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Abstract

It is shown that e¢ cient GMM (generalized method of moments) estimation of
a linear model corresponds to standard IV (instrumental variables) estimation of
this model, after transforming it such (as in GLS) that its resulting disturbances
have a scalar covariance matrix, while using as instruments the original instru-
ments linearly transformed by the transpose of the inverse of the matrix used to
transform the model. This correspondence between e¢ cient GMM and classic IV
can be exploited to convert IV measures for the strength of instrumental variables
in terms of concentration parameters for use in the more complex GMM context.
For ine¢ cient IV estimates in models where the disturbances are dependent, and
more generally for GMM employing a suboptimal weighting matrix, such measures
can be developed by referring to the asymptotic precision matrix of particular co-
e¢ cient estimates. These measures for (marginal) instrument strength are then
established for various particular implementations of IV and GMM for dynamic
panel data models with time-invariant unobserved heterogeneity. Calculations for
particular parametrizations allow to better understand aspects of the actual perfor-
mance of the popular Anderson-Hsiao, Arellano-Bond and Blundell-Bond (system)
estimators in samples of empirically relevant sizes.
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1 Introduction

It is well known that even in very large samples the use of weak instruments leads to
(squared) estimation errors with a mean or median substantially away from zero, see
Bound et al. (1995). Especially the use of a great number of weak instruments seems
counterproductive, see Donald and Newey (2001). Instrumental variable based estimation
techniques are very popular to estimate dynamic panel data relationships. Employing
panel data is very attractive, because they allow to tackle particular forms of unobserved
heterogeneity. However, to neutralize bias due to unobserved individual speci�c e¤ects
that may be correlated with the observed heterogeneity panel data relationships have to
be transformed, and in dynamic models this leads to contemporaneous correlation of the
transformed lagged-dependent variable regressors and the transformed disturbances and
possibly to serial correlation of the disturbances. In microeconometric panels, in which
the time-series sample size is typically �nite and small while the cross-section sample
size may be large, this leads to huge bias of the inconsistent least-squares estimator, but
instrumental variables estimators can be designed which are consistent.
The popular IV (instrumental variables, or two-stage least-squares), see Anderson and

Hsiao (1982), and GMM (generalized method of moments) estimators, see Arellano and
Bond (1991) and Blundell and Bond (1998), for transformed dynamic panel data models
do not necessarily exploit external instrumental variables. Internal ones su¢ ce, since
higher-order lags of (possibly transformed) regressors constitute an abundance of instru-
ments. However, many of these instruments contain basically the same though lagged
information, and therefore the marginal utility of extra higher-order lagged instruments
may diminish quickly. Yet another worry is that the actual strength or relevance as
such of these internal instruments is to a large extend determined by the true parameter
values of the DGP (data generating process) which they should facilitate to estimate
accurately. When the lagged dependent variable coe¢ cient is close to either zero or one
the instrument strength of particular lagged variables may either be reasonable or just
pi­ ing, depending on what particular transformation (�rst-di¤erencing or not) has been
employed.
The adverse e¤ects of using too many instruments when estimating dynamic panel

data models have been established in various simulation studies and explained analyti-
cally in terms of the order of bias, see Bun and Kiviet (2006). Practitioners seem generally
well aware that, although the standard asymptotic e¢ ciency improves with each extra
valid instrument, even when it is weak, for good performance in �nite sample one bet-
ter limits the degree of overidenti�cation by simply skipping instruments that involve
high-order lags. However, hard analytic evidence on the actual strength of individual
or groups of instruments, even in simple AR(1) panel data models, is still very scarce.
Some results have been obtained in Blundell and Bond (1998) on the strength of par-
ticular instruments when the autoregressive parameter is close to unity, which supports
using a system panel data estimator when the autoregressive coe¢ cient is high, because
of the strength of lagged �rst-di¤erenced variables for the untransformed panel model
under particular initial conditions of the autoregressive process. However, these results
just pertain to the simple case where the sample size in the time-series dimension is so
small that the number of instruments equals the number of regressors and GMM sim-
pli�es to just identi�ed IV and choosing a weighting matrix becomes irrelevant. Bun
and Windmeijer (2007) examine the system GMM estimator and its constituent levels
and �rst-di¤erences components for larger time-series sample sizes, but they do not re-
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ally focus on panel data estimators, but on cross-section estimators which exploit just
one time-shift of the panel. Moreover, they just consider the 2SLS estimator, i.e. focus
on a very naive form of weighting matrix, while neglecting the serial dependence of the
transformed disturbances.
In this study we shall establish characterizations of the strength of individual instru-

ments, subsets of the instrumental variables and the full set of instruments as they are
generally used in the Anderson and Hsiao (1982) and related IV estimators, the Arellano
and Bond (1991) e¢ cient GMM dynamic panel data model estimator and in the GMM
system estimator, which was put forward �rst by Arellano and Bover (1995). We focus
on IV and 1-step GMM assuming cross-section and time-series homoskedasticity and in-
dependence of the underlying idiosyncratic error component. In measuring instrument
strength we do take the time-series dependence of the disturbances due to the required
model transformation into account, and we consider general forms of GMM covering
both optimal and suboptimal weighting of the exploited orthogonality conditions. The
major results concern the simple panel AR(1) model with individual speci�c e¤ects, but
our approach allows as well to cover cases which involve higher-order lagged dependent
regressor variables and further weakly exogenous or endogenous regressors, employing
any choice regarding the set of internal and possibly external valid instruments.
The strength of instruments can be expressed in terms of the so-called concentration

parameter, see (references in) Staiger and Stock (1997). However, this approach has only
been developed for standard linear IV models with i.i.d. disturbances and not really
yet for GMM and not for panels. For linear models with contemporaneous correlation
between some of the regressors and the disturbances and where the disturbances have a
nonscalar covariance matrix, as is the case in the dynamic panel data models that we are
interested in here, GMM improves on the e¢ ciency of IV estimators in a comparable way
as GLS (generalized least-squares) does for OLS estimators in linear models with prede-
termined regressors and disturbances having a nonscalar covariance matrix. We will show
that e¢ cient GMM estimation of a linear model corresponds to standard IV estimation
of a GLS-type transformed model exploiting the original instruments after transforming
these by the transpose of the inverse of the GLS-type transformation. Along these lines
standard IV approaches regarding measuring the strength of instrumental variables can
be translated into the more complex situation of GMM estimation. However, in the con-
text of estimating dynamic panel data models, it also happens that IV is used whereas
the disturbances have a nonscalar covariance matrix, or that GMM is employed using a
suboptimal weighting matrix. For these situations the concentration parameter approach
regarding measuring instrument strength requires some adaptations, which we provide by
referring to correspondences between concentration parameters and the usual asymptotic
measure for estimator precision.
After developing these generalizations of concentration parameters for one-dimensional

data we will consider them for various forms of IV and GMM implementations for dy-
namic panel models and analyse the strength of the instrumental variables that corre-
spond to subsets (either determined by lag length or by type of moment condition) of the
exploited instrumental variables. We focus on models with cross-section homoskedastic-
ity which in 1-step GMM leads to a very simple operational form of the optimal GMM
weighting matrix for the Arellano-Bond estimator, but just to suboptimal operational
(and more sophisticated nonoperational) weighting matrices for the system estimator,
see Kiviet (2007b). Various calculations and simulations [there are no simulations yet in
this version of the paper] allow to better understand the actual performance of the pop-
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ular Anderson-Hsiao, Arellano-Bond and Blundell-Bond estimators in samples of various
sizes. In particular we �nd that the classic IV based measures are often misleading when
applied naively to models with dependent disturbances or which are not estimated by
2SLS but by genuine GMM.
In the next Section 2 we recapitulate standard linear IV and GMM results and es-

tablish that e¢ cient GMM corresponds to IV after appropriate transformation of the
model and the instruments. This allows to generalize standard notions of instrument
weakness, expressed by �rst-stage F statistics or by so-called concentration parameters,
for the linear GMM context. We also suggest simple alternative measures of instrument
strength for situations where IV is employed to models where the disturbances have a
nonscalar covariance matrix, or where GMM uses a suboptimal weighting matrix. In
Section 3 we present the popular IV and GMM dynamic panel data model estimators,
paying special attention to the various moment conditions that can be exploited and how
they enter variants of the Anderson-Hsiao, Arellano-Bond and Blundell-Bond estimators
respectively. In Section 4 we establish for the various particular cases the measures of
instrument weakness for all (and for subsets of) the instruments, and present graphs
containing numerical results for a few cases of substantial practical interest [this section
is yet incomplete]. Finally, Section 5 concludes.

2 IV results and their GMM counterparts

In the �rst subsection of this section we introduce notation to express some standard
textbook results (without proof) on OLS and GLS and on IV and GMM for linear
models for one-dimensional data sets. For a fuller treatment see, for instance, Davidson
and MacKinnon (2004). In subsection 2.2 we present results developed for the classic
IV context to express instrument weakness, see Staiger and Stock (1997). We focus on
single equation models with just one endogenous regressor and an arbitrary number of
predetermined regressors, because this is the prevalent case in dynamic panel data models.
We highlight the correspondence between concentration parameter based measures for
instrument strength and the precision of the endogenous regressor coe¢ cient estimate.
This correspondence inspires a modi�cation of the classic concentration parameter when
IV is applied in models with disturbances that have a nonscalar covariance matrix, as
occurs in Anderson-Hsiao dynamic panel data model estimators. Next, in subsection
2.3, we demonstrate what transformations link e¢ cient GMM with standard IV in linear
models and how this link can be exploited to express instrument strength in a GMM
context by transforming measures developed already for the IV context. These results
directly apply to the e¢ cient 1-step Arellano-Bond estimator, but not to 1-step Blundell-
Bond estimation, because this involves a suboptimal weighting matrix. However, here
again an appropriate instrument strength measure can be developed by referring to the
precision of the estimator. Finally, in subsection 2.4, we present a generic form of linear
model for two-dimensional panel data sets, focussing on the case where the cross-section
sample size N may grow large and the time-series sample size T is relatively small. We
introduce a notation such that all measures for instrument strength introduced for one-
dimensional data sets are directly applicable for two-dimensional panel data sets and we
also address instrument strength measures for 2-step GMM implementations [???].
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2.1 Standard results for one-dimensional data sets

Consider the linear regression model for a scalar dependent variable observed for N
individual units i = 1; :::; N given by

yi = Xi� + ui; (1)

where X 0
i and � are K � 1 vectors of explanatory variables and corresponding regression

coe¢ cients respectively. De�ning the N �K regressor matrix X = [X 0
1 X

0
2 ::: X

0
N ]
0; we

can collect all data in the model
y = X� + u; (2)

where the vectors of dependent variables y and of random disturbances u are both N�1:
We assume that matrix X has rank K; whereas E(u) = 0 and V ar(u) = �2u
 with 

positive de�nite. To avoid underidenti�cation we shall make the innocuous additional
assumption tr(
) = N: The �xed parameters � and �2u are unknown, and initially we
will assume that 
 is fully known, whereas y and the regressor variables X have been
observed.
The OLS (ordinary least-squares) estimator of � is de�ned by

�̂OLS � (X 0X)�1X 0y; (3)

and the GLS (generalized least-squares) estimator by

�̂GLS � (X 0
�1X)�1X 0
�1y: (4)

These are obtained as argmin(y � X�)0(y � X�) and argmin(y � X�)0
�1(y � X�)
respectively.
As is well known, the N �N matrix 
�1 can be decomposed such that 
�1 = 		0;

where 	 is in fact non-unique and may be chosen upper or lower triangular. The GLS
estimator can also be represented as the OLS estimator of a transformed model, viz. the
model that is obtained after premultiplying (2) by the transformation matrix 	0; i.e.

y� = X�� + u�; (5)

where y� = 	0y; X� = 	0X; u� = 	0u with E(u�) = 0 and V ar(u�) = �2u	
0
	 = �2uIN ;

because

�̂
�
OLS � (X�0X�)�1X�0y� (6)

= (X 0		0X)�1X 0		0y = �̂GLS:

Note that above we just discussed the algebraic properties and not the statistical
properties of �̂OLS and �̂GLS � ��OLS: The statistical properties depend on the joint
distribution of (X; u): If X and u are independent (X is exogenous) then both estimators
are unbiased, but GLS is generally more e¢ cient. When the regressors are not necessarily
exogenous but just contemporaneously uncorrelated with the disturbances, i.e.

E(ui j Xi) = 0; i = 1; :::; N; (7)

asymptotic properties can be established under some additional auxiliary assumptions.
Then both estimators are consistent and GLS is asymptotically e¢ cient. And, when
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 is unknown but can be estimated consistently by 
̂ then the FGLS (feasible GLS)
estimator, in which 
 is replaced by 
̂; can be shown to be asymptotically equivalent to
GLS and is therefore e¢ cient too.

For models where some regressors and the disturbance are contemporaneously corre-
lated (some regressors and the regressand are jointly dependent) and where alternative
moment conditions in terms of so-called instrumental variables can be made, the follow-
ing method of moment estimators are available. Let Z = [Z 01 Z

0
2 ::: Z

0
N ]
0 be an N � L

matrix of rank L; where L � K: Then, provided Z 0X has rank K; the GMM (generalized
method of moments) estimator using instruments Z and the L� L weighting matrix W
is

�̂GMM;Z(W ) � (X 0ZWZ 0X)�1X 0ZWZ 0y: (8)

This is obtained as argmin(y �X�)0ZWZ 0(y �X�): The major condition for this esti-
mator to be consistent is instrument validity, i.e.

E(ui j Zi) = 0; i = 1; :::; N: (9)

This estimator is asymptotically e¢ cient when plimN!1W is proportional to the inverse
of the covariance matrix of the limiting distribution of N�1=2Z 0(y�X�): Assuming that

E(uiuj j Zi; Zj) = �2u
ij; i; j = 1; :::; N (10)

and
plimN�1=2Z 0(y �X�) � N

�
0; plimN�1Z 0
Z

�
; (11)

we �nd that

�̂EGMM;Z � �̂GMM;Z((Z
0
Z)�1) = [X 0Z(Z 0
Z)�1Z 0X]�1X 0Z(Z 0
Z)�1Z 0y (12)

is the e¢ cient GMM estimator exploiting instruments Z: The IV (instrumental variable,
or two-stage least-squares) estimator1 of � in model (2) exploiting instruments Z, de�ned
as

�̂IV;Z � �̂GMM;Z((Z
0Z)�1) = [X 0Z(Z 0Z)�1Z 0X]�1X 0Z(Z 0Z)�1Z 0y; (13)

is e¢ cient only when 
 = IN : Note that the IV and EGMM estimators are obtained
when using weighting matrix W equal to (Z 0Z)�1 and (Z 0
Z)�1 respectively. Probably
even more e¢ cient estimators than EGMM can be obtained by extending or changing
the set of L valid instruments Z and adapting the weighting matrix accordingly.
Note that when L = K; thus Z 0X is invertible, �̂GMM;Z(W ) specializes for any W to

�̂sIV;Z = (Z
0X)�1Z 0y and the choice ofW is irrelevant, provided it has rankK: The reason

is that �̂sIV;Z already fully satis�es theK sample moment conditions Z 0(y�X�̂sIV;Z) = 0:
Hence, knowledge of 
 cannot be exploited to improve the e¢ ciency of method of moment
estimators using instruments Z when L = K, although 
 does a¤ect its actual e¢ ciency.
In particular, when Z = X we obtain �̂sIV;X = �̂OLS: Whereas, when the instruments
Z = 
�1X are employed to the untransformed model (2), or when the instruments 	0X

1In the literature this estimator is often addressed as the GIV (generalized instrumental variable)
estimator and IV is then used exclusively for the special case where L = K and �̂IV;Z = (Z

0X)�1Z 0y:
Here we shall use "generalized" just to indicate estimators which aim to take 
 into account, and special
results for the L = K case will be addressed as sIV (simple IV).
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are employed to the transformed model (5), we obtain �̂sIV;
�1X = �̂
�
sIV;	0X = �̂GLS: This

illustrates that (even when L = K) the e¢ ciency may change when one transforms the
model and/or the instruments (assuming that the instruments remain valid).
A feasible GMM (FGMM) estimator is asymptotically equivalent with EGMM if it

uses 
̂ instead of 
 in the formula for EGMM provided

plim
N!1

1

N
Z 0(
̂� 
)Z = O: (14)

2.2 Measuring instrument weakness

In a classic linear IV context, where we have 
 = IN ; instrument strength is often mea-
sured in terms of concentration parameters or of (population equivalents of noncentrality
parameters of) F statistics in reduced form equations. IfK = 1 the single regressor which
is jointly dependent with the disturbances u is simply regressed on all the instruments
and their joint signi�cance is tested by an F-test. Generalizations have been discussed
in the literature for cases where there are more endogenous and also some exogenous
regressors, see for instance the review by Stock et al. (2002) and Stock and Yogo (2005).
When we later specialize to the standard �rst-order dynamic panel data model we will
have estimating equations in which we have just one regressor which is jointly dependent
with the disturbances, with or without further weakly-exogenous regressors. Therefore
we will focus below on the case with just one endogenous regressor. We will also have to
pay attention to two cases that as it seems have not yet been addressed in the literature,
viz. (i) where 
 6= IN or (ii) where the reduced form equation is not explicitly speci�ed
and could also have a nonscalar covariance matrix of its disturbances.
We assume that the �rst column x1 of X = (x1 X2) contains the single endogenous

regressor, whereas the X2 can and will be used as instruments. Hence, these X2 are
incorporated in the N � L matrix Z = (Z1 X2); where Z1 is an N � L1 matrix of
L1 = L�K+1 instruments additional to X2: The focus is now on the F-test which tests
the joint signi�cance of Z1 in the reduced form regression of x1 on Z; supposing this has
i.i.d. disturbances. This F-test statistic is given by

F (Z1;x1;Z) =
N � L
L1

x01MX2x1 � x01MZx1
x01MZx1

=
N � L
L1

x01PMX2
Z1x1

x01MZx1
; (15)

where for any full column rank N � M matrix A we de�ne the projections PA �
A(A0A)�1A0 and MA � IN � PA; and we made use of the general result that if A = (A1
A2) we have PA = PA1 + PMA1

A2 : For the very special case where K = 1 and X2 is void
so that Z1 = Z (15) specializes to

F (Z;x1;Z) =
N � L
L

x01PZx1
x01MZx1

: (16)

Decomposing Z1 into two partitions Z1 = (Z11 Z12); where Z11 has L11 columns and
Z12 has L12 = L1 � L11; one can also express the marginal strength of exploiting the
instruments Z11 in addition to the instruments Z2 = (Z12 X2) by the following F statistic

F (Z11;x1;Z) =
N � L
L11

x01MZ2x1 � x01MZx1
x01MZx1

=
N � L
L11

x01PMZ2
Z11x1

x01MZx1
: (17)
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Population equivalents of the above F-test statistics and corresponding concentration
parameter based measures can be expressed as follows. Assuming stationarity of all
variables involved, let for i = 1; 2 the general N �Mi data matrices Ai have full column
rank, whereas

�A0iAi � plim
N!1

1

N
A0iAi and �A01A2 � plim

N!1

1

N
A01A2;

with �A0iAi invertible. Then we can consider the concentration parameter based expres-
sions

C(Z1;x1;Z) �
(�x01Z1 � �x01X2�

�1
X0
2X2
�X0

2Z1
)[�Z01Z1 � �Z01X2�

�1
X0
2X2
�X0

2Z1
]�1(�Z01x1 � �Z01X2�

�1
X0
2X2
�X0

2x1
)

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

;

(18)

C(Z;x1;Z) �
�x01Z�

�1
Z0Z�Z0x1

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

(19)

and
C(Z11;x1;Z) �

(�x01Z11 � �x01Z2�
�1
Z02Z2

�Z02Z11)[�Z011Z11 � �Z011Z2�
�1
Z02Z2

�Z02Z11 ]
�1(�Z011x1 � �Z011Z2�

�1
Z02Z2

�Z02x1)

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

;

(20)
and the population (or noncentrality parameter) equivalents of the F-test statistics

�F (Z1;x1;Z) �
N � L
L1

C(Z1;x1;Z) and similarly for �F (Z;x1;Z) and �F (Z11;x1;Z):

(21)
Stock and Yogo (2005) develop critical values of the above measures regarding their
potential to signal serious �nite sample bias of IV estimators (as a fraction of the OLS
bias) and particular size distortions of standard asymptotic Wald tests. A simple rough
and ready rule of thumb resulting from this is that instruments are seriously weak when
actual (or population) F statistics are below 10. As it seems the various results on
instrument weakness measures obtained for classic linear static IV models have not yet
been generalized for GMM. Hall (2005, Section 6.2.1) only discusses results for classic
static IV. We will make an attempt here to generalize some of these results for GMM
and for IV with nonscalar covariance of the disturbances and implement and verify these
for the estimation of transformed dynamic panel data models.

There is a direct correspondence between the above measures and the actual asymp-
totic precision of the IV estimator for the coe¢ cient of x1: When V ar(u) = �2uIn then,
under regularity su¢ cient for invoking a central limit theorem, one has

plim
N!1

N1=2(�̂IV;Z � �) � N

 
0; �2u plim

N!1

�
1

N
X 0PZX

��1!
; (22)

and for the coe¢ cient �1 of regressor x1 this implies

plim
N!1

N1=2(�̂1;IV;Z � �1) � N

 
0; �2u plim

N!1

�
1

N
x01PZMX2PZx1

��1!
: (23)
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Since x01PZMX2PZx1 = x
0
1(PZ � PX2)x1 = x01PMX2

Z1x1 we �nd

AsyV ar(�̂1;IV;Z) = �
2
u plim
N!1

�
1

N
x01PMX2

Z1x1

��1
;

and hence, we can express (18) equivalently in terms of a precision based measure de�ned
as

CI(Z1;x1;Z) �
[AsyV ar(�̂1;IV;Z)]

�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

= C(Z1;x1;Z); (24)

where the subscript I refers to 
 = I: The denominator of (24) corresponds to the
(consistently estimated) ratio of the variances of the reduced form and of the structural
form disturbances. Note that CI(Z;x1;Z); which concerns the special case K = 1; �ts
into this de�nition, with AsyV ar(�̂1;IV;Z) simplifying to �

2
u plimN!1(

1
N
x01PZx1)

�1:
The marginal strength measure C(Z11;x1;Z) of (20) is related to estimator precision

as follows. Note that just employing the instruments Z2 one has

AsyV ar(�̂1;IV;Z2) = �2u plim
N!1

�
1

N
x01PZ2MX2PZ2x1

��1
= �2u plim

N!1

�
1

N
x01(PZ2 � PX2)x1

��1
:

Hence,

�2u[AsyV ar(�̂1;IV;Z)]
�1 � �2u[AsyV ar(�̂1;IV;Z2)]�1 = plim

N!1

�
1

N
x01(PZ � PZ2)x1

�
= plim

N!1

1

N
x01PMZ2

Z11x1;

and

CI(Z11;x1;Z) �
[AsyV ar(�̂1;IV;Z)]

�1 � [AsyV ar(�̂1;IV;Z2)]�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

= C(Z11;x1;Z): (25)

These alternative precision based expressions are helpful in developing sensible extensions
of the concentration parameter based measures in nonstandard applications of IV.

Suppose that IV has been applied, although 
 6= IN : Hence, one should have employed
GMM but did actually apply IV because of using a weighting matrix proportional to
(Z 0Z)�1. Because now

AsyV ar(�̂IV;Z) = �
2
u plim
N!1

N(X 0PZX)
�1X 0PZ
PZX(X

0PZX)
�1;

a precision based modi�ed concentration parameter, de�ned now more generally as

C
(Z1;x1;Z) �
[AsyV ar(�̂1;IV;Z ]

�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

; (26)

seems more appropriate. It di¤ers from (18), and so does the alternative to (25)

C
(Z11;x1;Z) �
[AsyV ar(�̂1;IV;Z ]

�1 � [AsyV ar(�̂1;IV;Z2 ]�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

: (27)
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In the above de�nitions we implicitly assumed that the denominator still properly ex-
presses the ratio of the variances of the disturbances of reduced and structural form.
Whether this F-test inspired measure, which naturally leads to measures like �F
(Z1;x1;Z)
etc., is suitable for expressing (marginal) instrument strength seems worth examining.

2.3 Algebraic connections between GMM and IV

If we decide to apply IV estimation not to the untransformed model (2), but to the
transformed model (5) exploiting some set of instruments collected in an N � L matrix
�Z; we obtain

�̂
�
IV;�Z = [X�0�Z(�Z 0�Z)�1�Z 0X�]�1X�0�Z(�Z 0�Z)�1�Z 0y�

= [X 0	�Z(�Z 0�Z)�1�Z 0	0X]�1X 0	�Z(�Z 0�Z)�1�Z 0	0y:

Note that for the special case
�Z = Z� = 	�1Z (28)

we �nd

�̂
�
IV;Z� = fX 0Z[Z 0(		0)�1Z]�1Z 0Xg�1X 0Z[Z 0(		0)�1Z]�1Z 0y = �̂EGMM;Z : (29)

Hence, EGMM is equivalent to applying IV to an appropriately GLS-type transformed
model upon employing the inverse of the transposed transformation to the instrumental
variables. Note that (in)validity of the instruments Z for u implies (in)validity of the
instruments Z� for u�; and vice versa, since

E(Z�0u�) = E[Z 0(	�1)0	0u] = E(Z 0u) and E(Z 0iui) = E(Z
�0
i u

�
i ):

From the above it is obvious how we can proceed to examine and express instrument
strength and weakness in a EGMM context when 
 may di¤er from IN : Exploiting the
transformations x�1 = 	0x1; X

�
2 = 	0X2 and Z� = 	�1Z = 	�1(Z1 X2); we �nd the

EGMM generalization of the standard IV measure (15)

F �(Z1;x1;Z) =
N � L
L1

x�01 PMX�2
Z�1
x�1

x�01MZ�x�1
(30)

=
N � L
L1

x01

�1QZ1(Z

0
1QZ1)

�1Z 01Q

�1x1

x01[

�1 � Z(Z 0
Z)�1Z 0]x1

;

where Q = 
 �X2(X
0
2
X2)

�1X 0
2: Note that when K = 1; thus X2 is void and L1 = L,

this simpli�es to

F �(Z;x1;Z) =
N � L
L

x01Z(Z
0
Z)�1Z 0x1

x01[

�1 � Z(Z 0
Z)�1Z 0]x1

: (31)

In the same way we can translate F (Z11;x1;Z); giving

F �(Z11;x1;Z) =
N � L
L11

x�01 PMZ�2
Z�11
x�1

x�01MZ�x�1
(32)

=
N � L
L11

x01S
Z11[Z
0
11
S
Z11]

�1Z 011
Sx1
x01[


�1 � Z(Z 0
Z)�1Z 0]x1
;
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where S = 
�1 � Z2(Z 02
Z2)�1Z 02; and in the special case where K = 1 one has in fact
S = 
�1 � Z12(Z 012
Z12)�1Z 012:
In the above F-tests it is in fact implicitly assumed that the disturbances in the

reduced form equation for x�1 are i.i.d., which is something which is not self-evident, and
which we will concern about in more detail when we consider speci�c implementations
of the above formulas in Section 4.
Note also that the above F � measures are relevant only for the case where GMM

exploits the optimal weighting matrix. In some of the panel GMM implementations that
we will introduce in Section 3 an optimal weighting matrix is not always available, and
neither EGMM nor IV are used, but GMM (at least in a �rst step) with some particular
suboptimal weighting matrix W; giving �̂GMM;Z(W ) with

AsyV ar(�̂GMM;Z(W )) = �
2
u plim
N!1

N(X 0ZWZ 0X)�1X 0ZWZ 0
ZWZ 0X(X 0ZWZ 0X)�1:

This gives rise to the GMM generalizations of the IV (when 
 6= IN) forms of the precision
based modi�ed concentration parameter type measures (26) and (27), viz.

C
(Z1;x1;Z;W ) �
[AsyV ar(�̂1;GMM;Z(W ))]

�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

; (33)

and
C
(Z11;x1;Z;W ;W2) �

[AsyV ar(�̂1;GMM;Z(W ))]
�1 � [AsyV ar(�̂1;GMM;Z2(W2))]

�1

(�x01x1 � �x01Z�
�1
Z0Z�Z0x1)=�

2
u

; (34)

which can be put into population modi�ed F-form as

�F
(Z1;x1;Z;W ) �
N � L
L1

C
(Z1;x1;Z;W )

and
�F
(Z11;x1;Z;W ;W2) �

N � L
L11

C
(Z11;x1;Z;W ;W2):

2.4 Generic results for two-dimensional data sets

The above should be generalized now such that we can deal with double-indexed or
two-dimensional data variables, where i = 1; :::; N still refers to cross-section units in
the sample, whereas t = 0; :::; T refers to the available time-series observations (where
t = 0 entails the initial values of the variables in the �rst-order dynamic process). In the
dynamic panel data models that we are interested in we want to allow for unobserved
individual e¤ects. To deal with these either the model equation has to be transformed
or otherwise the variables that are used as instrumental variables, which have to be
lagged as well. Such transformations (often, but not exclusively, �rst di¤erencing) and
lag operations will lead to an e¤ectively available time-series sample size in estimation
that may deviate form T: Often the time-series sample size in estimation is smaller than
T; but the number of observations per individual in estimation can be larger too, when in
the system estimator all time-series observations on two di¤erently transformed equations
are stacked. Due to �rst-di¤erencing also the number of regressors and coe¢ cients may

11



change, when the original relationship involved an intercept. All these transformations
complicate combining the familiar notation for panel data models with the standard one-
dimensional cross-section results of the earlier subsections. We have chosen to deal with
this in the following way.
In the generic notation below we simply address the time-series sample size as ~T to

be able to cover all possible cases; often ~T = T � 1 or ~T = 2(T � 1): The total number
of observations can now be denoted as ~N = N ~T ; and the linear panel data model that
will be estimated by IV or GMM is expressed as

~y = ~X~� + ~u = (~x1 ~X2)~� + ~u;

for which we have the ~N �L instrument matrix Z: Here ~y and ~u are ~N � 1; ~X is ~N � ~K
and ~� is ~K � 1; whereas ~x1 is ~N � 1 and E(~u) = 0 and V ar(~u) = �2~u ~
: All results of the
earlier subsections are directly applicable, but just require to reinterpret (and supplement
with a "tilde") the scalars, vectors and matrices N; y; u; �2u; �; X; x1; X2 and 
: These
vectors and matrices contain in some way or another (transformed and/or lagged, as is
indicated in the next section) elements corresponding to the underlying dynamic panel
data relationship, which we denote as

yit = 
yi;t�1 + x
0
it� + �i + "it; (35)

where the vectors xit and � consist of K � 1 elements.
After transformation (if any) and stacking of all the time-series observations (possibly

of two di¤erently transformed equations) the generic model relation can be written as

~yi = ~Xi
~� + ~ui: (36)

Each row of the ~T � 1 vectors ~yi = (~yi1; :::; ~yi ~T )0 and ~ui = (~ui1; :::; ~ui ~T )0 and of the ~T � ~K
matrix ~Xi = ( ~X

0
i1
~X 0
i2 ::: ~X

0
i ~T
)0 results from a particular transformation applied to (35) for

some index t: The ~K�1 vector ~� is related to (
; �0)0 conformable to the transformations
and stacking operations. We assume E(~ui) = 0; V ar(~ui) = �2~u ~
1 with tr(~
1) = ~T and
~
1 a positive de�nite ~T � ~T matrix, whereas E(~ui~u0j) = O for i 6= j:
We will exploit N observed ~T � L matrices Zi as instruments, which are valid when

they satisfy 8i the L orthogonality conditions

E(Z 0i~ui) = E[Z
0
i(~yi � ~Xi

~�)] = 0: (37)

De�ning ~y = (~y01; :::; ~y
0
N)

0; ~u = (~u01; :::; ~u
0
N)

0; ~X = ( ~X 0
1 ::: ~X

0
N)

0; Z = (Z 01 ::: Z
0
N)

0 and
�2~u ~
 = �

2
~u(IN 
 ~
1) all having ~N rows now, we have in the new "tilde" notation again

the original model y = X� + u with E(u) = 0 and V ar(u) = �2
 and L instruments Z
which can be used to obtain IV or GMM estimators, provided X; Z and Z 0X all have full
column rank, hence ~N = N ~T > L � ~K: The only serious di¤erences with the situation
in subsection 2.1 are that we have N ~T instead of N observations, and that 
 has a
block-diagonal structure, but the formulas for �̂IV;Z ; �̂GMM;Z(W ) and �̂EGMM;Z;
 = �̂

�
IV

remain the same, and so for the F-test statistics F (Z1;x1;Z) and F (Z11;x1;Z); upon
changing N in N ~T : Also all concentration parameter and precision inspired measures C
and C
 are directly applicable.
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3 IV and GMM estimators for dynamic panel data
models

In this section we further consider the just introduced linear �rst-order dynamic panel
data model with two unobserved error components, viz. random individual e¤ects and
idiosyncratic disturbances, and also an arbitrary number of further regressors which
are assumed to be contemporaneously uncorrelated with the idiosyncratic disturbances.
From the various model assumptions stated explicitly in subsection 3.1, the linear orthog-
onality conditions are derived in subsection 3.2, which are exploited in subsection 3.3 to
present some variants of the Anderson and Hsiao (1982) estimators, the e¢ cient GMM
estimator, see Arellano and Bond (1991), and the system GMM estimator (GMMs), see
Blundell and Bond (1998). The latter estimator exploits an additional model assump-
tion, viz. e¤ect stationarity, which gives rise to additional linear orthogonality conditions,
but also to complexities regarding the weighting matrix, which are discussed in the �nal
subsection 3.4.

3.1 Model assumptions

Below we shall use the notation

yt�1i � (yi;0; :::; yi;t�1)
X t
i � (x0i1; :::; x0it)

�
t = 1; :::; T;

where yt�1i is 1� t and X t
i is 1� t(K � 1): We also de�ne

Y t�1 �

264 y
t�1
1
...
yt�1N

375 ; X t �

264 X t
1
...
X t
N

375 ; � �
0B@ �1

...
�N

1CA ;
where � is N � 1; Y t�1 is N � t and X t is N � t(K � 1):
Regarding the two random error components �i and "it in model (35) we make the

assumptions (i; j = 1; :::; N ; t; s = 1; :::; T ):

E("it j Y t�1; X t; �) = 0; 8i; t
E("2it j Y t�1; X t; �) = �2" > 0; 8i; t
E("it"js j Y t�1; X t; �) = 0; 8t < s; 8i; j and 8i 6= j; 8t � s
E(�i) = 0; E(�

2
i ) = �

2
� � 0; E(�i�j) = 0 8i 6= j

9>>=>>; (38)

These assumptions entail that all regressors are predetermined with respect to the idio-
syncratic disturbances "it; which are homoskedastic and serially and contemporaneously
uncorrelated.
Additional assumptions that may be made � and which are crucial when the GMMs

estimator is employed � involve

E(yit�i) = �y� and E(xit�i) = �x�; 8i; t: (39)

Here �y� is a scalar and �x� is a (K � 1) � 1 vector. Note that both �y� and �x� are
assumed to be time-invariant. By multiplying the model equation (35) by �i and taking
expectations we �nd that (39) implies

�y� = 
�y� + �
0
x�� + �

2
�

13



or

�y� =
�0x�� + �

2
�

1� 
 : (40)

This condition we will call for obvious reasons e¤ect-stationarity.

3.2 Moment conditions

By taking �rst-di¤erences the model simpli�es in the sense that only one unobservable
error component remains. Estimating

�yit = 
�yi;t�1 + (�xit)
0� +�"it (41)

by OLS would yield inconsistent estimators2 because

E(�yi;t�1�"it) = �E(yi;t�1"i;t�1) = ��2" 6= 0:

Unless �2" would be known this moment condition cannot directly be exploited in a
method of moments estimator. Note, however, that it easily follows from the model
assumptions (38) that for i = 1; :::; N we have

E(Y t�2�"it) = O
E(X t�1�"it) = O

�
t = 2; :::; T;

which together provide KNT (T � 1)=2 moment conditions for estimating the K coef-
�cients of (41). Especially when the cross-section units are independent many of these
conditions will produce weak or completely ine¤ective instruments. Then it will be more
appropriate to exploit just the KT (T � 1)=2 moment conditions

E(yt�2i �"it) = 0
0

E(X t�1
i �"it) = 0

0

�
t = 2; :::; T;

as is done in the Arellano-Bond (1991) estimator. Upon substituting (41) for �"it it is
obvious that these moment conditions are linear in the unknown coe¢ cients 
 and �; i.e.

Efyt�2i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
EfX t�1

i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
�

t = 2; :::; T: (42)

Blundell and Bond (1998) argue that assumption (39), when valid, may yield rel-
atively strong additional useful instruments for estimating the undi¤erenced equation
(35). These additional instruments are the �rst-di¤erenced variables. De�ning

�yt�1i � (�yi1; :::;�yi;t�1)
�X t

i � (�x0i2; :::;�0xi;t)

�
t = 2; :::; T;

which are 1 � (t � 1) and 1 � (t � 1)(K � 1) respectively, it follows from (39) that (for
i = 1; :::; N)

E(�yt�1i �i) = 0
0 and E(�X t

i�i) = 0
0:

2Note that in case xit contains a unit element and � an intercept this model has one unknown
coe¢ cient less than suggested in what follows.
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From (38) we �nd
E(�yt�1i "it) = 0

0 and E(�X t
i"it) = 0

0:

Combining these and substituting �i + "it = yit � 
yi;t�1 � x0it� yields the KT (T � 1)=2
linear moment conditions

E[�yt�1i (yit � 
yi;t�1 � x0it�)] = 00
E[�X t

i (yit � 
yi;t�1 � x0it�)] = 00
�

t = 2; :::; T: (43)

These can be transformed linearly into two subsets of K(T � 1) and K(T � 1)(T � 2)=2
conditions respectively, viz.

E[�yi;t�1(yit � 
yi;t�1 � x0it�)] = 00
E[�x0it(yit � 
yi;t�1 � x0it�)] = 00

�
t = 2; :::; T; (44)

and
Ef�yt�1i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
Ef�X t

i [�yit � 
�yi;t�1 � (�xit)0�]g = 00
�

t = 3; :::; T: (45)

The second subset (45), though, can also be obtained by a simple linear transformation
of (42). Hence, e¤ect stationarity only leads to the K(T � 1) additional linear moment
conditions (44). These involve estimation of the undi¤erenced model (35) by employing
all regressor variables of the �rst-di¤erenced model (41) as instruments.
Due to the i.i.d. assumption regarding "it further (non-linear) moment conditions

do hold in the present dynamic panel data model, but below we will stick to the linear
conditions mentioned above.

3.3 Implementation of various IV and GMM estimators

Anderson and Hsiao (1982) introduced IV estimators for dynamic panel data models.
They focussed on the case with �rst-order dynamics, took �rst-di¤erences of the rela-
tionship, yielding ~yi = ~Xi

~� + ~ui; with

~yi =

0B@ �yi2
...

�yiT

1CA ; ~ui =
0B@ �"i2

...
�"iT

1CA and ~Xi =

264 �yi1 �x0i2
...

...
�yi;T�1 �x0iT

375 : (46)

When there is an intercept in � and corresponding unit value in xit (which vanishes after
�rst-di¤erencing) we have ~K = K � 1; otherwise ~K = K and � = (
; �0)0: Using as
many valid instruments as coe¢ cients to be estimated (i.e. accepting that the resulting
IV estimators will not have �nite moments), they distinguished two cases regarding the
instruments to be used for regressor �yi;t�1, viz. using the lagged level instrument yi;t�2
or the lagged �rst di¤erenced instrument �yi;t�2: So, assuming E(�xit�"it) = 0; the
corresponding instrument matrices Z have N blocks

ZAHli =

26664
yi;0 �x0i;2
yi;1 �x0i;3
...

...
yi;T�2 �x00i;T

37775 and ZAHdi =

26664
0 00

�yi;1 �x0i;2
...

...
yi;T�2 �x00i;T

37775 (47)
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respectively, where the row of zeros in ZAHdi basically means that for each individual
only ~T = T � 2 time-series observations are being used in estimation. We have LAHl =
LAHd = K for the number of columns.
We shall also examine below the Anderson-Hsiao type implementations which use one

extra instrument, and where ~T = T � 2 and ~T = T � 3 respectively, viz.:

ZAHl1i =

264 yi;1 yi;0 �x0i;3
...

...
...

yi;T�2 yi;T�3 �x00i;T

375 and ZAHd1i =

264 �yi;2 �yi;1 �x0i;4
...

...
...

�yi;T�2 �yi;T�3 �x00i;T

375 ; (48)

where LAHl1 = LAHd1 = K+1: Since E(�"it�"i;t�1) 6= 0 the elements of ~ui are not i.i.d.,
thus the IV estimators AHl1 and AHd1 are not e¢ cient. Not just because not all valid
instruments are being used, but also because 
 is not exploited as GMM would.
The Arellano-Bond GMM estimator uses the model transformation given in (46)

too, hence ~T = T � 1 and employs all orthogonality conditions (42). Hence, LAB =
KT (T � 1)=2 and the ~T � LAB matrix Zi is taken to be [what to do with X???]

ZABi =

264 y
0
i 00 00 �X1

i 00

0
. . . O O

. . . O
0 00 yT�2i 00 00 �XT�1

i

375 : (49)

It can be derived that for the EGMM estimator one should use the weighting matrix

W opt
AB /

�
NP
i=1

(ZABi )0HZABi

��1
(50)

with (T � 1)� (T � 1) matrix

H �

26666664
2 �1 0 � � � 0

�1 2 �1 . . .
...

0 �1 2
. . . 0

...
. . . . . . . . . �1

0 � � � 0 �1 2

37777775 : (51)

So, under our strong assumptions regarding homoskedasticity and uncorrelatedness of
the idiosyncratic disturbances "it 1-step GMM employing (50) is asymptotically e¢ cient
within the class of estimators exploiting the instruments ZABi :
In case of GMMs we have ~K = K; � = (
; �0) and ~T = 2(T � 1) with

~yi =

0BBBBBBB@

�yi2
...

�yiT
yi2
...
yiT

1CCCCCCCA
; ~ui =

0BBBBBBB@

�"i2
...

�"iT
�i + "i2
...

�i + "iT

1CCCCCCCA
and ~Xi =

266666664

�yi1 �x0i2
...

...
�yi;T�1 �x0iT
yi1 x0i2
...

...
yi;T�1 x0iT

377777775
; (52)
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and from (42) and (44) it follows that LBB = K(T � 1)(T + 2)=2 whereas the ~T � LBB
matrix of instruments for block i is

ZBBi =

26664
ZABi 0 � � � 0 O � � � O
00 �yi1 00 0 �x0i2 00 00

... 0
. . . 0 00

. . . O
00 0 00 �yi;T�1 00 00 �x0iT

37775 : (53)

Note that E[(�"it)2] = 2�2" di¤ers from E[("it + �i)
2] = �2" + �

2
� when �

2
� 6= �2"; and

for t 6= s we �nd E[("it + �i)("is + �i)] = �2� � 0: Thus, again it does not hold here that
~uit j Zti is i.i.d.; so IV is not e¢ cient. However, here an appropriate weighting matrix is
not readily available due to the complexity of Var(Z 0i~ui):

3.4 Weighting matrices in use for 1-step GMMs

The GMMs optimal weighting matrix has been obtained for the no individual e¤ects case
�2� = 0 by Windmeijer (2000), who presents

W FW
BB /

�
NP
i=1

(ZBBi )0DFWZBBi

��1
(54)

with

DFW =

�
H C1
C 01 IT�1

�
; (55)

where C1 is the (T � 1)� (T � 1) matrix

C1 =

26666664
1 0 0 : : : 0

�1 1 0
. . .

...

0 �1 1
. . . 0

...
. . . . . . . . . 0

0 : : : 0 �1 1

37777775 : (56)

Blundell, Bond and Windmeijer (2000, footnote 11), and Doornik et al. (2002, p.9)
in the computer program DPD, use in 1-step GMMs the operational weighting matrix

WDPD
BB _

�
NP
i=1

(ZBBi )0DDPDZBBi

��1
; (57)

with

DDPD =

�
H O
O IT�1

�
: (58)

There is no special situation for which these weights are optimal.
Blundell and Bond (1998) did use (see page 130, 7 lines from bottom) in their �rst

step of 2-step GMMs

DGIV =

�
IT�1 O
O IT�1

�
= I2T�2; (59)

which yields the IV or 2SLS estimator, which neglects that ~ui has a nonscalar covariance
matrix. In Kiviet (2007a) it is demonstrated that di¤erent initial weighting matrices can
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lead to substantial di¤erences in the performance of 1-step and 2-step GMMs. There it
is argued that a better (though yet suboptimal and unfeasible) weighting matrix would
be

W
�2�=�

2
"

BB _
�
NP
i=1

(ZBBi )0D�2�=�
2
"ZBBi

��1
; (60)

with

D�2�=�
2
" =

 
H C

C 0 IT�1 +
�2�
�2"
�T�1�

0
T�1

!
: (61)

This can be made operational by choosing some value for �2�=�
2
": From simulations it

was found that this value should not be chosen too low, and reasonably satisfying results
were obtained by choosing �2�=�

2
" = 10:

4 Measurements of instrument weakness

In the subsections of this section we establish numerical values for the alternative mea-
sures stated in Section 2 for the various estimators of Section 3. First we consider results
for the panel AR(1) model in great detail, and next we produce some results for the
�rst-order dynamic panel data model with one extra explanatory variable.

4.1 Results for stationary panel AR(1) models

In the zero-mean panel AR(1) model we have ~K = 1 and ~� = 
: The data generating
process is

yit = 
yi;t�1 + �i + "it; (62)

and, assuming full stationarity, i.e. restricting j
j < 1 and generating the start-up as

yi0 =
1

1� 
 �i +
1p
1� 
2

"i0; (63)

where
�i � i:i:d:(0; �2�) and "it � i:i:d:(0; �2"); (64)

we obtain

yit =
1

1� 
 �i +
t�1X
s=0


s"i;t�s +

tp
1� 
2

"i0

and

�yit = "it � (1� 
)
 
t�1X
s=1


s�1"i;t�s +

t�1p
1� 
2

"i0

!
;

from which one can derive (for integer s � 1):

V ar(yit) =
�2�

(1�
)2 +
�2"
1�
2 V ar(�yit) =

2�2"
1+


Cov(yit; yi;t�s) =
�2�

(1�
)2 +

s�2"
1�
2 Cov(�yit;�yi;t�s) = ��2"
s�1 1�
1+


Cov(yit;�yi;t�s) = �
2
"

s 1
1+


Cov(�yit; yi;t�s) = ��2"
s�1 1
1+

:

9>>>>>>=>>>>>>;
(65)
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Instead of expressing various of the results below in the error-component variance ra-
tio �2�=�

2
"; we �nd it more instructive (also see Kiviet, 2007a) to employ the nonlinear

transformation of the parameters

� =
1

1� 

��
�"
: (66)

Note that �2 is the ratio of the variance component in yit due to the accumulated indi-
vidual e¤ect �i and the variance component in yit due to the current shock "it; and

V ar(yit) = �
2
"

�
�2 +

1

1� 
2

�
: (67)

Parameter � is an autonomous characteristic of the data series yit that is invariant with
respect to the speed of the adjustment process, which is completely determined by 
:
Thus, in some sense � and 
 are variation free or orthogonal now.
Parameter 
 of model (62) is estimated by applying IV or GMM to

�yi;t = 
�yi;t�1 +�"i;t (68)

In the notation of Section 2 (68) is a model in which X2 is void. Hence, for the strength
of the full set of instruments used, the relevant standard IV measures are F (Z;x1;Z) of
(16) and

C(Z;x1;Z) =
�x01Z�

�1
Z0Z�Z0x1

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

and �F (Z;x1;Z) =
N � L
L

C(Z;x1;Z): (69)

However, taking into account that the model has nonscalar covariance matrix of the
disturbances, we should better consider

C
(Z;x1;Z; (Z
0Z)�1) =

(�x01Z�
�1
Z0Z�Z0x1)

2(�x01Z�
�1
Z0Z�Z0
Z�

�1
Z0Z�Z0x1)

�1

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

(70)

and
�F
(Z;x1;Z; (Z

0Z)�1) =
N � L
L

C
(Z;x1;Z; (Z
0Z)�1): (71)

We should [and in a next version we will] simulate the statistic F (Z;x1;Z) and
the sample equivalent of (71) to examine their information content regarding the �-
nite sample properties of IV panel estimators. Below we examine �F (Z;x1;Z) and
�F
(Z;x1;Z; (Z

0Z)�1); and their GMM counterparts, over the relevant parameter space.

4.1.1 Anderson-Hsiao type estimators

In the �rst-stage regression of the classic Anderson-Hsiao approach the single regres-
sor �yi;t�1 is �tted for each t to the same set of instruments (the Zi matrices do
not have a block structure). The rows of Zi have either lagged �rst-di¤erences, viz.
(�yi;t�2; :::;�yi;t�L+1); or lagged levels of yit; i.e. (yi;t�2; :::; yi;t�L+1): Since

�yi;t�1 = 
�yi;t�2 +�"i;t�1; (72)

at �rst sight it seems obvious that when L = 1 using just the level instrument yi;t�2 will
yield a more moderate �t than using it jointly with yi;t�3 when L = 2; and using just
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�yi;t�2 seems already appropriate. However, note that yi;t�2 and �yi;t�2 are correlated
with �"i;t�1: Apparently, unlike the premise of section 2.2, regressing �yi;t�1; the re-
gressor of (72), on the instruments Zi does not represent the reduced form. Because an
explicit reduced form is not readily available, the situation is not so clear-cut.
We �rst examine the case where L = K = 1: This simpli�es the above formulas

regarding instrument strength considerably. Denoting the one and only instrument as z1;
and focussing �rst on the naive instrument strength measures (69), we have to establish

C(z1;x1; z1) =
[Cor(x1; z1)]

2

1� [Cor(x1; z1)]2
; (73)

where the vector x1 contains �yi;t�1 and z1 contains yi;t�2 for AHl and �yi;t�2 for AHd.
From

[Cor(�yi;t�1;�yi;t�2)]
2 =

1

4
(1� 
)2 (74)

we �nd for the estimator with the �rst-di¤erence instrument AHd, where the sample
size is ~N = N(T � 2); for the population value of the F statistic, �F (with between
brackets indications of: examined instrument(s); jointly dependent regressor; and full set
of instruments) the expression

�F (�yi;t�2; �yi;t�1; �yi;t�2) =
( ~N � 1)(1� 
)2
4� (1� 
)2 : (75)

From

[Cor(�yi;t�1; yi;t�2)]
2 =

1

2

(1� 
)2
1� 
 + �2(1 + 
) (76)

we obtain for the AHl estimator, where ~N = N(T � 1);

�F (yi;t�2; �yi;t�1; yi;t�2) =
( ~N � 1)(1� 
)2

1� 
2 + 2�2(1 + 
) : (77)

Thus, for AHl instrument strength seems to improve for smaller values of �, whereas
AHd is invariant with respect to �: Note that these AHd and AHl measures are equal
for � = 1; whereas for � < 1 the AHl measure is larger than for AHd, and vice versa for
� > 1:
However, these measures do not take into account that the equation is estimated by

IV whilst it has disturbances with a covariance matrix where ~
1 = H; as given in (51).
Hence, we should examine the modi�ed measure �F
(z1;x1; z1; (z01z)

�1): Note that because
K = L the weighting matrix has no e¤ect here on the estimator, but 
 6= IN makes a
change for its variance. In evaluating

�F
 = ( ~N � 1)C
 = ( ~N � 1)C
V ar(z1)

�z01
z1
= �F

V ar(z1)

�z01
z1

we have to derive �z01
z1 for AHd and AHl and �nd

2[V ar(�yit)�
~T � 1
~T
Cov(�yit;�yi;t�1)] =

2�2"
1 + 


�
3� 
 + 1� 


T � 2

�
(78)

and

2[V ar(yit)�
~T � 1
~T
Cov(yit; yi;t�1)] =

2�2"
1� 
2

�
1� 
 + 
 + �

2(1 + 
)=(1� 
)
T � 1

�
(79)
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respectively. Hence, �F
 is determined by the actual value of T; whereas �F is not. For
V ar(z1)=�z01
z1 we �nd the expressions�

3� 
 + 1� 

T � 2

��1
and

1

2

1 + �2(1 + 
)=(1� 
)
1� 
 + 
+�2(1+
)=(1�
)

T�1

respectively. Thus, for AHd the modi�cation involves multiplying the naive measure with
a factor smaller than 0.5, so the naive measure seems too optimistic about instrument
strength, but for AHl it can go either way; for 
 = 0 the factor is 0.5, but for � = 0 it is
greater than 1 for 
 > 0:5:
The situation is best examined by comparing graphs, see Figure 1, which are based on

calculations of the naive (neglecting the serial correlation) formula �F (z1;x1; z1) (in the top
row) and the modi�ed �F
(z1;x1; z1) for T = 6 (in the bottom row) respectively. The AHl
measures have been calculated for � = 0:2; 1; 5: From the graphs one can grasp for which
values of the sample size and of 
 and � the measures qualify the instrument as weak,
because the F-value is smaller than 10. In all cases this occurs for large positive 
 and
more severely so for smaller sample size. That the naive AHd measure is systematically
too optimistic can clearly be seen. For the cases examined we �nd that the AHl naive
measure is generally too pessimistic, except for � < 1 and ~N small. The bottom row
suggests that AHl has a stronger instrument than AHd only for moderate �: For � = 5
the AHl instrument is weak for 
 > 0:5 but less so for AHd. However, we should note
that we have not examined yet whether the value of 10 is an appropriate watershed for
the �F
 criterion in this model.

When we slightly generalize the Anderson-Hsiao approach by using the instrument
matrices given in (48) then we can increase the value of L: In Figure 2 L = 2 and in
Figure 3 L = 4: For increasing L we note that all naive pictures are too optimistic, and
that all modi�ed measures seem to converge to a more similar pattern. At L = 4 the
modi�ed F for AHd and AHl seem very close for � = 1; and for � > 1 AHl performs
worse though better for � < 1:
These �rst three �gures focussed on (modi�cation of) the population F statistic. If this

is small the estimator might su¤er from weak instruments with detremental e¤ects on the
accuracy of �rst order asymptotics. A prominent factor of the (modi�ed) concentration
parameter is (the inverse) of the asymptotic variance. It might be informative too to
scan the asymptotic precision measures of the 
 estimators and their relative di¤erences.
For that a naive measure, which wrongly takes H as I seems of very limited interest.
The actual di¤erences in asymptotic precision of AHd and AHl and its dependence on 
;
�; T and L can be examined directly by comparing AsyV ar(
̂AHd) and AsyV ar(
̂AHl)
which are given in this model by

�x01Z�
�1
Z0Z�Z0
Z�

�1
Z0Z�Z0x1

(�x01Z�
�1
Z0Z�Z0x1)

2
;

for the respective Z matrices. Indicating these by Zd and Zl respectively, and using

�F
 =
~N � L
L

C
 =
~N � L
L

�2"[AsyV ar(
̂)]
�1

�x01x1 � �x01Z�
�1
Z0Z�Z0x1

;
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Figure 1: Anderson-Hsiao in fully stationary panel AR(1); K = 1; L = 1:

Figure 2: Anderson-Hsiao in fully stationary panel AR(1); K = 1; L = 2:
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we have
AsyV ar(
̂AHd)

AsyV ar(
̂AHl)
=
�F
(
̂AHl)
�F
(
̂AHd)

�x01x1 � �x01Zl�
�1
Z0lZl

�Z0lx1

�x01x1 � �x01Zd�
�1
Z0dZd

�Z0dx1

In the next graphs we consider the natural logarithm of the square root of this expression
(asymptotic standard deviation) and calculate the log of the ratio for two alternative
estimators, hence a value of zero means equivalence, �0:05 indicates roughly a �5%
di¤erence, �0:1 indicates �10:5% and �1 means �272%:
In Figure 4 we see that the di¤erence in asymptotic precision of AHd and AHl can be

enormous. For L = 1 AHd is better only when T is su¢ ciently small and � is su¢ ciently
large. AHl is better, especially when 
 is positive, � not very large and T not very small.
Especially for 
 very large and � moderate AHl is substantially more e¢ cient. Figure 5
shows that the picture is less pronounced for L = 4: The di¤erences are moderate, except
for 
 very large and � small where AHl is again substantially better.
In Figure 6 we examine how AsyStd changes for AHd when Lmoves from 1 to 4. Quite

remarkably there is a di¤erence only for T = 6 (where for L = 4 only one observation per
individual can be used so that the disturbances are not serially correlated) with L = 4
yielding a smaller AsyVar, but for T > 6 the e¢ ciency does not depend on L:
In Figure 7 we see that increasing L may have a mtigating e¤ect on the asymptotic

e¢ ciency of AHl, viz. when 
 is postive and � is small. For negative 
 the e¤ect is
moderate but very substantial when � is large and 
 positive.
However, we should be more concerned of course about the actual precision of the

estimators in �nite sample, and in the ability of the instrument strength measures to in-
dicate whether or not asymptotics is accurate regarding the actual quality of estimators.
To examine this we ran Monte Carlo simulations. All results are based on 1000 replica-
tions of samples of N = 100 and various values of T � 6. In these panel data samples
both error components "i;t and �i were drawn randomly from the normal distribution.
For each replication these series of random drawings were held constant over all di¤erent
values of 
 and � examined, and (as much as possible) over the various values of T:
Figures 8 and 9 show how bad asymptotics works in samples of this size, both for L = 1

and L = 4: Note that it is self-evident that in fully stationary samples these phenomena
are invariant with respect to �: The earlier pictures suggested that asymptotics would
work accurately for negative 
 and bad for increasing values of 
: These �gures suggest
that for L = 1 there is a large positive 
 value where ....
Regarding AHd we �nd

4.1.2 GMM estimators

[calculations to follow]

4.2 Results for panel ARX(1) models

In a next version of the paper we will also make calculations and perform simulations on
panel data models with further predetermined regressors, cf. Bun and Kiviet (2006).
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Figure 3: Anderson-Hsiao in fully stationary panel AR(1); K = 1; L = 4:

Figure 4: AsyStd of AHl in terms of AHd for L = 1 in panel AR(1)

Figure 5: AsyStd of AHl in terms of AHd for L = 4 in panel AR(1)
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Figure 6: AsyStd of AHd for L = 1 in terms of AHd for L = 4 in panel AR(1)

Figure 7: AsyStd of AHd for L = 1 in terms of AHl for L = 4 in panel AR(1)

5 Conclusions

In this paper we show how measures for instrument weakness based on concentration pa-
rameters as developed for single static linear structural equations, with a fully speci�ed
reduced form and i.i.d. disturbances and estimated by IV (or 2SLS), can be general-
ized to cover the much more complex situation met in dynamic panel data models. The
relationships estimated in that context contain regressors that are contemporaneously
correlated with the disturbances due to transformations that, while achieving their pri-
mary purpose, viz. removing unobserved time-constant individual heterogeneity, at the
same time lead to disturbance vectors that will not be serially uncorrelated. Hence, ide-
ally such equations should be estimated by e¢ cient GMM, instead of IV, or when still
estimated by IV the measures for instrument weakness should be adapted to allow for
the e¤ects of dependent disturbances. Not only do we develop measures for instrument
weakness in the context of e¢ cient GMM and for IV when errors are serially correlated,
but also for GMM employing an arbitrary weighting matrix. We also circumvent the
problem that in the context of the transformed dynamic panel data model no explicit
reduced form is available. For all the situations considered, we also design measures for
the strength of subsets of the full set of instruments used.
For particular popular 1-step GMM panel model estimators, which use an extra set

of instruments that are valid only when particular initial conditions hold, no operational
optimal weighting matrix is available. It would be of great practical interest if in addi-
tion to the techniques available to test the validity of subsets of the instruments, such
as incremental Sargan or J-tests, there would be techniques to assess the relevance or
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Figure 8: AsyStd of AHd in terms of its actual RMSE at N = 100 for L = 1 in panel
AR(1)

strength (contribution to the precision of estimators in �nite samples) of subsets of in-
struments. The techniques developed in this paper aim to provide these. How useful they
are should be analyzed further by evaluating and comparing their results for empirically
relevant DGP�s, and checking their relevance for strategies regarding the selection of the
instruments that one should use in actual practice. This requires further calculations
and simulations.
At this stage only some calculations, presented in the form of diagrams, have been pro-

duced for measuring instrument strength in Anderson-Hsiao type IV estimators (which
neglect disturbance dependence) in panel AR(1) models. These already illustrate that
the naive standard IV measures are ine¤ective in the context of the dynamic panel
data model, and that the performance of the here developed alternative measures seems
promising.
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Figure 10: AsyStd of AHl in terms of its actual RMSE at N = 100 for L = 1 in panel
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Figure 11: AsyStd of AHl in terms of its actual RMSE at N = 100 for L = 4 in panel
AR(1)
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