
An Economic Analysis of Exclusion

Restrictions for Instrumental Variable

Estimation

Gerard J. van den Berg ∗

October 21, 2005, preliminary

Abstract

Instrumental variable estimation requires untestable exclusion restrictions.
With policy effects on individual outcomes, there is typically a time interval
between the moment the agent realizes that he may be exposed to the
policy and the actual exposure. In such cases there is an incentive for the
agent to acquire information on the value of the IV. This leads to violation
of the exclusion restriction. We analyze this in a dynamic economic model
framework. This provides a foundation of exclusion restrictions in terms of
economic behavior that takes costs and benefits into account. The results
are used to describe the policy evaluation settings in which instrumental
variables are likely or unlikely to make sense. For the latter cases we
analyze the asymptotic bias. The exclusion restriction is more likely to be
violated if the outcome of interest strongly depends on interactions between
the agent’s effort before the outcome is realized and the agent’s treatment
status. The bias has the same sign as this interaction effect. Violation
is not closely related to the weakness of the candidate instrument or to
the size of the average treatment effect. In case of a social experiment,
violation is more likely if the treatment and control groups are to be of
similar size.

∗Department of Economics, Free University Amsterdam, IFAU-Uppsala, IZA, IFS, and
CEPR.
Keywords: treatment, policy evaluation, information, selection effects, randomization.

Thanks to Jim Heckman, Geert Ridder, and participants in the 2005 Econometric Soci-
ety World Congress (London), for useful suggestions.

1



1 Introduction

Instrumental variable estimation has since long been a standard econometric

technique for dealing with endogeneity and selection issues in general, and for

non-experimental policy evaluation in particular (see e.g. Angrist, Imbens and

Rubin, 1996, Heckman, LaLonde and Smith, 1999, and Blundell and MaCurdy,

1999, for surveys). Basically, if one is interested in the effect of a “treatment

variable” on an outcome variable, and the treatment is not exogenously assigned,

then one may perform causal inference by exploiting the presence of variables

that causally affect the treatment status but do not have a direct causal effect on

the outcome. The latter restriction is called an exclusion restriction. Exclusion

restrictions are identifying restrictions, so they can not be tested. This means

that empirical results critically depend on the validity of the exclusion restriction,

and that this restriction needs to be justified on a priori grounds.

With policy effects on individual outcomes, there is typically a time interval

between the moment the agent realizes that he may be exposed to the policy and

the actual exposure. For example, unemployed workers are aware of the existence

of policies leading to treatments at some point of time in the future. As long as

the instrumental variable affecting the treatment does not have a causal effect

on the individual’s behavior, the exclusion restriction is not violated. Often, a

sufficient condition for this is that the agent does not observe the value of the

instrumental variable. However, there is an incentive for the agent to acquire

information on this value. After all, the probability of exposure to treatment

is a determinant of the optimal strategy, and the more the agent knows about

it, the better he can fine-tune his behavior in response to this, and the higher

his expected present value will be. The agent’s strategy affects the outcome

of interest. Thus, the acquisition of the value of the variable that is used by

the econometrician as instrumental variable leads to violation of the exclusion

restriction and to incorrect empirical inference.1

In this paper we investigate, in the context of a dynamic economic framework,

under which conditions it is optimal for the agent to acquire the value of the in-

tended instrumental variable. This provides a foundation of exclusion restrictions

in terms of economic behavior that takes costs and benefits into account. The

results are used to describe the policy evaluation settings in which instrumental

1Earlier studies mentioning similar arguments, tacitly assuming that acquisition is free,
include Abbring and Van den Berg (2003). For a very recent exposition, see Heckman and
Navarro (2005). Note that we are not concerned with mechanical program lock-in effects that
may affect the outcomes of participants before the end of the actual treatment participation.
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variables are likely or unlikely to make sense. This is especially useful since by

definition no empirical evidence is available on the validity of exclusion restric-

tions.

At first sight one may think that information acquisition does not take place

if and only if the acquisition costs are high, and that therefore the conclusion is

simply going to be that instrumental variables estimation is particularly useful

to study policy effects for agents with scarce resources. For active labor market

policy analysis this would mean that it is particularly useful for agents at the

bottom of the labor market, which coincides with the target group of most of

these policy measures. However, this line of reasoning ignores the role of the

value of the information that is acquired. We show that this leads to a different

set of conclusions. The results point at the importance of the extent to which

the treatment status and the agent’s effort interact in the outcome.

The literature on instrumental variable estimation has recently been con-

cerned with the use of so-called weak instruments, i.e. instrumental variables

that are only weakly related to the treatment status (see e.g. Stock, Wright and

Yogo, 2002, for a survey). Underlying this is the idea that weak instruments

are less likely to be used by agents as direct causal inputs into the outcome of

interest. We argue that in many cases this line of reasoning is incorrect, and

therefore the attractiveness of weak instruments may be exaggerated.

We also use our framework to analyze how individuals may selectively affect

their treatment status, and, more specifically, whether they selectively choose

to become non-compliers, if they can acquire information on determinants of

the treatment assignment process. We also consider model frameworks in which

treatments are exogenous except for the possibility that individuals may decide

to acquire information on the idiosyncratic determinants of the outcome and use

this to affect their treatment status (leading to endogeneity of the latter). These

models resemble the non-additive models examined by Imbens and Newey (2002).

We examine how acquisition affects the OLS-type estimates of the treatment

effect.

Throughout the paper we discuss two leading examples. In the first, the

treatment is participation in a job search assistance program by an unemployed

individual, and the policy intensity is different across two otherwise identical

geographical regions. For example, in one region, the budget for the program

per potential participant may be larger, so that the individual probability of

being treated is larger, holding everything else constant. An individual may

not be aware of the variation in policy intensities, or he may be aware of the

distribution of intensities but not know his personally relevant intensity, in which
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cases a regional dummy indicator may be a valid instrumental variable. If the

individual acquires his own region’s policy intensity parameter then he may have

an incentive to use this information before the treatment is realized. For example,

it may be optimal to reduce the job search effort more if the treatment probability

is large, because it is cheaper to provide effort after the treatment.

In the second example, we examine a double-blind experiment of say a med-

ication to treat a disease. The randomized intention to treat then equals the

treatment status, and this is unobserved until the outcome is observed. However,

in the case of life-threatening diseases, an individual has an incentive to find out

whether he receives medication or a placebo, for example by sending one tablet

to a laboratory. If he discovers that he receives a placebo then he may choose

a different lifestyle, which in turn affects the outcome. Alternatively, he may

drop out and apply for participation in another medical experiment. Yet another

option is to share the tablets among participating individuals. See e.g. Collins

and Pinch (1998) and Schuklenk (2003) for examples concerning experiments of

AIDS medication.

We mostly restrict attention to a binary instrument and a binary treatment

status. We occasionally illustrate the analysis by examining unemployed job

searchers who may participate in a job search assistance program. However, the

results can be applied to many other situations, and indeed they can be straight-

forwardly applied to situations in which the treatment variable is not a policy

variable. Also, the costs of information should be taken to cover not only mon-

etary costs but also other types of effort. The paper is organized as follows:

Section 2 presents the model framework, Section 3 derives the results concern-

ing information acquisition, Section 4 discusses the implications for instrumental

variable estimation, and Section 5 concludes.

2 The model framework

The main insights and results can be derived in a simple model framework with

three time periods.

Consider an assignment process leading to the actual treatment status of an

agent or decision maker.2 We assume that this process depends on a variable Z.

At the onset of the first period, Z is realized separately for each agent. We take

the distribution of Z as exogenously given and assume that Z is dispersed, so

var(Z) > 0. Clearly, Z is the candidate instrumental variable. Each agent knows

2The model can be expressed in terms of counterfactual outcomes; see Angrist, Imbens and
Rubin, 1996, for an exposition.
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the distribution of Z across all agents. However, an agent does not necessarily

know his own realization of Z. More precisely, in Period 1, each agent decides

whether to acquire information on Z at cost gamma γ > 0 or not.

At the onset of Period 2, the agent determines his optimal strategy or effort

s. The agent may or may not know his private value of Z when determining

s, but we assume that in Period 2 the agent does not know yet his treatment

status Y . Without this assumption the analysis would be irrelevant, because

there would never be any incentive to acquire information on the policy intensity.

As we shall see, the analysis can allow for additional time periods and for agents

to modify their strategy upon learning their value of Y , as long as their behavior

before learning Y has an effect on the outcome. The effort s involves costs c(s)

to be paid in Period 2. These may be monetary costs or monetary equivalents of

non-monetary costs.

In Period 3, the agent’s actual treatment status Y is realized. Both s and Y

affect the outcome U , which is also realized in Period 3, simultaneously with or

after the realization of Y . We express the outcome U given Y = y and given s as

W ·f(y, s)+ ε, with 0 ≤ f(y, s) and 0 < W < ∞. Here W is just a multiplicative

constant in the outcomes, and we merely introduce it to facilitate the analysis of

effects of multiplicative changes in the outcomes. In the first leading example, f

may be the probability of making an income gain, and W may be the expected

income gain. The term ε is an idiosyncratic outcome component. We assume

that E(ε|Z) = 0, but all other determinants of Y may be correlated to ε. The

latter dependence captures the endogeneity of the actual treatment.

Summarizing, the sequence of events is as follows: the treatment assignment

intensity Z is realized, Z is acquired or not, the effort s is chosen, the treatment

Y is realized, and the outcome Wf(y, s) + ε is realized.

The above framework gives rise to a “reduced form” treatment evaluation

model. First, as will become clear below, we may assume without loss of gener-

ality that E(Y |Z = z) = z. This leads to a “treatment equation”,

Y = Z + ω (1)

where E(ω|Z) = 0. Secondly, we have an “outcome equation”,

U = Wf(Y, s) + ε (2)

with E(ε|Z) = 0. The analyst observes U, Y, and Z.

Suppose that, more general than equation (1), we would specify E(Y |Z =

z) = g(z) for some function g. Typically, it is not difficult to estimate g, and
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this is why we simply redefine g(z) as our z. This presupposes that g varies with

z. In other words, Z as a candidate instrumental variable must be informative.

Also, note that the specification Y = Z + ω with E(ω|Z) = 0 can also capture

discrete Y . Notably, if Y is binary, one may define Y = 1 ⇐⇒ Y ∗ > 0 with

Y ∗ = Z + ω∗ and ω∗ being uniformly distributed on the interval [−1, 0].

Suppose that in Period 1 the agent does not acquire his personal realization of

Z. Then Z only affects U by way of Y , so Z is a valid instrumental variable (IV)

because the corresponding exclusion restriction (ER) is satisfied. Now suppose

that in Period 1 the agent does acquire his personal realization of Z. Then Z

may affect his value of s. In that case, from equation (2), there is a causal effect

of Z on the outcome, resulting in a violation of the ER needed for instrumental

variable estimation (IVE). Before we analyze this, we first derive in the next

subsection the agent’s optimal behavior concerning s and concerning acquisition

of Z.

3 Economic behavior

3.1 Present values

An agent maximizes his expected present value. To focus on the main issue we

consider risk neutral agents. If the agent does not know his value of Z then the

expected present value R0 at the onset of Period 2 equals

R0 = max
s∈S

−c(s) +
1

1 + r
EZEY |Z (W · f(Y, s)) (3)

S denotes the choice set of s. We denote the optimal s by s0.

Now suppose that the agent knows that his value of Z is z. The expected

present value R(z) at the onset of Period 2 is

R(z) = max
s∈S

−c(s) +
1

1 + r
EY |Z=z (W · f(Y, s)) (i = 1, 2) (4)

where r is the discount factor. The optimal s can be expressed as s(z).

The value of information V in Period 1 equals

V =
1

1 + r
(EZR(Z)−R0) (5)

It is optimal to acquire Z in Period 1 if and only if V > γ. Clearly, the central

issue of the paper is under which conditions this occurs. For the moment, we

simplify the above expressions by subsuming the parameter W/(1 + r) into the

function f , and 1 + r in (5) into V .

6



The first insight is that if f is additive in Y and s then the optimal s(z) in

(4) does not depend on z, and it is equal to s0. Consequently, V = 0, and the

agent does not acquire Z. In sum,

Proposition 1. If the outcome is additive in the treatment status and the optimal

effort of the agent then the exclusion restriction is satisfied.

Throughout the paper we consider functions f that are positive and increasing.

As will become clear below, the main distinction in the derivations will be whether

S is discrete or not. In the continuous case we often assume that c is quadratic,

with c(s) = 1
2
c0s

2 and c0 > 0. Also, many results will be derived for the following

functional form for f ,

f(Y, s) = ψ0 + ψ1s + ψ2Y + ρY s (6)

with suitable restrictions on ψ1, ψ2, ψ3, ρ guaranteeing that f is positive and in-

creasing in the relevant intervals for Y and s. We do however also provide results

for non-parametric specifications of f . The functional form in (6) is concise and

allows for explicit expressions and results for the quantities of interest. The

interaction parameter ρ captures the degree of complementarity (ρ > 0) or sub-

stitutability (ρ < 0) of treatment and effort, in the outcome.

The functional form (6) is less restrictive as may seem. First of all, with

binary s and Y , (6) is non-parametric because the four possible values of f

(f(1, 1), f(1, 0), f(0, 1), and f(0, 0)) are represented by ψ0, ψ1, ψ2, and ρ. Sec-

ondly, as will become clear below, we may generalize the term ψ0 + ψ2Y at no

cost to a general function k2(Y ) (provided that the resulting f is positive and in-

creasing). So all results based on (6) generalize in this respect. The same applies

if we replace ψ1s by a function k1(s), provided that k1(s)− c(s) is quadratic (and

again f is positive and increasing). The latter requirement is merely needed to

ensure explicit expressions for the optimal s. In general, the right-hand side of

(6) can be interpreted as the first part of an expansion of the underlying f . It is

also useful to point out that in the related literature on decision making with a

noisy signal about the unknown state of the world, the general effect of the shape

of the outcome function (f) on the value of information (V ) is typically too hard

to analyze in terms of the model primitives, if no parametric assumptions are

made on f (see Persico, 2000, and Athey and Levin, 2001). We return to this

literature below.
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3.2 Optimal behavior with continuous effort

Suppose that the choice set S of effort s is an interval. We do not restrict Z or

Y to be discrete or continuous, so the results below are valid in both cases.

We start with the model in which the functions f and c satisfy (6) and the

quadratic specification c(s) = 1
2
c0s

2, respectively. Within this framework we first

consider the case ρ > 0. This means that treatment and effort are complements

in the outcome. The requirement that f is positive and increasing then amount

to the restrictions that ψ0 > 0, ψ1 ≥ 0, ψ2 ≥ 0. Also, we assume that c0 > 0. The

optimal s is always positive, and we assume that the lower and upper boundary

of S are not binding for the optimal s.

Let z := E(Z) denote the population mean of Z. It is easy to derive that the

optimal effort equals

s(z) =
ψ1 + ρz

c0

(7)

s0 =
ψ1 + ρz

c0

Note that s(z) increases in z. This was to be expected. The complementarity of

f implies that the marginal return of effort is higher if the expected (beneficial)

treatment level is higher. Also, the optimal effort is higher if the cost of it is

lower, if the marginal return of it is higher, and if the degree of complementarity

is higher. Note that the optimal s does not depend on the marginal effect ψ2 of

the treatment Y .

By substituting (7) into equations (4) and (3), we obtain that

V =
1

2c0

ρ2var(Z) (8)

Consequently, the ER is violated iff 1
2c0

ρ2var(Z) > γ.

Before we interpret this result we first analyze the case ρ < 0. This means that

treatment and effort are substitutes in the outcome. In the case of participation

in active labor market programs, this case may be more realistic than the case

ρ < 0. For example, there may be an upper bound on the outcome, and the

effort has to compete with efforts for other activities outside of the model.3 We

also assume again that c0 > 0. The requirement that f is positive and increasing

now leads to more complex restrictions on the parameters of f . For a start, we

3This does not rule out that the treatment and the efforts after the realization of the treat-
ment are complements in their effect on outcomes in subsequent time periods. These are not
in the present model but one can extend it to include them.
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take ψ0 > 0, ψ1 > 0, ψ2 > 0. Next, we ensure that f increases in s for every

Y . Sufficient for this is that Pr(Y < ψ1

−ρ
|Z) = 1, because together with the

requirement that E(Y |Z = z) = z this implies that Pr(Z < ψ1

−ρ
) = 1, which

implies the desired property of f . Note that it also implies that the optimal s is

positive. Finally, we ensure that f increases in Y for every s. This is satisfied

if s < ψ2

−ρ
. The optimal s decreases in z. The largest possible value of s as a

function of z is therefore achieved at z = 0, and this value equals ψ1/c0. Thus, f

has the desired property if ψ1/c0 < ψ2/(−ρ) or, equivalently, ψ2c0 + ρψ1 > 0. In

sum, we require

ψ0 > 0, ψ1 > 0, ψ2 > 0, Pr(Y <
ψ1

−ρ
|Z) = 1, ψ2c0 + ρψ1 > 0 (9)

This also implies that the optimal s satisfies 0 < s ≤ ψ1/c0. We again assume

that the lower and upper boundary of S are not binding for the optimal s. It is

not difficult to see that the expressions for the latter are the same as (7), with

s(z) now decreasing in z. The resulting expression for V is also the same as in

(8). We thus obtain,

Proposition 2. Consider the model with continuous effort, quadratic costs of ef-

fort, and the outcome function (6) with the conditions that ensure that it increases

in effort and the treatment status. Then the exclusion restriction is violated iff

ρ2var(Z)/(2c0) > γ.

This means, first of all, that the ER is likely to be violated if the treatment

status and the effort before the treatment strongly interact in their effect on the

outcome. This is because in that case the loss of choosing the wrong amount of

effort is larger. Violation of the ER is more likely if γ is small, which is trivial to

understand.

It is also useful to discuss which model parameters do not affect the likelihood

that the ER is violated. First, consider the parameter ψ2. Until now we have not

defined summary treatment effects yet. However, it is clear that any such measure

depends on ψ2. But this parameter does not affect the value of information.

Therefore, the size of the (average) treatment effect does not affect the validity

of the ER.

Secondly, consider the strength of the candidate instrument. This is usually

defined by way of the strength of the association between Z and Y , for example

as measured by the correlation coefficient. This does not affect the validity of the

ER at all. Thirdly, the validity of the ER does not depend on ψ0 and ψ1. The

9



fact that it does not depend on the ψi parameters reflects the fact that additive

effects of treatment status and effort do not affect the ER (recall Proposition 1).

We now return to the related literature on decision making with a noisy signal

about the state of the world. In this literature, agents receive a signal (say, Z)

about the unknown state of the world (say, Y ) and they have to decide on which

action (say s) to take. The outcome (say, f) depends on Y and s (see Gollier,

2001, for a recent overview of models with signals, effort, and outcomes). The

main difference with our setup is that here the focus is on the strength of the

causal effect from the state of the world Y on the signal Z (or, equivalently, on

the quality of the signal), whereas in our setup Z causally affects Y . Also, this

literature restricts attention to outcome functions f that satisfy generalized no-

tions of complementarity in the state of the world and the action of the individual

(like supermodularity). Nevertheless, some of the results are directly applicable

to our context.

Athey and Levin (2001) present a generalized version of the following re-

sult. Consider our model with continuous effort, where the treatment status Y

increases in Z in the sense of first-order stochastic domination. The outcome

function increases in effort and the treatment status, and the cross-derivative is

positive. Then there is a monotone positive relation between z and the optimal

effort s(z).

The general effect of the shape of the outcome function (f) on the value of

information (V ) is typically too hard to analyze in terms of the model primitives,

if no parametric assumptions are made on f (see Persico, 2000, and Athey and

Levin, 2001). Perhaps most importantly, the results for given functions s(z) em-

phasize the importance of the degree of complementarity of the outcome function

on the value of information.

3.3 Optimal behavior with discrete effort

Now let S be discrete. For expositional reasons, we simplify the analysis by

assuming that s is binary, i.e. is taken from the set {0, 1}. We adopt specification

(6) for f . The cost of effort function c(s) is now represented by its two possible

values c(0) and c(1). We define c∗ := c(1)− c(0). This may be called the cost of

effort. We may now simplify the expressions for the present values to

R(z) = ψ0 − c(0) + ψ2z + max{0, ψ1 + ρz − c∗} (10)

R0 = R(z)
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and the agent chooses s = 1 iff the second term in the maximum exceeds 0. It

is immediately clear that for certain parameter values the optimal choice of s is

insensitive to small changes in the parameter values. To facilitate the exposition,

we make the additional assumption that Z has two possible values in the popu-

lation of agents: Pr(Z = z1) = p = 1 − Pr(Z = z2), with z1 6= z2 and 0 < p < 1

and normalization z1 > z2.

It is again useful to distinguish between the two cases in which treatment and

effort are substitutes (ρ < 0) or complements (ρ > 0) for the outcome. This

time we start with the former case, which requires again some restrictions on the

range of values of the model parameters. By analogy to the previous subsection,

we impose

ψ0 > 0, ψ1 > 0, ψ2 > 0, Pr(Y <
ψ1

−ρ
|Z) = 1, ψ2 + ρ > 0

In fact, the results below also apply if ψ2 + ρ = 0, meaning that with effort

s = 1 it is irrelevant whether the treatment is realized or not. This captures

situations in which the outcome of interest is the transition from unemployment

to work, if this is achieved with certainty by s = 1 but treatment only increases

the probability of a transition.

Equation (10) immediately implies that

0 ≤ s(z1) ≤ s0 ≤ s(z2) ≤ 1

As a result, we can distinguish between 4 “regimes”, characterizing the optimal

effort under different information sets for a given configuration of the model

primitives:

• Regime 1. Always provide effort: s(z1) = s0 = s(z2) = 1.

• Regime 2. Always provide effort except if it is known that Z = z1: 0 =

s(z1) < s0 = s(z2) = 1.

• Regime 3. Only provide effort if it is known that Z = z2: 0 = s(z1) = s0 <

s(z2) = 1.

• Regime 4. Never provide effort: 0 = s(z1) = s0 = s(z2).

Using (10) the regimes can be characterized in terms of the model primitives,

• Regime 1 applies iff ψ1 + ρz1 > c∗.

• Regime 2 applies iff ψ1 + ρz1 ≤ c∗ < ψ1 + ρz.
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• Regime 3 applies iff ψ1 + ρz ≤ c∗ < ψ1 + ρz2.

• Regime 4 applies iff ψ1 + ρz2 ≤ c∗.

The intuition behind these results is exactly as in the previous subsection.

Next, we consider V . In Regime 1, V = 0, implying that the information is

not bought. This is because the agent knows that he will always provide effort,

under every policy, whether the policy is known or not, so the information is

irrelevant for the optimal behavior. The same line of reasoning applies to Regime

4. So, for certain extreme parameter values, the agent does not acquire his value

of Z. Now consider Regimes 2 and 3. We obtain that in Regime 2,

V = p (c∗ − ψ1 − ρz1)

(recall that p := Pr(Z = z1)). In this regime, the information on Z is valuable

if and only if in truth he has policy intensity z1, because he does provide effort

if he has no information. Therefore the value V equals minus the expected loss

of making such a wrong4 decision. More precisely, V equals the product of [ the

probability that, when Z is not acquired, an effort s0 is chosen that is not optimal

in the light of the actual Z ] and [ minus the loss of choosing s0 given that the

actual Z would lead to another choice of s ]. In Regime 2, the statement in the

first square brackets equals Pr(Z = z1), which equals p. The statement in the

second square brackets equals [ the additional cost c∗ of choosing s0 = 1 compared

to the costs one would have made if one would know that Z = z1 ] minus [ the

additional expected return of choosing s0 = 1 compared to the expected return

if one would know that Z = z1 ].

Similarly, in Regime 3,

V = (1− p) (ψ1 + ρz2 − c∗)

Note that V > 0 if and only if the optimal effort when knowing that Z = z1

differs from the optimal effort when knowing that Z = z2. This is intuitively

clear: only in these cases does the knowledge of Z potentially have an effect on

the effort provided.

Consider Figure 1, plotting V against c∗. The maximum of V as a function

of c∗ is attained at the boundary between Regimes 2 and 3, which means c∗ =

ψ1 + ρz. This value Vmax equals

4In this section, “wrong” is used in the sense of “wrong if the agent knows his actual value
of Z”.
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Vmax = |ρ|p(1− p)(z1 − z2)

Vmax > γ iff there are values c(1), c(0) of the cost-of-effort function for which it

is optimal to buy the information. We assume the latter because otherwise the

analysis is irrelevant.

The expression for Vmax is similar to the expression (8) for V in the continuous

case. In particular, note that var(Z) = p(1−p)(z1−z2)
2. The comparative statics

results concerning the effects of ρ, γ and var(Z) for the continuous case therefore

carry over to the present discrete case. For example, concerning p we find that

acquisition is more likely if p is not too large and not too small. To understand

this, note that p = 1/2 maximizes the variance of Z in the population, for given

values of z1, z2. The a priori uncertainty concerning which value of Z applies is

largest for such intermediate values of p, and so is therefore the a priori probability

of providing the wrong amount of effort.

What is particular about the discrete case is that for certain parameter values

(namely in Regimes 1 and 4) the optimal s does not depend on Z. Due to

the continuity of the value functions, the ensueing low value of information also

applies for parameter values such that one is in one of the other regimes but close

to Regimes 1 and 4. In those cases the loss of making a wrong decision on s is
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too small to justify the acquisition of one’s value of Z. To analyze the associated

comparative statics effects, one needs to examine for which parameter values one

is likely to end up in Regimes 1 or 4.

We find, first, that acquisition is more likely if c∗ is not too large and not too

small, because acquisition takes place in Regimes 2 and 3, in particular around

the value of c∗ at which these regimes border each other. To understand this

result, note that for high or low values of c∗ the information does not lead to

behavioral changes and so is useless.

The results for the case ρ > 0 are a mirror image of those for ρ < 0. The

optimal efforts satisfy 0 ≤ s(z2) ≤ s(z) ≤ s(z1) ≤ 1. We can define Regimes

1-4 as follows: 1. always provide effort, 2. always provide effort except if it

is known that Z = z2, 3. only provide effort if it is known that Z = z1, and

4. never provide effort. These can be characterized by: 1. ψ1 + ρz2 > c∗, 2.

ψ1 + ρz2 ≤ c∗ < ψ1 + ρz, 3. ψ1 + ρz ≤ c∗ < ψ1 + ρz1, and 4. ψ1 + ρz1 ≤ c∗. For

sake of brevity we do not present the other results for this case.

One may combine the discrete case of this subsection with the continuous

case of the previous subsection, e.g. by allowing the effort s to attain all values

in a fixed interval, e.g. [0, 1], with bounds that are binding for certain model

parameter values. Sufficiently large parameter value changes then typically lead

to results that correspond to those in this subsection.

3.4 Examples

In the leading example in this subsection, the treatment is participation in a job

search assistance program by an unemployed individual, and one may think of

the policy intensity as being different across the two geographical regions that are

considered. For example, in one region, the budget for the program per potential

participant may be larger, so that the individual probability of being treated

is larger, holding everything else constant. An individual may not be aware

of the variation in policy intensities, or he may be aware of the distribution of

intensities but not know his personally relevant intensity, in which cases a regional

dummy indicator may be a valid instrumental variable. Alternatively, Z may be

a deliberately randomized intention to treat, where the treatment concerns the

increase in Z from z2 to z1. In classical social experiments with full compliance,

z2 = 0, z1 = 1, and p = 1/2. In that case, the intention to treat, the policy

intensity, and the treatment are all equivalent.

In the first leading example, an unemployed individual knows that there is

a chance that he will be able to enroll in a job search assistance program, and
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this affects his job search strategy before actual enrollment. If the program is

attractive and if the probability of enrollment into the program is known, then

this probability affects the optimal private job search effort before enrollment

into the program. Typically, the effort is lower if the probability of enrollment

is higher, leading to a lower exit probability to work before enrollment, and this

may lead to an under-estimation of the program effect on the employment rate

say one year after inflow into unemployment.

We now apply the results in order to inquire the conditions under which Z is

a valid instrumental variable, that is, the conditions under which the agent does

not acquire his value of Z.

To address the effects of the cost parameters c(1) and γ it is useful to slightly

re-interpret the model as a model for a risk-averse agent who cannot transfer

resources between time periods and who has a per-period utility function that

displays decreasing absolute risk aversion. If the agent has a low per-period

baseline income then the marginal utility losses of costs c(1) in Period 2 and γ

in Period 1 are relatively high. The acquisition of information is unlikely for

two reasons: it is expensive and it is useless because it does not affect optimal

effort. The exclusion restriction is then relatively easy to justify. If the agent

has a very high per-period baseline income then the marginal utility loss of costs

c(1) in Period 2 is small, and acquisition is again unlikely, but now only for

the second of the above two reasons.5 Again, the exclusion restriction is then

relatively easy to justify. For agents with per-period baseline incomes in between

these extremes it is more likely that information on Z is acquired, so then the

exclusion restriction is more easily violated.

Of course, instead of interpreting the effects of the costs parameters in terms

of marginal utility losses, one may also interpret them at face value. In that case,

the exclusion restriction is less likely to be violated if the cost of providing effort

has a rather high or low value and if the information cost is high.

Next, we find that the exclusion restriction is more likely to be violated if the

candidate instrument covers a large shift in policy intensity and if it divides the

population into groups of similar size. In the literature on instrumental variables,

it is usually regarded to be attractive to have an instrument that has a strong

effect on the treatment and that affects a substantial amount of agents. In our

case this means that z1 − z2 is large and that p is close to 1/2. From the above

5Unless of course the expected marginal return of providing effort is always very small as
well. The problem with characterizing comparative statics effects on optimal behavior if the
latter is a highly non-linear function of a large number of parameters is that there are often
joint limiting values of a subset of parameters that “push” the result in any desired direction.
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it follows that this makes it more likely that information on Z is acquired by

the agent, so that the paradoxical conclusion follows that strong instruments are

more likely to be invalid instruments.

The result on the effect of p is especially relevant for social experiments where

the randomized intention to treat is used as an instrumental variable. Typically,

this intention to treat is randomized with probability equal to 1/2. Our results

suggest that (provided that the individual randomization outcome can only be

acquired at a positive cost) it may be better to use a smaller or larger probability,

because this reduces the likelihood that the agent has an incentive to acquire and

use the value of the candidate instrumental variable. At the end of this section

we return to such randomized intentions to treat.

We also find that the exclusion restriction is more likely to be violated if the

outcome of interest strongly depends on interactions between the agent’s effort

before the outcome is realized on the one hand, and the agent’s treatment status

on the other. Also, it is less likely to be violated if all possible outcomes are very

large or very small.6

So far we have only examined a single candidate instrumental variable. Clearly,

if there are many such variables, each giving only limited information on the treat-

ment assignment process, and if the cost of information acquisition is linear in

the number of variables on which information is acquired, then this reduces the

likelihood that the exclusion restriction is violated. Another obvious result con-

cerns the timing of events: with a small amount of time between the moment at

which the policy intensity is determined and the moment at which the treatment

is realized, the scope for information acquisition is reduced.

We finish this section by some evaluating remarks about specific candidate

instrumental variables in situations where there is a time span between the mo-

ment at which the policy intensity is determined and the moment at which the

treatment is realized. First, as we just saw, a deliberately randomized intention

to treat has as disadvantages that its realizations are typically available at no

or low cost, and that the typical treatment probability of 1/2 corresponds to a

high incentive to acquire one’s realization. Secondly, it is relatively common to

use regional variation in the budget for (or, more generally, an indicator of the

geographical availability of) active labor market programs as an instrumental

6By definition, it is difficult to empirically test the above statements, because exclusion
restrictions are untestable. One possibility would be to conduct a social experiment where the
randomization probability for the policy intensity or the treatment probabilities vary between
regions with otherwise identical conditions. Alternatively, one may attempt to observe agents’
effort levels between the moments of policy intensity assignment and actual treatment.
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variable to study causal effects of the program. The present analysis suggests

that this has the disadvantage that it is relatively easy for agents to learn the

specific situation in their own region and the effect of this on the rate at which

they may expect to be treated. Thirdly, instrumental variable analyses that re-

strict attention to agents with low or high resources (e.g. income) are more likely

to be valid than analyses that include agents with intermediate resource levels.

3.5 An economic model for selective non-compliance

Suppose that agents can manipulate the probability distribution of their treat-

ment status Y , by way of choosing an action s before Y is realized. As an extreme

example, if the treatment status Y is binary, they may switch treatment status

by choosing an appropriate s. Agents’ optimal s may depend on Z, which may

be acquired at a cost.

This model framework can be reformulated in terms of our framework. For

convenience, we assume that s does not affect the expected outcome function f ,

so we write f := f(Y ) instead of f(Y, s). At the same time, s may affect the

distribution of Y |Z, which we denote by G(Y |Z; s). If the agent does not acquire

Z then he chooses action or effort s0 leading to G(Y |Z; s0) which we denote by

H(Y |Z).

To see the connection to our framework, note that determining the optimal s

involves calculation of EY |Z=z;sf(Y ). This equals
∫

f(y)dG(y|z; s), which can be

rewritten as

∫
f(y)dG(y|z; s) =

∫ [
f(y)dG(y|z; s)

dH(y|z)

]
dH(y|z)

The term in square brackets can now be interpreted as a new outcome function.

If z is a location parameter of the distribution of Y |Z = z; s, so that G(Y |z; s)

can be expressed as G0(Y − z|s) with G0 functionally independent of z, then the

above can be further simplified to

∫
f(y + z)dG0(y|s)

17



4 The magnitude of the bias of the instrumental

variable estimator if the exclusion restriction

is violated

4.1 The parameter of interest and the estimator

In this section we address under which circumstances the instrumental variable

estimator is particularly heavily biased by the exclusion restriction violations that

we consider. It is useful to return to the “reduced form” model representation

from Section 2. IVE involves the estimation of the effect of Y on U , holding all

other determinants of U constant. In the model, this is the partial derivative or

first difference of f with respect to its first argument. The classical IV regression

estimator, if applied to data on U, Y, and Z, estimates cov(U,Z)/cov(Y, Z). More

precisely, estimation involves that these two covariances are replaced by their

sample equivalents, and then the probability limit of the estimator, which we

denote by β̂IV , satisfies

β̂IV → cov(U,Z)

cov(Y, Z)

In our model framework, if the ER is valid, this equals

cov(f(Y, s0), Z)

cov(Y, Z)
(11)

We simply define this to be the parameter of interest β. It captures the mean

slope of the outcome as a function of treatment status for a given fixed effort.

Note that this definition of β is particularly sensible if f is linear in Y , as is the

case in specification (6), because then the slope of the outcome as a function of

treatment status for a given fixed effort is a constant equal to β. Moreover, as

we shall see, β is a local average treatment effect if Z is discrete with two points

of support.

Expression (11) can be simplified by noting that cov(Y, Z) equals var(Z).

Also, for any two random variables X1, X2, there holds that cov(X1, X2) =

cov(E(X1|X2), X2). This results in

β =
cov(E(f(Y, s0)|Z), Z)

var(Z)
(12)

If the ER does not apply, then
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β̂IV → cov(f(Y, s(Z)), Z)

cov(Y, Z)
=

cov(E(f(Y, s(Z))|Z), Z)

var(Z)
(13)

Note that β̂IV captures the over-all effect of Z on the outcome. If the ER is

violated then the over-all effect does not equal the causal treatment effect but

also includes the causal chain that runs by way of the effort s. If Z describes the

assigned treatment as opposed to the actual treatment Y then the over-all effect

is usually called the intention-to-treat (ITT) effect on the outcome. This can be

decomposed into the actual treatment effect β and the announcement or ex ante

effect of the treatment (see e.g. Abbring and Van den Berg, 2003, 2005, for this

terminology). The latter thus equals β̂IV −β, which is the asymptotic bias of the

IV estimator β̂IV of β.

From an econometric regression point of view, one may state that the asymp-

totic bias of the IV estimator results from the fact that the size of the causal

effect of treatment on outcome depends on the candidate IV. An alternative

way to look at the asymptotic bias is to write the outcome equation as U =

f(Y, s0) + (f(Y, s(Z)) − f(Y, s0)) + ε. By ignoring the dependence of s on Z,

an IV regression analysis takes the sum of the second and third terms in the

right-hand side as the residual term in the outcome equation. Consequently, the

candidate IV Z is correlated to the error term in the outcome equation.

Note that instrumental variable estimators are typically biased in case of ER

violations even if there is no selectivity in the treatment.

4.2 Continuous effort

Suppose that the ER is violated. We are first going to examine the asymptotic

bias in the model with continuous effort, quadratic costs of effort, and the outcome

function (6), with the conditions that ensure that it increases in effort and the

treatment status. Subsequently we generalize the cost-of-effort function and the

outcome function.

With the outcome function (6), β as defined above is the average treatment

effect in the population ∂f(y, s)/∂y which in this specific case does not depend on

y, and which is evaluated at s = s0. By substituting f into (12), and substituting

s0, we obtain,

β = ψ2 + ρs0 = ψ2 + ρ
ψ1 + ρz

c0

Similarly, by substituting (6) and s(z) from (7) into (13), we obtain,
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β̂IV → ψ2 +
2ρψ1

c0

+
ρ2

c0

cov(Z, Z2)

var(Z)

As a result,

β̂IV − β → ρ

c0

[
ψ1 − ρz + ρ

cov(Z,Z2)

var(Z)

]

In the Appendix to this paper we prove the following:

Proposition 3. Consider the model with continuous effort, quadratic costs of

effort, and the outcome function (6) with the conditions that ensure that it in-

creases in effort and the treatment status. If the exclusion restriction is violated

then the asymptotic bias of the IV estimator β̂IV has the same sign as ρ.

We use the monotonicity result of Athey and Levin (2001) (see Subsection

3.2) as an input in the derivation of results for more general model frameworks

than considered so far in this subsection.

Proposition 4. Consider the model with continuous effort. Let the treatment

status Y increase in Z in the sense of first-order stochastic domination. Let

the outcome function increase in effort and treatment status, and suppose that

the cross-derivative is positive. If the exclusion restriction is violated then the

asymptotic bias of the IV estimator β̂IV is positive.

4.3 Discrete effort

Let s be binary and let Z have a discrete distribution with points of support

z1 > z2, like in Subsection 3.3. It can be shown that β in (12) then simplifies to

β =
E(f(Y, s0)|z1)− E(f(Y, s0)|z2)

z1 − z2

which is a local average treatment effect (compare Imbens and Angrist, 1994;

note that the denominator equals E(Y |z1) − E(Y |z2)). If the ER is valid then

the IV estimator β̂IV converges to this number. Accordingly, we can use a Wald

estimator as IV estimator.

If the ER is violated then we can simplify (13) to

β̂IV → E(f(Y, s(z1))|z1)− E(f(Y, s(z2))|z2)

z1 − z2

(14)

so that again β̂IV captures the over-all effect of Z on the outcome.
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Now let us proceed by taking the outcome function f to satisfy (6). From

the above (as well as from the previous subsection) it immediately follows that

β = ψ2 + ρs0. If the ER is violated then necessarily s(z1) 6= s(z2). With ρ < 0,

violation implies that 0 = s(z1) < s(z2) = 1, whereas with ρ > 0, this is reversed.

By elaborating on equation (13) or on equation (14), we obtain

β̂IV → ψ2 − ψ1 + ρz2

z1 − z2

if ρ < 0

β̂IV → ψ2 +
ψ1 + ρz1

z1 − z2

if ρ > 0

Depending on the sign of ρ and the value of s0, we have four different expressions

for the asymptotic bias,

β̂IV − β → −ψ1 + ρz2

z1 − z2

if ρ < 0 and s0 = 0

β̂IV − β → −ψ1 + ρz1

z1 − z2

if ρ < 0 and s0 = 1

β̂IV − β → ψ1 + ρz1

z1 − z2

if ρ > 0 and s0 = 0

β̂IV − β → ψ1 + ρz2

z1 − z2

if ρ > 0 and s0 = 1

Thus,

Proposition 5. Consider the model with binary effort, a binary candidate IV,

and the outcome function (6) with the conditions that ensure that it increases in

effort and the treatment status. If the exclusion restriction is violated then the

asymptotic bias of the IV estimator β̂IV has the same sign as ρ.

The bias terms are larger if z1 and z2 are close. However, recall that this

result is derived under the simplifying assumptions that all agents are in Regime

2 and acquire information on Z, so that z1 and z2 can not be too close.

From the interpretation of the bias as capturing the announcement effect or

ex ante effect of the treatment, it follows that a large bias term is equivalent to

a large ex ante effect. This means that a large bias is often associated to a high

value of information.

Suppose the circumstances are such that it is plausible that the exclusion re-

striction is violated, so IV cannot be applied. One way to proceed is to estimate

a structural economic model. Alternatively, if the model framework is dynamic

with sufficient variation in the timing of treatment and the outcome of interest,
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then one may follow the so-called “timing-of-events” approach (Abbring and Van

den Berg, 2003), that is, impose some semi-parametric structure and exploit the

variation in the timing of events for identification of a causal treatment effect.

Note that the value of Z, if observed, does not have any influence on optimal

behavior after the actual treatment. Abbring and Van den Berg (2005) exploit

this so-called “ex post exclusion restriction” for identification of selection effects.

They also demonstrate that, with sufficient semi-parametric structure, the infor-

mation in the timing of events enables identification of the ex ante effect and the

treatment effect. It is a topic for further research to investigate under which con-

ditions the observation of indicators of the agent’s effort level before treatment

provides useful additional information.

Of course, exclusion restrictions for instrumental variable estimation may

break down for other reasons than those considered in this paper. Notably, the

agent’s value of the candidate instrument may be affected by unobserved char-

acteristics of the agent that have a direct causal effect on the outcome variable.

This is prevented if the candidate instrument is the result of a deliberate ran-

domization, like a deliberately randomized intention-to-treat variable in a social

experiment.

5 Conclusions

Exclusion restrictions for instrumental variable estimation are untestable and

therefore need to be justified externally. We consider situations in which there is

a time interval between the moment the agent realizes that he may be exposed

to the policy and the actual exposure. We economically analyze the decision

whether to acquire information concerning the value of the candidate instrumen-

tal variable.

The results suggest, first, that the exclusion restriction is more likely to be

violated if the candidate instrument covers a large shift in policy intensity or if it

divides the population into groups of similar size. We also find that the exclusion

restriction is more likely to be violated if the outcome of interest strongly depends

on interactions between the agent’s effort before the outcome is realized on the

one hand, and the agent’s treatment status on the other.

Deliberate randomization of the intention to treat, like in the case of social

experiments, does not help. The randomization outcome is typically available

to the agent at low cost, and the typical randomization probability of 1/2 corre-

sponds to a high incentive to acquire one’s realization. In fact, it may be better to

use a smaller or larger probability, because this reduces the incentive to acquire
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and use the value of the candidate instrumental variable.

Having a weak instrument does not help either. Weakness of the candidate

instrument, as defined or measured in ways proposed in the literature, is not

directly related to the likelihood that the exclusion restriction is violated.

With discrete effort, instrumental variable analyses that restrict attention to

agents with low or high resources (e.g. income) are more likely to be valid than

analyses that include agents with intermediate resource levels. The reason is that

for the former groups, the information is useless because it does not affect optimal

effort. In addition, for the low resource agents, it may be too expensive.

Finally, concerning the bias in case of violation of the exclusion restriction,

we find that typically, it is large if the value of information is large.
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