What Makes a Grade ? The Respective Contributions of Pupils, Schools and Peers in Achievement

IZA Prize Conference, November 2006

Francis Kramarz, Crest, Cepr, and Iza Steve Machin, Ucl, Cee, and Cepr Amine Ouazad, Crest, and Cee

What makes a grade ?

Educational inputs:

- Pupil's background & Family background (Coleman 1966, ...)
- School quality (School resources, Card and Krueger, JEP 1996, Krueger, QJE 1999, Hanushek, JEL 1986, EJ 2003, Hanushek et al., ECA 2005, and Levacic and Vignoles, 2002); (Teacher training, Angrist 2001...)
- Peers (Angrist et al. 2002, Hoxby 2000...).

What we are doing

- We use the National Pupils database, a comprehensive educational panel including all English pupils in State schools (i.e. not independent schools).
- We estimate the respective contributions of schools, peers and pupils in educational achievement.

Outline

- The English educational system
- The dataset
- Specification and Identification hypothesis
- Results and analysis of the respective contributions of pupils' backgrounds, peer effects and school quality.
- Concluding remarks

The English educational system

- Pupils enter primary school in the year in which they reach five.
- They go through the National Curriculum, Key Stages.
- End of each Key Stage: national examinations, anonymous and externally set and marked.
 - Key Stage 1 : 5 to 7
 - Key Stage 2 : 7 to 11
 - Key Stage 3 : 11 to 14
- Test scores are used for League tables, published on the web and in local newspapers.
- Policy relevance : Estelle Morris, the Education Secretary, resigned in 2002 for missing the target for Key Stage attainment.

The dataset

- Comprehensive: all pupils in state schools at the end of Key Stage 1, 2 and 3
- Test scores in English, Maths and Science.
- Policy relevant: examinations are externally set and marked.
- Panel data: Pupils and Schools can be followed over time.
- Pupil characteristics: Ethnicity, Gender, Free School Meal status, Special Educational Needs.
- School status: Community Schools, Voluntary Schools, Foundation Schools, Special Schools
- Standardized test scores: mean 50, Std. Dev. 10

The dataset

Key Stage	1	2	3	4	
Age	7	11	14	16	
Grade	2	6	9	11	
Topics	Maths	Maths Maths			
	English	English	English	GCSEs	
		Science	Science		
School types	Prima	ary			
	Infant	Infant Junior			
	Infant &	Junior	Secondary		
	First or lower	Middle			
	First & N	liddle	1		
	Primary	Junio	or High	College	
Cohorts	2000	2004			
	1999	2003			
	1998	2002			
		2001	2004		
		2000	2003		
		1999	2002	2004	
			2001	2003	
			2000	2002	

		Nu	mber	Percentage		
Number of Pupils Number of Schools Number of Year-Groups Sample Size		1 783 281 20 708 96 163 8 66	pupils schools year-groups 60 561	(100,00 %)		
<i>Of Which:</i> Key Stage 1 observations Key Stage 2 observations)3 213 57 348	(39,30 %) (60,70 %)		
<i>Of Which :</i> Key Stage 1: Key Stage 2:	1998 1999 2000 2002 2003 2004	1 122 020 1 158 427 1 122 751 1 703 236 1 821 893 1 732 219		(12,96 %) (13,38 %) (12,96 %) (19,67 %) (21,04 %) (20,00 %)		
		Nu	mber	Perce	entage	
Воу		4 41	13 066	(50,96 %)		
Free School Meal		1 48	36 517	(17,16 %)		
Special Educational N	Veeds	1 96	6 563	(22,71 %)		
English spoken at ho	me	7 89	93 062	(91,14 %)		
		Mean	(Std. Dev.)	Min.	Max.	
All Test Scores		50,00	(10,00)	12,68	80,57	
<i>Key Stage 1 Test Scores</i> English Maths		50,00 50,00 50,00	(10,00) (10,00) (10,00)	12,93 21,02 12,93	80,57 80,57 78,00	
<i>Key Stage 2 Test Scores</i> English Maths Science		50,00 50,00 50,00 50,00	(10,00) (10,00) (10,00) (10,00)	12,68 20,48 23,99 12,68	74,26 74,13 66,45 74,26	

Specification (1): Pure School and Pupil Effects

$$y_{i,f,t} = \theta_i + \psi_{J(i,t)} + D_{i,f,t}\delta + \varepsilon_{i,f,t}$$

- θ : Pupil effect
- ψ: School effect
- D_{i,f,t} : Controls (*f*: field)

Identification hypothesis (1-1)

- Identification constraint for pupil and school effects:
 - Effects can be compared when they lie in the same mobility group
 - Rule: pupil *i* and school *j* are in the same mobility group if pupil i attended school *j* once.
 - Proof of identification see Abowd, Creecy, Kramarz.
 - We find one large group encompassing more than 99.9% of the observations.

Identification hypothesis (1-2)

Formally,

$$E(\varepsilon|i, J(i,t), D_{i,f,t}) = 0$$

- No omitted time-varying variable should both have an impact on test scores and be correlated with pupil/school effects.
- e.g. if unemployment shocks affect both mobility – leads to bad schools - and test scores – bad shock on y -, then the difference between bad and good schools will be overestimated

Issues in the School effects and Pupil effects model

- (I) Inputs can be time-varying school composition, teacher quality, school resources.
- (II) Past achievement and/or past inputs matter.

Specification (2): School-Grade and Pupil Effects

$$y_{i,f,t} = \theta_i + \varphi_{J(i,t),G(i,t),t} + D_{i,f,t}\delta + \varepsilon_{i,f,t}$$

- θ : Pupil effect
- φ: School Grade Year effect
- D_{i,f,t} : Controls

Identification hypothesis (2-1)

- Identification constraint for pupil and school effects:
 - Effects can be compared when they lie in the same mobility group
 - Rule: pupil *i* and school-grade-year *j*,*g*,*t* are in the same *mobility group* if pupil i attended school-grade-year *j*,*g*,*t* once.
 - Proof of identification see Kramarz, Machin, Ouazad (same as AKM).
 - We find one large group encompassing more than 99.9% of the observations ???
 - With three cohorts, we expect three large groups; but repetitions, small but sizeable, connect these three groups

Identification hypothesis (2-2)

Formally,

 $E(\varepsilon | i, J(i,t) \otimes G(i,t) \otimes t, D_{i,f,t}) = 0$

- No omitted time-varying variable should both have an impact on test scores and be correlated with pupil/(school-gradeyear) effects.
- e.g. if unemployment shocks affect both mobility – leads to bad schools - and test scores – bad shock on y -, then the estimated effects can be purged and the real effects estimated but ...

Specification (3): Contemporaneous and Past School-Grade and Pupil Effects

$$y_{i,f,t} = \theta_i + \varphi_{J(i,t),G(i,t),t} + \lambda \varphi_{J(i,t-1),G(i,t-1),t-1} + D_{i,f,t}\delta + \varepsilon_{i,f,t}$$

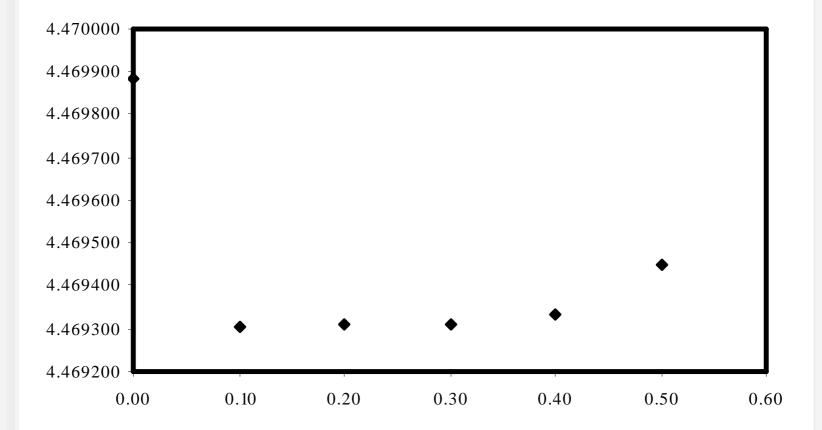
- θ : Pupil effect
- φ: School Grade Year effect
- D_{i,f,t} : Controls

Identification hypothesis (3-1)

- Identification constraint for pupil and school effects:
 - Effects can be compared when they lie in the same mobility group
 - Rule: pupil *i* and school-grade-year *j*,*g*,*t* are in the same *mobility group* if pupil i attended school-grade-year *j*,*g*,*t* once.
 - Proof of identification see Kramarz, Machin, Ouazad.
 - We find one large group encompassing more than 99.9% of the observations (same as before, due to repetitions)

Identification hypothesis (3-2)

• Formally, $E(\varepsilon_1 | i, J(i,1) \otimes G(i,1) \otimes 1, D_{i,f,1}) = 0$


$$E(\varepsilon_2 | i, J(i,t) \otimes G(i,t) \otimes t \text{ for } t = 1,2, D_{i,f,2}) = 0$$

Unique difficulty up to now is the specification: the impact of schools on achievement is similar to high and lowgrade students but unlikely to be a problem due to endogenous mobility

Estimation

- First two specifications, exactly ACK.
- Last specification, that includes past school-grade-year effects, is more complex:
 - The design matrix that relates a pupil to schools has more than one non-zero (one 1 and one λ)
 - The model is linear conditional on λ
 - It is estimated as such:

Estimated Residual Sum of Squares

Decomposing year-group effects (1/2)

Second-step specifications:

$$\varphi_{j,g,t} = \varphi_j + E(Z|j,g,t)\gamma + G_{j,g,t}\delta + \varepsilon_{j,g,t}$$

 $\varphi_{j,g,t} = \varphi_j + E(Z|j,g,t)\gamma_1 + E(\theta|Z,j,g,t)\gamma_2 + G_{j,g,t}\delta + \varepsilon_{j,g,t}$

- E(Z|j,g,t) : vector of average exogenous pupil characteristics
- E(θ|Z,j,g,t) : vector of average pupil effects (conditional on observables)
- γ : reduced form contextual effect. It includes both the exogenous and the endogenous contextual effect.
- φ_i : school fixed effect

Decomposing year-group effects (2/2)

Within school specification:

 $\varphi_{j,g,t} - \varphi_{j,\dots} = [E(Z|j,g,t) - E(Z|j)]\gamma + [G_{j,g,t} - G_{j,\dots}]\delta + \varepsilon_{j,g,t} - \varepsilon_{j,\dots}$

- Variations in year-group composition within a school identify peer-effects, provided they are exogenous (Hoxby 2000, Gould Lavy Paserman 2005).
- In contrast to previous literature, the school effect is analysed <u>free of the pupil effect</u> (provided the specification is correct).

Correlation table: School Effects

Simple Correlation with							
Variable description	Mean	Std. Dev.	у	θ	θ^*	$\Theta^{\!\!\!\perp}$	ψ
y Standardized grade	50,000	10,000	1,000				
θ, Pupil Effect	0,000	9,341	0,811	1,000			
θ^* , Observed individual heterogeneity	0,000	5,404	0,544	0,579	1,000		
$\theta^{\scriptscriptstyle\! \perp}$, Unobserved individual heterogeneity	/ 0,000	7,619	0,608	0,816	0,000	1,000	
ψ, School Effects	0,031	1,941	0,121	-0,076	-0,008	-0,088	1,000
ε, Residual	0,000	4,630	0,465	0,000	0,000	0,000	0,000

- Large pupil heterogeneity, large school heterogeneity (std. dev. 5 times larger)
- Larger correlation between test scores and pupil effects.
- Note that the correlation of y and θ is underestimated since θ is measured with error (like usual regression with measurement error).

Correlation table: School-Grade Effects

				Simple Correlation with				
Variable description	Mean	Std. Dev.	у	θ	θ^{*}	θ^{\perp}	φ	Past φ
y Standardized grade	50.000	10.000	1.000					
θ, Pupil Effect	0.000	9.584	0.804	1.000				
θ^* , Observed individual heterogeneity	-0.094	5.500	0.544	0.564	1.000			
θ^{\perp} , Unobserved individual heterogeneity	0.094	7.913	0.573	0.825	0.000	1.000		
ϕ , Year-Group Effect	-0.554	3.709	0.111	-0.345	-0.002	-0.417	1.000	
φ , Past Year-Group Effect	-0.756	3.774	-0.065	-0.369	-0.006	-0.441	0.649	1.000
ε, Residual	0.000	0.000	0.449	0.000	0.000	0.000	0.000	0.000

- Large pupil heterogeneity.
- School-grade heterogeneity is larger than school heterogeneity
- Large correlation between pupil effects and the test score

Correlation Table: Current and Past School-Grade effects (estimated $\lambda = 0.1$)

			Simple Correlation with					
Variable description	Mean	Std. Dev.	у	θ	θ^*	θ^{\perp}	φ	Past φ
y Standardized grade	50.000	10.000	1.000					
θ, Pupil Effect	0.000	9.875	0.765	1.000				
θ^* , Observed individual heterogeneity	-0.142	5.554	0.543	0.552	1.000			
θ^{\perp} , Unobserved individual heterogeneity	0.142	8.239	0.557	0.834	0.000	1.000		
φ, Year-Group Effect	-3.370	21.730	0.011	-0.149	0.000	-0.179	1.000	
φ , Past Year-Group Effect	-28.894	7.018	-0.051	-0.442	-0.007	-0.523	0.861	1.000
ε, Residual	0.000	4.469	0.450	0.007	0.000	0.000	0.000	0.000

- Past-school-grade effect only enters KS 2 results (mean has no clear meaning except progress for those who repeat, more on this later)
- Similar reason for large Stdev for the grade-school effect
- No correction for estimated effects

	School Effects	Year-Group Effects	Past YG Effect
Boy	0.219 (0.011)	0.209 (0.012)	0.207 (0.013)
Free School Meal Status	-4.113 (0.016)	-4.106 (0.016)	-4.190 (0.017)
English language	1.655 (0.035)	2.210 (0.034)	2.757 (0.035)
Special Educational Needs	-11.086 (0.016)	-11.269 (0.015)	-11.280 (0.015)
Month of Birth	-0.278 (0.002)	-0.279 (0.002)	-0.281 (0.002)
Ethnicity			
Chinese	2.769 (0.109)	3.014 (0.112)	3.043 (0.117)
Mixed	-1.417 (0.042)	-1.527 (0.045)	-1.690 (0.047)
Indian	0.695 (0.049)	0.983 (0.050)	1.289 (0.052)
White	Ref.	Ref.	Ref.
Bangladeshi	-1.760 (0.072)	-1.723 (0.070)	-1.504 (0.073)
Black African	-1.141 (0.058)	-1.595 (0.054)	-2.066 (0.056)
Pakistani	-2.771 (0.051)	-2.292 (0.049)	-2.010 (0.051)
Black Other	0.483 (0.083)	0.354 (0.084)	0.199 (0.087)
Other	-0.166 (0.031)	-0.277 (0.031)	-0.388 (0.033)
Black Carribean	-1.542 (0.050)	-1.779 (0.050)	-2.071 (0.052)
Other controls		Cohort dummies	
R-Squared	0.335	0.325	0.311
F Statistic	46,257.00	53,534.28	50,214.12
Number of Pupils	1,783,281	1,783,281	1,783,281

Analysis of pupil effects

- Free School Meal Status: the pupil effect is around 41% of a standard deviation lower.
- Gender: boys have only a moderately higher effect (better in maths & science, but weaker in English)
- The month of birth has a negative impact on the pupil effect.
- Ethnicities are ranked in the same way as in descriptive statistics

	Specification						
	Current Scho	ol-Grade Effect	Past School-Grade Effect				
	φ _{j,g,t} School	-Grade Effect	φj,g,t Schoo	I-Grade Effect			
	Coefficie	ents for	Coefficients for				
	observables	unobservables	observables	unobservables			
	Z _{j,g,t}	$E(\theta^{\perp} j,g,t,X)$	Z _{j,g,t}	$E(\theta^{\perp} j,g,t,X)$			
School Composition							
% with English as first language	-1.267	-0.007	-1.454	-0.029			
	(0.196)	(0.009)	(0.187)	(0.004)			
% with Free School Meal	0.197	0.003	0.388	0.007			
	(0.139)	(0.005)	(0.134)	(0.002)			
% with Special Needs	2.686	0.027	3.531	0.016			
	(0.275)	(0.007)	(0.115)	(0.002)			
% of Boys	-0.341	-0.638	-0.571	0.003			
	(0.127)	(0.043)	(0.089)	(0.001)			

Ethnic composition

% Chinese	-0.455	-0.012	-0.719	-0.008
	(0.935)	(0.003)	(0.941)	(0.003)
% Mixed	1.069	-0.002	1.547	0.006
	(0.341)	(0.007)	(0.301)	(0.002)
% Indian	1.075 (0.457)	-0.015 (0.008)	1.357 (0.456)	-0.019 (0.004)
% White	Ref.	Ref.	Ref.	Ref.
% Bangladeshi	0.167 (0.755)	-0.022 (0.008)	0.296 (0.750)	-0.017 (0.007)
% Black African	0.002	0.003	-0.040	0.010
	(0.481)	(0.004)	(0.497)	(0.003)
% Pakistani	0.848	-0.004	1.158	-0.011
	(0.482)	(0.007)	(0.501)	(0.005)
% Black Other	-0.024	-0.010	-0.125	0.003
	(0.570)	(0.005)	(0.569)	(0.003)
% Other	0.281	-0.004	0.343	0.004
	(0.120)	(0.008)	(0.111)	(0.003)
% Black Carribean	-0.410	0.005	-0.095	0.023
	(0.475)	(0.006)	(0.480)	(0.004)
School Fixed Effects	Y	es	Y	es
Key Stage dummies	Y	es	Y	es
Year dummies	Y	es	Y	es
P-Squared	0.7	61/	٥	۵۵

Analysis of school-gradeyear effects (1)

- Introducing past school-grade effects increases (a lot) the R-square.
- The unobservable pupil effects in the school-grade matter (R-square goes from 0.61 to 0.76 in specification without past effects, from 0.30 without school effects).
- We have no clear intuition of what they mean, since we are not used to reason conditional on pupils' quality but...

Note that

$$\Delta y = \varphi_2 - (1-\lambda)\varphi_1 + \Delta \varepsilon$$

Analysis of school-gradeyear effects (2)

- The KS1 and KS2 school-grade effects are very highly correlated. Assume they are equal: $\Delta y = \lambda \varphi_1 + \Delta \varepsilon$
- Then, we capture in the school-grade effects the students' ability to make progress:
 - Close to zero in average for the usual guy
 - Positive for those who come from an immigration background
 - Strong for those who repeated for some reason

Baseline Specification	School Effects	Year-Gro	up Effects	Past and Current Year-group Effects			
- Peer Effects Specification	-	With Peers' observables	With Peers' observables and unobservables	With Peers' observables	With Peers' observables and unobservables		
		Depe	ndent variable : ψ_j School	Effect			
School Status							
Community	Ref.	Ref.	Ref.	Ref.	Ref.		
Voluntary Aided	0.214 (0.002)	-0.266 (0.048)	1.143 (0.034)	0.364 (0.044)	1.303 (0.041)		
Voluntary Controlled	-0.375 (0.002)	-0.266 (0.048)	0.445 (0.050)	-0.316 (0.052)	0.582 (0.052)		
Foundation	0.007 (0.004)	-0.007 (0.102)	0.612 (0.112)	0.000 (0.103)	0.776 (0.124)		
Community Special	-3.191 (0.009)	-0.916 (0.194)	-12.461 (0.219)	-1.146 (0.309)	-15.853 (0.188)		
Non-Maintained Special	-5.679 (0.066)	-4.569 (1.006)	-12.087 (0.693)	-4.830 (1.004)	-14.395 (0.742)		
Foundation Special	0.825 (0.028)	-3.752 (1.129)	-14.241 (0.450)	-4.183 (1.162)	-17.500 (0.406)		
R-Squared	0.02	0.01	0.21	0.01	0.27		
F Statistic	14523.01	25.70	435.52	25.62	815.76		
Number of schools	20,708	20,708	20,708	20,708	20,708		

Analysis of school effects

- Unobservable pupil effects explain a large fraction of the variance.
- Special needs schools have, as expected, very large and negative school effects.
- Their increase in magnitude is a manifestation of the negative correlation between pupil and school-grade effects.

		School Effe	ect at age 11		
School Effect at age 7		Quartiles	s of ψ _{J(i,2)}		
Quartiles of $\psi_{J(i,1)}$	Q1	Q2	Q3	Q4	
Q1	277,193	38,216	32,106	17,968	365,483
	(62.02 %)	(8.74 %)	(7.70 %)	(4.96 %)	(21.98 %)
Q2	51,554	276,071	36,508	21,006	385,139
	(11.54 %)	(63.12 %)	(8.76 %)	(5.80 %)	(23.16 %)
Q3	53,467	50,163	281,237	30,321	415,188
	(11.96 %)	(11.47 %)	(67.49 %)	(8.38 %)	(24.97 %)
Q4	64,709	72,919	66,881	292,731	497,240
	(3.89 %)	(4.38 %)	(4.02 %)	(80.86 %)	(29.90 %)
	446,923	437,369	416,732	362,026	1,663,050
	(26.87 %)	(26.30 %)	(25.06 %)	(21.77 %)	(100.00 %)

Table A7 :School Mobility between ages 7 and 11 (using observations of English test scores)

Concluding Remarks (1)

- Results suggest that pupils are much more heterogeneous than schools. (Around 1.5 and 2 times more variance)
- Pupil effects are more correlated with test scores than School or School-Grade effects
- Variations in social composition -- observed and unobserved -- explain a large share of the variance in school-grade effects.
- Unobserved pupil effects explain a very large share of the explained component of school effects.
- This suggests a ranking of inputs: (i) pupil background and ability (ii) school composition (iii) school time-invariant inputs

Concluding Remarks (2)

• We will estimate:

- A model with separate grade-school-year effects (without using the connecting repeaters)
- 2. The limited-mobility bias.
- The various pupil and school effects using techniques that correct for their estimated nature
- 4. Various models of mobility to understand where identification comes from.