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Abstract

Current ways of modeling time dependence in stochastic frontier panel data models are unduly re-

strictive or computationally intractable. They are based on a restrictive assumption on the nature of

dependence such as the “scaling” property or involve T -dimensional integration, where T is the number of

cross-sections in the panel. This paper demonstrates the use of copulas as a simple means of accounting

for time dependence in panel frontier models. The range of dependence it allows to model is unrestricted

and the computational task it involves is easy. We also point out to improved asymptotic efficiency of

copula-based estimators and consider some of their finite sample properties.
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1 Introduction

In this paper we consider the traditional stochastic frontier model proposed by Aigner et al. (1977) and

Meeusen and van Den Broeck (1977):

yit = x′itβ + vit − uit, (1)

where uit ≥ 0, t = 1, ..., T . Here i denotes individual firms, countries, production units, etc, and t denotes

time. We assume that vit’s are independent over i and t and distributed as N(0, σ2
v). We also assume that

the distribution of uit is N(µit, σ
2
it)

+, i.e. it is obtained by a truncation to the left of zero of the normal

distribution with mean µit and variance σ2
it. The distribution parameters (µit, σ

2
it) may be constant or they

may depend on explanatory variables zit. The truncated error term uit represents inefficiency. Typically we

assume it is independent over i but independence over t is not an attractive assumption. One would expect
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that inefficiency correlates positively over time – firms that are relatively inefficient in one time period will

probably also be inefficient in other time periods.

In this setting, let fit denote the marginal (single t) density for the composed error εit = vit − uit. We

can write it as follows:

fit = fit(yit − x′itβ). (2)

Forming the likelihood for all observations requires the joint density of (εi1, ..., εiT ). There are four major

approaches to this in current literature.

First, one may assume independence (see, e.g., Battese and Coelli, 1995). Then the log-likelihood can

be written as follows:

ln L =
∑

i

∑
t

ln fit (3)

The quasi maximum likelihood estimator (QMLE) maximizes this function. A variation of the same approach

is to assume that uit’s are independent conditional on zit (see, e.g., Wang, 2002).

Second, one may assume that uit is time invariant (see, e.g., Pitt and Lee, 1981). Then,

uit = ui for all t

Clearly, this is a special case of the time independence assumption above.

Third, one may assume a multivariate truncated distribution for (ui1, . . . , uiT ), e.g. multivariate trun-

cated Normal (see, e.g., Pitt and Lee, 1981). Then, the MLE involves a hardly tractable optimization of a

likelihood function with T -dimensional integrals.

Finally, one may assume “scaling”. The scaling property assumes that uit has the following multiplicative

representation:

uit = h(zit; δ)u∗it,

where u∗it is a random variable, h(zit; δ) is a known function, δ is a vector of unknown parameters and zit

contains variables that affect inefficiency.

There are many versions of the stochastic frontier model that satisfy the scaling property (see Alvarez et al.,

2006, for a survey of such models). In some versions, u∗it is assumed to be time invariant and zit includes a

time trend (see, e.g., Battese and Coelli, 1992; Kumbhakar, 1990). Other models assume uit is distributed

as N(0, σ2
it)

+, where σ2
it depends on a set of relevant variables zit (Caudill et al., 1995, e.g.,). But the key

feature of the assumption is that u∗it does not depend on zit, and so changes in zit only affect the scale

of the distribution of uit (through the nonrandom function h(zit, δ)) but not its shape (determined by the

distribution of u∗it).

The variables zit may include functions of inputs xit or various characteristics of the environment in which

the firm operates. The assumption that firms with different zit do not differ in the shape of the distribution
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of inefficiency (differ only in the scale) or that there is no correlation in inefficiencies over time are hardly

realistic. In this paper we want to develop a tractable method of allowing for dependence without scaling.

We propose using copulas to do that. A distinctive feature of copulas is that they allow to model marginal

distributions separately from their dependence structure. As a result we have a flexible joint distribution

function, whose marginals are specified by the researcher. The joint distribution can accommodate any degree

of dependence. No simplifying assumptions such as scaling or time-invariance are required. Meanwhile, the

task of maximizing the joint likelihood remains simple because it involves no T -dimensional integration.

Some computational burden remains – one needs to evaluate the composed error marginal CDFs – but this

is an easy task in one-dimensional numeral integration or a straightforward simulation.

Advantages of the proposed approach are not only computational. By assuming a copula we assume a

joint distribution. This is important for estimation precision. If the joint distribution is correctly specified

we have the efficient score function. It is well known that the maximum likelihood estimator that solves

the efficient score equation is asymptotically efficient in a class of regular estimators. This leads to an

asymptotic efficiency bound – the maximum precision level at which the parameters of the frontier model

can be estimated as the size of the cross section grows. But this also suggests that one may do better than

QMLE in terms of precision. By specifying an arbitrary, possibly incorrect, copula function, we make use of

some dependence information and so we can approach (though not reach) the efficiency bound.

We study the efficiency issues in detail in a different paper (see Prokhorov and Schmidt, 2008). Here we

only discuss how the main results of that work apply to stochastic frontier models. We use the setting of the

Generalized Method of Moments (GMM) to point out that copulas contain information that is not in general

redundant. So besides the computational advantages, copulas offer improvement in precision of estimation.

The plan of the paper is as follows. Section 2 sets the stage for the efficiency discussion by writing the

traditional QMLE as a GMM estimator and reviewing its properties. In Section 3, we describe how to use

copulas to allow for dependence over time. We use the GMM to motivate the two estimators that arise in

this setting. Section 4 addresses the computational issues associated with maximum likelihood estimation

of the stochastic frontier model, in which time dependence is not restricted. Section 5 presents simulation

results. Section 6 concludes.

2 Quasi-MLE and score-based GMM

Given the densities of v and u, one can derive the density of the composed error ε = v − u by convolution

as follows:

f(ε) =
∫ ∞

0

fv(ε + u)fu(u)du, (4)
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where fv and fu are the densities of v and u, respectively, and where we have omitted the it subscript for

simplicity.

This density is used in constructing the likelihood for the QMLE. For example, when v ∼ N(0, σ2
v) and

u ∼ N(0, σ2
u)+, this integral has a known form:

f(ε) =
2
σ

φ
( ε

σ

) [
1− Φ

(
ελ

σ

)]
, (5)

where σ2 = σ2
v+σ2

u, λ = σu

σv
, and φ and Φ are standard normal density and distribution functions, respectively

(see, e.g., Aigner et al., 1977). To obtain the QMLE, one would form the log-likelihood by summing the

log-likelihood contributions over all over i and t as in (3).

It is well known that, under regularity conditions, the QMLE is consistent so long as we have a correctly

specified marginal density fit even if there is no independence over t. In case there is in fact no independence

the QMLE standard errors need to be adjusted to account for that (see, e.g., Hayashi, 2000, Section 8.7).

However, the QMLE is generally inefficient. There is a more efficient estimator, which uses the same

information as the QMLE.

To motivate this improved estimator, we rewrite the QMLE as a GMM estimator based on the score

function. This well known representation uses the asymptotic equivalence of the first order condition that

the QMLE solves and the corresponding moment condition (see, e.g., Godambe, 1960). Let sit denote the

score of the density function fit, i.e.

sit = Oθ ln fit (6)

Note that sit is a function of the model parameters. We will denote the vector of these parameters by θ, so,

when v ∼ N(0, σ2
v) and u ∼ N(0, σ2

u)+, θ contains β, σ2
u, and σ2

v . Then, the QMLE first order condition is

∑

i

∑
t

sit = 0 (7)

and we can view the QMLE as a GMM estimator based on the moment condition:

Esi = 0, where si =
∑

t

sit. (8)

The key to improving efficiency of the QMLE is to notice that the equivalent GMM estimator uses a

suboptimal weighting matrix. Indeed, the moment condition in (8) involves a summation of score functions

over t. The theory of GMM suggests that we can do better. To be more precise, define the vector of T score

functions for each individual i:

s∗i =




si1

...

siT


 .

4



Note that each element of this vector has zero mean, because we are using a correctly specified density

function fit. Thus,

Es∗i (θ) = 0 (9)

and the GMM can be based on the stacked score functions.

We call the GMM estimator based on (9) the improved QMLE (IQMLE). The IQMLE is consistent as

long as the QMLE is. For both estimators, consistency involves a correct specification of the density function

fit. However, the IQMLE is in general more efficient than QMLE. Stacking the score functions, rather than

summing them, permits to account for correlation between them and results in a more precise estimator.

In a different paper, we prove this statement formally and consider several special cases when QMLE and

IQMLE are equally efficient (see Prokhorov and Schmidt, 2008). It is not surprising that when there is in

fact independence over t both QMLE and IQMLE are efficient. However, there are other correlation patterns

when it is impossible to improve on the traditional QMLE.

3 Copulas and pseudo MLE

Using the improved quasi likelihood is a way to get a more efficient estimator of stochastic frontier models.

However, this is not a way to model time dependence. The GMM estimation based on the stacked score

functions allows for correlation over time but does not allow to model it explicitly. Explicit modeling of time

dependence requires a joint density of (εi1, . . . , εiT ). Specifically, we want that (εi1, ..., εiT ) have marginal

cdf’s Fi1, . . . , FiT , respectively, and a joint distribution that allows arbitrary dependence. Copulas can do

that.

Briefly defined, a copula is a multivariate distribution function with uniform marginals (a rigorous treat-

ment of copulas can be found in Nelsen, 2006). Specifically, if we let C(w1, . . . , wT ) denote the copula cdf and

c(w1, . . . , wT ) denote the copula density, each wt, t = 1, . . . , T , is distributed as uniform on [0, 1]. Copulas

usually contain at least one parameter that models dependence between w’s. We give several examples of

copulas in the Appendix.

An important feature of copula functions is that they differ in the range of dependence they can cover.

Some copulas can cover the entire range of dependence – they are called comprehensive copulas – while

others can only accommodate a certain range of dependence. Suppose T = 2 and we measure dependence

by Pearson’s correlation coefficient. Then the Frank and Plackett copulas are comprehensive, the FGM can

model correlations only between about -0.3 and +0.3. This will be important in empirical applications be-

cause the copula-based likelihood we construct should be able to capture the degree of dependence contained

in the data. Clearly, we would like to use comprehensive copulas since we are looking to model arbitrary

degree of dependence.
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By a celebrated theorem due to Sklar (1959), if we are given the marginals and a continuous joint

distribution H(ε1, . . . , εT ), there exists a unique copula such that

H(ε1, . . . , εT ) = C(F1(ε1), . . . , FT (εT )) or

h(ε1, . . . , εT ) = c(F1(ε1), . . . , FT (εT )) · f1(ε1) · . . . · fT (εT ).

We now have a flexible joint distribution function, whose marginals we can specify in advance. We can use

it to form a joint log-likelihood. The log-likelihood will have the following form:

∑

i

(ln c(Fi1, . . . , FiT ) + ln fi1 + . . . + ln fiT ). (10)

Here the first term in the summation is the copula contribution to the likelihood. It reflects time dependence

between the cross sections and allows to model it separately from the cross sectional distributions. As before,

the marginal densities fit are functions of the parameter vector θ, but the copula term contains both θ and

the copula dependence parameter – we denote it by ρ.

We call the estimator of θ and ρ that maximizes (10) the Pseudo MLE. The prefix “pseudo” reflects the

fact that we do not know what the true joint distribution (εi1, ..., εiT ) is and use a possibly incorrect copula

to form it. Of course if the copula produces the true joint distribution, the PMLE is just the full MLE, and

the usual results on consistency and asymptotic efficiency of the MLE applies. However, this is not the case

in our setting and the question of relative efficiency of copula-based ML estimators is legitimate. Specifically,

we want to know if there is another estimator that is more efficient that the PMLE.

The GMM representation of MLE, which we used in previous section, will be useful here. The PMLE

solves the score equation that corresponds to the likelihood function in (10). This can be viewed as the

GMM estimator based on the moment conditions

E


 Oθ ln ci + Oθ ln fi1 + . . . + Oθ ln fiT

Oρ ln ci


 = 0, (11)

where ci = c(Fi1, . . . , FiT ). Again, the key to developing an improved estimator is the observation that the

moment conditions in (11) are obtained by applying a specific (not necessarily optimal) weighting scheme to

an extended set of valid moment conditions.

The alternative estimator is based on the moment conditions

E




Oθ ln fi1

. . .

Oθ ln fiT

Oθ ln ci

Oρ ln ci




= 0. (12)
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This estimator will be consistent so long as we have the correctly speficied marginal densities fit and the

PMLE is consistent. However, it is generally more efficient (see Prokhorov and Schmidt, 2008, for the proof).

We call it the improved PMLE (IPMLE).

Both PMLE and IPMLE allow to model arbitrary time dependence in panel stochastic frontier models

while offering important computational advantages. We discuss these advantages in the next section.

4 Evaluation of integrals

Theoretically, there are two ways of using copula in stochastic frontier models. First, one may define a joint

distribution for (u1, . . . , uT ) using a copula and then obtain the joint distribution of (ε1, . . . , εT ) from it by

integration. Second, one may use a copula to define a joint distribution for (ε1, . . . , εT ) directly using the

marginal distribution of εt = vt − ut, for all t. In the discussion above we have followed possibility two.

The reason for doing so is mainly computational: possibility one involves evaluation of a T -dimensional

integral over (u1, . . . , uT ) while possibility two involves only one-dimensional integration over ut. Moreover,

for commonly used one-sided distributions of ut such as half-normal or exponential the density of εt is already

known (see, e.g., Aigner et al., 1977). So possibility two is more practical.

Another method of modeling time dependence in stochastic frontier models is to adopt a multivariate

truncated distribution. This method allows for arbitrary dependence just like our copula approach but

imposes a critical computational task. Consider the multivariate truncated normal distribution used by

Pitt and Lee (1981). Let ui denote the vector of one-sided errors (ui1, . . . , uiT ) and let h(ui) denote its density

function. The one-sided error vector is distributed as multivariate truncated normal with the parameter

matrix Σ if

h(ui) = (2π)−T/2|Σ|−1/2 exp
{

1
2
u′iΣ

−1ui

}
/P0, (13)

where P0 is the probability that ui ≥ 0. The denominator term P0 is the following T -dimensional integral,

which is a function of Σ:

P0 =
∫ ∞

0

· · ·
∫ ∞

0

(2π)−T/2|Σ|−1/2 exp{1
2
u′iΣ

−1ui}dui, (14)

In order to form the likelihood we need the joint density of εi = (εi1, . . . , εiT ). As before, assume that

vit ∼ N(o, σ2
v) and that uit and vit are independent of each other. Then, the joint density can be obtained

as another T -dimensional integral over ui:

h(εi) =
∫ ∞

0

· · ·
∫ ∞

0

ΠT
t=1(2πσ2

v)−1/2 exp
{

1
2σ2

v

(εit + uit)2
}

h(ui) dui1 . . . duiT . (15)

Note that inside this integral there is the joint density h(ui), which is itself calculated using a T -dimensional

integral. The resulting likelihood is very difficult though not impossible to evaluate.
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The copula approach avoids T -dimensional integration altogether. However, it is not entirely free of

computational issues. Specifically, in order to obtain the PMLE using (10) or IPMLE using (12) we need to

evaluate the integral

F (ε) =

ε∫

−∞
f(ε)dε

for a given value of the parameter vector θ – these probabilities are used as the arguments of the copula

density function. However, this computational task in one-dimensional integration is much easier.
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Figure 1: Density and cdf of the composed error ε with σ = 1

In the simulations that follow we use the setting in which v is normal and u is truncated normal – the

relevant composed error density is given in (5). It is worth discussing the details of the integral computation

in this setting. First note that Fσ(ε) = F1(ε/σ), where the subscript denotes the value of σ used in F . So

we can express quantiles of F (ε) for any σ as σ times the corresponding quantile for σ = 1. We therefore

only need to evaluate the integral for σ = 1. Wang et al. (2008) tabulate some quantiles of this distribution

using an alternative parametrization, in which σ is replaced with σv

√
1 + λ2. They obtain their quantiles by

simulation. We chose the parametrization (σ, λ) rather than (σv, λ) because it bounds the variance of each

error component by the value of σ2. This is convenient because given σ the quantiles do not become large

negative numbers as λ increases (the cdf does not flatten out). As can be seen from Figure 1, our cdf is

effectively in the [0, 1] range on the domain [−4, 4] for all λ. We also use numerical integration rather than

simulation. Our experience suggests that numeral integration is substantially faster than simulation for the

same level of precision. We give our quantiles in Table 1 (a GAUSS code, which can be used to obtain any

number of quantiles at desired precision, is available from the authors).
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5 Monte Carlo

In this section we study the finite-sample behavior of the score-based estimators discussed in previous sec-

tions. So we conduct a simple Monte Carlo experiment.

Realizations are drawn from a bivariate distribution obtained using normal/half-normal composed error

marginals and the Farlie-Gumber-Morgenstern copula. The true parameter values in both marginals are

σu = σv = 1, σ =
√

2, λ = 1; in copula, ρ is set equal to 0.9. Simulation from N(0, σ2
u)+, is done by

repeatedly sampling from N(0, σ2
u) until there are enough nonnegative observations. Simulation from the

FGM copula is done using the conditional distribution method (see, e.g. Nelsen, 2006, p. 37):

• start by simulating one cross section of half normal composed errors ε1

• obtain u1 ≡ F (ε1) numerically as described in previous section

• generate t ∼ U(0, 1)

• set u2 = C2(u2|u1 = t) ≡ ∂C(u1,u2)
∂u1

|u1=t

• recover ε2 = F−1(u2)

Then, the pairs (ε1, ε2) are normal/half-normal composed errors with copula C(u1, u2).

We then obtain the QMLE and PMLE using various copulas. The estimates are given in Table 2.

Several features of Table 2 are worth discussing. First, there is an upward bias in estimates that seems

to vanish only at N = 10, 000. Second, there is a striking similarity between the QMLE, the FGM-based

PMLE and the PMLE’s based on the incorrect copulas. All the estimates of the marginal distribution are

close to one another and are insignificantly different from their true values even for the smallest sample size.

We also note that standard errors of the PMLE are usually smaller (though not much smaller) than those

of the QMLE even for the incorrect copulas (particularly for the two larger samples).

6 Concluding Remarks

In this paper we propose a simple way of accounting for dependence between cross sections in panel stochastic

frontier models. Compared to available alternatives, this method is simple and flexible. It allows modeling

arbitrary dependence and does not involve much computational costs. An interesting extension of this paper

would be to compare robustness of such copula-based estimators with that of estimators based on the scaling

property. After all both approaches may involve an incorrectly specified joint likelihood function.
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A Some copula families

- Independence or product copula:

C(u1, . . . , uT ) = u1 × . . .× uT

- Normal copula:

C(u1, . . . , uT ; R) = ΦT (Φ−1(u1), . . . , Φ−1(uT ); R)

where Φ denotes the normal cdf and R denotes the covariance matrix.

- Gumbel copula:

C(u1, . . . , uT ; ρ) = exp
[
−((− ln u1)ρ + . . . + (− ln uT )ρ)1/ρ

]
, ρ ∈ [1,∞)

- Clayton copula:

C(u1, . . . , uT ; ρ) = max
[
(u−ρ

1 + . . . + u−ρ
T )−1/ρ, 0

]
, ρ ∈ [−1,∞) Y {0}

- Farlie-Gumbel-Morganstern (FGM) copula:

C(u1, . . . , uT ; ρ) =
T∏

t=1

ut(1 +
T∑

t=2

∑

1≤j1<...<jk≤T

ρj1...jk
(1− uj1) . . . (1− ujk

))

where ρj ∈ [−1, 1]

- General copula by inversion

· start with cdf’s K(x1, . . . , xT ), u1 = F1(x1),. . .,uT = FT (xT )

· obtain x1 = F−1
1 (u1),. . . ,xT = F−1

T (uT ) and

C(u1, . . . , uT ) = K(F−1
1 (u1), . . . , F−1

T (uT ))

- Archimedean copulas

· start with a generator function ϕ : (0, 1) → [0,∞], ϕ′ < 0 and ϕ′′ > 0

· obtain

C(u1, . . . , uT ) = ϕ−1(ϕ(u1) + . . . + ϕ(uT ))
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· multivariate copulas can often be obtained recursively from a bivariate copula (not generally true

for other families)

· e.g., Gumbel copula is Archimedean with ϕ(t) = (− log t)ρ, Frank copula – with ϕ(t) = log 1−e−ρ

1−e−ρt
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Table 1: Quantiles of normal/half-normal error distribution: σ = 1

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 -1.2816 -0.8416 -0.524 -0.2536 0 0.2536 0.5248 0.8416 1.2816

0.1 -1.3568 -0.9184 -0.6016 -0.332 -0.0792 0.1736 0.4432 0.76 1.1984

0.2 -1.4224 -0.9872 -0.6744 -0.4064 -0.156 0.0944 0.3616 0.6752 1.1096

0.3 -1.4768 -1.048 -0.7392 -0.4752 -0.228 0.0184 0.2816 0.5904 1.0176

0.4 -1.5208 -1.0992 -0.7952 -0.536 -0.2944 -0.052 0.2064 0.508 0.9264

0.5 -1.556 -1.1416 -0.8432 -0.5896 -0.3528 -0.1168 0.136 0.4304 0.8376

0.6 -1.5816 -1.1752 -0.884 -0.6352 -0.404 -0.1744 0.0712 0.3584 0.7536

0.7 -1.6016 -1.2016 -0.9168 -0.6744 -0.4488 -0.2248 0.0144 0.292 0.6752

0.8 -1.6152 -1.2224 -0.9432 -0.7064 -0.4864 -0.268 -0.0368 0.2328 0.6032

0.9 -1.6248 -1.2384 -0.964 -0.7328 -0.5184 -0.3056 -0.0808 0.18 0.5376

1.0 -1.632 -1.2504 -0.9808 -0.7536 -0.5448 -0.3384 -0.12 0.1328 0.4784

1.1 -1.6368 -1.2592 -0.9936 -0.7712 -0.5672 -0.3656 -0.1536 0.0912 0.4248

1.2 -1.6392 -1.2656 -1.004 -0.7856 -0.5856 -0.3888 -0.1824 0.0544 0.3776

1.3 -1.6416 -1.2704 -1.012 -0.7968 -0.6008 -0.4088 -0.208 0.0224 0.3344

1.4 -1.6424 -1.2736 -1.0176 -0.8064 -0.6136 -0.4256 -0.2304 -0.0064 0.296

1.5 -1.6432 -1.276 -1.0224 -0.8136 -0.624 -0.44 -0.2488 -0.0312 0.2616

1.6 -1.644 -1.2776 -1.0264 -0.8192 -0.6328 -0.4528 -0.2656 -0.0536 0.2304

1.7 -1.644 -1.2792 -1.0288 -0.824 -0.64 -0.4632 -0.28 -0.0736 0.2024

1.8 -1.644 -1.28 -1.0304 -0.828 -0.6464 -0.472 -0.2928 -0.0904 0.1776

1.9 -1.6448 -1.28 -1.032 -0.8304 -0.6512 -0.4792 -0.3032 -0.1064 0.1544

2.0 -1.6448 -1.2808 -1.0336 -0.8328 -0.6552 -0.4856 -0.3128 -0.12 0.1344

2.1 -1.6448 -1.2808 -1.0344 -0.8352 -0.6584 -0.4912 -0.3216 -0.1328 0.1152

2.2 -1.6448 -1.2808 -1.0344 -0.8368 -0.6616 -0.496 -0.3288 -0.1432 0.0984

2.3 -1.6448 -1.2808 -1.0352 -0.8376 -0.664 -0.5 -0.3352 -0.1536 0.0832

2.4 -1.6448 -1.2816 -1.0352 -0.8384 -0.6656 -0.504 -0.3408 -0.1624 0.0688

2.5 -1.6448 -1.2816 -1.036 -0.8392 -0.6672 -0.5064 -0.3456 -0.1704 0.056

2.6 -1.6448 -1.2816 -1.036 -0.84 -0.6688 -0.5088 -0.3504 -0.1776 0.0448

2.7 -1.6448 -1.2816 -1.036 -0.84 -0.6696 -0.5112 -0.3544 -0.184 0.0336

2.8 -1.6448 -1.2816 -1.036 -0.8408 -0.6704 -0.5136 -0.3576 -0.1896 0.024

2.9 -1.6448 -1.2816 -1.036 -0.8408 -0.6712 -0.5152 -0.3608 -0.1952 0.0144

3.0 -1.6448 -1.2816 -1.036 -0.8408 -0.672 -0.516 -0.3632 -0.2 0.0064

3.1 -1.6448 -1.2816 -1.036 -0.8408 -0.672 -0.5176 -0.3656 -0.204 -0.0016

3.2 -1.6448 -1.2816 -1.036 -0.8408 -0.6728 -0.5184 -0.368 -0.208 -0.0088

3.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6728 -0.5192 -0.3696 -0.212 -0.0152

3.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6736 -0.52 -0.3712 -0.2152 -0.0216

3.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6736 -0.5208 -0.3728 -0.2184 -0.0272

3.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6736 -0.5216 -0.3744 -0.2208 -0.0328

3.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6736 -0.5216 -0.3752 -0.2232 -0.0376

3.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6736 -0.5224 -0.3768 -0.2256 -0.0424

3.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5224 -0.3776 -0.228 -0.0472
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λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5224 -0.3784 -0.2296 -0.0512

4.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5232 -0.3792 -0.232 -0.0544

4.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5232 -0.38 -0.2336 -0.0584

4.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5232 -0.3808 -0.2352 -0.0616

4.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.5232 -0.3808 -0.236 -0.0648

4.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3816 -0.2376 -0.068

4.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3816 -0.2384 -0.0704

4.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3824 -0.24 -0.0736

4.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3824 -0.2408 -0.076

4.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3832 -0.2416 -0.0784

5.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3832 -0.2424 -0.08

5.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3832 -0.2432 -0.0824

5.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.244 -0.0848

5.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.2448 -0.0864

5.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.2456 -0.088

5.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.2464 -0.0896

5.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.2464 -0.0912

5.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.384 -0.2472 -0.0928

5.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2472 -0.0944

5.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.248 -0.096

6.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.248 -0.0968

6.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2488 -0.0984

6.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2488 -0.0992

6.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2496 -0.1008

6.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2496 -0.1016

6.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2496 -0.1024

6.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2504 -0.1032

6.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2504 -0.1048

6.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2504 -0.1056

6.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2512 -0.1064

7.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2512 -0.1072

7.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2512 -0.108

7.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2512 -0.1088

7.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.2512 -0.1088

7.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.1096

7.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.1104

7.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.1112

7.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.112

7.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.112

7.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.1128

8.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3848 -0.252 -0.1136
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λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.252 -0.1136

8.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1144

8.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1144

8.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1152

8.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1152

8.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.116

8.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.116

8.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1168

8.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1168

9.0 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1176

9.1 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1176

9.2 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1176

9.3 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1184

9.4 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1184

9.5 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1192

9.6 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1192

9.7 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1192

9.8 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.1192

9.9 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.12

10 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2528 -0.12

20 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

30 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

40 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

50 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

60 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

70 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

80 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

90 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256

100 -1.6448 -1.2816 -1.036 -0.8416 -0.6744 -0.524 -0.3856 -0.2536 -0.1256
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Table 2: QMLE and PMLE with standard errors for following true parameter values: µ1 = µ2 = 0, σ1 =

σ2 =
√

2 = 1.4142, λ1 = λ2 = 1, ρFGM = 0.9

QMLE N = 100 N = 1, 000 N = 10, 000

µ1 0.2487(0.3981) 0.0901(0.1336) -0.0607(0.0628)

σ1 1.5946(0.2558) 1.4668(0.0852) 1.3640(0.0347)

λ1 1.2972(0.7479) 1.1717(0.2435) 0.9064(0.0989)

µ2 0.0588(0.6429) 0.1014(0.1368) 0.0263(0.0493)

σ2 1.3835(0.3488) 1.4561(0.0912) 1.4393(0.0303)

λ2 0.9780(1.0058) 1.1481(0.2428) 1.0540(0.0832)

FGM N = 100 N = 1, 000 N = 10, 000

µ1 0.2878(0.3409) 0.1089(0.1241) -0.0429(0.0551)

σ1 1.6021(0.2306) 1.4775(0.0806) 1.3724(0.0311)

λ1 1.3520(0.6732) 1.2011(0.2312) 0.9321(0.0883)

µ2 0.1732(0.6577) 0.1081(0.1343) 0.0197(0.0541)

σ2 1.4448(0.3822) 1.4578(0.0904) 1.4340(0.0328)

λ2 1.1452(1.1484) 1.1538(0.2393) 1.0398(0.0901)

ρ 0.8043(0.2898) 0.8458(0.0771) 0.9300(0.0223)

Plackett N = 100 N = 1000 N = 10000

µ1 0.2717(0.3411) 0.1097(0.1286) -0.0381(0.0580)

σ1 1.5977(0.2318) 1.4783(0.0832) 1.3748(0.0329)

λ1 1.3538(0.6772) 1.2031(0.2395) 0.9407(0.0933)

µ2 0.1304(0.7168) 0.1050(0.1355) 0.0221(0.0477)

σ2 1.4218(0.4101) 1.4557(0.0908) 1.4362(0.0294)

λ2 1.0866(1.2197) 1.1508(0.2415) 1.0480(0.0804)

ρ 2.2164(0.6642) 2.3598(0.2037) 2.4458(0.0646)

Frank N = 100 N = 1, 000 N = 10, 000

µ1 0.2775(0.3399) 0.1068(0.1306) -0.0339(0.0547)

σ1 1.6003(0.2314) 1.4766(0.0842) 1.3776(0.0312)

λ1 1.3569(0.6770) 1.1965(0.2424) 0.9471(0.0884)

µ2 0.1402(0.6335) 0.1053 (0.1367) 0.0248(0.0464)

σ2 1.4264(0.3617) 1.4566(0.0915) 1.4379(0.0287)

λ2 1.0997(1.0752) 1.1490(0.2430) 1.0510(0.0783)

ρ 1.6228(0.6262) 1.8069(0.1941) 1.9112(0.0597)
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