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Abstract

Many theoretically appealing market designs are under-utilized because they demand
preference data that humans find costly to provide. This paper demonstrates how large
language models (LLMs) can effectively elicit such data from natural language descrip-
tions. In our experiment, human subjects provide free-text descriptions of their tastes over
potential roles they could be assigned. An LLM converts these descriptions into cardinal
utilities that capture participants’ preferences. We use these utilities and participants’
stated preferences to facilitate three allocation mechanisms—random serial dictatorship,
Hylland-Zeckhauser, and a conventional job application type game. A follow-up experi-
ment confirms that participants themselves prefer LLM-generated matches over simpler
alternatives under high congestion. These findings suggest that LLM-proxied preference
elicitation can enable superior market designs where they would otherwise be impractical
to implement.
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1 Introduction

Many theoretically appealing market designs remain surprisingly underutilized in high-stakes

settings. A key obstacle to their broader adoption is that these mechanisms often impose

extensive informational and cognitive demands on participants, who must articulate precise

preferences over dozens, hundreds, or even thousands of items. Humans, however, do not

usually have the time nor patience to make such fine-grained comparisons at scale, and even

if they do, they are prone to mistakes (Enke, 2024; Oprea, 2024). While small errors in

preference reporting might seem innocuous by the logic of the envelope theorem, even minor

deviations can degrade equilibrium outcomes (Akerlof and Yellen, 1985), undermining the

hypothetical benefits of these designs.

If burdensome preference elicitation is indeed the bottleneck to implementing superior

mechanisms (e.g., Budish (2011)), recent advances in machine learning suggest a potential

remedy (Brero et al., 2021). In particular, large language models (LLMs) can be prompted

to respond to human desires described in natural language (Bubeck et al., 2023). If such

descriptions capture key aspects of human tastes—the fundamental features of utility func-

tions that shape preferences (Stigler and Becker, 1977; Cowen, 1989)—then LLMs could be

powerful tools for evaluating large menus of options. Operating at effectively zero marginal

cost, they could reduce errors and save valuable human time.

For example, imagine someone describing their fruit tastes as: “I love crisp textures and

tart flavors but avoid fruits with pits.” Such a statement is effectively a flexible program for

ranking all sorts of fruit, not just a single ordinal checklist. Given a set of fruit, these tastes

imply a natural ordering (for instance, apple ≻ banana ≻ cherry), and an LLM given this

description could assign cardinal utilities (e.g., u(apple) = 1, u(banana) = .4, u(cherry) = 0),

preferences over bundles, and so on. Moreover, if a new fruit, say, a date, is introduced,

the LLM can infer that it has a pit but is not tart like some cherries, reporting the user’s

preference appropriately (cherry ≻ date).1

Preliminary work suggests that LLMs can indeed convert textual tastes into precise pref-

1Figure A2 shows that GPT-4o correctly orders all four fruits given this exact taste description.
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erence statements (Li et al., 2023). Yet two critical research questions remain: (i) whether

individuals can effectively convey their complex tastes in a short paragraph, and (ii) whether

an LLM’s conversion of those tastes into preferences is accurate enough to improve real

economic outcomes.

To examine these questions, we use a labor-market-like matching experiment involving

crowdsourcing workers (Horton et al., 2011) recruited via Prolific. We focus on labor markets

for several reasons. First, it provides a realistic, high-stakes environment in which participants

have strong, varied preferences and face challenging matching constraints. Furthermore, when

too many job seekers apply to the same positions—a pervasive problem in modern labor

markets (Horton et al., 2024; Fradkin et al., 2024)—participants must strategically decide

where to focus their ranking effort, considering not only their own preferences but also likely

competition from others. This makes accurate preference elicitation both more valuable and

more challenging. Finally, labor markets are often dynamic, with new jobs appearing and old

ones disappearing, making static rankings of old options quickly obsolete. By contrast, an

LLM endowed with a participant’s written taste description can flexibly compute preferences

for new jobs without needing a fresh ordinal list.

In our experiment, each of n = 781 participants wrote a short natural language description

of the Prolific tasks they enjoy and then rank-ordered 50 representative tasks. Our goal is

to assign participants tasks subject to a labor market-esque one-to-one matching constraint

with a variety of allocation mechanisms. We translated these descriptions into von Neumann-

Morgenstern (vNM) utilities by prompting an LLM—endowed with the participant’s stated

tastes—to evaluate each task under a structured lottery (von Neumann and Morgenstern,

1944).

Evaluating the LLM’s performance, however, is not straightforward. Participants’ rank-

ings do not provide an unambiguous source of ground truth. Our tracking software reveals a

clear pattern: participants tend to focus on ordering their top choices while often leaving most

other tasks in their initial random positions. Considering that task order is initially random

for each participant, this suggests that participants are not reporting their full preferences.
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In this sense, we as researchers are facing the very problem we hope to solve: high-quality

preference data are needed to validate the LLM, yet humans themselves provide incomplete

rankings.

To be clear, the reported rankings provide non-trivial information about participants’

preferences, and the rankings implied by the LLM-derived utilities correlate strongly with

these rankings. Furthermore, the more effort participants put into ranking tasks, and there-

fore, providing a better measure of ground truth, the better the LLM’s performance. If

anything, this suggests that human preferences likely understate the LLM’s performance.2

To address the evaluation problem posed by under-sorted rankings, we implemented a

second phase of the experiment in which the same participants from the initial ranking

exercise make direct choices from a very limited set of tasks assigned by different mechanisms.

Some mechanisms are facilitated by participants’ own self-reported rankings, while LLM-

derived preferences facilitate others. We can then compare participants’ choices between

these tasks as a function of the preference data used to generate them. Because participants

only choose among a few tasks, cognitive demands are minimal, giving us a clearer, ground-

truth measure of how effectively the LLM-based approach aligns with real preferences.

Constructing matches for the follow-up experiment requires several steps. Guided by

participants’ (imperfect) rankings and the LLM-derived utilities, we first create artificial

markets of 50 participants each to study how varying degrees of preference overlap affect

outcomes. We imagine our Prolific workers in a conventional job market where each worker

can only be assigned to one task. Specifically, for each participant, we create two distinct

markets: one in which they are grouped with 49 participants whose preference lists heavily

coincide (a congested scenario), and another with 49 participants whose preferences rarely

overlap (an uncongested scenario). By varying the degree of preference overlap, we can

compare the relative tradeoffs between human and LLM-derived preferences in environments

2One might suspect that raising the stakes would induce better ranking. In a companion study, we demon-
strate that this is not the case. We used our preference elicitation interface to ask MBA students to rank
31 assignments that would determine their semester-long course projects; under-sorting persisted despite the
smaller set of items, days of deliberation, and real academic consequences (see Appendix A). Even strong
incentives, a far smaller set of items, and sufficient time do not facilitate fully elicited preferences.
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where we might expect one to be more effective than the other.

Within each of the participant’s two artificial markets, we then simulate three mechanisms.

The first is ordinal-based random serial dictatorship, using each participant’s own reported

rankings. The second is cardinal-based Hylland-Zeckhauser pseudo-market (Hylland and

Zeckhauser, 1979), based on the LLM-derived utilities. The third is a maximizing and more

straightforward “conventional job application” game in which each participant picks exactly

one task, bearing the risk of being crowded out if many people select the same top choice.

Two days after the initial ranking exercise, participants returned to select from three

tasks—one from each mechanism—drawn from either their congested or uncongested market,

depending on random assignment. Indeed, the findings show that when preference overlap

is light, participants tend to favor the simpler job application game, which often yields their

top choice. Under heavy competition, however, they gravitate toward either the LLM-driven

cardinal mechanism or random serial dictatorship, providing direct causal evidence that LLM-

derived utilities can effectively capture participants’ preferences in a realistic, market-like

environment. To reiterate, by allowing participants to choose among just three tasks (blinded

to which mechanism generated each match), we confirm that the LLM-based approach can

successfully generate matches that participants prefer.

Having established that participants prefer LLM-generated matches under high conges-

tion, we now analyze the welfare implications more systematically using our market simula-

tions. In the uncongested market simulations—where top preferences rarely coincide—simple

ordinal mechanisms generally suffice, allowing most participants to secure their first choice.

By contrast, in congested markets, the cardinal Hylland-Zeckhauser mechanism achieves

substantially higher overall welfare, as measured by the LLM-derived utilities. Incorporating

richer vNM utilities—obtained at negligible marginal cost through an LLM—helps mitigate

the negative consequences of crowding around the same tasks. Intuitively, if participants’

lists rarely overlap, almost everyone secures a well-sorted top pick anyway; but with severe

overlap, these more granular preferences become invaluable.

One concern is that these welfare improvements might be an artifact of using the same
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LLM-based utilities for both allocation and evaluation. Yet the LLM’s strong alignment

with participants’ top-ranked items suggests that the observed gains are not merely circular.

Nonetheless, we cannot guarantee perfect accuracy, which is why the follow-up experiment

serves as a crucial check on our results more generally.

Although these findings underscore the potential of LLMs as agents for preference elicita-

tion, there remains considerable room to improve the alignment between an LLM’s interpre-

tation of user tastes and users’ true preferences. Even with the participant under-sorting, it

is clear that the LLMs are not perfect. Indeed, previous work has shown that LLMs can fail

in unexpected ways (Vafa et al., 2024). Moreover, scaling these methods to larger popula-

tions and more complex matching scenarios introduces significant computational and design

challenges (Vazirani and Yannakakis, 2020; Aziz et al., 2013).

Our work builds on several intersecting research areas. First, we extend the emerging

literature examining LLMs’ capacity to approximate human-like behavior in various economic

contexts (Manning et al., 2024; Horton, 2023). A complementary line of research explores

AI-assisted evaluations and negotiation (Lira et al., 2023; Tessler et al., 2024).

Our work also contributes to the evolving discourse on alternative preference elicitation

methods. Recent studies suggest that qualitative self-assessments may serve as efficient sub-

stitutes for traditional preference elicitation techniques (Falk et al., 2018, 2022), offering cog-

nitive advantages similar to our taste descriptions. However, debate persists about whether

these assessments measure the same constructs as conventional methods (Chapman et al.,

2025). We offer an alternative path forward: rather than proxying traditional preference

elicitation with qualitative assessments, we use LLMs to bridge the gap—converting natural

language taste descriptions into precise utility functions consistent with traditional economic

frameworks.

Most directly related to our approach is the nascent literature on AI-assisted preference

elicitation. Previous work has explored AI applications in social choice, auctions, lotter-

ies, and recommendation systems (Huang et al., 2025; Li et al., 2023; Kim et al., 2024;

Soumalias et al., 2025; Brero et al., 2021). However, these studies rely predominantly on
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simulations or small-sample experiments. Our contribution extends this work in three signif-

icant ways. First, we provide robust evidence from a large-scale experiment demonstrating

that LLM-derived utilities can effectively represent human preferences in realistic market

settings. Second, we show that these automatically derived cardinal preferences enable the

implementation of sophisticated allocation mechanisms that outperform simpler alternatives

under market congestion. Finally, we offer direct experimental confirmation that participants

themselves often prefer matches generated through LLM-derived preferences, particularly in

congested environments.

Taken together, our findings suggest that LLM-based preference elicitation can substan-

tially reduce the cognitive and temporal barriers to detailed preference reporting. By con-

verting brief natural language descriptions into comprehensive utility functions, this approach

enables the practical deployment of theoretically superior market designs that have previously

been limited by the challenges of obtaining granular preference data at scale.

2 Experiment design

We design and execute a two-phase study to evaluate whether participants can effectively

communicate their tastes through short natural language descriptions and whether LLMs

can accurately translate these descriptions into preferences suitable for matching. In Phase I,

participants provide a free-text narrative of their task preferences and then rank a set of

representative Prolific tasks. Phase II is a randomized experiment that asks the same par-

ticipants to choose among tasks derived from different allocation mechanisms—some based

on their own preferences, others based on the LLM-derived utility—thereby offering a direct

comparison of the mechanisms’ outcomes from participants’ own perspectives.

2.1 Phase I: taste and preference elicitation

Phase I of the experiment comprised three questions given to n = 781 participants using a

custom web interface.3 The top panel of Figure 1 shows the phase I flow. First, participants

3We excluded 19 participants due to random errors in data recording from our online interface.
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were asked to describe their tastes in tasks in natural language (Q1 in Figure 1). Specifically,

they were instructed to provide written guidance to a friend selecting Prolific tasks on their

behalf; both features of tasks they liked and disliked were elicited in short paragraphs. Par-

ticipants were incentivized with a bonus for accurately describing their tastes relative to the

rankings they would subsequently submit.

Figure 1: Experimental flow

Notes: This figure illustrates our two-phase experiment. The top panel shows Phase I, where participants
(i) describe their tastes in a free-text prompt (Q1), (ii) rank 50 tasks (Q2), and (iii) choose exactly one task
as their “single job application” (Q3). The middle panel outlines how these data are used to generate cardinal
utilities via the LLM and to simulate three mechanisms—random serial dictatorship, the single job application
game, and Hylland-Zeckhauser—within both congested and uncongested markets. The bottom panel depicts
Phase II, in which participants return to pick their preferred match from among the resulting tasks in a brief
follow-up study.

Second, participants were presented with an interface that asked them to rank a set of
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50 randomly arranged Prolific tasks in order from most preferred to least (Q2 in Figure 1).

Users could click on the tasks to see details on time commitments and compensation and

could re-rank items as much (or as little) as they desired. Each task was designed to reflect a

realistic Prolific task. They varied along three dimensions: hourly rates ranging from $10 to

$20, durations from 5 to 45 minutes, and different types of expectations for the work required.

For example, some tasks offered participants the opportunity to solve puzzles, others to reflect

on daily activities, and others to share opinions on politics. The full set of tasks is provided

in the appendix along with screenshots of the ranking interface.4

Finally, participants were taken to a new page (Q3 in Figure 1) and asked to select exactly

one of the 50 tasks, under the assumption that other participants were facing the same

decision problem. The instructions explained that if a participant were the only person to

choose a particular task, they would receive it automatically. However, if multiple participants

chose the same task, one would be randomly selected to receive it, and the rest got no

assignment. This single job application game is analogous to a real-world scenario in which

an individual can apply for only one position while facing potential competition from other

candidates. We refer to the choice made by participants in this step as their “single job

application” herein.

2.2 LLM-preference elicitation and match generation

The middle panel of Figure 1 outlines how we process the Phase I data to generate task

matches for the participants. We begin by transforming each participant’s natural language

descriptions (Q1) into numerical vNM utilities. Specifically, we fed each description to an

LLM and prompted it to score how much a participant would value each of the 50 tasks,

creating a cardinal preference profile for each individual. This new set of utilities effectively

serves as a third preference measure alongside the ordinal rankings (Q2) and the single job

4Two example tasks include: (i) Navigation Task—Plan routes and make directional decisions in a map-
based exercise designed to assess your spatial awareness. This should take about 35 minutes and pays 7.50
dollars. (ii) Digital Literacy Survey—Share your experiences with various digital tools and platforms through
a survey that examines your overall comfort with technology. This should take about 20 minutes and pays
4.00 dollars.
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application (Q3). We describe this entire process, along with the other matching details

below fully in Section 4.

Next, we construct two distinct market scenarios for every participant. In a congested

market, they are grouped with participants whose Q2 lists overlap heavily, creating an envi-

ronment where many participants compete for the same top-ranked tasks. In an uncongested

market, they are grouped with participants whose rankings differ substantially, minimizing

the risk that many people chase the same task.

Finally, we simulate three different mechanisms in both markets. We run random serial

dictatorship using each participant’s full ordinal list. We also implement a single job applica-

tion game based on each participant’s single job application and use the LLM-derived utilities

to allocate tasks via Hylland-Zeckhauser. This yields up to six possible matches per partici-

pant: three from their congested market and three from their uncongested market. As shown

in the middle and bottom panels of Figure 1, these simulated matches lay the groundwork

for the Phase II follow-up, where participants evaluate the assignments themselves.

2.3 Phase II: follow-up experiment

Two days after Phase I, we invited participants back for a brief follow-up experiment (Fig-

ure 1, bottom panel). Of the original 781participants, 704returned to complete this second

phase. Each participant was randomly assigned to either a congested or an uncongested

treatment condition. They then saw the set of three tasks generated by random serial dicta-

torship, Hylland-Zeckhauser, and the single job application game under their assigned market

type (congested or uncongested) from the matching and preference elicitation simulations.

Participants were asked to pick exactly one task they most preferred from those shown. These

tasks appeared in random order, with no indication of the relevant mechanism. In some cases,

the game did not yield an assignment, or two mechanisms yielded the same task, leaving only

two options.
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3 Phase I results and LLM-preference elicitation

In Phase I, we collected two types of preference data from participants: natural language

descriptions of their tastes and explicit rankings of 50 representative Prolific tasks. This

section analyzes these data in three parts. First, we document participants’ ranking behavior,

showing that they significantly under-sort their lists, primarily focusing on ordering only their

most preferred tasks. Second, we examine participants’ natural language descriptions, which

reveal rich and idiosyncratic task preferences. Finally, we detail how we transform these

free-text descriptions into cardinal preferences using LLM-elicited vNM utilities and present

evidence on the accuracy of these derived preferences.

Figure 2: Examples of participant ranking behavior

Panel 7−−33 Moves−−642 Seconds Panel 8−−14 Moves−−638 Seconds Panel 9−−5 Moves−−370 Seconds

Panel 4−−32 Moves−−929 Seconds Panel 5−−28 Moves−−409 Seconds Panel 6−−21 Moves−−522 Seconds

Panel 1−−26 Moves−−382 Seconds Panel 2−−13 Moves−−250 Seconds Panel 3−−52 Moves−−1364 Seconds
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Notes: Each panel shows a participant’s ranking behavior through directional arrows indicating task reposi-
tioning, with task duration and the number of moves made displayed at the top. Each arrow represents a
single move, with the base of the arrow indicating the original rank of the moved task and the tip of the arrow
indicating the task’s new rank.
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3.1 Ranking behavior

Figure 2 offers a representative visual snapshot of how participants sorted the tasks according

to their preferences. Each panel captures a single participant’s sequence of moves over time.

Each vertical row of 50 dots represents the 50 tasks in a participant’s rankings, with arrows

showing how particular tasks were repositioned with each move. For example, in Panel 1,

the participant relocated 26 different tasks over 382 seconds, starting by moving the task

initially at rank 5 to rank 2, then the task at rank 16 to rank 3, then the task at rank

49 to rank 5, and so on. In this way, the figure highlights the variety of strategies. While

some participants made only a handful of moves (e.g., Panel 9), others employed extensive

back-and-forth adjustments across the entire list (e.g., Panels 3 and 7).

Despite the diversity in Figure 2, one trend is common across many participants: the top

six panels show a clear pattern tracking the heads of the arrows (i.e., the destination rank

of the task moved) from the upper left sequentially down to the lower right. This pattern

suggests that participants tended to start by moving their most preferred tasks to the top of

the list and then move tasks to successively lower ranks (higher numerical ranks). To make

this concrete, the simplest version of this strategy would be to move the most preferred task

to rank 1, then the second most preferred task to rank 2, and so on, sequentially lower in the

rankings. Note that when we say a task is ranked “lower,” we mean it has a higher numerical

rank (e.g., rank 10 is lower than rank 1). When a task is ranked “higher,” the opposite is

true.

Of course, participants did not perfectly follow this strategy, but the trend is clear. Fur-

ther evidence is provided by a simple regression of destination rank on move order, cluster-

ing on and controlling for participant fixed effects. The coefficient is positive and precise

(β = 0.264 (0.026)). On average, participants moved tasks to a rank 0.264 slots lower than

the rank of the task they moved directly preceding that move. Table A1 in the appendix

shows this specification in detail. If participants were merely sorting their lists with maximal

efficiency, we would not expect to see such a strong statistical relationship.

We refer to this heuristic as a “cascading downward” strategy herein. Further evidence
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of the pattern is provided in Figure A7 in the Appendix. For example, across all sequences of

fives consecutive moves made by all participants, more than 40% of them were monotonically

decreasing in rank from the first move to the last.

3.1.1 Sorting behavior focused on top positions

To further explore this cascading downward strategy, we separated each reranking action for

every participant into two steps: moving a task from a rank and moving a task to a rank.

The left panel of Figure 3 shows that the empirical distribution of movements from each rank

is close to uniform, This is to be expected if participants were simply sorting their lists with

rationally—no rank should be systematically more or less likely to be moved from. The large

uptick at rank 1 likely reflects participants testing the interface by immediately moving the

first most visually salient task at the top of the list.

Figure 3: Distribution of how often participants moved tasks from and to each rank position
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Notes: The left panel shows the fraction of task movements originating from each rank, and the right panel
shows the fraction of moves arriving at each rank. A perfectly rational participant would move tasks to and
from each rank with uniform probability of 1

50
= 0.02.

In contrast, the distribution of movements to each rank in the right panel of Figure 3

exhibits a pronounced checkmark shape. An inordinately large number of moves push tasks

to the top 10 positions and a smaller but noticeable fraction lands at the very bottom.

Meanwhile, the items in rank 20-45 receive significantly fewer repositionings. This pattern

adds further evidence that participants were highly inclined to locate their favorite tasks (and

in some cases, identify the handful they liked least) while disproportionately leaving the bulk
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of tasks in the middle to lower tasks near their random starting position

3.1.2 Participants showed substantial under-sorting

Technically, participants could have disproportionately moved tasks to the top positions

but still revealed their true preferences. This would simply mean participants made many

redundant moves to the top positions. To provide definitive evidence that participants were

under-sorting, we compared their actual reranking behavior to what we would expect from

purely random permutations. For each participant, we first calculated the minimal number of

insertion moves (Schensted, 1961) necessary to transform the initial (random) list into their

final declared submitted list of rankings. This measure reflects a theoretical lower bound on

how many operations one should need to position every task correctly, assuming that the

final list is fully sorted.

Next, we randomly selected a list of 50 items and then generated 1,000 random permuta-

tions of this list. For each permutation, we calculated the minimal insertion moves required

to restore the original ordering, creating an empirical distribution of these minimal moves.

This distribution serves as our benchmark for how many moves in expectation it takes to

fully sort a list of 50 items starting from a random ordering. Assuming that participants have

fully specified preferences that they explicitly ranked, we would expect the empirical distri-

bution of minimal moves to converge to this random benchmark even if they were making

some redundant moves to the top positions. If redundant moves lead to a fully specified list,

they do not affect the distribution of minimal moves since the minimal moves are calculated

relative to the original ordering.

Figure 4 displays the empirical distribution of these minimal moves (in red), alongside

the simulated benchmark from random permutations (in green). The dashed vertical lines

show the average number of moves for each distribution, colored accordingly. In random

permutations of 50 items, typically 34-42 moves are needed to reach a fully sorted order

with an average of 39. In contrast, participants in our study report final lists requiring far

fewer moves to transform from the original lists they were presented. The average number
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of minimal moves was around 19, with roughly 90% of participants needing fewer than 34

moves: the lowest number of minimal moves needed to sort the list in the 1000 random

permutations. This is unequivocal evidence of severe under-sorting.

Figure 4: Distribution of minimal insertion moves to achieve participants’ final rankings vs.
random permutations
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RandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandomRandom

0.0

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40
Minimum Number of Moves

P
ro

ba
bi

lit
y

Notes: The red distribution shows the actual minimal insertion moves needed to turn each participant’s ran-
domly ordered tasks into their final ranking, while the green distribution shows the same statistic for purely
random permutations of 50 items. The dashed lines show the average number of moves for each distribution.

Taken together, our analysis of participants’ ranking behavior identifies where we should

expect participants to have both accurately specified preferences and under-sorted. On the

one hand, they seem to have accurately identified and ordered the items they were most

enthusiastic about, as reflected in their concentrated moves to the highest ranks. On the

other hand, the middle and lower portions of the lists saw far less movement, showing that

in the aggregate, participants did not fully reveal their preferences. While such cascading

top-down sorting strategies are understandable and are likely effective heuristics for sorting

a small set of items, such sorting rules are not scalable.

Importantly, use of this heuristic is not a monolith (although under-sorting in general

is). Some participants did not follow this strategy by completely it, cascading up from the

bottom ranks (e.g., Panel 8 in Figure 2) rather than down from the top. Others exhibited

seemingly random movements with no clear pattern (see Panel 7 in Figure 2). However, both

of these behaviors were comparatively rare.

What is clear is that participants were under-sorting, and the cascading down heuristic

was the predominant strategy by which they sorted their lists. This systematic under-sorting
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has important implications for our evaluation strategy. We cannot simply treat participants’

Phase I rankings as ground truth when assessing the quality of LLM-derived preferences. The

rankings themselves are incomplete revelations of participants’ true preferences, particularly

in the middle and lower portions of the lists. This observation motivates our Phase II vali-

dation, where we directly elicit participants’ preferences between only a few tasks, providing

a more reliable benchmark for comparing the LLM-elicited preferences.

3.2 Single job application game choices

To complement our understanding of how participants express preferences, we examine their

behavior in a more focused elicitation context. In the final step of Phase I, each participant

was asked to select a single task in a one-shot single job application, knowing that others

might compete for the same task. Figure 5 plots the rank of that chosen task relative to each

participant’s own final ordering.

Figure 5: Rank of participants’ single job-game choice compared to their sorted preferences
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Notes: This figure shows how participants’ single job-game choice tasks are distributed across their final ordinal
rankings. For example, a substantial fraction of participants (23%) selected their absolute favorite (rank 1) as
their job-game choice.

A substantial fraction of participants selected their top-ranked option, with 23% indeed

picking their outright favorite, while 70% chose a task within their top ten.

This distribution suggests that participants took the possibility of congestion seriously

rather than choosing purely at random or always defaulting to their absolute favorite. More

generally this provides evidence that participants were actively completing the elicitation

exercises, yet they still failed to fully sort their preference lists in the ranking phase. Fur-
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ther evidence of participants’ thoughtful engagement can be found in their natural language

descriptions of preferences, which we analyze next.

3.3 Analysis of natural language descriptions

We now examine the qualitative content of participants’ natural language taste descriptions

and illustrate what sorts of information they convey. Table 1 presents four examples.

Table 1: Four examples of participant’s natural language tastes

Likes Dislikes

A “I mostly use my phone for prolific, so preferably tasks that are
compatible on mobile. Preferably shorter tasks, under 25 min-
utes. Multiple choice questions are ideal. Open ended are fine if
not too extensive. I don’t like tasks that have repetitive questions
using different words. But I’m open to mostly any topic of task.”

“Avoid tasks that require downloading an
app, using a camera, or going out of my
way to do work on other apps required
for the task.”

B “Do not choose any that involve extensive writing or speaking.
Also, avoid tasks that involve the use of a microphone or webcam,
as I do not have those set up at this time, and i prefer my privacy.
I would prefer ones that are quick and pay at least a dollar, but
that’s more of a preference and not a requirement.”

“I would avoid ones that take longer than
about 20 minutes, despite the incentive
looking pleasing, I cannot fully engage in
a survey that takes long, or I will lose
focus and not finish.”

C “I like to do short preference studies. I prefer to do many shorter
ones versus doing longer format ones. I do not like to do a lot of
political studies, but do enjoy providing feedback for businesses.
I enjoy studies that have lots of different questions, not the same
questions formatted differently.”

“I do not enjoy any studies that take
longer than ten minutes. I do not like
to do studies that require lots of my per-
sonal information.”

D “I enjoy tasks on Prolific that are about 5-10 minutes for at least
$.50. I like workplace scenarios, product ratings, political sur-
veys, tasks with other Prolific users. I like most tasks and am
not too picky. It is easier for me to use mobile for tasks but I
am open to using desktop if a survey seems fun or interesting.”

“I do not like tasks related to animals
and I prefer to avoid them. That is my
only preference because I had a task that
did not have a warning but had graphic
upsetting material of an animal.”

Notes: Participant responses to: “Write a paragraph providing guidance to a friend picking Prolific tasks on

your behalf for you to do later” and “Is there anything in particular that your friend should avoid?”

These short paragraphs reveal several types of information that would be difficult to

infer from rankings alone. First, participants often specify technical constraints and task

formats they prefer or avoid. For example, participant A emphasizes mobile compatibility,

while participant B makes clear that microphone or webcam usage is a deal-breaker. Time

constraints also feature prominently: some participants are open to longer tasks with higher

pay, whereas others cap their session length at ten or twenty minutes, regardless of pay.

Moreover, these statements encode broader categorical preferences. Participant D’s aver-

sion to animal-related content stems from a previous distressing experience, and participant C
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indicates a strong dislike for political surveys, favoring business-related questionnaires in-

stead. These sorts of “hard constraints” and category-level preferences are not always ob-

vious from an ordinal ranking of 50 tasks—especially if the participant never encounters an

animal-related study or only a few political items.

These short paragraphs provide qualitative evidence that even in our relatively limited

setting, natural language can convey deeper and more generalizable programmatic informa-

tion about participants’ tastes than a simple ordinal ranking might. In particular, they

highlight specific constraints (e.g., microphone requirements) and broader preferences (e.g.,

aversion to certain topics) that could apply equally to tasks beyond the initial set of 50. Such

flexibility is precisely what we seek from free-text taste descriptions: a concise yet adaptable

blueprint that captures participants’ key requirements and principles, complementing or even

superseding their under-sorted rankings in Phase I.

3.4 Constructing utilities from natural language tastes

Having illustrated the depth and clear programmatic nature of participants’ textual prefer-

ences, we now describe the process by which we translate these free-text descriptions into

vNM utilities. Our procedure follows the classic approach of eliciting indifference probabili-

ties in a lottery (von Neumann and Morgenstern, 1944). In this procedure, each participant

is prompted to consider a hypothetical choice between receiving a particular task j for sure

or taking a lottery that yields their most preferred task with probability p and their least

preferred task with probability 1− p. The value of p that renders the participant indifferent

between these two options defines the utility of task j on a [0, 1] scale.

To do this with an LLM, we first identify each participant is favorite task, r+i , and assign

it a utility of 1. Although participants often under-sorted the middle portion of their lists,

they consistently placed their genuine top choice at rank 1, making r+i a natural anchor

for the upper bound of the utility scale. For the lower bound, we prompt an LLM with

the participant’s free-text description Ti and ask it to determine which task appears most

misaligned with those stated preferences, denoting that worst task by r−i and assigning it a
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utility of 0.

Once these anchors are in place, we partition the remaining tasks into batches of six. We

partition the tasks because the LLM sometimes outputs the incorrect number of utilities when

evaluating too many tasks at once. For each task j in a batch, we feed Ti, r+i , and r−i into the

LLM and ask it to identify the probability pij at which the participant would be indifferent

between receiving task j for certain and taking the lottery that yields r+i with probability

pij and r−i with probability 1 − pij . The complete prompt is shown in Figure A11 of the

Appendix. Repeating this process for all tasks yields the vNM utility function ui(j) = pij

for each participant i. Because every batch is anchored by the same r+i and r−i , we obtain a

unified 0-1 utility scale across all tasks.

3.4.1 Evaluating LLM-elicited utilities

To quantify a preliminary measure of how well our LLM-elicited utilities capture human

preferences, we compare two sets of rankings. First, we calculate the Kendall-τ distance, the

number of pairwise disagreements between ordered lists, between each participant’s rankings,

and the rankings implied by the vNM utilities elicited from the LLM.5 Each participant’s

first choice r+i is excluded from both rankings as these were identical by design. Next, to

establish a baseline for comparison, we take a single list of 49 items and generate 10,000

random permutations, computing the Kendall-τ distance for each permutation against the

original ordering.

The top panel of Figure 6 shows these two distributions—the actual distances between

human and LLM rankings (in red) and the distribution of distances from the random per-

mutations (in green). The human-LLM distribution is shifted far closer to 0 relative to the

random permutations. This suggests that our utility elicitation method successfully extracts

meaningful preference information from users’ natural language taste descriptions. Although

there is clear room for improvement, such a result is impressive given that we did little prompt

engineering and optimization to elicit the LLMs’ utilities.

5Kendall-τ distance is distinct from the minimal insertion-sort metric, which captures how many insertion
steps are needed to transform one ordering into another.
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Figure 6: LLM-derived preferences alignment compared to random permutations and cor-
relation with sorting effort
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Notes: In the top panel, the red distribution shows each participant’s Kendall-τ distance between the LLM-based
ranking and their final ranking (excluding their top task). The green distribution corresponds to 10,000 random
permutations of 49 items against the same reference ordering. The bottom panel shows how this distance relates
to the number of re-ranking moves each participant made (y-axis). Notably, the red distribution in the top panel
is a histogram of the bottom panel’s x-axis measure.

Still, this comparison likely underestimates how well the LLM captures actual prefer-

ences, given that many participants under-sorted their lists (hence our additional Phase II

experiment). The bottom panel of Figure 6 offers direct evidence: it shows that partici-

pants who devote more effort to re-ranking—that is, those providing more reliable preference

data—exhibit significantly smaller Kendall-τ distances. The same pattern arises when using

time spent ranking rather than the number of moves (see Figure A9). Thus, if sorting effort

is a plausible proxy for accurately reported preferences, then our measures of the alignment

between LLM-derived utilities and human preferences likely are, if anything, an conservative.
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4 Generating matches

Our analysis now shifts to constructing formal matching outcomes from the LLM-derived

preference data and the participant rankings from Phase I. We use this data to simulate

three distinct matching mechanisms—the Hylland-Zeckhauser pseudo-market (requiring car-

dinal preferences), random serial dictatorship (requiring ordinal preferences), and a single

job application game (requiring a maximizing choice)—under both high- and low-congestion

scenarios. Finally, we compare the resulting matches according to both the LLM-implied

utilities and participants’ own ordinal rankings.

4.1 Simulating different levels of congestion

To model different levels of congestion, we begin by estimating how likely participants are to

receive each rank in a typical random serial dictatorship outcome based on their submitted

lists. Because participants often undersort the lower portions of their lists, we do not want

to give every rank position equal weight—doing so could obscure how competition unfolds at

the top. Instead, we run 1,000 random serial dictatorship simulations on random 50-person

subsets of our participant pool, always using each individual’s submitted list for the seeker

side of the market, and observe the final match rank for each participant in each simulation.

Stacking these outcomes produces a distribution of how frequently each rank (from 1 to 50)

is realized. We then add a small uniform offset for smoothing.

The resulting empirical frequency distribution (see Table A2 in the Appendix) shows that

more than 90% of matches occur in the top 15 ranks. This weighting ensures that disagree-

ments in the middle or bottom of the ranking—which many participants barely sorted—do

not artificially dilute or inflate how similar participants’ preferences appear to be.

Given this distribution, we define a position-based weighting function w(r) equal to the

probability of being matched at rank r. Let σ and τ be two rankings (permutations) of n

items. In the ranking σ, σ(i) denotes the item that occupies position i. To measure how

different σ and τ are, we sum w(i) +w(j) for each pair of positions (i, j) that is inverted. A

pair is inverted if σ(i) and σ(j) appear in one order under σ but in the reverse order under
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τ ; mathematically,

σ(i) < σ(j) ∧ τ(i) > τ(j) or σ(i) > σ(j) ∧ τ(i) < τ(j).

Thus, the weighted Kendall-τ distance is

d(σ, τ) =

∑
1≤i<j≤n

[(
w(i) + w(j)

)
· 1{σ(i) < σ(j) ∧ τ(i) > τ(j)}

]
∑

1≤i<j≤n

(
w(i) + w(j)

) .

Because w(r) is largest for ranks near the top (where participants are more likely to be

matched) and decreases monotonically, disagreements among top-ranked items receive more

weight than those among lower-ranked items.

Using this distance measure, we created two market scenarios for each participant: (i) a

maximally congested market, with the 49 participants having the most similar preferences

according to the weighted Kendall-τ distance, and (ii) a maximally uncongested market, with

the 49 participants having the most different preferences according to the distance metric.

We then ran three matching mechanisms—Hylland-Zeckhauser, random serial dictatorship,

and a conventional job application game—in both markets for each participant, yielding a

dataset of six potential matches per participant.

4.2 Simulated welfare analyses

Because participants often under-sorted their rankings, we evaluate each mechanism’s out-

comes from two different perspectives: the participant’s own ordinal list and the LLM-derived

vNM utilities. Neither perspective constitutes ground truth, but together, they offer a more

holistic sense of welfare outcomes.

Figure 7 illustrates the distribution of final matches (for the “focal participant”) in each

market simulation under random serial dictatorship (random serial dictatorship), Hylland-

Zeckhauser, and the single-job-application game. The top row shows matches ranked by

participants’ own lists (Ref: Human), and the bottom row uses LLM-implied utilities (Ref:

LLM ). Yellow bars represent the matches from the maximally congested markets (with the
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49 participants with the most similar preferences), while blue bars represent the matches

from the maximally uncongested markets (with the 49 participants with the most different

preferences).

Figure 7: Distribution of matches by original rank and mechanism under varying levels of
congestion
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Notes: Histograms show matched task ranks from two perspectives: participant’s ordinal list (Ref: Human,
top) and LLM-implied vNM utilities (Ref: LLM, bottom). Mechanisms compared: Random Serial Dictatorship
(random serial dictatorship), Hylland-Zeckhauser, and single job application game. Yellow bars show congested
markets (high preference overlap); blue bars show uncongested markets (low overlap). Rank 1 = top choice;
y-axis shows log-scale participant counts.

In uncongested markets (blue bars), random serial dictatorship generally places partic-

ipants in their top choice under either reference, with most participants being matched to

rank 1. Hylland-Zeckhauser also tends to place participants well in these uncongested set-

tings, though it performs slightly worse than random serial dictatorship whether viewed from

the human or LLM perspective. By contrast, the single-job-application game fares poorly,

often leading to unmatched participants or undesirable outcomes

Under congestion (yellow bars), all three mechanisms shift more participants away from

their top-ranked tasks in both references. However, Hylland-Zeckhauser appears far less

vulnerable to crowding, allocating more participants closer to their top tiers than random

serial dictatorship or the single-job-application game. This resilience aligns with the well-
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known theoretical result that Pareto-efficient, cardinal mechanisms can help mitigate the

externalities of competition for a single popular slot (Hylland and Zeckhauser, 1979).

Turning to cardinal utilities, Figure 8 displays how many participants receive each possible

vNM utility (0 to 1), as derived by the LLM, under each mechanism, on a log-scale y-axis. As

in Figure 7, the top row corresponds to uncongested markets, and the bottom row to congested

markets. In the uncongested scenario, random serial dictatorship and Hylland-Zeckhauser

both place most participants at or near utility 1, whereas the single-job-application game

yields substantial mass at lower utilities or no match. Under congestion, Hylland-Zeckhauser

remains comparatively robust, retaining a significant portion of matches in the higher utility

range.

Figure 8: Distribution of vNM utilities by mechanism under varying levels of congestion
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Notes: Histograms show the distribution of participants’ LLM-derived vNM utilities (0 to 1, log-scale y-axis)
under three mechanisms: Random Serial Dictatorship (random serial dictatorship, left), Hylland-Zeckhauser
(middle), and single job application game (right). The top row shows uncongested markets (rarely overlapping
top choices); bottom row shows congested markets (highly overlapping top choices).

One potential concern is that our evaluation uses the same LLM-derived utilities that

guide the Hylland-Zeckhauser mechanism, creating the possibility of circularity. However,

the LLM’s strong alignment with participants’ top-ranked items suggests these welfare im-

provements do not simply reflect self-reinforcement. Still, the LLM’s preferences are not

necessarily perfect, which is why we now turn to a follow-up experiment to provide direct

evaluation of the LLM-derived utilities.

24



5 Phase II results

Given the inherent challenges in determining ground truth preferences, both from partici-

pants’ incomplete sorting and the LLM’s derived utilities, we conducted a follow-up valida-

tion to provide direct evidence of mechanism performance. In this phase, participants made

explicit choices between the matches proposed by different mechanisms and, therefore, dif-

ferent preference elicitation methods. This provides a better ground truth for comparing the

performance since participants only need to choose between a few limited options.

In this follow-up, participants were shown three jobs derived from the simulated matches

generated in the previous section based on their submitted lists and the LLM-derived vNM

utilities. Participants were randomly assigned to one of two treatments based on the weighted

Kendall-τ distance among their matched peers: a congested group (where preferences over-

lapped heavily) or an uncongested group (where preferences were relatively dissimilar). From

these respective matches, each participant then saw three tasks, one assigned by each mecha-

nism (random serial dictatorship, Hylland-Zeckhauser, and the single job application game),

and was asked to pick which they most preferred in that moment.6

Figure 9 displays the fraction of participants selecting each mechanism’s assigned task

under the two conditions. When participants chose matches generated from an uncongested

market, they were most likely to pick the job application game-assigned task (white bars), at

roughly 45%, followed by random serial dictatorship at about 35%. Fewer participants chose

the Hylland-Zeckhauser task in these uncongested settings. By contrast, in the congested

condition, random serial dictatorship became the leading choice (dark bars), while the game-

assigned option saw its share drop to around 30%. Notably, the share of participants selecting

Hylland-Zeckhauser (gray bars) rose substantially under congestion, underscoring that its

relative value seems higher precisely when participants’ top choices heavily overlap.

Statistically, a within-treatment chi-square goodness-of-fit test (against a uniform distri-

bution of 1
3 for each mechanism) confirms that the three choices differ significantly in the

6In a small fraction of cases, two mechanisms yielded the same assigned task or the game yielded no
assignment, which reduced the choice set to two.
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Figure 9: Proportion choosing each mechanism’s match by treatment
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Notes: For each treatment, bars display the fraction choosing the match from random serial dictatorship (dark),
Hylland-Zeckhauser (gray), or the single job application game (white). Error bars represent 95% confidence
intervals.

uncongested group (χ2(2) = 15.2, p < 0.001) and the congested group (χ2(2) = 0.017, p ≈

0.017). Moreover, a between-treatment chi-square test of independence on the full 2 × 3

contingency table yields χ2(2) = 17.28, p < .0001, indicating that the choice distribution in

congested markets is statistically different from that in uncongested markets overall.

Finally, we compare the final chosen matches to the participant’s original ranked lists (see

Figure A10). In uncongested markets, a large fraction of participants—63%—were matched

with their absolute top choice via at least one of the mechanisms. Similarly, 83% of par-

ticipants in uncongested markets received a top-10 task under some mechanism shown in

the final triplet. In congested markets, these shares drop noticeably (to 26% to get one’s

top choice and 67% in top-10 matches), highlighting how stiff competition can push people

away from their most preferred outcomes. Still, many participants in the congested condition

ended up with tasks they had originally placed fairly high in their own rankings, particularly

under random serial dictatorship and Hylland-Zeckhauser. Thus, for most participants, the

final choice among the three mechanism-proposed jobs was not a low-ranked or otherwise

obviously undesirable option.
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6 Discussion

Our findings show that even brief, free-text descriptions of tastes can substantially reduce

the cognitive burdens inherent in markets requiring detailed preference data. By translat-

ing these descriptions into vNM utilities, LLMs ease the classic accuracy-burden trade-off:

participants need not fully sort large sets of items, yet still achieve better-than-random align-

ment. Furthermore, incorporating vNM utilities proves particularly beneficial in congested

settings, where many participants chase overlapping top choices.

A key challenge throughout our study is the elusive notion of ground truth. Participants’

self-reported rankings may be incomplete beyond their top few choices, and LLMs—reliant

on textual prompts—can fail in unforeseen ways. Our follow-up experiment helps disentangle

these issues by providing an unbiased causal comparison of outcomes, but it still offers only a

partial view of participants’ full preference maps. More extensive validation approaches, such

as multi-stage elicitation or repeated refinements in larger real-world markets, could better

illuminate how accurately LLM-derived utilities capture complex trade-offs that participants

themselves struggle to articulate.

One limitation of our Phase II experiment is that participants often encountered at least

one or two tasks they had ranked highly. This limited how strongly they had to weigh

choices among less-preferred tasks. Yet in many real-world settings—where mismatches and

competition are common—participants end up choosing among second- or even third-tier

options. Since our results show that the lower portion of participants’ lists is the least sorted,

it is exactly in these “middle-ground” trade-offs that we might expect LLM-driven elicitation

to provide the largest marginal improvement. Future work could thus explore experimental

designs or natural market conditions that push participants deeper into their lists, enabling a

clearer test of whether LLM utilities outperform hastily formed human ranks for items that

are “acceptable but not ideal.”

Indeed, recent work suggests that as language models improve, they will become in-

creasingly intuitive for participants to use (Jahani et al., 2024). We expect humans will

adapt in tandem, refining prompt-based descriptions to specify their preferences more com-
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prehensively and reducing reliance on cumbersome checklists or partial rankings. Although

challenges regarding reliability, interpretability, and potential strategic manipulation remain,

prompt refinements, user-interface design, and improved alignment techniques offer plausible

paths to greater robustness.

The direct applications of this method could be transformative for complex, real-world

matching markets. Consider the example of traveling nurses, each choosing among thousands

of short-term hospital contracts nationwide. This market is so complex that nurses often use

intermediary agencies rather than a single, large-scale matching system. However, one could

imagine a scenario in which a nurse briefly describes his tastes: “I prefer larger urban hospitals

that serve under-resourced patients, am willing to work night shifts if the pay compensates,

and need housing stipends that cover most living expenses.” An LLM might then use repeated

lotteries to calibrate how intensely he prefers, say, Hospital B (a large public hospital in a

major city) over Hospital A (a smaller private facility in a rural area). Accumulating such

cardinal utilities across dozens or hundreds of openings, the system could produce a precise

ranking that respects the user’s trade-offs. If hospitals similarly elicited their own preferences

over nurses, a matching mechanism could then provide allocations that work better for both

parties. These kinds of large and dynamic settings—including dating platforms (Hitsch et

al., 2010), job marketplaces, and beyond—stand to benefit greatly from offloading preference

discovery to LLMs, as human participants regularly face cognitive overload.

7 Conclusion

This paper demonstrates that large language models can substantially reduce the cognitive

burden of reporting detailed preferences in matching environments. By allowing participants

to specify a concise paragraph of textual tastes, our approach generates preferences that

can be used to implement and evaluate superior market designs at scale. In particular,

our results show that when participants face limited overlap in their top choices, simple

ordinal mechanisms already work well; however, as overlap intensifies—and thus congestion

rises—LLM-derived utilities enable mechanisms like Hylland-Zeckhauser to achieve better
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allocations and higher overall welfare.

We find that participants’ preferences correlate strongly with LLM-implied rankings, and

this alignment improves further as participants spend more effort refining their own preference

lists. At the same time, establishing a perfect ground truth is challenging. To address this, we

conducted a follow-up experiment in which participants directly chose among tasks generated

by different elicitation methods. Their choices revealed that the LLM-based matches were

notably favored in congested scenarios, providing direct causal evidence that participants

prefer these assignments over simpler baselines.

Overall, our findings suggest that LLM-based preference elicitation can help bridge the

gap between elegant economic theory and practical market design. Allowing participants to

describe their tastes in a concise, program-like format spares them from manually ranking

large sets of items—a process our experiment shows to be both time-consuming and error-

prone. By harnessing these artificially derived preferences, mechanism designers can more

effectively manage congestion and offer participants matches that better align with their

actual interests. In this sense, our work is an initial step toward realizing the long-recognized

promise of market mechanisms that rely on detailed preference data at scale.
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A Student-project matching

One of the authors taught an MBA course in which teams of students collaborated on real

generative AI projects for technology companies. Each team was required to rank 31 possible

company sponsors using the exact same interface as the one used in the Prolific study. Using

the company and student profiles, we asked an LLM to utilities on behalf of the companies

over the students. We then used a student-proposing deferred acceptance to match each

team to exactly one company project for the duration of the semester. The stakes were high:

students knew their semester-long project would be determined by this ranking and they

would have to spend months working on deliverables specified by their matched company,

ultimately presenting final outputs that integrated current generative AI methods.

Figure A1 examines the degree to which students sorted their lists beyond their top few

choices. This figure is identical to Figure 4 in the main text, except that it uses the student-

project matching data instead of the Prolific participant data. We compare the minimal

number of insertion moves needed to transform the random initial ordering of projects into

each team’s final, submitted ranking (in red) against what we would observe for random

permutations of 31 items (in green). Despite the tangible academic stakes—students knew

their semester-long project would be determined by this ranking—the distribution of minimal

moves is well to the left of the random benchmark, indicating that many students under-sorted

their lists.

While less severe, these results mirror the main paper’s findings with Prolific partici-

pants. Even when participants face nontrivial stakes and have time to deliberate, their final

reported rankings often remain only partially sorted. This observation further underscores

the difficulties of generating fully accurate, fine-grained ordinal preference lists.

B Additional figures and tables

B.1 Instructions and survey interface
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Figure A1: Distribution of minimal insertion moves to achieve students’ final rankings vs.
random permutations
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Notes: The red distribution shows the actual minimal insertion moves needed to turn each student’s randomly
ordered projects into their final ranking, while the green distribution shows the same statistic for purely ran-
dom permutations of 31 projects. The dashed vertical lines represent the average number of moves in each
distribution.

Figure A2: GPT-4o’s response to the example of a participant’s fruit preferences

Notes: The order of fruits is what one would plausibly expect from a participant who likes crisp textures and
tart flavors but avoids fruits with pits.
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Figure A3: Instructions for natural language preference elicitation

Notes: Screenshot showing how participants were asked to describe their task preferences in natural language
format.

Figure A4: Page to rank tasks

Notes: Screenshot showing the page where participants ranked tasks.
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Figure A5: Instructions for job application game choice

Notes: Screenshot showing how participants were asked to select a single task for the job application game
portion of the experiment.
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Figure A6: Follow-up survey interface

Notes: Screenshot of Phase II follow-up survey where participants evaluated matches generated by different
mechanisms.
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B.2 Additional analysis

Table A1: Regression of the destination of the rank move on the move number

Rank Moved To

(1) (2)

Move Number 0.230∗ 0.264∗

(0.007) (0.026)

Constant 15.742∗

(0.173)

Participant FE No Yes
Clustered SE No Yes
Observations 18,756 18,756
R2 0.055 0.243

Notes: This table shows the regression of the destination of the rank move on the move number. For example,
the coefficient on move number can be interpreted as the following: on average, participants rank choices
0.230 ranks lower (higher numeric ranking) than the destination rank of the immediately previous task moved.
Significance Indicator: ∗p<0.001.

Figure A7: Proportion of moves of length N where participants mono-
tonically ranked the next item lower than the previous item.
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Figure A8: Comparison of the minimum number of reranking steps participants could have
taken to move from the initial ranking to the final ranking versus the number of steps they
took.
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Figure A9: Distribution of Kendall-τ distances between human and LLM rankings by the
log time spent reranking.
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Figure A10: Density of participants’ original rank of their chosen match by treatment
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Table A2: Rank Probabilities

Rank Weight Rank Weight Rank Weight

1 0.1691 18 0.0059 35 0.0019
2 0.1437 19 0.0051 36 0.0019
3 0.1183 20 0.0051 37 0.0019
4 0.0952 21 0.0044 38 0.0019
5 0.0772 22 0.0035 39 0.0019
6 0.0612 23 0.0036 40 0.0019
7 0.0530 24 0.0029 41 0.0019
8 0.0416 25 0.0028 42 0.0019
9 0.0329 26 0.0026 43 0.0019
10 0.0283 27 0.0025 44 0.0018
11 0.0221 28 0.0021 45 0.0018
12 0.0187 29 0.0023 46 0.0018
13 0.0154 30 0.0022 47 0.0018
14 0.0129 31 0.0021 48 0.0018
15 0.0106 32 0.0021 49 0.0018
16 0.0091 33 0.0020 50 0.0018
17 0.0078 34 0.0019

Notes: Probabilities derived from 1,000 Gale-Shapley simulations on random 50-person subsets, using partic-

ipants’ submitted preference lists. Values represent the frequency distribution of match ranks, with a small

uniform offset added for smoothing.
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B.3 Prompts and task descriptions

Figure A11: Prompt to elicit utilities

{{persona}} You have the following preferences: {{preferences}} You have already
decided that the following task (with its description) is the one you most prefer to do:
{{first choice job dict}} You have already decided that the following task is the one
you least prefer to do: {{last choice job dict}} Your task is to rate the following tasks
on a scale from 0 to 1. Here are the tasks with their descriptions: {{job list 1 dict}}
For each task in the list, assign a probability p between 0 and 1 that represents this
scenario: Imagine you could either: A) Do this task for sure, or B) Take a chance where
you get your most preferred task {{first choice job}} with probability p, or your least
preferred task {{last choice job}} with probability (1-p) Choose the probability p so
that options A and B feel equally appealing to you. Note that for some of the tasks,
you may view them very similar (or very different). Based on your preferences, you
should use these probabilities to reflect the strength of your ordering. Maybe all of
the tasks are quite close to p=1, or maybe they are all quite close to p=0. Or maybe
they are evenly distribution, or maybe they are clumped together. Say for example,
that you like 3 tasks all equally and close to as much as the favorite, you might rank
these 0.9, .9, .9. But if you like 3 tasks very differently (that aren’t the first and
last), you might rank them 0.5, .9, .10. Or maybe you like them fairly equally, but do
have slight preferences, so you might rank them 0.83, .81, .78. Your response should
simple be a list of the probabilities (that you decide) corresponding to the order of
your rankings. These should include the first and last probabilities (1 and 0) and the
middle 8 probabilies for the other tasks. For example, if the list is [{{first choice job}},
{{last choice job}}, task 1, task 2, task 3, task 4, task 5, task 6, task 7, task 8] your
response should be: [1, 0, p 1, p 2, p 3, p 4, p 5, p 6, p 7, p 8] since the most preferred
task has probability 1, the least preferred has probability 0 (which are given to you),
and you have to generate the remaining probabilities yourself. Do not include the task
names or any other text in your response. Also make sure you have 10 probabilities in
your response - one for each of the 8 tasks plus the first and last.List the probabilities
in must align with the order of the tasks: {{job list 1 to rank}}, but their relative
order should be based on your preferences.

Notes:

The following is a list of the tasks that were used in the study:

1. Cognitive Memory Study—In this task, you’ll complete a series of memory exercises that test your ability to

recall words and images. This should take about 15 minutes and pays 3.50 dollars.

2. Reaction Time Experiment—Participants will respond to rapidly changing visual cues to help researchers analyze

reaction speeds under time pressure. This should take about 10 minutes and pays 2.50 dollars.

3. Consumer Behavior Survey—Share insights into your shopping habits and product preferences through a mix of

multiple-choice and open-ended questions. This should take about 20 minutes and pays 4.00 dollars.
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4. Visual Perception Task—Examine a series of images to spot subtle differences, helping to measure the accuracy

of your visual processing skills. This should take about 15 minutes and pays 3.50 dollars.

5. Social Decision-Making Experiment—Engage in interactive scenarios where you make choices that influence

outcomes in simulated social situations. This should take about 20 minutes and pays 4.00 dollars.

6. Online Interview Study—Participate in a structured online interview where you share your thoughts on current

social trends and personal experiences. This should take about 30 minutes and pays 6.00 dollars.

7. Language Comprehension Task—Read brief passages and answer related questions to assess your understanding

and interpretation of written content. This should take about 15 minutes and pays 3.50 dollars.

8. Risk Assessment Study—Make decisions in simulated risky scenarios to help researchers evaluate how people

manage uncertainty. This should take about 10 minutes and pays 2.50 dollars.

9. Emotional Regulation Survey—Answer questions about your strategies for managing emotions in everyday sit-

uations, contributing to mental health research. This should take about 20 minutes and pays 4.00 dollars.

10. Moral Dilemma Task—Work through challenging ethical scenarios that require balancing competing values and

principles. This should take about 15 minutes and pays 3.50 dollars.

11. Attention Span Experiment—Complete a series of tasks designed to measure how well you maintain focus during

brief periods of activity. This should take about 10 minutes and pays 2.50 dollars.

12. Implicit Bias Survey—Participate in exercises that reveal subconscious biases through reaction-time tasks and

reflective questions. This should take about 20 minutes and pays 4.00 dollars.

13. Learning and Memory Task—Engage with interactive challenges that test how quickly and accurately you can

absorb and recall new information. This should take about 15 minutes and pays 3.50 dollars.

14. Problem-Solving Survey—Solve puzzles and answer questions that highlight your analytical and critical thinking

skills. This should take about 20 minutes and pays 4.00 dollars.

15. Social Media Behavior Survey—Share your online habits and social media engagement to help researchers un-

derstand digital communication patterns. This should take about 20 minutes and pays 4.00 dollars.

16. Face Recognition Task—View and later identify a series of faces to assess your memory and attention to facial

details. This should take about 10 minutes and pays 2.50 dollars.

17. Trust and Cooperation Experiment—Participate in interactive games that simulate trust-based decisions and

measure cooperative behavior in groups. This should take about 15 minutes and pays 3.50 dollars.

18. Stress Assessment Survey—Reflect on your daily stressors and coping mechanisms through targeted questions

aimed at mental health research. This should take about 20 minutes and pays 4.00 dollars.

19. Cognitive Load Task—Complete multi-step challenges that test your ability to manage several tasks simultane-

ously under pressure. This should take about 15 minutes and pays 3.50 dollars.

20. Environmental Attitudes Survey—Share your opinions on environmental issues and sustainability practices to

support ecological research efforts. This should take about 20 minutes and pays 4.00 dollars.

21. Time Perception Task—Estimate time intervals in experiments that explore how accurately you perceive the

passage of time. This should take about 10 minutes and pays 2.50 dollars.
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22. Humor Appreciation Study—Rate and comment on various humorous scenarios and jokes to help researchers

understand what factors contribute to a sense of humor. This should take about 15 minutes and pays 3.50

dollars.

23. Political Attitudes Survey—Express your views on a range of political topics and current events, providing

valuable data on public sentiment. This should take about 20 minutes and pays 4.00 dollars.

24. Learning Styles Assessment—Answer questions and complete exercises designed to identify your preferred meth-

ods of processing and retaining information. This should take about 15 minutes and pays 3.50 dollars.

25. Attentional Blink Task—Engage in rapid visual tasks that test the brief period during which your brain is

momentarily unable to register new stimuli. This should take about 10 minutes and pays 2.50 dollars.

26. Empathy and Compassion Survey—Reflect on your personal experiences and emotional responses to gauge your

levels of empathy and compassion. This should take about 20 minutes and pays 4.00 dollars.

27. Online Community Behavior Study—Discuss your participation in online forums and social networks to help

researchers understand digital community dynamics. This should take about 15 minutes and pays 3.50 dollars.

28. Creative Writing Task—Compose a short narrative based on provided prompts that encourage creative expression

and storytelling. This should take about 45 minutes and pays 9.00 dollars.

29. Digital Game Study—Play a brief, specially designed game that challenges your decision-making and strategic

thinking skills. This should take about 5 minutes and pays 1.00 dollars.

30. User Interface Feedback—Test a new app interface by performing guided tasks and providing feedback on its

usability and design. This should take about 20 minutes and pays 4.00 dollars.

31. Product Testing Survey—Interact with a new product online and complete a survey detailing your user experience

and overall impressions. This should take about 15 minutes and pays 3.50 dollars.

32. Website Usability Study—Navigate a prototype website and share your insights on its design, functionality, and

ease of use. This should take about 20 minutes and pays 4.00 dollars.

33. Work-Life Balance Survey—Reflect on your daily routines and strategies for managing work and personal life,

contributing to lifestyle research. This should take about 20 minutes and pays 4.00 dollars.

34. Job Satisfaction Survey—Discuss your experiences and satisfaction in your current or past employment, offering

valuable insights into workplace dynamics. This should take about 20 minutes and pays 4.00 dollars.

35. Cultural Identity Task—Explore aspects of your cultural background through creative prompts and reflective

questions that uncover personal identity. This should take about 15 minutes and pays 3.50 dollars.

36. Personality Inventory—Answer a comprehensive set of questions that map out your personality traits and be-

havioral tendencies. This should take about 20 minutes and pays 4.00 dollars.

37. Ethical Dilemma Task—Work through thought-provoking scenarios that challenge your moral reasoning and

ethical decision-making processes. This should take about 15 minutes and pays 3.50 dollars.

38. Economic Decision-Making Study—Participate in simulated market scenarios where you assess risks and make

choices under conditions of uncertainty. This should take about 15 minutes and pays 3.50 dollars.
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39. Mindfulness Meditation Survey—Follow a guided meditation session and then complete a survey about your

experience with relaxation and focus. This should take about 20 minutes and pays 4.00 dollars.

40. Virtual Reality Experience Feedback—Experience a short virtual reality simulation using your own equipment

and provide detailed feedback on the immersive experience. This should take about 40 minutes and pays 9.50

dollars.

41. Memory Recall Task—Engage in exercises that test your ability to remember sequences of numbers and words,

contributing to cognitive research. This should take about 15 minutes and pays 3.50 dollars.

42. Dream Analysis Survey—Reflect on your recent dreams and complete a survey that explores recurring themes

and emotional tones. This should take about 20 minutes and pays 4.00 dollars.

43. Navigation Task—Plan routes and make directional decisions in a map-based exercise designed to assess your

spatial awareness. This should take about 35 minutes and pays 7.50 dollars.

44. Creative Problem-Solving Task—Tackle a series of puzzles and hypothetical challenges that require innovative

solutions and creative thinking strategies. This should take about 15 minutes and pays 3.50 dollars.

45. Digital Literacy Survey—Share your experiences with various digital tools and platforms through a survey that

examines your overall comfort with technology. This should take about 20 minutes and pays 4.00 dollars.

46. Online Learning Feedback Study—Provide feedback on digital course materials and instructional methods to

help improve online learning experiences. This should take about 15 minutes and pays 3.50 dollars.

47. Technology Usage Survey—Detail your daily interactions with smartphones, computers, and other devices,

offering insights into modern tech habits. This should take about 20 minutes and pays 4.00 dollars.

48. Consumer Decision-Making Task—Participate in simulated shopping scenarios where you make purchasing de-

cisions that reveal patterns in consumer behavior. This should take about 15 minutes and pays 3.50 dollars.

49. Novelty Seeking Survey—Answer questions about your willingness to try new experiences and explore unfamiliar

situations, contributing to research on personality traits. This should take about 20 minutes and pays 4.00

dollars.

50. Health Behavior Survey—Share details about your daily health routines, dietary habits, and exercise practices

to support public health research. This should take about 20 minutes and pays 4.00 dollars.
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