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Abstract

We consider the problem of sequential search when the decision to stop search-
ing is made by a committee. We show that a symmetric stationary equilibrium
exists and is unique given that the distribution of rewards is log concave.

Committee members set a lower acceptance threshold than do single-agent
searchers. In addition, mean preserving spreads in the distribution of rewards
may lower each member’s continuation value — an impossibility in the single-
agent setting. If committee members are very patient or very impatient, expected
search duration is lower than it would be for a single agent, but, for intermediate
levels of patience, this comparison may be reversed.

Holding the fraction of votes required to stop fixed, expected search duration
rises with committee size on patient committees but falls with committee size
on impatient committees. Finally, we consider the effect of varying the number
of votes required to stop, holding committee size constant. We show that the
welfare-maximizing vote threshold increases in the rate of patience and that there
is a finite bound on patience such that unanimity is welfare maximizing.

∗We thank Lones Smith for particularly helpful comments. We also received helpful comments at
the UPenn Search and Matching Workshop, at the IZA Search conference, at the Tinbergen Institute,
and at Georgetown University.
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“A committee is a group that keeps minutes and loses hours.” (Milton Berle)

1 Introduction

In the classic sequential search problem, an individual makes one draw per period from

an exogenous and known distribution. These draws are independently and identically

distributed through time. After every draw, there is a decision to be made – to stop

and accept the payoff given by the realization of the most recent draw or to continue

searching. The benefit of further search is the expectation that a higher payoff will

eventually be realized; the cost is that the searcher’s enjoyment of this payoff will be

delayed. Elaborations and applications of this optimal stopping framework abound in

economics. See Lippman and McCall (1979), Mortensen (1986), and Rogerson, Shimer

and Wright (2005) for a set of excellent surveys.

All of the search literature to date has a common feature, namely, that the stopping

decision is made by a single agent. For many applications, this assumption is a good

one, but often the decision to stop or to continue searching is made by a group of

agents. Consider, for example, an academic department that brings a sequence of

candidates to campus to interview for an open position, and suppose that after each

visit, a decision is made whether to make an offer to the latest candidate or to continue

the search. This decision is typically taken by a group of faculty. Or, consider a couple

that is shown a sequence of rental properties. After each property is observed, the

couple decides as a pair whether to accept the latest apartment they have seen or to

continue their search. It is, of course, easy to think of other situations in which a group

makes a stopping decision.

We model this group decision as a problem of search by committee. As in the single-

agent problem, in each period, a group of agents (the committee) is presented with an

option. The values that the committee members place on this option are draws from an

exogenous and known distribution, and these draws are iid across committee members

and over time. In each period, the committee votes whether to stop or to continue.

Specifically, we consider a committee with N members and we suppose that at least

M votes are required to stop. The voting game played by the committee aggregates

its members’ preferences. If at least M members find the current option acceptable,
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the search stops; otherwise, the search continues. Our approach thus combines two

literatures, sequential search and private-values voting.

What do we learn from this combination? First, we show that the problem of

search by committee is well posed. A symmetric stationary equilibrium exists and is

unique given a log concavity assumption on the distribution of payoffs. Second, we

compare the expected outcomes of committee and single-agent search. Suppose the

committee and the single agent face the same environment, i.e., the same distribution

of payoffs and the same cost of delay. We show that given the same environment,

committee members are always less picky than a single agent in the sense that the

acceptance threshold they set is always less than that set by the single agent. The fact

that committee members set a lower acceptance threshold than a single agent need

not imply, however, that expected duration of search is shorter for a committee than

it is for the single agent. The comparison between the expected duration of search for

a committee and for a single-searcher depends on the cost of delay, and it does so in

an interestingly non-monotonic way. Specifically, so long as M < N, a committee can

expect to end its search faster than a single agent does if the cost of delay is either

sufficiently high or sufficiently low.

We also show that a standard comparative static result from the single-agent search

literature, namely, that a single agent adjusts his or her acceptance threshold upward in

response to a mean-preserving spread in the distribution of rewards, can be reversed in

the search-by-committee problem. In this sense, committee search is more conservative

than is single-agent search. The two results, less picky and more conservative, follow

from two fundamental elements of the search-by-committee problem. First, commit-

tee members impose externalities on each other that are by definition absent in the

single-agent problem. (See Börgers 2004 for a related point in a static voting game.)

Second, the voting game played by its members defines a value function (the expected

discounted payoff) for the committee. The value function in the single-agent problem

is necessarily convex, but the committee value function is not.

Third, we provide comparative statics results for the search-by-committee problem.

We begin by relating the acceptance threshold and expected search duration to com-

mittee size. Fix α ≡ M/N , the fraction of votes required to stop searching. We prove

a counterintuitive equilibrium relationship between acceptance thresholds and search
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duration; namely, as we vary N holding α fixed, expected search duration rises (falls)

whenever acceptance thresholds fall (rise). For example, if we increase the committee

size and committee members become more picky as a result, expected search duration

must fall. Given that the acceptance threshold set by committee members is lower than

that of a single-searcher, one might expect the threshold to be monotonic in committee

size, but we show that committee members need not become less picky as the size of

the committee increases. In fact, if committee members are sufficiently impatient (the

cost of delay is high enough), the acceptance threshold must increase and expected

search duration must decrease in N . On the other hand, if committee members are

sufficiently patient, these comparative statics results are reversed.

Finally, we consider the effect of varying M , holding N fixed. We show that for

low values of M , the acceptance threshold increases as the required number of votes

increases. In this case, expected search duration is also increasing in M . Eventually,

however, the effect of an increase in M on the acceptance threshold reverses. In short,

the acceptance threshold is hump-shaped in M . This is the basis for a mechanism

design result. We show that the welfare-maximizing choice of M increases as committee

members are more patient and that unanimity (M = N) is optimal for high enough

(but bounded) rates of patience. The idea that unanimity can be optimal is in contrast

to a standard result (e.g., Feddersen and Pesendorfer 1998) from the common-values

voting literature, albeit in a different context.

To make progress on a new problem, we make simplifying assumptions. On the

search side, we restrict our attention to the stationary sequential problem, and we

assume that once an option is discarded it is lost forever to the committee (no recall).

These assumptions are close to those of McCall (1970). That is, we use a simple,

one-sided search framework and do not embed the search-by-committee problem in a

market environment, in which the distribution of payoffs is endogenously generated by

the actions of agents on the other side of the market. On the voting side, we restrict

our attention to the private-values case, in which the values that committee members

place on the option at hand are independent draws. Thus, we do not allow for the

possibility that voting can convey information. Most fundamentally, we restrict the

strategies available to committee members in the voting game. We consider Markovian

strategies in which each committee member’s vote (stop or continue) depends only on
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the option at hand. Thus our voting model harks back to the pioneering work of

Hotelling (1929) and Black (1948).1

In the next section, we describe our model and prove the existence of a unique

symmetric stationary equilibrium. In Section 3, we compare search by committee

to single-agent search and show that committee members are less picky and more

conservative. We elaborate on the two crucial aspects of the search-by-committee

problem that drive these results, externalities and nonconvexities, in the context of

the simplest possible committee, namely, the case of N = 2. Section 4 presents the

comparative statics results with respect to committee size and the number of votes

required to stop. Section 5 presents our mechanism design result. In Section 6, we

conclude.

2 The Model

Assumptions. A committee is a pair (M, N), where N is the number of members

and M is the number of votes required to end the search. Time is discrete, and all

committee members discount the future at common rate δ ∈ (0, 1). In each period,

the committee is presented with an option. Each committee member then draws a

value for the option from a continuous cdf F : [0, 1] 7→ [0, 1] with positive density

f . For convenience, we assume F (0) = 0. These values can represent von Neumann-

Morgenstern utility payoffs or monetary payoffs for risk neutral agents. We assume

these draws are iid across time and across committee members. We rule out side

payments, i.e., utility is non-transferable.

We assume that both
∫ z

0
F (s)ds and

∫ z

0
(1 − F (s))ds are log concave in z. To see

how we use these assumptions, define the truncated means:

µh(z) ≡ E[X|X ≥ z] and µ`(z) ≡ E[X|X < z].

Burdett (1996) shows that the above log-concavity assumptions imply that µ′h(z) ≤ 1

1We follow the terminology of Black (1948), who also calls a collection of voters a committee. In
his model, the committee decides between a proposal and the status quo. In our model, the proposal
is the current option and the status quo is continuing to search. In Black (1948), the status quo is
exogenous, while the value of the “status quo” is endogenous in our model.
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and µ′`(z) ≤ 1.2 We use these upper bounds on the two derivatives to establish unique-

ness of equilibrium and also to sign some of our comparative statics results. Note

that f log concave is sufficient but not necessary for log concavity of the two inte-

grals. Many common distributions are log concave, e.g., uniform, normal, exponential,

logistic, power, gamma, and Weibull.

Each period is divided into two stages. In the first stage, the option arrives and

each committee member’s value is realized. In the second stage, the committee decides

whether to stop searching and accept the most recently observed option or to continue

to the next period. By restricting voting to stopping with the most recently observed

option or continuing to search we are ruling out recall ; i.e., once an option is discarded

it is forever lost to the committee.3 We model this choice using a simple voting mech-

anism; i.e., the committee members simultaneously vote either to stop and accept the

current option or to continue to search. The search ends in period t if and only if at

least M committee members vote to stop. Each committee member seeks to maximize

his or her own discounted payoff.

A strategy for committee member i is a sequence of functions σi = {σi(t)}t, such

that σi(t) maps from possible histories through time t to the set {continue, stop}.
Player i employs a Markov Strategy if σi(t) is only a function of the most recently

evaluated option. We restrict attention to symmetric stationary equilibria in which all

players employ the same Markov Strategy.

We assume that the above description of the model is common knowledge among

the committee members. Given our Markovian restriction, whether individual draws

are private or public information is immaterial. Further, whether an agent knows in

advance that he or she is pivotal is also immaterial.

2Similar results can be found in Goldberger (1983) and in Vroman (1985). Log concavity assump-
tions are common in many economic applications (search, signaling, mechanism design, etc.). See
Bagnoli and Bergstrom (2005) for a survey of log concavity results and applications.

3In single-agent search, the no-recall assumption is without loss of generality. However, search by
committee is a game, and thus a plethora of strategies can potentially be supported in equilibrium
by conditioning on past history. With recall, the state variable is the entire past history of draws, so
the no-recall assumption is important in the committee search problem. The assumption of Markov
strategies, however, takes the bite out of the no-recall assumption in the committee search problem.
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Equilibrium. It is convenient to work with reverse order statistics.4 Let X1, . . . , XN

be the iid draws of the N committee members. Let Y 1 ≥ . . . ≥ Y N be the corre-

sponding reverse order statistics, and let Gj be the cdf of Y j. We seek a stationary

symmetric equilibrium. Assuming (for now) that such an equilibrium exists, we de-

fine Ψ(z; M, N, δ) to be the expected continuation value starting just before draws are

made given that each committee member sets threshold z for all future time periods.

The committee votes to stop if M or more members draw a value of z or more, so the

probability that the committee stops searching is 1 − GM(z). The continuation value

solves:

Ψ(z; M, N, δ) = GM(z)δΨ(z; M,N, δ) + (1−GM(z))Ω(z),

where Ω(z) = E[X|Y M ≥ z], i.e., the expected payoff conditional on stopping. Rear-

ranging, we have:

Ψ(z; M, N, δ) =
(1−GM(z))Ω(z)

1− δGM(z)
. (1)

An agent’s payoff is only affected by the cutoff chosen when he or she is pivotal, i.e.,

when exactly M − 1 of the remaining N − 1 agents vote to stop. Thus, best responses

are determined by considering a pivotal voter, i, who can choose either to stop and

accept the most recently drawn reward, xi, or instead continue. The pivotal agent

solves:

max{x, δΨ(z; ·)}.

Since the continuation value, Ψ(z; ·) is a constant with respect to the current period’s

decision, the optimal strategy is an acceptance threshold, i.e., vote for an option iff its

value exceeds some threshold. Thus, if all members set threshold z in the future, the

stopping threshold for the pivotal voter equates the value of stopping and continuing,

given that he or she is pivotal now, i.e., x(z) ≡ δΨ(z, ·). For an equilibrium to be

stationary and symmetric the following equilibrium condition must be satisfied: x∗ =

δΨ(x∗; ·). In equilibrium, Ψ(x∗; ·) is the expected payoff for each committee member.

Equivalently, since Ψ(x∗; ·) is proportional to x∗, the equilibrium acceptance threshold

can be used as a measure of each committee member’s welfare.

4Reverse order statistics are opposite to usual order statistics in that they index the draws of the
random variable in descending rather than ascending order. Thus, reverse order statistic Y 1 = YN ,
the Nth usual order statistic. In general, Y J = YN−J+1.
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To establish existence and uniqueness and to characterize equilibrium, we need

expressions for GM(z) and Ω(z). We can write

GM(z) =
M−1∑
i=0

(
N

i

)
(1− F (z))iF (z)N−i,

that is, the probability that M − 1 or fewer of the committee members draw a value of

z or greater. Absent simplification, Ω(z), is a bit more complicated, and so, we give a

simplified version as a weighted average of µh(z) and µ`(z) and bound its derivative in

the next Lemma. The proof is in the Appendix. Let α ≡ M/N to simplify notation.

Lemma 1 Ω(z) = (1− (1− α)F (z))µh(z) + (1− α)F (z)µ`(z) and Ω′(z) ≤ 1.

Having characterized GM(z) and Ω(z), we state the main result of this section.

Proposition 1 An equilibrium exists and is unique.

The details of the proof are in the Appendix. However, the basic idea is straight-

forward, as shown in Figure 1. Existence follows from Ψ(0; ·) = E[X] > 0, Ψ(1; ·) = 0,

and Ψ(z; ·) continuous in z. To establish uniqueness, we need to show that δΨ(z; ·)
crosses the 45-degree line only once, i.e., that δΨz(z, ·) < 1. This last condition follows

from Lemma 1.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

δΨ(z; ·)

z

Figure 1: We have graphed δΨ(z; 2, 2, 0.9) and z for uniform F on [0, 1] to illustrate
our equilibrium: x∗ ≈ 0.515.
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3 Comparison to Single-Agent Search

In this section, we compare the symmetric stationary committee search equilibrium

outcome with the outcome in the case of a single-searcher. We first show that com-

mittee members are less picky than single-searchers; i.e., they set a lower acceptance

threshold in equilibrium. We then show that committees conclude search more quickly

for extreme (high or low) rates of patience but that the comparison can be reversed for

intermediate rates of patience. Finally, we establish that committees are more conser-

vative than single-searchers in the sense that a mean preserving spread in F can lower

the equilibrium acceptance threshold.

Committees are Less Picky. For fixed δ and F, we say that committee members are

less picky than a single agent if the equilibrium acceptance threshold of the committee

members is lower than the acceptance threshold that a single-searcher would set, which

we prove in the Appendix.

Proposition 2 (Less Picky) Committee members are less picky than a single-searcher.

The intuition for this result is quite simple. A single-searcher maximizes his or her

continuation value, but a pivotal committee member cannot count on the committee

doing so. More specifically, there are two potential negative externalities that com-

mittee members can impose on one another that do not arise in the single-searcher

case. They can vote to stop when a committee member has drawn a low value or

they can vote to continue when the committee member has drawn a high value. These

externalities lead committee members to set a lower acceptance threshold than would

a single-searcher.5 Notice that this argument does not require independence of draws.

Committees are less picky than single-searchers even with correlated values, as long as

the correlation is not perfect, at which point the single-agent and committee problems

are identical.

5In the Börgers (2004) model of costly committee voting and voluntary participation, there is a
single negative externality that arises because an individual’s decision to participate makes it less
likely that other committee members are pivotal and thus imposes a cost on them. While Börgers’s
model is static and ours is dynamic, there is a similarity to the externalities in his model and ours.
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Patient and Impatient Committees Conclude Search Faster. We know that

committee members set an acceptance threshold that is below the corresponding thresh-

old for a single-searcher (holding F and δ constant), but this does not necessarily imply

that the committee has a shorter expected search duration. In fact, the committee may

take longer to search, as the following example illustrates.

Example 1 Let F be uniform on [0, 1] and δ = 0.8. Then a single-searcher sets thresh-

old 0.5, i.e., stops with probability 0.5. With N = 5 and M = 4, the equilibrium

committee threshold is approximately 0.39, which yields a probability of stopping of

approximately 0.36; i.e., the committee searches longer on average.

The point illustrated by the above example is straightforward. We can, however,

say something considerably less obvious about expected search duration. The com-

parison of expected search duration between a committee and a single-searcher has an

interesting non-monotonicity in δ. While expected search duration must rise in δ for

committees and for single-searchers, the rate of change differs between committees and

single-searchers, so that the sign of the difference in expected search duration is not

monotonic.

Proposition 3 If M < N , then there exists 0 < δL ≤ δH < 1 such that expected

search duration is lower for the committee whenever δ /∈ (δL, δH). That is, committees

conclude search more quickly than individuals for low and high rates of patience.

Proof: Given in the Appendix.

To understand why committees conclude search faster for extreme rates of patience

(and also why the comparison may be reversed for medium rates of patience), first

note that expected search duration depends on both the acceptance threshold (the

threshold effect) and the probability of stopping given any acceptance threshold (the

vote aggregation effect). Since committee members are less picky, the threshold effect

always pushes committees toward concluding search faster. Thus, committees can only

search longer if the vote aggregation effect is dominant and has the opposite sign of

the threshold effect.

However, when M < N, the binomial distribution has the property that GM(x) < F (x)

for low enough x. Thus, whenever the committee and single-searcher acceptance thresh-

olds are low enough, the vote aggregation effect reinforces the threshold effect, and the
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committee can expect to conclude search faster. Of course, low δ implies low accep-

tance thresholds, which implies that committees conclude search faster on average for

low enough δ.

If δ is high, we cannot make the same argument. In fact, for high enough acceptance

thresholds, the vote aggregation effect must have the opposite sign from the threshold

effect (as long as M > 1). So the question becomes: which effect dominates? As

δ → 1, the single-agent threshold goes to 1; thus, the probability of continuing goes to

1. The committee threshold is bounded away from 1 as δ → 1 (as long as M < N).

This in turn implies that the committee’s probability of continuing is bounded away

from 1. altogether, for sufficiently high δ, the threshold effect must dominate the vote

aggregation effect. For intermediate rates of patience, the vote aggregation effect can

be of the opposite sign and dominant as in Example 1. However, this intermediate

range need not exist. For example, if N = 2 and M = 1 and values are distributed

uniformly on [0, 1], then the committee has a lower expected search duration than a

single agent for all discount rates.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Acceptance Thresholds Probability of Stopping

δ δ

Figure 2: We compare the optimal single-agent solution to the committee equilibrium
with (N,M) = (5, 4) and F uniform on [0, 1]. In the graph on the left, we compare
the single-agent acceptance threshold, x̃ (dashed line) to the committee threshold x∗

(solid line). On the right, we compare the probability of stopping for a single agent,
1 − F (x̃) (dashed line) to the probability of stopping for the committee, 1 − GM(x∗)
(solid line).
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Committees are More Conservative. In the single-agent search problem, mean

preserving spreads in the distribution of rewards, F , are always good news, increasing

continuation values and raising acceptance thresholds. This comparative static fol-

lows from considering the single-searcher’s value function ν which solves the recursion

ν(x) = max{x, δE[ν(X ′)]}. Since ν is the max of a constant and a linear function,

ν is convex. As is well known, mean preserving spreads increase the expectation of

a convex function, so that E[ν(X ′)] increases in mean preserving spreads. In turn,

the acceptance threshold for single-searchers (where x̃ = δE[ν(X ′)]) must rise in mean

preserving spreads.

I: II:

III: IV:

M = 1

z

v(x, y) = 2δΨ v(x, y) = x + y

v(x, y) = x + y

z

v(x, y) = x + y

I: II:

III: IV:

M = 2

z

v(x, y) = 2δΨ v(x, y) = 2δΨ

v(x, y) = x + y

z

v(x, y) = 2δΨ

Figure 3: Joint value function. We show v(x, y) in each region, given symmetric
threshold z and continuation value Ψ.

Why does this simple logic not carry over to the committee problem? To provide

insight we (temporarily) fix N = 2 and consider an analogous value function approach

to the committee problem. Define v(x, y) as the sum of the payoffs to the agents given

that they both set threshold z and draw values (x, y). Our continuation value function

is related to v(x, y) as follows:

Ψ(z; ·) =
1

2

∫ ∫
v(x, y)f(x)f(y)dxdy, (2)

where v(x, y) = x + y when the committee stops searching and 2δΨ(z; ·) otherwise.

In Figure 3, we consider the function v. Any symmetric threshold z divides the unit

square into four regions. If M = 1, then (x, y) < (z, z) is the continuation region
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in which v(x, y) = 2δΨ(z; ·), while v(x, y) = x + y elsewhere. When M = 2, then

v(x, y) = x+y on the stopping region (x, y) ≥ (z, z), and v(x, y) = 2δΨ(z; ·) elsewhere.

Negative externalities obtain in Regions I and IV. For example, when M = 1, in

Region I, member 2 forces a conclusion to the search problem despite relatively low

draws by member 1. When M = 2, it is member 1 who imposes a negative externality

on member 2 in Region I, forcing a continuation of search even though member 2 has

drawn a high value.

Now consider how changes in F affect the continuation value and the threshold x∗

by examining equation (2). As in the single-agent problem, continuation values and

acceptance thresholds must be increasing in first order stochastic dominance changes

in F since v is increasing in both x and y. What about mean preserving spreads in

F? If v were convex in x and y, then we would get monotonicity in mean preserving

spreads in F , as in the single-agent problem. However, it turns out that v is not convex

in x and y.

To see the nonconvexities, fix M = 1 and again consider Figure 3. Take any three

pairs (x, y), (x′, y′), (x′′, y′′) and any λ ∈ (0, 1) such that (x, y) = λ(x′, y′)+(1−λ)(x′′, y′′)

and

x′ < x < z < x′′ and y′′ < y < z < y′,

i.e. (x, y) in Region III, (x′, y′) in Region I and (x′′, y′′) in Region IV. Then v(x, y) =

2δΨ = 2z (in equilibrium) and λv(x′, y′)+(1−λ)v(x′′, y′′) = λ(x′, y′)+(1−λ)(x′′, y′′) =

x + y. Finally, 2z > x + y since z exceeds x and y individually. Thus, when M = 1, v

is not everywhere convex in (x, y). To see that v is not convex in (x, y) when M = 2,

choose pairs such that (x′, y′) is in Region I, (x′′, y′′) is in Region IV, and (x, y) is in

Region II. Then v(x′, y′) = v(x′′, y′′) = 2z < v(x, y) = x + y.

While v is not convex in (x, y), given our independence assumption, we could still

prove monotonicity in mean preserving spreads in F if v(x, y) were convex in one

variable holding the other fixed (bi-convex). However, this weaker convexity condition

is also not met. We show this in Figure 4, in which we graph v(x, y) for M = 1 and

y < z (left) and v(x, y) for M = 2 and y > z (right). These nonconvexities have an

intuitive externality interpretation. For example, consider the M = 1, y < z case. At

the boundary x = z, agent 1 is just indifferent between continuing and stopping, while

agent 2 strictly prefers continuing (y < z). Thus, agent 1 confers a negative externality
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6

-
1 x

v(x, y)

y + z

1 + y

2z

z

6

-
1 x

v(x, y)

y + z

1 + y

2z

z

Figure 4: v is not bi-convex. We graph v(x, y) as a function of x holding y fixed. In
the graph on the left: M = 1 and y < z, while on the right: M = 2 and y > z.

on agent 2, and the joint payoff jumps down discontinuously. Similarly, when M = 2

and y > z, agent 2 strictly prefers to stop, so that agent 1 confers a negative externality

on agent 2 by forcing continuation when x < z, and the joint payoff discontinuously

jumps upward at x = z.

As mentioned above, the non-convexities in v can cause a reversal of the sign of the

comparative static in mean preserving spreads compared to the single-agent problem.

Example 2 (Non Monotonicity in MPS) Consider uniform draws on [x, x]. Let

δ = 0.65 and M = 2. If [x, x] = [1, 3] then x∗ ≈ 1.25, while if [x, x] = [0.5, 3.5] then

x∗ ≈ 1.22.

We have graphed Ψ(z; ·) for this example in Figure 5.

4 Comparative Statics

In this section, we investigate the effect of committee size (N) and the plurality rule

(M) on the equilibrium acceptance threshold and on expected search duration.

Committee Size. We examine the effects of changes in committee size holding the

fraction of votes required to stop, α = M/N , constant. We do so recognizing that the

committee problem is only defined when αN is an integer. Since committee members

impose negative externalities on one another, one might suppose that the larger the

committee, the larger the associated externalities, leading to lower continuation values
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0.5

1

1.5

2

2.5

2δΨ(z; ·)

Figure 5: Thresholds may decrease in MPS. We have graphed 2δΨ(z; ·) with δ = 0.65
for two different uniform distributions. The solid line is drawn for support [1, 3], while
the dashed line is drawn for support [0.5, 3.5]. For low values of z the MPS causes a
decrease in Ψ(z; ·).

and lower acceptance thresholds in equilibrium. It turns out that this simple intuition

is incomplete. In fact, acceptance thresholds can rise as the size of the committee

increases.

Further, as we have shown above, simply knowing whether acceptance thresholds

rise or fall in committee size is not enough to determine the effect of a change in N

on expected search duration. There are two effects of varying N on expected search

duration: the effect on x∗ holding the function GαN fixed and the effect on the function

GαN as N varies. These effects may work in opposite directions when α = M/N is

held constant. A priori, the effect of committee size on expected search duration is

thus unclear.

The key to resolving this difficulty is exploiting the equilibrium relationship between

the acceptance threshold x∗ and expected search duration. Equation 1 can be rewritten

as:

x∗

Ω(x∗)
=

δ(1−GαN(x∗))
1− δGαN(x∗)

.

The LHS of this equality increases with x∗ and not independently in N . This follows

from Lemma 1, which shows (i) Ω(x) is not a function of N (holding α constant) and

(ii) Ω′(x) ≤ 1. Since the LHS rises in x∗, so too must the RHS. The RHS is decreasing

14



in GαN(x∗), so if x∗ increases with N, then GαN(x∗) must decrease with N. Finally,

expected search duration ( 1
1−GαN (x∗)) decreases as GαN(x∗) falls. That is, if x∗ increases

with N, holding α constant, then, via the above equilibrium condition, GαN(x∗) must

fall and so too must the expected duration of search.

The key question then is how the acceptance threshold, x∗, varies with N when α

is held constant.

Proposition 4 Given α < 1 and N ′ > N , there exists 0 < δ∗(α) ≤ 1 such that

δ < δ∗(α) (δ > δ∗(α)) implies that x∗ is higher (lower) and expected search duration

lower (higher) at N ′ than N .

We prove Proposition 4 in the Appendix. To help understand this proposition,

consider Figure 6. Given α < 1, GαN ′
(x) − GαN(x) satisfies a single crossing property.

There is a threshold value of x, x̄(α), such that the sign of the difference GαN ′
(x) −

GαN(x) is fully determined by x − x̄(α). We show in the Appendix that this single

crossing property is general. In the top portion of Figure 6 we have graphed GN ′
and

GN for 3 values of α to illustrate this single crossing property.

We also show in the Appendix that if x∗ < x̄(α), then x∗ increases in N and that

if x∗ > x̄(α), then x∗ decreases in N . We know that x∗ continuously increases in δ,

starting from x∗ = 0 for δ = 0. Thus, for low enough δ, x∗ < x̄(α) so x∗ rises in N

and expected search duration falls. As long as α < 1, x∗ < 1 at δ = 1, thus we can

have x∗ < x̄(α) for all δ, implying δ∗(α) = 1. However, we can also have x̄(α) < x∗ at

δ = 1, so that x̄(α) < x∗ for high enough δ, implying δ∗(α) < 1. In the bottom portion

of Figure 6 we evaluate the critical functions x̄(α) and δ∗(α) in one example.

Plurality Rule. In this subsection, we consider how x∗ and expected search duration

vary with M, holding N constant. Comparative statics with respect to M are of interest

in their own right, but, in addition, we use these results when solving for the optimal

voting rule in the next section. The following proposition states our comparative statics

results.
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Figure 6: We have graphed GαN(x) for N = 4 (solid line) and N = 8 (dashed line),
with α increasing from left to right, specifically: α ∈ {1/4, 1/2, 3/4}.
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Proposition 5 There exists a k ∈ (0, N ] such that:

• For all M < k, x∗ is increasing in M , while for all M > k, x∗ is decreasing in

M .

• For all M < k, expected search duration rises in M .

Proof of Part 1: Given in the Appendix.

Proof of Part 2. Expected search duration is given by
1

1−GM(x∗)
. When M

increases, there are two effects on expected search duration. The first is a direct effect

- increasing M decreases 1 − GM(x∗). The second is an indirect effect: 1 − GM(x∗)

is inversely related to x∗. When M < k, these effects reinforce each other so that

increasing M causes an increase in expected search duration. When M > k these

effects work at cross purposes so the effect of an increase in M on expected search

duration is ambiguous. ¤

5 Mechanism Design: Optimal Plurality Rule

In this section, we consider setting the plurality rule M to maximize average expected

welfare. Since Ψ(x∗; ·) is a committee member’s expected discounted equilibrium payoff

just prior to any draw, and since x∗ = δΨ(x∗; ·) in equilibrium, we can simply recast

this as choosing M to maximize x∗. We show that the welfare-maximizing choice of

M increases with δ and that unanimity is optimal for high enough (but bounded) δ.

Proposition 6 The welfare-maximizing plurality rule, M∗, weakly increases in δ, and

there exists a threshold δ∗ < 1 such that M∗ = N for all δ > δ∗.

Proof: Given in the Appendix.

We can gain some intuition for this result by again considering an externality inter-

pretation. Assume N = 2. Then when M = 1 there is only one type of externality: one

member may choose to stop when the other would prefer to continue. If instead M = 2,

there is again only one type of externality: one member may choose to continue when

the other would prefer to stop. When N > 2, the same externalities are present. As M

increases (with fixed N), the first externality becomes less important and the second
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more important. The relative cost of these externalities changes with δ. Specifically,

the higher is δ, the higher is the cost of the first externality (being forced to stop on a

low draw) and the lower is the cost of the second externality (being forced to continue

on a high draw). Thus, a higher value of δ leads to a higher optimal M .

We can compare our welfare maximizing results to the extensive literature on voting

with common values and private information, which began with Condorcet (1785). To

fix ideas, assume there are two choices, {c1, c2}, and two states of the world, {ω1, ω2}.
Everyone agrees that choice ci is optimal in state ωi, but everyone has private infor-

mation about the state of the world (think of a jury that would like to convict iff the

defendant is guilty). In this context Condorcet argued that for a “large population”

(formally as N → ∞), majority rule will yield the correct choice with probability 1

(the Condorcet Jury Theorem), although he assumed sincere voting. Austen-Smith and

Banks (1996) proved the Condorcet Jury Theorem for strategic voting, i.e., assuming

that pivotal voters correctly process the information contained in being pivotal. Fed-

dersen and Pesendorfer (1998) showed that unanimity is the uniquely suboptimal rule.

That is, requiring any fraction of the votes to agree will result in the correct action

with probability arbitrarily close to 1 for high enough N , while if unanimity is required,

the probability of a correct choice does not converge to 1.

Clearly, we have a very different model, one with private values and search exter-

nalities, while in the information aggregation literature, values are common and sub-

optimal decisions result from information externalities. Thus, we do not want to push

the comparison too far. To the extent that the information aggregation literature’s

main message has been that requiring unanimity is (uniquely) suboptimal, we offer a

contrasting message; namely, with search externalities, unanimity can be optimal.

6 Conclusion

In this paper, we analyze a new type of search problem, search by committee in which

the decision to stop or to continue searching is made by a group of agents. First, we

show that the problem is well posed in that a symmetric stationary equilibrium exists

and is unique given a log concavity assumption on the distribution of payoffs. We then

show that agents in a committee are less picky than they would be were they searching
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on their own; that is, they set a lower acceptance threshold. This does not necessarily

imply a lower expected search duration. We find that the expected search duration

of a committee versus that of a single agent varies with the discount rate in a non-

monotonic way. We also show that committee members are more conservative than a

single-agent searcher in the sense that a mean preserving spread in the distribution of

returns may make them worse off.

In addition to comparing committee search with single-agent search, we also provide

comparative statics results for the search-by-committee problem. We examine the

effects of varying both committee size and the plurality rule. Finally, we consider the

mechanism design problem of finding the optimal plurality rule. We find that the

welfare-maximizing M increases with the discount rate and that unanimity is optimal

for sufficiently high (but bounded) discount rates.

Since ours is the first analysis of the search-by-committee problem, we use a frame-

work that is as close as possible in structure to the canonical single-agent sequential

search problem. Of course, that canonical problem has been extended in many di-

rections in the single-agent case. One could do the same in the search-by-committee

problem. We have also chosen to model the strategic interaction among committee

members in the simplest possible way. Again, this aspect of our model could also be

extended. We leave these extensions for later research since our aim here is to introduce

and analyze the search-by-committee model in its most basic form.

A Appendix

A.1 Proof of Lemma 1

We want to prove that

Ω(z) = E[X|Y M ≥ z] = (1− (1− α)F (z))µh(z) + (1− α)F (z)µ`(z)

and that Ω′(z) ≤ 1. Recall that

µh(z) ≡ E[X|X ≥ z] and µ`(z) ≡ E[X|X < z]
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and that our log concavity assumptions imply µ′h(z) ≤ 1 and µ′`(z) ≤ 1.

Suppose at least M committee members vote to stop, i.e., Y M ≥ z. The probability

that i additional committee members (i = 0, ..., N −M) also draw values of z or more

is (
N −M

i

)
(1− F (z))iF (z)N−M−i.

Given i, the expected payoff to a randomly selected committee member is a weighted

average of µh(z) and µ`(z), specifically,

M + i

N
µh(z) +

N −M − i

N
µ`(z).

We can thus write Ω(z) = E[X|Y M ≥ z] as:

Ω(z) =
N−M∑
i=0

(
N −M

i

)
(1− F (z))iF (z)N−M−i

[
M + i

N
µh(z) +

N −M − i

N
µ`(z)

]

=
M

N
µh(z) +

N −M

N
µ`(z) + (µh(z)− µ`(z))

N−M∑
i=0

(
i

N
)

(
N −M

i

)
(1− F (z))iF (z)N−M−i

=
M

N
µh(z) +

N −M

N
µ`(z) + (µh(z)− µ`(z))

N −M

N
(1− F (z))

= (1− (1− α)F (z))µh(z) + (1− α)F (z)µ`(z),

which establishes the form of Ω(z).

Next, differentiating with respect to z gives:

Ω′(z) = (1− (1− α)F (z))µ′h(z) + (1− α)F (z)µ′`(z)− (1− α)f(z) [µh(z)− µ`(z)]

≤ (1− (1− α)F (z))µ′h(z) + (1− α)F (z)µ′`(z) ≤ 1,

where the last is a weighted average of µ′h(z) and µ′`(z). The result then follows from

our log concavity assumptions. ¤

A.2 Proof of Proposition 1

Existence: We establish existence with a very simple argument, namely, Ψ(z; ·) is

continuous in z, δΨ(0; ·) = δ
∫

xf(x)dx > 0, and δΨ(1; ·) = 0.
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Single Crossing ⇒ Uniqueness: Note that given δΨ(0, ·) > 0 and Ψ(z, ·) continu-

ous in z, if there are multiple equilibria, it must be that δΨz(x
∗, ·) ≥ 1 for at least one of

them. We can thus prove uniqueness by showing δΨz(x
∗, ·) < 1 for any x∗ that satisfies

our equilibrium condition x∗ = δΨ(x∗; ·). Instead we establish the stronger condition

that δΨz(z; ·) < 1 for all z. Note that if Ψz(z; ·) ≤ 0 we are done, so henceforth we

assume Ψz(z; ·) > 0.

To do this, we first show that Ψz(z; ·) > 0 implies that δΨz(z; M,N, δ) is nonde-

creasing in δ, so that we can then establish our claim by showing Ψz(z; M, N, 1) ≤ 1. To

see that δΨz(z; M, N, δ) is nondecreasing in δ, we need to differentiate it with respect

to δ. First, using equation (1) we find:

∂(δΨ(z; M, N, δ))

∂δ
=

Ψ(z; M,N, δ)

1− δGM(z)
,

so that
∂2(δΨ(z; M, N, δ))

∂δ∂z
=

Ψz(z; M, N, δ)

1− δGM(z)
+

δΨ(z; M,N, δ)gM(z)

(1− δGM(z))2
.

The second term is positive, and Ψz > 0 implies that the first term is positive: together

Ψzδ ≥ 0. Thus, Ψz(z; M, N, 1) ≤ 1 yields δΨz(z; M, N, δ) ≤ 1 for all δ. Direct compu-

tation yields Ψz(z; M,N, 1) = Ω′(z) ≤ 1, where the final inequality was established in

Lemma 1. ¤

A.3 Proof of Proposition 2

Let x∗ be the common equilibrium acceptance threshold for the N committee members.

Let x̃ be the optimal acceptance threshold for the single-searcher. The single-searcher

can achieve at least as high an expected payoff as a committee member by setting

threshold x∗ now and committing to the following strategy in the future: generate

N−1 standard uniform random variables; stop whenever M of these exceed 1−F (x∗);

continue if fewer than M−1 exceed 1−F (x∗); and employ threshold x∗ otherwise. The

single-searcher, however, can do better. For example, suppose the single-searcher draws

x < x∗ and that M of the N−1 draws exceed x∗. The single-searcher can then increase

his or her expected payoff by continuing. The expected payoff for a single-searcher

thus exceeds the expected payoff for a committee member; equivalently, x̃ > x∗. That
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is, committee members are less picky than a single-searcher. ¤

A.4 Proof of Proposition 3

Let x∗(δ) be the threshold for a committee and x̃(δ) the threshold for a single agent

searching from the same F and given the same δ. The committee has a lower expected

search duration iff GM(x∗(δ)) < F (x̃(δ)).

First, we establish that when M = 1, expected search duration is shorter for the

committee than for the single-searcher for all δ. Clearly, G1(x) < F (x) ∀x ∈ (0, 1).

Since G1 and F are strictly increasing functions and x∗(δ) < x̃(δ) ∀δ ∈ (0, 1) by

Proposition 2, G1(x∗(δ)) < F (x̃(δ)), i.e., the committee has a shorter expected search

duration.

Next, we establish the result for M ∈ {2, . . . , N − 1}.

Claim 3 For each M ∈ {2, ..., N − 1}, there exists an x̄ ∈ (0, 1) such that GM(x) <

F (x) for all x < x̄.

Proof of Claim 3: Note first that F (0) = GM(0) = 0, F (1) = GM(1) = 1, and

F (x) and GM(x) are continuous. To prove our result, it then suffices to show that

f(0) > gM(0) and f(1) > gM(1). To do this, it is convenient to use the relationship

between the binomial and beta cdfs (see, e.g., Casella and Berger 2002, p. 82), namely:

GM(x) =
M−1∑
j=0

(
N

j

)
(1− F (x))jF (x)N−j

=
N !

(N −M)!(M − 1)!

∫ F (x)

0

tN−M(1− t)M−1dt.

We then have:

gM(x) = f(x)
N !

(N −M)!(M − 1)!
F (x)N−M(1− F (x))M−1.

That is, gM(0) = gM(1) = 0 for each M ∈ {2, ..., N − 1}. Since f(0) and f(1) are both

positive, we have shown that there exists an x̄ ∈ (0, 1) such that GM(x) < F (x) for all

x < x̄. ¤.

22



Next, fix M ∈ {2, ...N − 1}. Let x̄ be the threshold value defined by Claim 3. Since

x̃(δ) is strictly increasing in δ, x̃(0) = 0, and limδ→1 x̃(δ) = 1, we can define δL(x̄) by

x̃(δL(x̄)) = x̄. That is, δL(x̄) is the discount rate that leads the single agent to choose

an acceptance threshold of x̄. Since we have just shown that GM(x) < F (x) for all

x < x̄, it follows from Proposition 2 that x∗(δ) < x̃(δ) ≤ x̄ for all δ ≤ δL(x̄). Finally,

GM(x) and F (x) increasing establishes that GM(x∗(δ)) < F (x̃(δ)) for all δ < δL(x̄).

The final step is to establish that there exists a δH < 1 such that GM(x∗(δ)) <

F (x̃(δ)) for all δ > δH . To see this, note that when M < N, even if every com-

mittee member were to set a threshold of x = 1, the expected draw conditional on

stopping would be strictly less than 1. Thus, x∗(δ) < 1, for all δ, which implies that

GM(x∗(δ)) < 1 for all δ. However, for the single-searcher, limδ→1 x̃(δ) = 1, which im-

plies limδ→1 F (x̃(δ)) = 1. Since both GM(x∗(δ)) and F (x̃(δ)) are continuous in δ, there

exists a δH < 1 such that GM(x∗(δ)) < F (x̃(δ)) for all δ > δH . ¤

A.5 Proof of Proposition 4

The proof of Proposition 4 consists of 3 steps.

Claim 4 Fix N ′ > N. For fixed α < 1 there exists a cutoff x̄(α) > 0 such that

GαN ′
(x) − GαN(x) satisfies a single crossing property: negative for all x < x̄(α) and

positive for all x > x̄(α).

Claim 5 For fixed α, consider the effect on x∗ of an increase in committee size from

N to N ′. If the effect is to increase x∗, then expected search duration falls. If the effect

is to decrease x∗, then expected search duration increases.

Claim 6 If x∗ < x̄(α) (x∗ > x̄(α)) then x∗ increases (decreases) in committee size,

holding α constant, and thus expected search duration falls (rises).

The proof follows from the above steps and the fact that x∗ is increasing in δ. That

δ∗(α) > 0 follows from x∗ = 0 when δ = 0. The weak inequality δ∗(α) ≤ 1 follows from

the fact that x∗ < 1 even when δ = 1, so long as α < 1.

We now prove each of the above claims.
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Proof of Claim 4: Consider gαN ′
(x)/gαN(x). Using the expression for gM(x) de-

veloped in the proof of Proposition 3 and letting u = F (x), this ratio is proportional

to

h(u) =
u(1−α)N ′

(1− u)αN ′−1

u(1−α)N(1− u)αN−1
=

[
u1−α(1− u)α

]N ′−N
.

Note that lim
u→0

h(u) = lim
u→1

h(u) = 0. Since u is continuous and monotonically increasing

in x, GαN ′
(x) < GαN(x) for x sufficiently close to zero, while GαN ′

(x) > GαN(x) for

x sufficiently close to one. Thus, by continuity, GαN ′
(x) = GαN(x) for at least one

x ∈ (0, 1). The fact that there is only one such crossing point follows from noting that

h(u) is continuous and unimodal on [0, 1]. By the endpoint conditions, if GαN ′
(x) and

GαN(x) cross more than once in (0, 1), they must cross at least 3 times. Call these

three crossing points 0 < u1 < u2 < u3 < 1. Again, by the endpoint conditions, we

must have h(u1) > 1, h(u2) < 1, and h(u3) > 1. This, however, contradicts the fact

that h(u) is continuous and unimodal. ¤

Proof of Claim 5: Expected search duration equals
1

1−GαN(x∗)
, so to establish

the effect of a change in x∗ brought about by a change in committee size holding α

constant on expected search duration, we need to establish the effect of such a change

on GαN(x∗). From Lemma 1, note that Ω(x) only depends on N through α; that is,

holding α constant, Ω(x) does not depend on committee size. We take advantage of

this fact by rewriting our equilibrium condition as:

k(x∗) ≡ x

Ω(x)
=

δ(1−GαN(x∗))
1− δGαN(x∗)

.

We claim that k′(x∗) > 0 and that this implies the desired result. To see the latter, note

that the right-hand side is decreasing in GαN(x∗). Thus if k′(x∗) > 0, then GαN(x∗)

moves in the opposite direction of x∗. The implication then follows from expected

search duration monotonically increasing in GαN(x∗).

To see that k′(x∗) > 0, differentiate to get:

k′(x) =
Ω(x)− xΩ′(x)

Ω(x)2
.

Thus,

k′(x) > 0 ⇔ Ω(x) > xΩ′(x).
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By Lemma 1, Ω′(x) ≤ 1, so that, k′(x∗) > 0 follows if x∗ < Ω(x∗). This latter is implied

by δ(1−GαN(x∗))/(1− δGαN(x∗)) < 1. ¤

Proof of Claim 6: We have:

x∗ =
δ(1−GαN(x∗))Ω(x∗)

1− δGαN(x∗)
.

Lemma 1 establishes that Ω(x) is constant in N (α held constant). Claim 4 establishes

that for all x < x̄(α), GαN(x) is decreasing in N and for all x > x̄(α), GαN(x) is

increasing in N. Thus, if x∗ < x̄(α) (x∗ > x̄(α)) then x∗ increases (decreases) in N .

The result for expected search duration then follows from Claim 5. ¤

A.6 Proof of Part 1 of Proposition 5

Our equilibrium conditions can be written as a system of two equations in two un-

knowns:
Ψ(x; M, ·) = GM(x)δΨ(x; M, ·) + (1−GM(x))Ω(x)

x = δΨ(x; M, ·)
(3)

Let (Ψ∗(x∗; M, ·), x∗) be the solution to this system.

Claim 7 Given our log concavity assumptions, the solution to the system of equations

φ(x; M, ·) = GM(x)x + (1−GM(x))Ω(x)

x = δφ(x; M, ·)
(4)

is equivalent to that of system (3) in the sense that (φ∗(x∗; M, ·), x∗) solves system (4)

iff (Ψ∗(x∗; M, ·), x∗) solves system (3).

Proof of Claim 7: Our equilibrium (the solution to system (3)) is unique. The

solution to system (3) also solves system (4). To show equivalence, we thus only need

to show that the solution to system (4) is unique. As before, this follows from single

crossing, i.e., δφx(x
∗; ·) ≤ 1. We have:

φx(x
∗, ·) = gM(x∗) [x∗ − Ω(x∗)] + GM(x∗) + (1−GM(x∗))Ω′(x∗)

< GM(x∗) + (1−GM(x∗))Ω′(x∗),
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where the inequality follows from x∗ < Ω(x∗). Thus, the derivative is bounded above

by a (GM(x∗), 1 − GM(x∗)) weighted average of 1 and Ω′(x∗), and, as we have shown

in Lemma 1, our log concavity assumptions imply Ω′(x) ≤ 1.

Having established that the solutions to the two systems are equivalent, we work

with the simpler φ function.

Claim 8 Let b(M ; N, 1− F (x)) be the (binomial) probability that exactly M out of N

committee members draw values greater than or equal to x. Then,

φ(x; M + 1, ·)− φ(x; M, ·) = b(M ; N, 1− F (x)) [x−∆(x,M)] ,

where

∆(x,M) ≡ M

N
E[X ′|X ′ ≥ x] +

N −M

N
E[X ′|X ′ ≤ x],

is the expected payoff when exactly M members vote to stop and the acceptance threshold

is x.

Proof of Claim 8: Given that we have fixed the “continuation value” and acceptance

threshold at x in φ, the only time that requiring M +1 versus M votes to stop matters

is when exactly M committee members draw values of x or more. The probability that

this occurs is b(M ; N, 1−F (x)). If M + 1 votes are required to stop but only M votes

are realized, the committee continues and each member receives “continuation value”

x. If, instead, M votes are required to stop, then when exactly that many votes to stop

are realized, each member’s expected payoff is ∆(x,M). Thus, the change in value is

x−∆(x,M) times the probability that exactly M committee members draw values of

x or more.

Claim 9 The function ∆(x,M) has the following properties: 0 ≤ ∆x(x, M) ≤ 1 and

∆(x,M + 1) > ∆(x,M). Further, if 0 < M < N, then ∆(0,M) > 0 and ∆(1,M) < 1.

Thus, for 0 < M < N , the difference x −∆(x,M) satisfies a single-crossing property

– negative for smaller values of x and positive for larger values of x.

Proof of Claim 9: The fact that 0 ≤ ∆x(x,M) ≤ 1 follows from log concavity. The

other properties follow directly.
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Claim 10 Let x∗(M) be the solution to system (4) (equivalently to (3)). Then

x∗(M + 1) > x∗(M) ⇔ x∗(M) > ∆(x∗(M),M) and

x∗(M + 1) < x∗(M) ⇔ x∗(M) < ∆(x∗(M),M)

Proof of Claim 10: The fact that system (4) has a unique solution implies:

x∗(M + 1) > x∗(M) ⇔ φ(x∗(M); M + 1, ·) > φ(x∗(M); M, ·) and

x∗(M + 1) < x∗(M) ⇔ φ(x∗(M); M + 1, ·) < φ(x∗(M); M, ·)

The result then follows from Claims 8 and 9.

At this point, it is worth restating Part 1 of Proposition 5 in the notation that has

been developed in Claims 7-10. Specifically, Part 1 of Proposition 5 states that there

exists a k ∈ (0, N ] such that for all M < k, x∗(M + 1) > x∗(M), while for all M > k,

x∗(M + 1) < x∗(M). This follows from two final claims, namely,

Claim 11 Let x∗(0) = δE[X]6. Then x∗(1) > x∗(0).

Claim 12 For 0 < M < N, x∗(M + 1) < x∗(M) => x∗(M + 2) < x∗(M + 1).

Simply stated, Claim 11 asserts that x∗ is initially increasing in M, and Claim 12

asserts that once x∗ begins to decrease in M, it continues to do so for higher values of

M.

Proof of Claim 11: By inspection x∗(0) > 0, then:

x∗(0) > E[X ′|X ′ ≤ x∗(0)] = ∆(x∗(0), 0).

Then by Claim 10, x∗(1) > x∗(0).

Proof of Claim 12: By Claim 10

x∗(M) > x∗(M + 1) ⇒ x∗(M) < ∆(x∗(M),M).

6This follows from our definition of x∗ equal to δ times the continuation value. When M = 0, the
search stops with probability 1 and thus the continuation value is the expected value conditional on
stopping which is E[X].
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Given that x∗(M) > x∗(M + 1), the single crossing of x−∆(x,M) shown in Claim 9

implies that

x∗(M + 1) < ∆(x∗(M + 1),M + 1).

By Claim 10, we then have

x∗(M + 1) > x∗(M + 2).

That is, there exists a k ∈ (0, N ] such that for all M < k, x∗(M + 1) > x∗(M), while

for all M > k, x∗(M + 1) < x∗(M). ¤

A.7 Proof of Proposition 6

Claim 10 established that increasing M will raise x∗ and thus expected welfare iff:

x∗(M) > ∆(x∗(M),M) ≡ M

N
E[X ′|X ′ ≥ x∗(M)] +

N −M

N
E[X ′|X ′ ≤ x∗(M)]

=
M

N
µh(x

∗(M)) +
N −M

N
µ`(x

∗(M)).

We claim that if this inequality is satisfied at some δ, then it must also be satisfied

at all δ′ > δ, which establishes that the optimal M must increase in δ. First, recall

that x∗ increases in δ, which means that both sides of the inequality are increasing in

δ. However, by log concavity ∆x(x,M) ≤ 1, thus the LHS is increasing more rapidly.

Henceforth we assume M = N − 1 and then show that for δ high enough x∗ can

be increased by setting M = N, i.e. x∗(N − 1) > ∆(x∗(N − 1), N − 1). The optimal

threshold x∗ is continuous in δ and bounded, so that its limit as δ → 1 exists. Call

this limit x∗1. We have ∆(x,N − 1) continuous in x and x∗ continuous in δ, so that,

x∗ −∆(x∗, N − 1) is continuous in δ. Thus x∗1 > ∆(x∗1, N − 1) is sufficient to establish

the existence of a threshold δ∗ such that setting M = N maximizes x∗, for all δ > δ∗.

First suppose that x∗1 = 1. The we have:

∆(x∗1, N − 1) =
N − 1

N
µh(x

∗
1) +

1

N
µ`(x

∗
1)

=
N − 1

N
+

1

N
µ`(x

∗
1) <

N − 1

N
+

1

N
= 1 = x∗1
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Thus, for δ sufficiently close to 1: x∗ > ∆(x∗, N−1) and welfare is increased by raising

M to N .

Assume instead that x∗1 < 1. The limδ→1 GM(x∗) < 1, which implies

lim
δ→1

δ(1−GM(x∗))
1− δGM(x∗)

= 1,

and, in the limit, our equilibrium condition simplifies to x∗1 = Ω(x∗1), which from Lemma

1 may be rewritten:

x∗1 = Ω(x∗1) =

(
1− 1

N
F (x∗1)

)
µh(x

∗
1) +

1

N
F (x∗1)µ`(x

∗
1)

>

(
1− 1

N

)
µh(x

∗
1) +

1

N
µ`(x

∗
1) = ∆(x∗1, N − 1),

where the strict inequality follows from F (x∗1) < 1. Since x∗1 > ∆(x∗1, N − 1), we may

again conclude that x∗ > ∆(x∗, N − 1) for δ sufficiently close to 1. ¤
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