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Abstract 

 
Public debate has recently focused on whether or not people have the skills for the jobs in                 
today’s economy. Past research quantifying this mismatch in the labor has focused on piecing              
together data from different sources to build a complete picture of the labor market. In this                
paper we instead use data from a major online job site with rich information on both the job                  
seekers and the vacancies. In this preliminary version we focus on the aggregate measure from               
January of 2014 through July of 2018 including both employed and unemployed job seekers.              
Our key findings are that mismatch is substantial, hovering at about 33%, but that it has not                 
worsened as the labor market has tightened. Furthermore, over the past four years job              
opportunities have shifted substantially, but job seekers appear to be largely keeping up. We              
also detail a number of next steps that are feasible with our unique dataset, including a focus on                  
using our measure of mismatch to relate to macroeconomic conditions.   
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McCarthy, Donal McMahon, Alicia Sasser-Modestino, Bryan Stuart, Christiaan Visser, and participants at            
the 2018 Chicago Fed-Upjohn Institute Workshop on Job Search for helpful comments and suggestions.              
Both authors of this paper had an employment relationship with Indeed at the time of writing.  
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Introduction 
 
Public debate has recently centered on whether or not there are structural problems in the labor                
market in terms of a mismatch between the background, skills, or interests of job seekers as                
compared to the needs perceived by employers. The “skills gap” or “talent shortage”             
conversation often relies on anecdotes because it can be hard to collect data at a sufficiently                
detailed level to appropriately quantify mismatch. Previous research has provided measures           
based on connecting data from a variety of different sources with varying levels of detail.               
Online labor market data provides the potential for new insights based a single source of rich                
data on both vacancies and job seekers. 
 
The mismatch index is designed to measure the level of mismatch, or dissimilarity, in the               
economy. It compares the number of job seekers in a job category to the number of vacancies                 
in the same category. Mismatch can arise because there are too few or too many job seekers                 
in a particular category relative to the number of job opportunities. Importantly, our measure of               
mismatch is relative to the overall availability of job seekers and vacancies and we are focused                
here on the mismatch across categories rather than movements in the aggregate job seeker to               
vacancy ratio.  
 
Our analysis is closely related to Şahin et al. (2011 and 2014) and Lazear and Spletzer (2012a,                 
2012b) who also quantified the level of mismatch in the economy. They use publicly available               
data from BLS (JOLTS and CPS) and measure mismatch based on industry categories. They              
also use vacancy data from the Conference Board’s Help Wanted Online Index to construct              
mismatch measures for a set of occupation categories.   2

 
Şahin et al. (2014) focus on measuring “mismatch unemployment”, i.e. the share of             
unemployment due to sectoral mismatch. For their occupation-level analysis they report results            
using 22 or the 23 major (two-digit) SOC groups and 36 of 96 minor (three-digit) SOC groups.                 
In the working paper version, Şahin et al. (2011) use the same mismatch formula we use here                 
for a benchmark measure with no heterogeneity across markets. They consider all 17 industries              

2 There has also been substantial research on mismatch outside the US and particularly in the UK.                 
Turrell et al. use data from Reed, an online recruiter in the UK, to estimate mismatch by occupation and                   
geography in the UK. They find that it is regional mismatch rather than occupational mismatch that                
affects UK productivity. Patterson et al. (2016) and Smith (2012) used data from the UK government                
employment agency JobCentre Plus to construct estimates of mismatch with Patterson et al. finding that               
occupational mismatch is an important contributor to weak productivity growth in the UK and Smith finding                
that occupational mismatch has had a substantial impact on UK unemployment rates.  
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where JOLTS vacancy data are available. They conclude that mismatch explains up to one              3

third of the increase in the unemployment rate during the Great Recession.  
 
Lazear and Spletzer (2012a, 2012b) used a measure of mismatch as part of a broader set of                 
indicators on the recent performance of the US labor market. In terms of mismatch they               
focused on their finding that mismatch rose in the recession and then declined afterwards              
suggesting a cyclical rather than structural pattern.  
 
Our goal is to create a set of mismatch indexes that we will update over time. Similar to Lazear                   
and Spletzer, we are particularly interested in what the patterns in our mismatch measures over               
time tell us about how different types of mismatch are related to changes in economic               
conditions. With our unique dataset we can focus on a range of different levels of               
disaggregation to create different measures of mismatch. For example, we include both            
employed and unemployed job seekers in our benchmark series. Including employed job            
seekers which has been challenging in previous analyses due to limited data availability on              
people searching on the job.   4

 
In the following sections we describe our data, provide an analysis similar to Şahin et al (2011)                 
and Lazear and Spletzer (2012a & b) to produce a measure of industry mismatch using publicly                
available data, then estimate a preliminary measure of overall online labor market mismatch.             
We find that mismatch has not increased as the labor market has tightened and also show that                 
the distribution of jobs has changed substantially over this time period. We then discuss              
robustness checks  and conclude with a discussion of next steps.  
 
Data 
 
Currently all our analysis is focused on the US. Our main data source is online job postings and                  
job seekers from Indeed, the largest job site in the world based on unique visitors according to                 
ComScore, an independent analytics firm. We also use data from the Current Population             5

3 The 17 industries used by Şahin et al. are: arts, construction, mining, accommodations, retail,               
professional business services, real estate, wholesale, other, transportation and utilities, manufacturing -            
nondurables, education, health, government, manufacturing - durables, finance, and information. The           
12 industries we use in our analysis are: construction, durable goods manufacturing, nondurable goods              
manufacturing, wholesale and retail trade, transportation and utilities, information, financial activities,           
professional and business services, education and health services, leisure and hospitality, other services,             
and government. Lazear and Spletzer use 12 industries but differ from ours by including mining but                
grouping together durable and nondurable goods manufacturing. We exclude mining due to different             
definitions between JOLTS and CPS. Results are little changed between the different choices of Lazear               
and Spletzer, Şahin et al. or our analysis.  
4 Şahin et al. (2014) did provide an estimate of their measure including on-the-job search. They used the                  
American Time Use Survey to identify employed job seekers. This survey likely underestimates the              
number of employed job seekers as discussed in Faberman et al. (2017).  
5 Over 200 million unique visitors per month globally and, per Google Analytics, 62.0 million per month in                  
the US as of January 2018. Furthermore, in August 2017, comScore estimated that 70% of US online job                  
seekers search for jobs on Indeed (per month) 
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Survey (CPS) and the Job Openings and Labor Turnover Survey (JOLTS). We focus on              6

seasonally unadjusted data from all sources. Our measure of mismatch will be in shares of               
totals which should net out any national seasonal patterns and will leave only job category               
seasonal patterns which we are interested in examining.  
 
Our measure of job openings will either be from JOLTS by industry, where we focus on the 12                  
industries where we can match with data available from the Bureau of Labor Statistics on the                
industry of the unemployed, or from job postings aggregated by Indeed from across the internet.              
  7

 
It is important to note that we are not restricted to advertisers on Indeed. Instead they collect                 
job postings anywhere on the internet and de-duplicate them as part of their business.  
 
Our measure of job seekers will either be the unemployed from the CPS or active job seekers                 
on Indeed. In our analysis we are focused on the job seekers who have accounts and have                 
uploaded resumes to provide further detailed background information. Indeed has over 50            
million resumes from the US as of July of 2018. We are focusing on the subset that were active                   
accounts during our sample from 2014 through July of 2018, where active is defined as having                
updating their resume in that month. We aggregate to the monthly frequency, but we could look                8

at daily or even intra-day based on the Indeed data. Higher frequency is interesting when               
looking at the job seeker data (there are interesting daily and weekly patterns in the job search                 
data), but less so for job posting data.  
 
Job seekers are not just the unemployed. In fact, it appears that the majority of job seekers on                  9

Indeed are employed based on reported employment status by account holders as well as              
reported in internal surveys. This is consistent with the finding by Faberman et al. (2017) that                
employed job seeking is “pervasive.” We identify labor market status in the Indeed data based               

6 The job openings data are from the September 11, 2018, release of JOLTS. The unemployed by                 
industry data are from the CPS. The data are not seasonally adjusted, and using the 12 industries                 
available from both CPS and JOLTS: construction, durable goods manufacturing, nondurable goods            
manufacturing, wholesale and retail trade, transportation and utilities, information, financial activities,           
professional and business services, education and health services, leisure and hospitality, other services,             
and government. Note that we exclude mining due to different definitions between JOLTS and CPS               
(although including it does not give noticeably different results). 
7 Şahin et al. (2011, 2014) and Lazear and Spletzer (2012a and b) also each produce measures of                  
occupational mismatch using Help Wanted Online Index (HWOL) data as their measure of vacancies for a                
subset of standard occupation categories (since only industry groupings are available from JOLTS). The              
HWOL data by occupation is not publicly available and thus we focus on the industry mismatch as our                  
comparison.  Canon et al (2013) provide a review of mismatch indexes using HWOL job vacancy data.  
8 Indeed only saves the latest version of resumes, so we only count each resume one time based on                   
latest update date, since the last job title from the resume is key to our analysis. We recognize this might                    
cause a bias in the analysis if there is a systematic pattern in who updates resumes frequently and/or who                   
was a job seeker on Indeed early in our sample and again later in our sample. We address this further in                     
the robustness checks section.  
9 We’re only looking at active job seekers, so they are either employed or unemployed, there is no “out of                    
the labor force” group in our analysis.  
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on information reported by the user. Users opt-in to being counted as employed by checking a                
box indicating that they are currently employed at one of the positions listed on their resume.                
There is likely measurement error in this as some employed workers may not select the box and                 
others may try to hide that they are unemployed by selecting the box or by not updating that                  
information if they leave their employer but continue searching for a job on Indeed. We’re also                
only looking at the “experienced unemployed” because we are only using resumes that have              
previous employment recorded. This is consistent with the BLS data where an industry is only               
available for people who were previously employed. 
 
In the online labor market data we have much finer job type groupings than what is available in                  
the data used in previous research: for our benchmark measure we include 6065 normalized              
title pairs per month in our analysis as compared to the 9 to 36 categories used by Lazear and                   
Spletzer and Şahin (2012b) et al. (2014). For example, “registered nurse” is a normalized title               
that contains: Registered Nurse, RN, RN Staff Nurse, Registered Nurse (RN), Registered Nurse             
- RN, Registered Nurse Traveler, etc. “Economist” is a normalized title that contains: economist,              
health economist, principal economist, chief economist, associate economist, lead economist,          
and so on. We also estimated a version excluding low observation categories with functionally              
no impact on the estimates. 
 
For robustness we also use an alternative measure of job seekers based on clicks on job                
postings. A job seeker can only click on a posting if one is available and the click many not                   
indicate the job seeker is qualified, only interested in the role.  
 
Methodology 
 
The mismatch measure we’re using is the Duncan and Duncan (1955) dissimilarity index. With              
this measure we’re assuming that only the job seekers can change occupation whereas job              
vacancies are fixed in their category.   The Duncan and Duncan measure is: 10
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where Si is the job seekers in category i, S is the total number of job seekers, Vi is the number of                      
vacancies in category i, V is the total number of vacancies.  
 
This is the same measure used by Lazear and Spletzer (2012a and 2012b) and Sahin et al.                 
(2011, before incorporating a matching function). This index can be interpreted as the             
proportion of job seekers who would need to be moved to make the job seeker to posting ratio                  

10 The Duncan and Duncan measure has come under criticism when applied to occupational gender               
segregation (Watts 1992, 1994, 1998). An alternative measure, the IP index of Karmel and MacLachlan               
(1988) is the preferred measure in that literature. In the gender segregation case, however, both men                
and women could change occupations, whereas in our analysis we assume only the job seeker can                
change occupations.  
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the same for all job categories, where a job category in our analysis will either be industry or                  
normalized job title. Other measures of mismatch, notably Şahin et al. (2014), are reported as a                
fraction of hires lost per period due to job seeker misallocation. Thus our index will likely be                 
much higher in magnitude as a share of job seekers as compared to a share of monthly hires.  
 
Preliminary Results 
 
We first produce an updated estimate of mismatch based on 12 industry categories that are               
available for vacancies from JOLTS and for the unemployed from the CPS data reported by the                
Bureau of Labor Statistics. We estimate this industrial mismatch for the full sample where              11

JOLTS vacancy data are currently available: December 2000 through July 2018.  
 
Our estimates are reported in Figure 1. Similar to what was noted by Lazear and Spletzer                
(2012a and 2012b), we find that industry mismatch rose during the recession from the end of                
2007 through mid=2009 and fell during the recovery. Interestingly it has remained fairly flat              
since 2014.  
 
Figure 1: US labor market mismatch based on publicly available data  

 

11 The 12 industries available from both CPS and JOLTS are: construction, durable goods manufacturing,               
nondurable goods manufacturing, wholesale and retail trade, transportation and utilities, information,           
financial activities, professional and business services, education and health services, leisure and            
hospitality, other services, and government. Lazear and Spletzer use 12 industries by grouping together              
durable and nondurable goods manufacturing and including mining. Şahin et al. use CPS microdata to               
include all 17 industries available in JOLTS. Results are little changed between the different choices of                
Lazear and Spletzer, Şahin et al. or our analysis. The largest difference is due to our choice of using                   
seasonally unadjusted data, but given that our mismatch measure is reported in shares, all national               
seasonal patterns are netted out.  
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For our measure of mismatch based on online job search we start in January of 2014 and go                  
through July of 2018. One of the benefits of using the online data is more timely arrival which                  
means we could already produce mismatch through August of 2018, but for this analysis we’ll               
report the sample comparable to what is currently available in JOLTS, where the July 2018 data                
were only released on September 11th.  
 
Figure 2 presents our preliminary online labor market mismatch estimate along with the data              
from Figure 1 for this time frame. Our measure is higher in level, as would be expected given                  
that we’re going from 13 categories to over 6000. In terms of time pattern, however, they’re                
broadly similar, although our measure is substantially smoother.  
 
Figure 2: Online Mismatch and Industry Mismatch 

 
 
Lazear and Spletzer find much more mismatch by occupation than by industry, which is              
consistent with what we find for our online labor market mismatch at the normalized job title                
level. Job titles are much more similar to occupation than to industry. We would also expect                
that there would be more mismatch at lower levels of aggregation.   12

 
We have explored a number of different groupings and our results are consistent with what is                
expected: grouping the job titles into broader categories (Indeed’s proprietary categories) results            
in a lower level of mismatch overall, but a similar pattern of flat to slightly down over the last 4                    

12 According to Şahin et al. (2014) ”...every statement about the role of mismatch should be qualified with                  
respect to the degree of sectoral disaggregation used” ( pg. 3538). Comparing across different              
aggregation approaches (occupation versus industry for example) and/or across different data sets can             
also shift the level of mismatch. We are focused less on the level of mismatch and more on the pattern in                     
mismatch over time. 
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years. Limiting the analysis to only large title categories (around 740 categories) gives very              
similar results in both level and slope.  
 
Our measure is notably smoother than LS: this may be due to the consistency of the data since                  
our source is a common labor market with as much as possible the same definitions applied to                 
both groups. It does not appear to be sensitive to changes in aggregation level or changes in                 
our definition of an active job seeker. For example, if we use clicks to count active job seekers,                  
we find very similar results for the last year or so and flat before, which leads us to emphasize                   
“not increasing” rather than clearly declining.  
 
Figure 3: Clicks Mismatch and Resume Mismatch 
 

 
 
We also consider an alternative measure of dissimilarity, the Kullback-Leibler (KL) divergence            
measure (using Bayesian Dirichlet priors, see the recent survey by Yang, 2018, for more details               
on the KL divergence measure) and find broadly similar results in terms of trend some decline                
early but broadly flat since 2017. 
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Figure 4: Robustness of Mismatch based on Kullback-Leibler Divergence 
 

 
 
Changing job postings and changing resumes 
 
Mismatch could be flat for two reasons: either nothing is changing underneath or job seekers               
and jobs are adjusting to stay at a similar level of mismatch over the last several years. To                  
examine this we used the same dissimilarity index but applied it to jobs and resumes separately                
over time to see how different jobs and resumes are today from what they were in 2014. What                  
we find is that the jobs mix has changed substantially over the last few years. Comparing                
January of 2018 with January of 2014 (comparing January to January to exclude potential              
seasonal differences), our key finding is that jobs are 23.8% different in 2018 than they were                
just four years ago.  
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Figure 5: Changing Mix of Job Postings Over Time 

 
We also considered our alternative dissimilarity measure, KL divergence. The results are            
consistent across the two measures, with January of 2018 compared to January of 2014 having               
a KL statistic of 0.23 and a similar trend over the sample. 
 
Figure 6: Robustness of Jobs Mix Changes using Kullback-Leibler Divergence 

 
Given the sheer number of categories we have, one might think the trend in dissimilarity could                
be due to the amount of disaggregation. Therefore we looked at between 23 and 800 different                
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categories based on standard occupation codes and found a similar trend, although the levels of               
dissimilarity compared to January of 2014 were lower which is consistent with the higher              
aggregation.  
 
Figure 7: Changing Mix of Job Postings over Time for Different Aggregation Levels 

 
Another point of context is comparing our data to data available from the Bureau of Labor                
Statistics (BLS). For categories we use the 12 industry categories for which we can get               
monthly data on unemployed and on job vacancies. With a much smaller number of categories               
(12 as compared to over 6000) we expect the dissimilarity to be smaller, but we might still                 
expect an upward trend.  
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Figure 8: Changing Industry Mix of Job Openings over Time 

 
However, JOLTS is showing both lower dissimilarity in each period compared to the start date               
(and results are similar when comparing to January of 2014) and no upward trend. The fact that                 
the dissimilarity is lower is likely related to the number of categories: with a smaller number of                 
categories, we would expect the overall level of dissimilarity to be lower (e.g. in the measure                
above nurses vs. doctors shows up, whereas in this measure they are both under healthcare).  
 
The fact that the trend in industry is holding steady suggests that this isn’t about changes in                 
industries, but rather about changes in who those industries are employing (the shift away from               
occupational therapist to pharmacy technician in healthcare for example).  
 
Shifting to the job seeker side, similar to what we see for job postings, we see little trend by                   
industry in the CPS data for the unemployed, but we do see an upward trend in our resume                  
data.  
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Figure 9: Changing Industry Mix of Unemployed Job Seekers over Time 
 

 
Resumes have, however, changed less over the past four years than job postings have. Again               
comparing January of 2018 with January of 2014, resumes are about 13% different than they               
were four years ago. One data note: because of the nature of Indeed’s data, where we keep                 
only the latest resume a job seeker has uploaded, resumes today are less comparable with               
resumes four years ago than job postings over the same time period. The best time period                
comparison is the last year, from July 2017 through July 2018, a time period over which                
resumes are 6.3% different, compared to job postings being 6.9% different.  
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Figure 10: Changing Mix of Online Resumes over Time 

 
 
 
 
Robustness 
 
We’ve looked at a number of different slices of the data including broad age category and the                 
impact of including employed job seekers in our analysis.  
 
One of the key pieces of information in the Indeed data that is not available from other sources                  
is detailed information on employed job seekers. There is debate about how similar employed              
and unemployed job seekers are and what impact that might have on economic outcomes. On               
the one hand, Ahn and Hamilton (2016) argue that the unemployed differ in terms of relevant                
unobservables for job finding that vary over time and Longhi and Taylor (2014), using UK data,                
find that the unemployed and employed are quite different and that the differences vary over the                
business cycle. On the other hand, Kroft et al. (2016) find that “shifts in observable               
characteristics of the unemployed do not go very far in accounting for the rise in long-term                
unemployment.” Most related to our analysis, Şahin et al. (2014) see little difference when              
adding in employed job seekers based on time use surveys into their measure of mismatch.               
Our results also find the same trend whether we limit to to just unemployed or also include the                  
employed.  
 
We are also able to estimate broad age categories for job seekers based on the graduation                
dates if they include them on their resumes. We find for this subset that mismatch is higher for                  
young and old as compared to prime age workers, but the trends are similar for all three groups                  
as the overall ones reported here.  
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Next Steps 
 
This paper reports initial analysis of the data we have on online job postings and job search.                 
We can (and are currently working on) look at more granular slices, e.g. by state. Mismatch by                 
states to allow us to look at more business cycle variation. Admittedly states aren’t ideal for                
local labor market analysis and we’d like to look at metro areas as well, but given the needs for                   
data quantity and relevant publicly available data, we’ll do a fair bit of analysis by state. We want                  
to explore a range of relationships between economic outcomes and mismatch.   13

 
The Role of Job Switchers: Our analysis is currently binary: same or not same. One concern                
about grouping job seekers into categories is that job seekers may not stay in the same                
category and that skills may be transferable across categories and/or job seekers may develop              
new skills over time that might lead them to change categories. This may be particularly true of                 
the finer categories we use at the normalized job title level. Furthermore, people may have the                
skills for jobs, but be uninterested in doing them (interest mismatch as compared to skills               
mismatch). Hobijn (2012) combined data from the CPS, JOLTS, and state-level job vacancy             
surveys and found that the “majority of job openings in all industries and occupations are filled                
with persons who previously did not work in the same industry or occupation.” Sinclair (2014)               
and Flowers (2018) have both examined the behavior of job seekers using Indeed to search for                
jobs in categories other than their most recent employment and find substantial amount of              
searching across even very broad categories. They also each document that specialization and             
pay are both positively related to retention by job type. This analysis suggests we may want to                 
weight by some measure of skills and/or interest overlap for our mismatch index. In that case                
we may be able to think about the distance between normalized job titles and estimate a smaller                 
amount of mismatch if in “adjacent” job titles by occupation grouping. A related approach was               
used by Şahin et al. (2014) to allow their unemployed job seekers to search in a new                 
industry/occupation, but they find that the “bulk of unemployed workers keep searching in their              
previous employment sector” (page 3559) so their estimate of mismatch unemployment is little             
affected. We can also rank order the normalized titles by estimated average salary to construct               
a weighted variant of the dissimilarity index called the Earth Mover’s Distance (Rubner et. al,               
2000; for an application to the labor market see Rim, 2018).  
 
 
Estimating a Natural Rate of Mismatch: With our estimates only available for a recovery              
period, we have little business cycle variation to estimate what is trend and what is cycle, but                 
based on connecting our results to those of Lazear and Spletzer (2012b) we have a few initial                 
thoughts. We see a slight downward trend in our mismatch which is consistent with the Lazear                
and Spletzer (2012b) interpretation that mismatch goes down as labor markets improve. We             

13 For example, Wiczer (2015) argues that occupation-specific shocks are important for            
understanding the pattern of unemployment duration over the business cycle 
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expect there to be more information along these lines once we have state level mismatch               
measures and can compare to somewhat varied state-level economic conditions.  
 
Other Thoughts: Besides overlapping categories, it may be interesting to zoom in not just on               
narrower geographies, but also on mismatch within occupation categories or by other features             
of the job seeker. For example we can look at long term versus short term unemployed in a                  
similar way to the breakdowns we’ve done for employment status and age categories. Indeed              
also has data for over 60 countries with broadly similar data collection and structure, so we plan                 
to build indexes that are comparable across countries.   
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