of A with xU = b at A = 0 and

xU ∈ (b+ rA,w + rA) for all A > 0;

(II) for A ∈ (AH , AR), the optimal policy rules are k∗ = 0 and x∗ = xH , where

xH = xU(AH ; .) and satisfies xH > b+ rA;

(III) for A ≥ AR, the optimal policy rules are k∗ = 0 and x∗ = b+ rA.

The proof of Theorem 1 is in the Appendix.

For low asset levels satisfying (I), the no-holiday constraint is satisfied: the un-

employed worker chooses k∗ = 1 and the optimal consumption rule xU(.) implies
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xU > b+ rA and so savings strictly fall with duration. As xU(.) is a continuous and

strictly increasing function, consumption gradually falls as the worker’s assets fall,

converging to xU = b when the liquidity constraint binds.

For intermediate asset levels satisfying (II), a worker chooses k∗ = 0 and so takes

an unemployment holiday.During this phase, optimal consumption smoothing implies

(i) a constant level of consumption, xH , and (ii) “holiday consumption” xH exceeds

flow income b + rA and so savings strictly fall with duration. Once savings reach

the critical level AH , the worker switches to phase (I) and then actively searches for

work. Optimal consumption smoothing, however, implies consumption is continuous

across A = AH and so xH = xU(AH ; .). The holiday level of assets, AH , is identified

where the no-holiday constraint fails; i.e.

u(w + rAH)− d

r
−WU(AH |b) = c/γ.

AR describes the retirement level of assets: for A ≥ AR the worker chooses zero

search effort and consumes permanent income b + rA. As assets do not change

over time, this is an absorbing state (until death). The retirement level of assets,

AR, occurs where holiday consumption xH equals flow income; i.e. A = AR where

b + rA = xH . For A < AR the holiday strategy is optimal but as A → AR, phase II

becomes arbitrarily long in duration and the payoff to the holiday strategy converges

to the payoff to the retirement strategy; the worker consumes xH indefinitely.

As the Envelope Theorem implies ∂WU/∂A = u0(x∗(.)), and Theorem 1 implies

x∗ is increasing in A, it follows that WU(.) is concave. But a curious result is that

that WU(.) is linear for A ∈ [AH , AR]; thus workers taking unemployment holidays

are indifferent to (small) gambles, even though u(.) is strictly concave.

Theorem 1 establishes that the no-holiday constraint fails at high asset levels. To

understand why this occurs, it is useful to define re-employment surplus:

S(A|b) =WE(A|b)−WU(A|b) ≡ u(w + rA)− d

r
−WU(A|b)

and note k = 1 is privately optimal if and only if S(A|b) ≥ c/γ. Differentiating with

respect to A yields:

∂S(A|b)
∂A

= u0(w + rA)− ∂WU(A|b)
∂A

= u0(w + rA)− u0(x∗(A; b))
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where x∗(.) is the optimal consumption rule as described in Theorem 1. But Theorem

1 implies optimal consumption x∗(.) < w + rA and so re-employment surplus S is

strictly decreasing in A: the incentive to search is weaker as assets A increase. The

intuition is that the optimal dissaving strategy while unemployed cushions the cost

of being unemployed. Although an increase in A increases both the value of being

employed and the value of being unemployed, it closes the value gap as the marginal

value of savings is greater for the unemployed.7

As the notation makes clear, the asset thresholds AH(b), AR(b) depend on the

generosity of the UI program b. For example a too generous program, one with

u(b) ≥ u(w)−d−rc/γ, implies AR(b) = 0; all unemployed choose k = 0 and consume

x = b+ rA. Conversely b small implies workers with sufficiently low assets search for

work, but richer workers do not. In the extended model considered in section 3, the

worker’s initial assets A0 are accumulated endogenously in a prior employment spell.

With less than full insurance, workers have a precautionary savings motive to self-

insure against layoff risk. The Planner’s optimal UI program not only has to consider

optimal job search behaviour when unemployed, but also how this affects savings

incentives while employed. The obvious concern is that a generous UI program not

only encourages unemployment holidays, it might sustain ‘early retirement’ should

accumulated assets exceed AR.

2.3 An Overview of The Optimal UI Literature.

Given an unemployed worker with exogenous assets A0 ≥ 0, optimal layoff insurance
chooses B to maximise the value of being laid-off, which isWU(A0+B0, 0|B), subject
to a budget constraint that the cost of the UI program is no greater than some

(exogenous) cost C0 > 0. Recall that k = k(τ |A0, B) describes the worker’s optimal
search effort at duration τ along the optimal path. Now define

Ψ(τ |A0, B) = e−
R τ
0 γk(t|.)dt

which, conditional on survival, is the probability the laid-off worker remains unem-

ployed at duration τ . The budget constraint can then be written as:

B0 +

Z ∞

0

Ψ(τ |.)e−rτb(τ)dτ −
Z ∞

0

Ψ(τ |.)e−rτγk(τ |.)D(τ)dτ ≤ C0. (11)

7Lentz and Tranaes (2005) establish this result in a more general framework but assume lotteries.
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The first term in (11) is the lump sum layoff payment, the second is the expected

discounted cost of further UI payments should the job seeker remain unemployed at

duration τ > 0, and the third is the reclaimed tax should the worker become re-

employed at duration τ . The total expected budget cannot exceed cost C0. There are

two main strands to the existing literature.

2.4 Optimal UI with no savings.

Shavell and Weiss (1979) introduced the optimal layoff insurance problem with un-

observed search effort, assuming workers can neither save nor dissave. This implies

A0 = 0 and also consumption must equal the UI payment b(τ) at every duration τ .

By also setting D = 0 they show that UI payments optimally decrease with duration.

Coles (2006) extends that model to a matching equilibrium with endogenous wage

formation and job creation rates. It identifies an optimal insurance condition, given

by (12) below, which is particularly insightful.

In (12) below, Z(τ |B) denotes the expected continuation cost of further UI pay-
ments given a currently unemployed worker with duration τ . Thus Z(.) is given

by

Z(τ |.) =
Z ∞

τ

e−
R t
τ γk(x|.)dxe−r(t−τ)b(t)dt.

S(τ |.) in (12) is the re-employment surplus at duration τ , that is S(τ |.) = WE(.) −
WU(.). k∗(S) is the optimal search effort choice given re-employment surplus S =

S(τ |.). In a more general framework, k∗ is given by the first order condition c0(k) = γS,

where the marginal cost of search effort equals its expected marginal gain. In contrast,

the discrete choice case considered above implies k∗ = 1 whenever c/γ ≤ S.

With no discounting, r = 0, Coles (2006) establishes that optimal insurance in

the Shavell/Weiss framework reduces to

u0(b(t))
u0(b(0))

= 1 +

Z t

0

γ
∂k∗(S(τ |.))

∂S
Z(τ |.)dτ. (12)

To understand this insurance condition, suppose the Planner marginally reduces UI

benefit b(t) at duration t > 0. This marginally reduces the value of remaining unem-

ployed at all durations τ < t and so worker re-employment surplus S(τ |.) marginally
increases at those durations. By inducing greater search effort at each duration

τ < t, worker exit rates increase by γ∂k∗/∂S. An increase in the exit rate of benefit
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claimants then saves the Planner the continuation cost of further UI, Z(τ |.). The
integral in (12) computes this total return which then distorts optimal UI away from

a flat UI profile. As the integral is increasing in t, it follows that UI payments fall

with duration.

The insurance condition (12) identifies the essential distortion: insured job seek-

ers ignore that by finding employment they save the Planner the continu-

ation cost of further UI. In the above case with no savings, the Planner partially

internalises this externality by reducing UI payments with duration. But more gen-

erally, the objective of an optimal UI program is to internalise this externality on the

job seeker’s job search problem at minimum distortion.

Consider then Hopenhayn and Nicolini (1997). That paper assumes workers can-

not save/dissave and that unemployed workers are subject to an income tax premium

when re-employed, where that tax depends on the length of the completed spell of un-

employment. Their simulation is particularly insightful as it shows that the optimal

income tax premium levied at each re-employment duration rises one for one with

previous UI receipts. Hopenhayn and Nicolini (1997) show such a scheme generates

large welfare gains. Formally such gains arise as their scheme fully internalises the ex-

ternality identified in (12): as the worker must repay any further UI receipts through

future taxes, remaining unemployed does not extract further rents from the Planner.

Thus workers have efficient job search incentives. Given workers cannot save/dissave

by assumption, the tax program also allows the Planner to smooth consumption over

the unemployment spell and across the re-employment shock.

Unfortunately the large welfare improvements suggested by the simulations of

Hopenhayn and Nicolini (1997) need not carry over to the case when workers use

savings strategies. With perfect capital markets, the optimal UI contract reduces

to a payment function Π∗(τ) which is the amount paid to the worker conditional

on obtaining re-employment at duration τ (e.g. Fudenberg et al (1990)). Here this

payment can be implemented as

Π∗(τ) = B0e
rτ +

Z τ

0

er(τ−t)b(t)dt−D(τ).

Thus with no liquidity constraints one can normalise D = 0 and the optimal compen-

sation sequence Π∗(τ) is implemented with B0 = Π∗(0) and b(τ) = dΠ∗/dt−rΠ∗.8 Of
8Kocherlakota (2004) chooses a different normalisation: instead he sets B0 = 0 and b equal to
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course setting D = 0 is not a normalisation if there are binding liquidity constraints.

The Hopenhayn and Nicolini (1997) approach suggests that when the liquidity con-

straint binds, the Planner might offer loans which are repaid in the next employment

spell. There are two criticisms of such a policy proposal. First the presence of a

liquidity constraint implicitly presumes some market failure in the financial sector

so that banks are not willing to loan funds to unemployed workers with no collat-

eral. Without modelling an explicit market failure in the financial sector, it seems

ad-hoc to assume the Planner will offer loans that banks are not willing to make.

But perhaps more importantly, Kocherlakota (2004) argues that it is optimal not to

offer such loans: the Planner improves job search incentives by leaving the worker

liquidity constrained.

2.5 Optimal UI with hidden savings but A0 = 0.

Before reviewing the results in Werning (2002) and Kocherlakota (2004), it is useful

to consider first the full information benchmark when search effort is perfectly con-

tractible. Suppose for the moment there is job turnover where all jobs are destroyed

at rate δ > 0. If employed workers receive gross wage wG, then full (and fair) layoff

insurance implies workers pay an insurance premium π = δwG/( r + γ + δ) while

employed and so earn net wage w = (r + γ)wG/(r + γ + δ). When laid-off, a worker

receives a lump-sum layoff payment C0 = π/δ which fully compensates for his/her

drop in permanent income by becoming unemployed. Given the unemployed worker

contracts to search with effort k = 1, the Planner then sells unemployment insur-

ance annuities. Such annuities pay $1 per period unemployed and, given the worker

contracts to search with effort k = 1, the fair price for this annuity is 1/(r + γ).9

The risk-averse laid-off worker fully insures against re-employment risk by purchas-

ing w unemployment annuities at cost w/(r + γ) ≡ C0. By design there is perfect

consumption smoothing where the worker consumes x = w at all dates. As there is

no precautionary savings motive, A0 = 0 is also privately optimal.

optimal consumption so that assets A(.) are zero along the optimal path.
9For example if the time reference is a year with discount rate r = 5% and γ = 4 (implying

expected duration of unemployment equal to 13 weeks), then an annuity which pays flow payoff $1
per year while unemployed has price 24.7 cents. Purchasing 365 unemployment annuities in order
to receive $1 per day while unemployed costs 90.1 dollars (where 91 days is the expected duration
of unemployment).
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Thus a useful perspective is that when laid-off, the worker receives a cash layoff

payment C0 (to compensate for the drop in permanent income) and then purchases

an unemployment annuity plan to insure against re-employment risk. If search effort

k = 1 is incentive compatible, each unemployment annuity has fair price 1/(r + γ).

If instead search effort k = 0 is incentive compatible, each unemployment annuity

has fair price 1/r which simply reflects the market savings rate. Given the worker

can already save/dissave at market rate r, the Planner’s main financial role is to sell

unemployment annuities at price 1/(r + γ) but rations sales so that k = 1 remains

incentive compatible. An optimal annuity plan suggests b∗(.) is rationed to the point

where the worker is indifferent to k∗ = 1 or 0 along the optimal path, but chooses

k∗ = 1 by convention. But this outcome suggests the results in Kocherlakota (2004)

should apply.

Kocherlakota (2004) also considers the case where a laid-off worker has initial

assets A0 = 0, faces liquidity constraint A ≥ 0, and chooses search effort p ∈ [0, 1]
where search costs are linear. He also conjectures that in the optimal program “the

principal wants to (weakly) implement a sequence of effort choices pt ∈ (0, 1) for
all t”. Linear search costs and incentive compatability then imply the worker must

be indifferent across any choice p ∈ [0, 1]. Kocherlakota (2004) then establishes that
the UI program which maximises the value of being laid-off, while also satisfying the

above conjecture, implies B0 = 0 (no severance payments), b(.) = b0 at every duration

and D(.) = D0 is duration independent. The optimal choice of (b0,D0) satisfies the

no holiday constraint with equality. In my notation this implies

u(w − rD0)− d

r
− u(b0)− c+ γ u(w−rD0)−d

r

r + γ
=

c

γ

where the first term is the value of being re-employed, the second term is the value

of being unemployed and searching with effort k = 1. As this condition implies

b0 < w − rD0, the worker always consumes x = b0 while unemployed and so never

accumulates savings. Note in particular the Planner chooses to leave the worker

liquidity constrained (i.e. there are no loans; D(.) is independent of previous UI

receipts). Instead −D0 describes a re-employment bonus which is paid when the job

seeker gets a job. Furthermore, by increasing the re-employment bonus, −D0, the

Planner can increase b0 and still ensure k = 1 remains incentive compatible. Given

the budget constraint
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b0 − γD0

r + γ
= C0,

the optimal policy implies the Planner increases b0 and the re-employment bonus−D0

together, to ensure k = 1 remains incentive compatible, until the budget constraint

binds.10 I shall refer to this policy as the re-employment bonus program.

Such a policy seems plausibly optimal. The re-employment bonus partially in-

ternalises the externality described above - that job seekers ignore that finding work

saves the Planner the continuation cost of further UI. But a simple numerical example,

described below, illustrates a better policy can exist.

In the absence of any UI, being laid-off implies a drop in permanent income equal

to w/(r+γ). Thus consider a UI program which offers compensation C0 = w/(r+γ).

One approach might simply give the worker a lump sum severance payment B0 = C0

and the worker smooths consumption by dissaving during the spell of unemployment.

As the worker receives no further UI, the worker also has efficient search incentives;

i.e. this approach also internalises the externality described above. But as there

is re-employment risk, a better policy exists. Suppose instead the worker is given

constant UI payments b > 0 while unemployed, no re-employment bonus (D = 0),

and a lump sum layoff payment which ensures the no holiday constraint is satisfied

with equality. In the notation of Theorem 1, severance payment B0 = AH(b) and so

u(w + rB0)− d

r
−WU(B0|b) = c/γ.

Note that an optimal dissaving strategy implies A(.) < B0 = AH at strictly positive

durations and the no holiday constraint is satisfied. The severance payment program

is defined as a pair (b,B0) where B0 = AH(b) and which satisfies budget balance

B0 +
b

r + γ
= C0.

For the high turnover economy described in the next section and budget allocation

C0 = w/(r+ γ) [i.e. the UI program fully compensates for the drop in permanent in-

come through being laid-off] it can be shown numerically that the severance payment

10As the no holiday constraint is satisfied with equality and search costs are linear, this program
is consistent with Kocherlakota’s conjecture.
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program achieves a higher welfare payoff than the re-employment bonus program.11

Relative to the severance payment program, the re-employment bonus program al-

lows a more generous b0 consistent with inducing search effort k = 1. But laid-off

workers in the re-employment bonus program are liquidity constrained (no loans)

and b0 ¿ w implies a large fall in consumption relative to that while employed. In

contrast, the severance payment program and an optimal dissavings strategy ensures

consumption is smooth across the job destruction shock. Although the job seeker

is not initially liquidity constrained, the threat of becoming liquidity constrained in

the near future (no loans) ensures the worker chooses high job search effort. No re-

employment bonus also implies consumption does not increase so sharply across the

re-employment shock. The smoother consumption profile induced by the severance

payment program yields the higher welfare payoff.

The reason why Kocherlakota’s conjecture is not consistent with optimality is

that the optimization problem is not concave. Although the Planner might ration

unemployment annuities so that the worker is indifferent to choosing p = 0 or 1 along

the optimal path, the second order effects described in Kocherlakota (2004) imply the

worker is worse off choosing an interior p ∈ (0, 1) (strictly in a discrete time frame-
work). Instead an optimal UI program implies the usual bang-bang property, where

the worker prefers either to look for work with p = 1 and choose high consumption,

or to take an unemployment holiday with p = 0 and choose low consumption.12

It is now useful to reconsider Werning (2002) with D = 0. As Kocherlakota

(2004) points out, the non-concavity problem implies the first order approach may

11For C0 = w/(r+ γ) and parameters for the high turnover economy specified in the next section
(with π = 0), and also assuming re-employment is an absorbing state, I obtain the following policy
outcomes:
Re-employment bonus program: b0 = 74.9 and D0 = −0.0627 (i.e. replacement rate of 74.9% and

a re-employment bonus equal to 3.4 weeks wages).
Severance payment program: b = 69.1 and B0 = 0.0761 (i.e. replacement rate of 69.1% and layoff

payment equal 4.0 weeks wages).
The latter program yields the higher payoff though the gain is small (occuring at the 4th significant

figure). The smallness reflects that the expected spell of unemployment is only 13 weeks which is
short relative to consuming w + r(A−D) indefinitely once re-employed..
12Kocherlakota (2004) justifies his conjecture in a footnote by appealling to congestion externali-

ties. Coles (2006) explicitly considers a matching equilibrium and shows congestion externalities play
no role in the optimal UI problem. Indeed linear search costs with unbounded domain k ∈ [0,∞)
implies there is no value to an unemployment insurance program: optimality implies zero UI and
equilibrium unemployment spells are arbitrarily short as job seekers choose arbitrarily high search
effort.
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not identify the optimal policy. Indeed it is this non-concavity which explains why a

lump sum layoff payment is optimal. But reconsider the above interpretation: that the

laid-off worker receives layoff payment C0 and purchases an unemployment annuity

plan b(.) from the Planner. The Planner rations b(.) so that search effort k = 1 is

incentive compatible. The critical insight from Theorem 1 is that unemployed workers

with lower assets A(.) have a greater incentive to search (also see Lentz and Tranaes

(2005)). Anticipating that optimal dissaving implies the asset path A(.) falls over

the unemployment spell, the Planner can then sell more unemployment annuities

with duration and still ensure k = 1 remains incentive compatible. This suggests

b(.) increases with duration in the optimal annuity plan. Of course as incentive

compatability implies b < w, then the cost of this annuity plan is less than C0

assuming C0 compensates for the drop in permanent income through being laid-off.

The difference implies a positive lump sum layoff payment B0 > 0. The simulations

in Werning (2002) all have this structure - consumption falls over the unemployment

spell as A(.) declines and UI benefits b(.) increase slowly with duration.13

Unfortunately the above is necessarily heuristic as the optimal UI problem is

analytically intractable. But even if one could characterise analytically the optimal

rationing scheme, the solution would be of limited value. The extended case assumes

A0 ≥ 0 is endogenously determined in a previous employment spell. Suppose I

identified the optimal rationing scheme b∗(.) for A0 = 0. A laid-off worker with assets

A0 > 0, where A0 is hidden, would then deviate by taking an unemployment holiday.

Kocherlakota (2004) focusses on the unemployed worker’s incentive to undercon-

sume and take an unemployment holiday. By doing this, the worker extracts greater

rents from the Planner who is then mis-selling unemployment annuities at price

1/(r + γ) on the presumption the worker is actively seeking employment. But in

anticipation of job destruction shocks, employed workers have the same incentive to

underconsume and so overaccumulate assets. When the job destruction shock occurs,

the laid-off worker with greater (hidden) assets then enjoys an unemployment holiday,

extracting rents from the Planner who is selling unemployment annuities too cheaply.

13Werning (2002) never specifies an initial asset level A0 for the laid-off worker; e.g. the worker’s
problem in his section 2.3. Essentially the paper uses Euler-type arguments to describe how consump-
tion and search varies optimally with duration. The actual financing of the optimal consumption
plan is never clearly discussed - there is no mention of lump sum layoff payments.
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3 Unemployment Insurance with Endogenous Sav-
ings

Using the insights identified above, this section considers optimal unemployment in-

surance with endogenous savings. It extends the model by now assuming employed

workers face job destruction shocks and self-insure using savings strategies. For ease

of exposition I set D = 0. The market outcome with optimal layoff payments gener-

ates value which is already very close to the full information benchmark. Thus the

additional welfare benefits of allowing D 6= 0 is necessarily small. Neverthless I shall
return to the potential value of re-employment bonusses in the Conclusion.

The model is the same as before except now employed workers face idiosynchratic

job destruction shocks which occur according to a Poisson process with parameter

δ > 0. A job destruction shock implies an employed worker becomes unemployed with

duration τ = 0. Employed workers earn the same gross wage which is denoted wG

and wG remains exogenous. The net wage is w = wG − π where π is the insurance

premium set by the Planner.

Labour market entrants are initially unemployed, have no assets and are not

entitled to receive UI payments. They search at rate k = 1.14 I distinguish between

insured unemployed workers (those who were previously employed and so receive

unemployment benefits) and uninsured new labour market entrants. Let U I , UNI

denote the respective numbers of ‘insured’ and ‘not insured’ unemployed workers,

where U = UNI + U I denotes total unemployment.

Each worker can save/dissave at the market rate r > 0. Market failures in the

capital market imply banks do not offer loans to unemployed workers with no assets.

While unemployed, a worker enjoys flow payoff u(x)− ck where k ∈ {0, 1} describes
search effort and c > 0 describes the flow cost of search. An employed worker instead

enjoys flow payoff u(x)− d where d ≥ 0 is the opportunity cost of leisure.
The Planner offers UI program B ={π,B0, b(.)} where
(i) π is the insurance premium paid by an employed worker;

(ii) B0 is a lump sum payment when laid-off;

(iii) b(.) is the flow UI payment while unemployed.

14The focus here is designing optimal unemployment insurance, rather than a social security
system for new labour markets. In this world one might presume new labour market entrants live
with their parents until first employed.
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Note that unemployment annuities b(.) insure unemployed workers against re-employment

risk, while severance layoff payments B0 insure employed worker’s against the drop

in permanent income through being laid-off. In what follows, co-ordinating policy

choices b(.) and B0 yields welfare payoffs which are surprisingly close to the full

information benchmark.

At least in principle these policy instruments at date tmight be conditioned on the

worker’s entire employment history up to that date. Practicalities suggest, however,

that governments are unlikely to implement very complicated policies. Furthermore

policies which design punishment phases which are optimal for particular preferences

c, d and u(.) may lead to highly inefficient outcomes for other preferences. This is-

sue is important when preferences are unobserved. For example, the simulations in

Hopenhayn and Nicolini (1997) suggest a non-collateralised loan scheme for unem-

ployed workers, where loans are repaid when re-employed. But the simulations there

report an optimal loan sequence for particular worker preferences. A practical policy

issue is that preferences are unobserved by the Planner. Faced with that specific

loan sequence, an unemployed worker with higher work disutility d or discount rate

ρ instead may enjoy those loans and never search for work, and thus avoid repaying

the debt. An important policy issue, therefore, is that the proposed program must

be efficient for a large swathe of (unobserved) worker preferences. In the simulations

that follow, I show that relatively simple UI programs which ignore information on

previous unemployment spells can still achieve payoffs which are close to the full

information benchmark.

The simulations of Werning (2002) suggest that in the optimal scheme UI pay-

ments might gently increase with duration as worker assets decline over the unemploy-

ment spell. But here there is ex-post worker heterogeneity and, as will be made clear

below (see Table 1), workers with longer unemployment durations may have higher,

rather than lower, assets. If assets are positively correlated with duration, then rais-

ing UI payments with duration need not be welfare enhancing. For tractability I

assume the Planner instead offers constant UI while unemployed, b(.) = b.

Thus policy B is constrained to a constant premium π paid while employed, a

severance payment B0 when laid-off, and constant UI b(.) = b at strictly positive

unemployment durations τ > 0. Given these policy restrictions, the worker’s optimi-

sation problem is then stationary. For given B = {π, b, B0}, let WE(A|B), WU(A|B)
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denote the value of being employed and unemployed respectively, with current assets

A. For notational convenience, I shall subsume reference to B in these functions. The

Bellman equation describing these functions over arbitrarily short time period ∆ > 0

are:

WE(A) = max
x≥0

½
[u(x)− d]∆

+e−r∆
£
(1− e−δ∆)WU(A0 +B0) + e−δ∆WE(A0)

¤ ¾ (13)

where continuation assets

A0 = er∆[A− x∆+ w∆] ≥ 0.

Note that when laid-off through a job destruction shock, he/she receives severance

payment B0. WU(A) is given by

WU(A) = max
x≥0

k∈{0,1}

½
[u(x)− ck]∆

+e−r∆
£
(1− e−γk∆)WE(A0) + e−γk∆WU(A0)

¤ ¾ (14)

with continuation assets

A0 = er∆[A− x∆+ b∆] ≥ 0.

Solving this pair of Bellman equations numerically is straightforward. The solu-

tion yields a pair of optimal consumption rules xU(A), xE(A) while unemployed and

employed respectively, and a pair of asset thresholds AH , AR ≥ 0 where
(i) the unemployed worker chooses k = 1 if A ≤ AH ;

(ii) the unemployed worker chooses k = 0 and strictly dissaves if A ∈ (AH , AR);

(iii) the unemployed worker never searches if A ≥ AR.

There is ex-post worker heterogeneity as individual assets A evolve stochastically

depending on the realised employment history . The optimal consumption and search

rules in a steady state generates a distribution of assets across insured unemployed

workers, denoted GU(A), and across employed workers GE(A). In a steady state those

distributions are jointly determined by a pair of first order differential equations.

Those equations are fully described in Appendix B.

The simulations that follow have two sections. The next section first shows how

worker savings and search behaviour adjust to different levels of b. Section 4 then

considers optimal layoff insurance.
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3.1 Model Specification.

Following Lentz (2005) who estimates a structural job search model with savings,

I assume CRRA utility function u(x) = x1−σ/(1 − σ) with risk aversion parameter

σ =2.2. The average wage rate in Lentz (2005) is 144 units but to facilitate the

discussion I round this wage to wG = 100. Lentz (2005) does not estimate a disutility

of labour. I set d so that u(100)−d = u(75) which implies a worker is indifferent to a

25% wage cut in return for full leisure. Note that a constant UI program with b ≥ 75
implies no insured worker searches for employment. I set c = d which implies active

job search is as unpleasant as working. Using one year as the reference unit of time,

I set λ = 0.02, thus implying an expected working lifetime of 50 years, and ρ = 0.04

which implies gross discount rate r = 6% per annum.

As made clear in Hassler and Rodriguez (1999), the value of the unemployment in-

surance program depends on job turnover rates. I consider three different economies.

In the high turnover economy (HT), I set γ = γHT = 4 which implies the expected

duration of unemployment with k = 1 is 13 weeks (which is reasonable for the U.S.).

If all choose k=1, the baseline steady state unemployment rate is

U =
λ+ δ

λ+ δ + γ
.

Assume the high turnover economy has job destruction rate δ = δHT = 20% per

annum. This implies average employment spells of 5 years and baseline steady state

unemployment equal to 5.2%. Of course “unemployment holidays” and “early retire-

ment” raise unemployment above this baseline level.

Average employment spells and unemployment spells are longer in the low turnover

economy (LT). Specifically I set γLT = 2 which implies the average unemployment

spell of an active job seeker is 6 months (as in the U.K.). The interpretation is that

equilibrium market tightness is lower in the low turnover economy and so it takes

longer to find work. Holding baseline unemployment at 5.2% requires job destruc-

tion rate δLT = 9%. Thus the low turnover economy has long average employment

spells of around 11 years, average unemployment spells of 6 months but the baseline

unemployment level is the same as in the high turnover economy.

The third case is a high unemployment (HU) economy. In this case γHU = 1.5

which implies average unemployment spells of 8 months. An intermediate job de-

struction rate δHU = 12.5% implies average employment spells of 8 years and the
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baseline unemployment rate is then a relatively high 8.8%.

To provide a feel for how UI payments distort these economies, Table 1 describes

the steady state market outcome with a pure constant UI programwith π = 0, B0 = 0.

As the results are qualitatively identical across the economies, Table 1 describes the

results for the high turnover economy.

Table 1: Market Outcomes by UI Generosity (High Turnover)

Replacement
Rate

AH AR AE AU pHU (%) pRU(%) U(%) mu(%)

0.4 5.8 14 0.87 0.74 0+ 0+ 5.2 0.9
0.5 3.8 11 0.70 0.60 0.1 0+ 5.2 1.2
0.6 1.7 7.3 0.62 0.90 18.2 0.6 6.2 1.1
0.7 0.24 3.5 0.73 1.59 76.7 16.6 41.3 0.1

Anticipating the results that follow, it is useful to focus on the third row with b = 60

and thus replacement rate 0.6. Table 1 reports the asset thresholds AH , AR which are

measured in units of one years salary. Thus for replacement rate 0.6, unemployed

workers take a holiday if assets exceed 1.7 years salary and take “early retirement”

if assets exceed 7.3 years salary. AE denotes the average assets held by employed

workers also measured in units of one years salary. Thus replacement rate 0.6 implies

employed workers hold average assets equal to 0.62 years salary. AU denotes the

average assets held by insured unemployed workers, which is 0.9 years salary. At first

sight it is surprising that the insured unemployed, on average, are wealthier than the

employed. This is not always true - see the rows with lower replacement rates. But

high replacement rates imply the holiday asset threshold AH is relatively low. As

those unemployed with A < AH search for work and quickly exit unemployment, the

pool of unemployed workers is over-represented by relatively wealthy types, those with

A > AH , who take a holiday and remain claimant unemployed. This composition

effect becomes large at higher replacement rates.

mU describes the percentage of insured unemployed workers who are liquidity

constrained. Here and in all the simulations that follow, this number is always very

small. Note that if the Planner offers low UI, employed workers compensate through

increased savings. The optimal dissaving strategy while unemployed implies most

laid-off workers find a job before exhausting their savings. In Kocherlakota’s policy
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Figure 1:

exercise, the Planner leaves unemployed workers liquidity constrained to improve

job search incentives. But workers when employed accumulate assets to avoid this

outcome.

pHU denotes the proportion of insured unemployed workers who are “on holiday”,

which is 18% in this case. This might seem surprisingly large given average assets

across the employed are only 0.62 years salary. The distribution of assets, however,

is highly skewed reflecting the Kocherlakota underconsumption problem: workers

overaccumulate assets to enjoy unemployment holidays. Figure 1 describes the opti-

mal consumption rules xE(A), xU(A) with replacement rate 0.6 in the high turnover

economy.

Not surprisingly at low A, the optimal consumption levels xE(A), xU(A) are low

- an employed worker builds up a savings buffer to self-insure against job destruction

shocks, while an unemployed worker chooses low consumption in anticipation of the

binding liquidity constraint. At intermediate asset levels however, and for A < AR =
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7.3 years salary, consumption xU increases with A but quickly flattens out so that

xU(.) = xH , the holiday level of consumption. Optimal consumption smoothing

while employed then implies xE(.) also flattens out around xH . The upshot is that

the savings rate while employed is a minimum at asset level A = 0.55, but is strictly

positive. For higher asset levels, the savings rate while employed rapidly increases

as A further increases. This yields a fat right tail in the distribution of assets across

employed workers - steady state implies a surprisingly large number of employed

workers accumulate assets exceeding AH .15

Of course in an ideal world the Planner would raise the replacement rate to ρ = 1

and so offer full insurance against job destruction risk. But at ρ = 0.7 the moral

hazard problems become extreme. The next section now considers optimal UI.

4 Optimal Layoff Insurance.

The problem for an optimal insurance scheme, then, is to improve consumption

smoothing between spells of employment and unemployment without inducing holiday-

taking or early retirement. There are two standard approaches to the optimal UI

problem. The principal agent literature maximises the value of being laid-off (where

the employed worker is laid-off at exogenous rate δ > 0) while the macro approach

instead maximises a Utilitarian welfare function in a steady state (e.g. Davidson and

Woodbury (1997), Frederiksson and Holmlund (2001), Coles and Masters (2006a)).

With savings the latter approach is not appropriate. For example a poor choice of

replacement rate implies employed workers, in a steady state, have high average sav-

ings AE. As workers consume the interest on these savings, this implies high average

consumption which overstates the value of the UI program. Instead I adopt the lay-

off insurance problem: the Planner’s objective is to maximise WE(0|B), which is
the expected payoff of each new labour market entrant when first employed. Thus

the Planner designs the UI program to insure all recently hired new labour market

entrants against unemployment risk.

The most natural budget constraint to consider is fair insurance - that expected

discounted benefits received while unemployed must equal expected discounted pre-

mia paid while employed. This case is considered in section 4.2. An interesting result,

15Lise (2006) uses this mechanism in a model of on-the-job search to explain why equilibrium
wage dispersion leads to even larger wealth dispersion.
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however, is that this program yields a steady state flow budget deficit. Given the po-

litical process yields turnover in governments, this suggests a dynamic consistency

problem where future governments might renege on the original UI program. It is il-

luminating, therefore, to first consider optimal layoff insurance when the UI program

instead satisfies steady state budget balance.

4.1 Optimal Layoff Insurance with Steady State Budget Bal-
ance.

In this section the Planner’s objective is to choose B = {π,B0, b) to maximise
WE(0|B) subject to steady state budget balance

U Ib+ [1− U ]δB0 = [1− U ]π.

To evaluate the impact of lump sum layoff payments on market outcomes, I first

constrainB0 = 0 and suppose the Planner chooses (b,π) to maximiseWE(0|B) subject
to steady state budget balance. Table 2 reports the policy optimum and corresponding

market outcome for each of the three economies.

Table 2: Optimal constant UI programs with B0 = 0.

high turnover low turnover high unemployment
optimal b 55 52 49
optimal π 2.76 2.37 4.37
AH 2.70 3.00 3.73
AR 8.62 9.65 9.98
AE 0.59 0.85 1.20
AU 0.53 0.79 1.42
pHU (%) 0.9 1.9 6.4
pRU(%) 0 0.4 1.5
mu(%) 1.4 2.6 2.3

Consider the high turnover economy as described in column 1. Table 1 established

that holiday-taking by the unemployed becomes large at around b = 60. Optimal b is

0.55 and budget balance then requires π =2.76% on gross wages. At this replacement

rate, AH is sufficiently high that very few workers take unemployment holidays (pHU ),

and the number reaching early retirement (pRU) is negligible. The same insights apply

to the LT and HU economies. In those economies the lower re-employment rate im-

plies the effective cost of search, c/γ, is higher. As this increases the magnitude of the

29



moral hazard problem, the Planner reduces the offered b. The stronger precautionary

savings motive leads to an increase in savings and greater holiday taking and early

retirement.

I now augment the above UI programs with a lump sum severance payment. An

obvious benchmark is that the layoff payment fully compensates the worker for his/her

drop in permanent income by being laid-off. Given UI payment b while unemployed,

a fully compensating layoff payment (assuming an unemployed worker always chooses

k = 1) requires B0 = (w−b)/(r+γ) where w = wG−π. Note that a higher b implies a
lower compensating payment B0. Given the level of UI b described in Table 2, Table

3 describes the market outcomes when the UI program is augmented with a fully

compensating layoff payment and there is budget balance.

Table 3: Fully compensating layoff payment schemes

high turnover low turnover high unemployment
flow UI (b) 55 52 49
layoff payment B0 0.10 0.21 0.27
premium π 4.86 4.50 8.21
AH 2.74 3.10 3.92
AR 8.59 9.62 9.91
AE 0.47 0.63 0.91
AU 0.49 0.69 1.1
pHU (%) 0.3 0.6 3.6
pRU(%) 0 0 0.3

In each case the augmented UI scheme increases welfare. I defer discussion of the

magnitude of those welfare effects to the next section. The focus here is on how fully

compensating layoff payments change market behaviour.

Column 1 again describes the high turnover economy. Comparing with column

1 in Table 2, note b is unchanged at 55 but the fully compensating lump sum layoff

payment is B0 = 0.10. As this lump sum is measured in units of one years salary, it

equals 5.2 weeks wages (gross). The more generous UI program requires increasing

the insurance premium π to 4.86%. But a surprising result is that for each economy,

the more generous UI program leads to a fall in unemployment; compared with Table

2, the proportion of unemployed workers taking holidays (pHU ) and early retirement

(pRU) are smaller in Table 3.

The lump sum layoff payment not only provides better insurance against layoff
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Figure 2:

risk, it also improves search incentives. One reason is re-entitlement effects. Re-

entitlement effects arise when UI payments are duration dependent (e.g. Mortensen

(1977)) and duration dependence here is extreme: laid-off workers enjoy a lump sum

severance payment. Re-entitlement to full insurance through becoming re-employed

increases the value of becoming re-employed and so improves search incentives.

Lump sum layoff payments also reduce the incentive of employed workers to over-

accumulate assets. Figure 2 describes the optimal consumption rules xE, xU given

this augmented UI program for the high turnover economy.

In contrast to Figure 1, where savings rates by the employed are always strictly

positive and assets potentially grow without bound, a fully compensating layoff pay-

ment implies the savings rate is negative for assets in the range A ∈ [0.8, 1.7]. Thus
individual level assets while employed (if less than 1.7 years salary) revert to A = 0.8

years salary.

For a large range of asset values, there is almost perfect consumption smoothing

31



across the job destruction shock; i.e. xU(A + B0) ' xE(A). Indeed for assets A ∈
[0.8, 1.7], xU(A+B0) is slightly higher than xE(A) which is why an employed worker

slowly dissaves in this range.

When laid off in this example, the worker receives a lump sum severance payment

equal to 5.2 weeks gross income. Roughly speaking, if the unemployed worker gets a

job before 13 weeks, then assets A will exceed those held when first laid-off. A longer

employment spell instead implies lower assets when re-employed. If the unemploy-

ment spell is so long that assets fall below A = 0.8, the worker when re-employed

chooses relatively low consumption to rebuild his savings buffer back to A = 0.8.

If instead the unemployment spell is so short that assets exceed A = 0.8 (but not

1.7) the worker when re-employed chooses relatively high consumption and allows his

savings buffer to decline to A = 0.8. Optimal savings behaviour implies savings tend

to cycle around A = 0.8 years salary. Achieving the holiday level of assets, AH = 2.7

years salary requires several times being laid-off and quickly becoming re-employed

so that assets escape the A ≤ 1.7 years salary barrier. Of course such a sequence is
an unlikely outcome and, in a steady state, only 0.3% of the currently unemployed

take unemployment holidays.

The above interpretation applies in all three economies. The fully compensating

severance payment scheme has three efficiency advantages:

(i) employed workers are fully insured against the drop in permanent income when

laid-off;

(ii) re-entitlement effects imply unemployed workers have improved search incen-

tives and;

(iii) the employed have weaker incentives to over-accumulate assets - assets instead

tend to cycle about some intermediate value Ac ¿ AH .

It turns out that the programs described in Table 3 yield a WE(0|B) which is
remarkably close to the full information benchmark. Numerical findings show it is

marginally welfare improving to increase b further: the unemployment holiday dis-

tortion in Table 3 is relatively small and raising b further improves the quality of

insurance against re-employment risk. It is also marginally welfare improving to in-

crease further the lump sum layoff payment and so strengthen the mean reversion in

asset accumulation. But for these numerical values, the additional welfare improve-

ment is very small.
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4.2 Welfare and Fair Insurance.

To identify welfare measures, this section considers the alternative welfare problem:

what is the cost of the UI program which yields welfare WE(0|B) =W ∗ where W ∗ is

the worker’s payoff in the full information benchmark.16 To be consistent with that

benchmark, it is important this cost is measured in terms of fair insurance rather

than steady state budget balance.

Let p(t|B) denote the probability the newly hired labour market entrant is unem-
ployed at future date t given program B. The funding shortfall is defined as

Shortfall=
Z ∞

0

e−rt [p(t|B)b+ [1− p(t|B)]δB0 − [1− p(t|B)]π] dt.

Note that a fair insurance premium implies the shortfall is zero. But given welfare

is set at W ∗, the moral hazard problems imply the shortfall is necessarily positive.

The difference in shortfalls across different programs then measures their efficiency

differences in terms of cost per new labour market entrant. Those costs are reported

below in units of annual salary.

p(t|B) depends on worker search effort choice and thus on how the worker’s assets
evolve over time. Computing shortfall directly requires not only computing the prob-

ability distribution of assets G(A|t, B) at each date t > 0,but also doing this over

the infinite horizon. This is not computationally feasible. An alternative approach is

to estimate the shortfall statistically by considering a large number of independent

labour market histories. I do this using the following procedure. First I fix a UI pro-

gram (b,B0). The insurance premium π is then determined by the welfare constraint

WE(0|B) =W ∗. Given this policy (π, b, B0), solving the Bellman equations yields the

optimal search and consumption rules. I then generate 100,000 independent labour

market histories over a 50 year time horizon. Assuming p(.) at 50 years is close to

its ergodic distribution, I can then compute the mean shortfall per worker and its

variance. A sample of 100,000 histories yields sufficiently small standard errors that

the shortfall is tightly estimated.

I repeat the methodology described in the previous section. For each economy I

first restrict B0 = 0 and find the constant UI program (π, b) which generates least

shortfall. I then augment that UI program with fully compensating layoff payments.

16The full information benchmark implies π = δwG/(r + γ + δ), b = w = (r + γ)wG/(r + γ + δ),
and B0 = 0. The parameter restriction c = d implies W ∗ = (u(w)− d)/r.
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Table 4 reports those policies and their corresponding shortfalls (standard errors are

reported in brackets).

Table 4: Optimal UI and Welfare with Fair Insurance

Economy b B0 premium shortfall

µ
standard
error

¶
High Turnover

60 0 2.77 0.044 (0.0009)
60 0.09 4.61 0.030 (0.0010)

Low Turnover
59 0 2.29 0.052 (0.0011)
59 0.18 4.05 0.028 (0.0015)

High Unemployment
57 0 4.05 0.094 (0.0016)
57 0.23 7.19 0.046 (0.0022)

A surprising result is that for each economy, the optimal b in the constant UI case

(with no severance payments) is signficantly higher with the fair insurance budget

constraint than with steady state budget balance. In the high turnover economy,

b = 60 is optimal and Table 1 shows that around 18% of the currently unemployed

are then on an unemployment holiday. In contrast in Table 2 where b = 55 is

optimal, less than 1% are on an unemployment holiday. The reason for the difference

is that workers taking unemployment holiday are relatively old: a worker must first

accumulate assets A > AH which takes time. The fair insurance constraint discounts

those payments heavily - the new labour market entrant is, say, 20 years old and might

take an unemployment holiday when 50. In contrast, the steady state budget balance

condition does not discount those payments and the Planner keeps the number of

workers on unemployment holidays relatively low. In fact the optimal UI program

with fair insurance yields a steady state budget deficit. On startup, the fair insurance

program generates an initial budget surplus as all workers admitted onto the program

are employed and pay premium π > 0. But turnover of governments through the

political process then finds a future government faces a flow budget deficit as many

older workers enjoy unemployment holidays. As such governments have the incentive

to redesign the UI program to at least yield flow budget balance, the fair insurance

case may not be dynamically consistent.
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A second important feature of Table 4 is that the shortfall is relatively small.

Assuming workers all have these same preferences, then a constant UI program with

optimally chosen b achieves value which is already close to the full information bench-

mark. The shortfall is highest in the high unemployment economy and is around 5

weeks income per worker. In each case, augmenting the constant UI program with a

fully compensating layoff payment is welfare improving and roughly halves the short-

fall. The welfare gain is highest in the high unemployment economy and has value

around 2.5 weeks income (per worker). The welfare gain in the high turnover econ-

omy is around 0.7 weeks income, reflecting that the market outcome is already close

in value to the full information benchmark.

Table 4 describes the optimal UI program for a given worker with particular prefer-

ences u(.), c, d. But such preferences vary widely across workers, and such preferences

are not observed by the government. Suppose instead the Planner chooses b for some

other representative worker, and so b is not optimal for our particular worker.

For example suppose the policy-maker believes work disutility d for most workers

is appreciably higher than for my representative worker. Suppose then the Planner

sets a very low b to reduce average holiday taking; e.g. suppose b = 20. Given my

worker above, Table 5 reports the resulting shortfall and the welfare value of fully

compensating layoff payments.

Table 5. Efficiency Gains with Suboptimal b;b=20
Economy b B0 premium shortfall

High Turnover
20 0 −0.4 0.22 (0.0003)
20 0.19 4.1 0.10 (0.001)

Low Turnover
20 0 −1.2 0.34 (0.0003)
20 0.37 3.3 0.14 (0.0013)

High Unemployment
20 0 −2.0 0.56 (0.005)
20 0.47 6.0 0.24 (0.002)

Setting b = 20 offers too little insurance against re-employment risk and the efficiency

loss, as measured by shortfall, is correspondingly larger.17 Reflecting that b is very

17The premium is sometimes negative in Table 5 as it has to ensure WE(0|B) =W ∗.
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low, the fully compensating layoff payment in Table 5 is correspondingly high. Note

in each case, the fully compensating layoff payment more than halves the shortfall.

The welfare gain is highest in the high unemployment economy and is worth around

4 months income per labour market entrant. The welfare gain remains relatively

modest in the high turnover economy, worth around 5 weeks income. But comparing

results with Table 4, it is particularly noteworthy that choosing b much too low does

not yield an immoderate increase in shortfall.

Suppose in contrast the Planner sets b just a little too high, say b = 65. An

important point here is that the welfare losses are highly asymmetric to the choice in

b.

Table 6. Efficiency Gains with Suboptimal b;b=65
Economy b B0 premium shortfall

High Turnover
65 0 3.16 0.75 (0.0009)
65 0.07 4.70 0.66 (0.0013)

Low Turnover
65 0 2.76 0.72 (0.0012)
65 0.15 4.18 0.67 (0.0017)

High Unemployment
65 0 5.26 1.45 (0.0015)
65 0.18 7.55 1.41 (0.0024)

In contrast to the previous Table, a small increase in b above the optimum leads to

a steep increase in shortfall. Augmenting the UI program with a lump sum severance

payment remains welfare enhancing but the gains are not large. This is not surprising

as the Planner is already offering ‘too much’ insurance. But it is important to note

that such layoff payments remain welfare improving.

For too low b, increasing b is welfare improving as it provides better insurance

against re-employment risk. But the gain through smoother consumption is relatively

small. Thus setting a too low b does not yield a large welfare decrease. In contrast for

too high b, too many workers take unemployment holidays. At this margin the number

taking unemployment holidays increases steeply with b and welfare quickly drops as

b is further increased. Given disperse worker preferences which are unobserved by

the Planner, this asymmetry suggests it is important to be relatively conservative on
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the choice of b. Nevertheless regardless of the choice of b, augmenting the UI program

with a fully compensating lump sum severance payment is always welfare enhancing

5 Conclusion

By reviewing results on optimal UI with unobserved search effort and hidden savings,

the paper identifies that lump sum layoff payments are an important policy tool. Sim-

ulations find that co-ordinating constant UI paid, b(.) = b, with a fully compensating

layoff payment B0 = (w− b)/(r+ γ) can yield payoffs which are surprisingly close to

the full information benchmark. It has also been shown that welfare losses are highly

asymmetric with respect to the choice of b. For given worker preferences, a b which is

much too low generates a relatively small welfare loss, while a b which is slightly too

high generates large welfare losses. In an extended world with heterogeneous worker

preferences which are unobserved by the Planner, and where the Planner designs a

“one size fits all” UI program, this asymmetric loss structure suggests it is important

to keep b small. Fully compensating layoff payments will then generate relatively large

welfare gains. Establishing this formally, assuming ex-ante heterogeneous agents, is

an important issue which is left for future research.

The results identified here are strongly complementary to those found in Pis-

sarides (2004), Fella (2006). Those papers assume the UI program pays constant b

and consider optimal contracting between a firm and risk averse employee. In those

papers, severance layoff payments are privately optimal. Here instead I have consid-

ered optimal UI with hidden search effort and hidden savings but ignored privately

optimal contracting between firms and employees. The finding here is that UI pay-

ments should be duration dependent, but the dependency is extreme and results in

lump sum layoff payments. As public insurance crowds out private insurance, the

underlying question is who should provide the lump sum layoff payment? Given pub-

licly provided UI may generate strategic layoff behaviour (e.g. temporary layoffs as

seen in the U.S., see Feldstein (1976)), the most likely answer is that severance layoff

payments should be made by the firing firm. This suggests the decentralised policy

optimum might simply offer constant, but low b, anticipating that firms and workers

privately negotiate fully compensating severance payments B0. Of course if firms are

risk averse or there is a risk of default (e.g. firing firms might declare bankruptcy),
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the Planner might pool those risks by insuring firms against such dismissal costs.

A third research direction is that workers enjoying unemployment holidays are

(locally) risk neutral even though u(.) is strictly concave. Thus workers when laid off

with assets A ∈ (AH , AR) are more willing to gamble than others. In an extended

framework, such workers might invest in relatively risky self-employment projects

noting that if the project fails, they return to unemployment with reduced assets.

Should this happen, they again decide whether to search for work or maybe take a

short holiday before looking for work or perhaps, if losses were not too great, invest in

another self-employment project. Such an approach seems a promising way forward

in explaining the self-employment decision.

Identifying a coherent unemployment policy also requires embedding this insur-

ance problem into an equilibrium matching framework. With equilibrium wage bar-

gaining, more generous flow UI payments b(.) raise the option value of remaining

unemployed and so tend to increase negotiated hiring wages. If hiring wages rise too

high, job creation rates fall and γ (which describes how easy it is to find work) falls.

This makes unemployed workers worse off through the thick market externality. But

re-employment bonusses, which are financed through taxes while employed, act as a

hiring subsidy. Coles (2006) shows that hiring subsidies target directly the underly-

ing hold-up distortion and so re-employment bonusses potentially play an important

policy role in a matching equilibrium.

6 Appendix A

Proof of Theorem 1.

For any given A > 0, there are two possibly optimal strategies; (i) a retirement

strategy where along the optimal path the worker never searches for a job, and (ii)

a holiday strategy where along the optimal path the worker begins search for a job

at a finite duration. The text establishes that the value of the retirement strategy,

denoted here as WR(A; b), is WR = u(b + rA)/r. The following describes the value

of the optimal holiday strategy, which I denote WH(A; b), and compares that payoff

against WR(.). As b is fixed, I simplify notation here by subsuming reference to b in

these functions.

The proof identifies unimprovable strategies and a critical asset thresholds AR > 0.
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For A < AR, the holiday strategy is optimal and implies assets strictly decline with

duration. Using backward induction from A = 0 the following first identifies an

unimprovable holiday strategy for assets A < AR. This backward induction process

identifiesWH(A) and the iteration stops when the retirement strategy dominates; i.e.

whereWR ≥WH . This identifies AR. I then establish a single crossing property, that

WH > WR if and only if A < AR. The Principle of Unimprovability [Proposition 4,

page 813 in Kreps (1993)] then establishes the Theorem.

First consider A = 0. Optimal consumption smoothing implies x∗ = b (as future

income is never lower) and the restriction u(b) < u(w) − d − rc/γ implies k∗ = 1 is

optimal. Thus policy rules x∗ = b and k∗ = 1 are strictly optimal when A = 0.

Consider now A > 0 but sufficiently small that k∗ = 1 remains optimal. The

optimal consumption path is identified by solving (8),(9),(10) in Claim 1 for {x, µ,A}
with k = 1. As (8) implies u00(x)

·
x =

·
µ, use this to solve out µ in (9), and note that

optimal (x,A) must then evolve according to the autonomous pair of equations:

[−u00(x)] ·x = γ[u0(w + rA)− u0(x)] (15)
·
A = rA− x+ b (16)

while x,A > 0. Figure A describes the corresponding phase diagram.

b < w implies the
·
x = 0 locus lies above the

·
A = 0 locus. Given k = 1, Claim

1 implies the optimal consumption path corresponds to the flow line which limits to

(A, x) = (0, b). Let x = xU(A; b) denote that path. As u(.) is twice differentiable

for all x ≥ b > 0, it follows that xU is continuous and it is also strictly increasing

in A. As xU cannot cross the
·
x = 0 locus nor the

.

A = 0 locus, it also follows that

xU ∈ (b + rA,w + rA) and thus assets A are strictly decreasing with duration. As

(A, x) = (0, b) is not a stationary point in this dynamic system, (A, x) reaches (0, b)

in finite time. This consumption path with k∗ = 1 determines WH(A) for small A.

Now define re-employment surplus

S(A) =
u(w + rA)− d

r
−WH(A)

and note that k = 1 is optimal only if S(A) ≥ c/γ. The restriction u(b) < u(w)− d−
rc/γ implies S(0) > c/γ. Differentiating with respect to A implies:
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Figure 3: Figure A

dS

dA
= u0(w + rA)− ∂WH

∂A
= u0(w + rA)− u0(xU(A; b)) < 0

along the optimal consumption path xU(.) and so is strictly decreasing with A. Thus

an AH > 0 exists where S(AH) = c/γ.

For A > AH the no holiday constraint fails and optimal job search k∗ = 0. (9)

in Claim 1 then implies µ, and hence consumption, is constant with duration. Let

xH denote that consumption choice. An optimal holiday strategy exists only for A

satisfying xH > b + rA so that assets strictly decrease with duration and reach AH

at a finite duration. But optimal consumption smoothing then implies xH = xU(AH)

at A = AH . Thus an optimal holiday strategy implies

k = 1, x = xU(.) for A ≤ AH

k = 0, x = xH for A > AH

with xH = xU(AH). Strictly declining assets during the holiday phase (k = 0) requires

assets A < AR where AR is defined by xH = b+rAR. As xH = xU(AH) > b+rAH this

implies AR > AH . Further note that as A → (AR)−, the holiday phase becomes
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arbitrarily long in duration andWH(A) converges in value to the retirement strategy

(i.e. consume permanent income xH = b + rAH and never search). I now compare

WH(A) with the value of the retirement strategy WR(A) = u(b+ rA)/r.

The above has established WH(AR) = WR(AR). The Envelope Theorem implies

dWH/dA equals the marginal utility of consumption given the optimal holiday strat-

egy. Furthermore, the definition of AR (that AR = A satisfying xH = b+ rA) implies

optimal consumption in the holiday strategy exceeds b + rA for all A ∈ (0, AR). As

u(.) is strictly concave, the slope of WH is therefore strictly less than the slope of

WR for all A ∈ (0, AR). AsWH =WR at A = AR thenWH > WR for A < AR. Thus

the holiday strategy dominates the retirement strategy for all such A. Further for

A > AR, consuming holiday consumption xH indefinitely is strictly dominated by the

retirement strategy where consumption instead equals permanent income b+rA > xH .

By construction, these strategies (as described in the Theorem) are unimprovable

strategies. To establish that they describe an optimal strategy, I now use the Principle

of Unimprovability. Note that in an optimal savings strategy, it is never optimal to

consume x < b as b is a lower bound on future income. Hence there is no loss in

generality by imposing the additional restriction x ≥ b. In this extended case, the

restrictions x ≥ b and k ∈ {0, 1} imply the “one period” payoff function u(x)− ck is

bounded below by u(b)− c. Thus for b > 0, the Principle of Unimprovability implies

Theorem 1.

7 Appendix B: steady state asset distributions.

Claim B. Given a constant UI program b(.) = b with lump sum layoff payment

B0 ∈ [0, AH ], steady state turnover implies:

(i) the number of unemployed workers U = UNI + U I where

U I =
γ

λ+ γ

δ

δ + λ+ γGU(AH)

UNI =
λ

λ+ γ

(ii) GE(.) satisfies the differential equations

(λ+ δ)GE(A|.) + (rA− xE(A|.) + w)
dGE

dA
=

γUNI + γGU(A|.)U I

1− U
for A < AH

41



(λ+ δ)GE(A|.) + (rA− xE(A|.) + w)
dGE

dA
=

γUNI + γGU(AH |.)U I

1− U
for A > AH

subject to the initial value GE(0|.) = 0;
(iii) GU(.) satisfies the differential equations

(λ+ γ)GU(A|.) + (rA− xU(A|.) + b)
dGU

dA
=
1− U

U I
δGE(A−B0|.) for A < AH

λGU(A|.)+γGU(AH |.)+(rA−xU(A|.)+b)dG
U

dA
=
1− U

U I
δGE(A−B0|.) for A ∈ (AH , AR)

λGU(A|.) + γGU(AH |.) = 1− U

U I
δGE(A−B0|.) for A ≥ AR.

Proof:

(i) Steady state turnover implies the number of uninsured unemployed workers

satisfies

λ = (γ + λ)UNI ,

while the number of insured unemployed workers satisfies

δ[1− U ] = U I [λ+ γGU(AH)].

Using U = U I + UNI then implies Claim B(i).

(ii) Consider the pool of employed workers with assets no greater than A > 0.

Over arbitrarily small time period ∆ > 0, the number who exit this pool is:

outflow = [1− U ]
£
GE(A|.)(λ+ δ)∆+ [GE(A|.)−GE(A0|.)]¤

where A0 < A satisfies A = er∆[A0 − xE(A0|.)∆ + w∆]. The first term describes the

outflow through layoff or death, the second describes exit through asset accumulation,

where employed workers with assets in (A0, A] have assets strictly greater than A after

further time period ∆. The inflow for A > 0 is

inflow = [γUNI + γGU(A|.)U I ]∆ for A ≤ AH

= [γUNI + γGU(AH |.)U I ]∆ for A > AH
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Setting inflow equal to outflow and letting ∆→ 0 implies Claim B(ii). There can be

no mass point in GE at A = 0 as optimal consumption implies xE(0) < w and assets

A0 > 0 in the next instant. Thus GE(0) = 0.

(iii) Consider the pool of insured unemployed workers with assets no greater than

A. Over arbitrarily small time period ∆ > 0, steady state turnover for A < AH

implies

[1− U ]GE(A−B0|.)δ∆+ U I
£
GU(A0|.)−GU(A|.)]¤ = U IGU(A|.)(λ+ γ)∆

where A0 > A satisfies er∆[A0 − xU(A0|.)∆ + b∆] = A. The left hand side describes

the inflow through job destruction and through insured workers dissaving over time

where insured unemployed workers with assets in [A,A0) have assets strictly less than

A after further time period ∆. The right hand side describes the outflow through

finding work or death.

For A ∈ (AH , AR) steady state turnover implies:

[1− U ]GE(A−B0|.)δ∆+ U I
£
GU(A0|.)−GU(A|.)]¤

= U IGU(AH |.)(λ+ γ)∆+ U I [GU(A|.)−GU(AH |.)]λ∆

where insured unemployed workers with A > AH only exit through death. Finally

for A ≥ AR the steady state turnover equations are

[1− U ]GE(A−B0|.)δ∆ = U IGU(AH |.)(λ+ γ)∆+ U I [GU(A|.)−GU(AH |.)]λ∆

as workers do not dissave over time in the early retirement phase. Letting ∆ → 0

implies the conditions in Claim B(iii).
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