
Dynamic Incentive Contracts under Parameter
Uncertainty∗

Julien Prat and Boyan Jovanovic

July 2010

Abstract

We analyze a long-term principal-agent contracting problem involving com-
mon uncertainty about a parameter that we refer to as agent’s “quality”, and
featuring a hidden action for the agent. We develop an approach that works
for any utility function when the parameter and noise are normally distributed
and when the effort and noise affect output additively. We then analytically
solve for the optimal contract when the agent has exponential utility. We find
that the Pareto frontier shifts out as information about the agent’s quality
improves. In the standard spot-market setup, by contrast, the Pareto frontier
shifts inwards with better information. Commitment is therefore more valu-
able when quality is known more precisely. Incentives then are easier to provide
because the agent can less easily manipulate the beliefs of the principal. More-
over, in contrast to results under partial commitment, wage volatility declines
as experience accumulates.

1 Introduction

Agency relationships often preclude complete monitoring so that a principal cannot
observe the actions taken by the agent. This, however, is not the only source of
uncertainty as many other features of the environment are seldom known precisely;
a manager’s ability, for example, or the quality of his match with a firm, or the
profitability of the project that he manages. Many relationships between firms and
workers, as well as between lenders and borrowers, are of this general form. Yet, little
is known about how parameter and effort uncertainty interact to shape the optimal
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design of incentive contracts. Does parameter uncertainty reinforce or alleviate moral
hazard concerns? Does it make commitment more or less valuable?

This paper provides some answers to these questions by focusing on cases where:
(i) the unknown parameter remains constant over time; and (ii) a risk neutral princi-
pal and a risk averse agent commit to a long-term contract. Under full-commitment,
incentives are designed to reward effort and not ability. Disentangling the two is not
always feasible for the principal because they both influence his only source of infor-
mation, i.e., realized revenues. Signal confusion enables the agent to manipulate the
principal’s beliefs. If the agent shirks (i.e., provides less effort than recommended),
output will be below expectation and the principal will infer that the match produc-
tivity is lower than he had thought. The agent, on the other hand, knows that low
output was caused not by low productivity but by low effort and so, after shirking,
is more optimistic about the value of the unknown parameter than the principal.

Compared to the situation in which all parameters are known, a given indexation
of future earnings to performance entails lower punishments for shirkers. By inducing
the principal to underestimate the match productivity, a shirker knows that he will
benefit in the future from overestimated inferences about his effort and thus higher
rewards. In order to prevent such belief manipulation, a long-term contract under
parameter uncertainty must entail a higher indexation to performance. This raises
income volatility, which lowers the welfare of the risk-averse agent. Moreover, if the
unknown parameter is constant, belief manipulation is more effective early on in the
relationship because posteriors put higher weight on new information. This is why
the sensitivity of pay to performance declines over time.

These implications stand in sharp contrast to the ones derived in the literature on
career concerns where the unknown parameter measures the agent’s general ability,
transferable from job to job. Analyzing this class of problems under spot markets
with up-front pay only, Holmström (1999) concludes that incentives are more easily
provided when the agent’s reputation is not established. Agents will generally exert
inefficient levels of effort. Initially, effort may exceed its first-best level as the agent
seeks to build his reputation, but effort diminishes over time, dwindling monotonically
to zero. Thus career concerns in competitive markets do not restore correct incentives
on the part of agents. Because of the convexity of the effort-disutility term, as the
agent’s effort declines, so do his rents. In other words, better information about the
agent’s quality reduces his equilibrium utility.

Figure 1 illustrates the effect that higher precision of information about the agent’s
quality has on the welfare of the parties. Under spot contracts and risk aversion,1

1Holmström assumed that the agent was risk neutral. In that case the contracting problem is
trivial: Even one-period contracts with pay for performance can achieve first best. More generally,
a contract can attain first-best levels of effort by transferring all risk to the agent and effectively
selling the project to him.
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Figure 1: The effect of a rise in precision under spot markets and under
commitment

competition for the agent’s services ensures that the principal earns zero profits, and
so we are on the horizontal axis. The agent’s risk aversion makes little difference
to the solution: Effort still converges monotonically to zero. Starting at a point
on the horizontal axis where the agent’s value is vA, a rise in information about
the agent’s quality leaves the principal’s welfare unchanged at zero, but reduces the
agent’s welfare from vA to vB, as illustrated by the arrow pointing to the left on the
horizontal axis.

For reasons discussed above, we find that the opposite happens under full com-
mitment. The spot contract is feasible but is generally suboptimal, and therefore
the utilities that it generates are strictly inside the Pareto frontier. When we raise
precision about the agent’s quality, the contract curve shifts out, as illustrated by the
arrow pointing up and to the right. In contrast to spot markets then, better infor-
mation raises utility and pushes the Pareto frontier out. Consequently, the value of
commitment is higher when information about quality is more precise.

Once the principal-agent relationship starts, both parties are assumed to be fully
committed to it; participation constraints do not exist. Except for a possibly different
initial-utility level, our full-commitment solution applies equally to situations in which
the unknown parameter is specific to the principal-agent match. In that case, a spot-
market would work very poorly indeed, because the agent would deliver no effort,
ever, as he would have no reputational concerns. The value of commitment is then
even larger than in the case where ability is transferable, and the value again is higher
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when knowledge of the match-quality parameter is more precise.

Analyzing models with commitment and belief divergence entails the following
technical issue: Each deviation drives a permanent wedge between the agent’s and
the principal’s posteriors. As the duration of the relationship increases, the state space
is in general unbounded because the entire history of actions matters for evaluating
the agent’s options off the equilibrium path. Models where the noise is Markovian
contain our assumptions about parameter uncertainty as a special case when the
persistence becomes infinite and where the initial value is unknown with a common
prior attached to it. In that case the unknown parameter is the initial condition of
the process. Fernandes and Phelan (2000) or Williams (2008) study such Markovian
processes but they assume that the initial value is public knowledge. A recursive
approach to the problem would generally need to take beliefs of the agent and beliefs
of the principal as separate states. This, broadly speaking, is the approach Fernandes
and Phelan (2000) proposed. Unfortunately, it implies that the state space grows with
the number of potential deviations and is therefore ill-suited to solving our problem
where information persistence extends over several periods and actions are defined
over a continuum.

We rely instead on a first-order approach, meaning that we focus on the equilib-
rium path and establish necessary condition for recommended effort to be optimal.
The difficulty with this solution method is that it may identify contracts that are not
implementable because the concavity of the agent’s objective function is not guar-
anteed. Sufficient conditions have been established in the static case by Rogerson
(1985). Similar results in dynamic environments are not known. One remedy is to
numerically check the implementability of the solution, as in Abraham and Pavoni
(2008). To the best of our knowledge, the only proof in discrete time is by Kapicka
(2006) and is rather specific to the reporting problem analyzed in his paper. Hopen-
hayn and Jarque (2007) also analyze persistence in a principal-agent model under the
assumption that the effort decision occurs solely in the first period, whereas Jarque
(2008) assumes that the probability distribution over future output depends positively
on a weighted sum of past efforts.

To establish implementability, we cast our problem in continuous time. This allows
us to derive a parameter restriction under which recommended effort meets both
necessary and sufficient conditions of the agent. The proof relies on the concavity
of the agent’s Hamiltonian, a strategy that was initially applied by Schättler and
Sung (1993) to continuous time contracts without persistent information. Williams
(2008, 2009) extends their methodology to incentives contracts with hidden savings or
reporting problems with persistent information. Our analysis shares many similarities
with his approach. It differs in that we have to model the learning process and thus
need to introduce contract duration as a state. Furthermore, we propose a different
proof strategy based on the work of Cvitaníc et al. (2009).
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A burgeoning literature illustrates the advantages of using continuous time meth-
ods to analyze dynamic contracts, such as Sannikov (2008) though this paper does
not feature learning. A series of recent papers on learning and dynamic incentives is
even more closely related to our work. Adrian and Westerfield (2009) analyze a dy-
namic contracting model in which principal and agent disagree about the resolution
of uncertainty. They avoid complications linked to private information by assum-
ing that agent’s posteriors are common knowledge so that the two parties agree to
disagree. Giat et al. (2010) extend the model of Holmström and Milgrom (1987)
by also allowing initial beliefs to be asymmetric. They focus on contracts specifying
a single transfer at the end of the predetermined contracting horizon whereas our
setting allows transfers to be made throughout the relationship. Finally, DeMarzo
and Sannikov (2008) characterize continuous-time contracts when the agent’s quality
varies over time and is autocorrelated. On the one hand, our set-up is more specific
since we focus on cases where the unknown state remains constant through time and
the agent liability is not limited. On the other hand, we introduce risk aversion on the
agent’s side. Hence, whereas the main insights in DeMarzo and Sannikov (2008) are
linked to the optimal separation policy, our paper focuses on the incentives-insurance
trade-off.

The paper is structured as follows. Section 2 lays out the model’s set-up. In
section 3, we derive the agent’s necessary and sufficient conditions. Then we solve
for the optimal contract under exponential utility. We propose a closed form solution
for the principal’s rent and optimal wage schedule. The properties of the optimal
contract are discussed in Section 4. Section 5 contrasts the full-commitment with the
spot wages solution of Holmström (1999) and the solution under partial commitment
of Gibbons and Murphy (1992). Section 6 sums up our main findings whereas the
proofs of the Propositions and Corollaries are in Appendix A, and proofs of some
tangential claims are in Appendix B, and a simulation description in Appendix C.

2 The environment

The production process.– Let {Bt}t≥0 be a standard Brownian Motion on a proba-
bility space (Ω,F , P ). The cumulative output Yt of a match of duration t is observed
by both parties and satisfies the stochastic integral equation

Yt =

Z t

0

(η + as)ds+

Z t

0

σdBs . (1)

The time-invariant productivity is denoted by η whereas a is the effort provided by
the agent. The agent’s action thus shifts average output but does not directly affect
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its volatility.2

Learning.– No one knows η at the outset, and common priors are normal with
mean m0 and precision h0. Posteriors over η depend on Yt and on cumulative effort
At ,

R t
0
asds. Conditional on (Yt, At, t), they are also normal with mean

η̂(Yt −At, t) , Et [η|Yt, At] =
h0m0 + σ−2 (Yt −At)

ht
, (2)

and with precision
ht , h0 + σ−2t , (3)

Focusing on normal priors over the mean of a normally distributed process enables
us to summarize all the statistically significant information by just three variables:
cumulative output Y , cumulative effort A and elapsed time t. Especially useful for
the characterization of optimal contracts is the fact that beliefs depend on the history
of a through A alone. Hence it is sufficient to keep track of cumulative effort instead
of the whole effort path.

Preferences.–The agent is risk averse and cannot borrow and lend. For all t ≥ 0
and any given event ω ∈ Ω, we define a wage function w : R+ × Ω → R. The agent
preferences as of time 0 read

U0 ,
Z ∞

0

e−ρtU (wt (ω) , at) dt , (4)

with ρ > 0. Our specification of wages is quite general since they can depend on the
entire past and present {Ys; 0 ≤ s ≤ t} of the output process.

The principal is risk neutral and seeks to maximize output net of wages. His
inter-temporal preferences are

π0 ,
Z ∞

0

e−ρt (dYt − wt (ω)) dt , (5)

where we have imposed a common discount rate for the agent and principal.

2Two remarks about eq. (1). First, if at is continuous, (1) can be thought of as the limit of the
following discrete time process when the interval length ∆ converges to zero

Y ∆t =

t/∆X
i=1

³
(η + ai)∆+ σεi

√
∆
´
,

where ai = a∆i, and where εi is an i.i.d. shock with unit variance.
Second, only mean output depends on a, not its variance. For if, instead, σ also depended on

a, say as σ (a), the principal could perfectly infer σ (a) and hence, a, from the observed quadratic
variation of Y as ∆→ 0, for then the signal-noise ratio becomes unbounded.
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3 Long-term contracts

We assume that the parties can commit to a long-term contract. The agent’s problem
is characterized in the first sub-section. We derive the necessary conditions for a
given action to be optimal and then establish a restriction under which they are also
sufficient. The subsequent section focuses on the principal’s problem and contains a
closed form solution for the optimal contract.
Long-term contracts allow for arbitrary history dependence. We follow the usual

practice of adding recommended effort a∗ to the contract definition. Accordingly,
since a given output path is a random element of the space Ω, a contract is a map-
ping (w, a∗) : R+×Ω→ R× [0, 1] that associates at each time t a wage-effort pair to
any output path. The mapping must be predictable based on information that the
principal has, i.e., they can depend on past output but not on past effort. Other-
wise contracts remain general since they can depend on the entire past and present
{Ys; 0 ≤ s ≤ t} of the output process.3

Beliefs and actions of the two parties.– The principal’s beliefs are governed by
(2) in which A = A∗ and by (3). By contrast, the agent’s beliefs incorporate the
actual level of effort a which only he knows. The agent’s beliefs are, in other words,
governed by (2) in which A and not A∗ enters. Let Fa

t , σ (Ys, as; 0 ≤ s ≤ t) denote
the filtration generated by (Y, a) and Fa , {Fa

t }t≥0 the P−augmentation of this
natural filtration. The filtering theorem of Fujisaki et al. (1972) implies that the
innovation process

dZt ,
1

σ
[dYt − (η̂(Yt −At, t) + at)dt] (6)

is a standard Brownian motion on the probability space (Ω,Fa, P ).4 In other words,
Zt is the cumulative surprise to someone who believes that Yt was accompanied by
the effort sequence (as)

t
0. Moreover, η̂ is a P−martingale5 with decreasing variance:

dη̂(Yt −At, t) =
σ−1

ht
dZt . (7)

3Given the diffusion property of the output process, one should think of Ω = C ([0, T ] ;R) as
the space of continuous functions ω : [0, T ] → R and of the process defined in (6) Zt (ω) = ω (t),
0 ≤ t ≤ T , as the coordinate mapping process with Wiener measure P on

¡
Ω,FY

t

¢
. Accordingly a

contract is a mapping (w, a∗) : R+ × C ([0, T ] ;R)→ R× [0, 1] .
4As shown in Section 10.2. of Kallianpur (1980), the linearity of the filtering problem implies

that the filtrations generated by the output and innovation processes coincide. More formally, for
FZ
t , σ (Zs; 0 ≤ s ≤ t), we have Fa

t = FZ
t .

5The equality follows directly from Ito’s lemma. Let X , Y − A denote cumulative output net
of cumulative effort so that by Ito’s lemma,

dη̂(X, t) =
∂η̂(X, t)

∂t
dt+

∂η̂(X, t)

∂X
dX = −σ

−2

ht
η̂(X, t) +

σ−2

ht
(η̂(X, t) + σdZt) =

σ−1

ht
dZt .
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We assume6 that effort at ∈ [0, 1] and focus on the class A of admissible control
processes a : R+ × Ω → [0, 1] that are Fa−predictable.7 Given that the principal
does not observe actual effort a, the information available to him is restricted to the
filtration FY

t , σ (Ys; 0 ≤ s ≤ t) generated by Y whose augmentation we denote by
FY ,

©
FY
t

ª
t≥0. The principal can nonetheless update his belief about η but his

inference is based on his expectation of the agent’s effort which we denote by a∗t
and hereafter call recommended effort. An effort path is an equilibrium path when
recommended and actual effort do coincide, i.e. if at = a∗t for all t.

3.1 Agent’s problem

We impose a terminal date T on the contracting horizon. Until then, both principal
and agent are fully committed to the relationship. The agent’s continuation value at
time t reads

vt , max
a∈A

E

∙Z T

t

e−ρ(s−t)U
¡
w(Y s), as

¢
ds+ e−ρ(T−t)W (YT )

¯̄̄̄
Fa
t

¸
, (8)

where the output path is denoted by Y t = {Ys; 0 ≤ s ≤ t} and W (·) is the terminal
utility which depends on cumulative output.8 The agent’s compute his continuation
value by taking a conditional expectation under the filtration Fa

t which varies with the
level of cumulated effort. The principal, however, does not observe actual actions.
Thus he shall need to keep track of continuation values for any potential level of
cumulative effort. Instead, we will adopt a first order approach by focusing on the
continuation value along the equilibrium path and by establishing conditions under
which our solution is indeed globally optimal.

6Our results extend to the general case where effort takes value in a countable union of compact
subsets of some separable metric space. Since this does not lead to new insights, we restrict our
attention to the unit interval.

7A mapping is predictable when it is P−measurable, with P denoting the σ-algebra of predictable
subsets of the product space R+×Ω, i.e. the smallest σ-algebra on R+×Ω making all left-continuous
and adapted processes measurable.

8Since we shall let T → ∞, we have assumed a tractable form for W . The results that follow
also hold in the case where W depends on the whole output path Y t. It is straightforward to allow
W to also depend on cumulative effort A. Then one would have to redefine the stochastic process
p defined in equation (13) below as

pt = E

"
−
Z T

t

e−ρ(s−t)γs
σ−2

hs
ds+ e−ρ(T−t)WA (YT , AT )

¯̄̄̄
¯Fa

t

#
.

Apart from that, the results below hold with few or no changes. The specification of the terminal
utility would matter if we were to focus on repeated contracts, withW capturing the agent’s outside
option and the ability of the principal to reward him at the end of the relationship. We do not
consider such generalizations because this paper focuses on the limit situation where both parties
are forever committed. Then the specification of the terminal utility becomes immaterial to the
analysis.
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3.1.1 Necessary conditions for the agent’s problem

The optimization problem (8) cannot be analyzed with standard methods because the
objective function depends on the process w which is non-Markovian. We instead use
a martingale approach. Faced with a contract w, the agent controls the distribution
of wt through his choice of effort. Under this interpretation, the agent controls the
probability measure over realizations of w. The Radon—Nikodym derivative associ-
ated with any effort path is a Markovian process, and so this approach makes our
optimization problem treatable with optimal control techniques.9

The idea of applying this approach to principal-agent models goes back to Mirrlees
(1974). Our problem is complicated by the learning mechanism as past efforts affect
not only current wages but also future expectations. We show in the Appendix how
this difficulty can be handled through an extension of the proof by Cvitaníc et al.
(2009) which leads to the necessary condition stated below.10

Proposition 1 There exists a unique decomposition for the agent’s continuation
value

dvt = [ρvt − U (wt, at)] dt+ γtσdZt , (9)

vT = W (YT ) , (10)

where γ is a square integrable predictable process. The necessary condition for a∗ to
be an optimal control reads∙

γt +Et

∙
−
Z T

t

e−ρ(s−t)γs
σ−2

hs
ds

¸
+ Ua (wt, a

∗)

¸
(a− a∗) ≤ 0 , (11)

for all a ∈ [0, 1] .

An increase in current effort has two effects: it raises the promised value along the
equilibrium path and increases cumulative effort. The first effect is proportional to
the process γ which measures the sensitivity of the agent’s value to output, whereas
the second effect is captured by the expectation term in (11). Some insight can be
gained noticing that the forward looking term vanishes when parameter uncertainty
is negligible, i.e. σ−2/hs = 0 for all s ≥ t. Then for a control to be optimal it must
maximize the expected change in continuation value minus the marginal cost of effort.
This, as one should expect, is the necessary condition in Sannikov (2008).
Introducing parameter uncertainty leads to the addition of the expected future

sensitivities weighted by their precision ratios because they capture the marginal
impact of current effort on expected earnings. To see this, observe first that ∂η̂(Ys−

9A more concise way to formulate the advantages of the martingale approach is to observe that
the control is not anymore closed loop but instead open loop with respect to the output process.
10The necessary condition can also be derived using Williams’ (2008, 2009) method based on the

stochastic maximum principle.
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As, a)/∂at = −σ−2/hs for all s ≥ t. Hence a marginal increase in at lowers date-s
posteriors about η by the amount σ−2/hs. The impact in utils follows multiplying
these marginal effects by the expected value of the sensitivity parameter γ.
Although intuitive, the necessary condition is not very convenient from an an-

alytical point of view. We hereafter write it in a more compact form through the
introduction of an additional stochastic process p for private information∙

σ−2

ht
pt + γt + Ua (wt, a

∗)

¸
(a− a∗) ≤ 0 , for all a ∈ [0, 1] , (12)

where

pt , htE

∙
−
Z T

t

e−ρ(s−t)γs
1

hs
ds

¯̄̄̄
Fa
t

¸
. (13)

The reformulated necessary condition (12) involves two stochastic variables. This
is a usual result for dynamic contracts with private information.11 First, we recover
the now standard technique of using the promised value to encode past history. A
related interpretation can be inferred for p noticing that, since the agent is risk averse,
it is reasonable to conjecture that the principal will minimize the volatility parameter
γ. The incentive constraint implied by (12) is

γt ≥ −Ua (wt, at)−
σ−2

ht
pt . (14)

Hence, as long as a∗t > 0, the necessary condition (12) will hold with equality almost
everywhere along the equilibrium path. We show below that this indeed holds true for
our parametrization of the utility function. We therefore replace γt by the expression
implied for it when (12) binds and, as shown in Appendix B.1., obtain the following
solution:

pt = E

∙Z T

t

e−ρ(s−t)Ua (ws, as) ds

¯̄̄̄
Fa
t

¸
< 0 . (15)

Intuition behind (15).– The second state variable p is evidently equal to the
expected discounted marginal cost of future efforts. Multiplying it by the ratio σ−2/ht
yields the marginal effect of cumulative effort on the continuation value. The intuition
for this result can be laid out consideringmimicking strategies. Fix Y t and lower At by
δ > 0. Then define a strategy enabling the agent to reproduce the payoffs of an agent
with the reference level At of past effort. Let a∗t denote the optimal effort at time t
of the reference policy with cumulative effort At. By providing aδt = a∗t − δσ−2/ht,12

11For example, Werning (2001) shows that in principal-agent problems with hidden savings, one
has to introduce both continuation value and expected marginal utility from consumption.
12Such strategies are not feasible when the reference control is at the lower bound, i.e. when

a∗t = 0. One should therefore interpret our discussion of mimicking strategies as a heuristic one.

The rigorous interpretation being that of the expectation term E
h
−
R T
t
γs

³
σ−2

hs

´
ds
¯̄̄
Fa
t

i
proposed

in the paragraph above.
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the agent with cumulative effort At− δ ensures that cumulative output will have the
same drift as along the reference path

η̂(Yt − (At − δ) , t) + aδt =
h0m0 + σ−2 (At − δ)

ht
+ a∗t −

σ−2

ht
δ = η̂(Yt −At, t) + a∗t .

Assume now that a similar strategy is employed afterwards, so that aδs = a∗s −
(σ−2/ht) δ for all s ≥ t. Cumulative effort will be Aδ

s = A∗s − [1 + (σ−2/ht) (s− t)] δ
leading to the following output drift

η̂(Y s−Aδ
s, s) + aδs =

h0m0+σ
−2 (A∗s− [1+ (σ−2/ht) (s− t)] δ)

hs
+a∗s−

σ−2

ht
δ

= η̂(Y s−A∗s, s) + a∗s−
σ−2

hths

⎡⎢⎣¡ht+σ−2 (s− t)
¢| {z }

=hs

− hs

⎤⎥⎦= η̂(Y s−A∗s, s) + a∗s .

As desired, the mimicking strategy reproduces the distribution of Ys for all s ≥ t and
the product − (σ−2/ht) pt measures its expected discounted return in utils.13 It is
positive because it took the agent with cumulative effort At more work to produce
Yt, implying that his productivity is likely to be lower. This adjustment decreases
over time because the influence of output on beliefs about η is lower when η is known
more precisely. This suggests that incentives become easier to provide, a result that
we will discuss at length in Section 4.

3.1.2 Sufficient conditions for the agent’s problem

First-order conditions rely on the premise that the agent’s objective is globally con-
cave. Unfortunately, principal-agent problems do not always fulfill such a require-
ment. In our case, establishing concavity is complicated by the persistence of private
information: As explained in the introduction, deviations from recommended effort
drive a permanent wedge between the beliefs of the agent and that of the principal.
This is why excluding one shot deviations does not necessary rule out multiple devia-
tions. In order to clarify this distinction we introduce the notion of implementability
and refer to a control a as implementable if, when assigned the wage function satisfy-
ing the local incentive constraint (12) and the promise keeping constraints for v and
p, i.e., (9) and (18), the agent finds it optimal to provide effort a.
How to establish implementability for discrete time contracts with persistent in-

formation remains an open question.14 To the contrary, when the model is cast

13The correction term σ−2/ht required to mimic the output distribution remains constant over
time because of two countervailing mechanisms. One the one hand, as hs increases, the impact
of past deviations on posteriors decreases over time. On the other hand, the mimicking strategy
involves repeated deviations so that the gap between A∗s and A

δ
s widens with time. When the output

distribution is normal, these two opposite forces offset each other.
14The difficulties arising in discrete time settings are thoroughly discussed by Abraham and
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in continuous time, the sufficiency of the necessary conditions and thus the imple-
mentability of the control follow from the concavity of the agent’s Hamiltonian. This
general mathematical result is summarized in Theorem 3.5.2 of Yong and Zhou (1999),
and has already been used in principal-agent settings by Schättler and Sung (1993)
and more recently by Williams (2008). In our case, the agent’s Hamiltonian turns out
to be concave when the requirements stated in the following proposition are fulfilled.15

Proposition 2 A control a is implementable if (11) and

−2Uaa (wt, at) ≥ eρtξtσ
2ht (16)

are true for almost all t, where ξ is the predictable process defined uniquely by

E

∙
−
Z T

0

e−ρsγs
σ−2

hs
ds

¯̄̄̄
Fa
t

¸
−E

∙
−
Z T

0

e−ρsγs
σ−2

hs
ds

¯̄̄̄
Fa
0

¸
=

Z t

0

ξsσdZs, for all t ∈ [0, T ] .
(17)

According to (15), the process ξt is the random fluctuation in the discounted sum
of marginal utilities as evaluated from time 0. These restrictions are stronger than
required so that a control might violate them and nevertheless be implementable.
Moreover, (16) and (17) are stated in terms of γt which is endogenous, implying that
(16) has to be verified ex-post for any given contract. In some cases, however, one can
translate (16) and (17) into a requirement on the parameters of the model. Indeed,
when the agent’s utility function is as in (20), we shall show that (16) and (17) will
hold if (27) holds.
Finally, observe that letting the horizon T go to infinity allows us to discard the

terminal condition (10) as long as the transversality condition limT→∞ e−ρtW (YT ) is
satisfied. Then we can replace the Backward Stochastic Differential Equation16 (9)
by a Stochastic Differential Equation (SDE hereafter) and express the law of motion
of the stochastic process p as follows.

Corollary 1 There exists a square integrable predictable process ϑt such that

dpt =

∙
pt

µ
ρ+

σ−2

ht

¶
+ γt

¸
dt+ ϑtσdZt , (18)

Pavoni (2008). To circumvent them, they propose a numerical procedure verifying ex-post the
implementability of contracts with hidden effort and savings. See also Kocherlakota (2008) for a
discussion of the problem and an analytical example.
15The concavity requirement derived in Williams (2008) tends to be too stringent for his principal-

agent problem. Corollary 2 below shows that this is not necessarily the case in our model because
implementability is not anymore an issue when parameter precision ht goes to infinity.
16A Backward Stochastic Differential Equation is a SDE on which a terminal condition has been

imposed. In our case, we assumed that the agent’s value vt equalsW (Yt) at the end of the contracting
horizon, i.e., when t = T .
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with17

ϑt , eρtσ2htξt,

where ξ is defined in (17).

3.2 Principal’s problem

We now show how one can solve for the principal’s problem and derive the optimal
contract in closed form when attention is restricted to commitment over an infinite
horizon and exponential utility functions. The main idea is to simplify the optimiza-
tion program by eliminating two states: The first one is a component of the sufficient
statistics for beliefs, η̂; and the second one is the value of private information, p. We
now describe how each of these is dealt with.

Eliminating η̂ from the list of states.– According to (5) the principal’s problem
has an infinite horizon,18 so that his objective reads19

Jt = E

∙Z ∞

t

e−ρs (η̂(Ys −A∗s, s) + as − ws) ds

¯̄̄̄
FY
t

¸
=

µ
e−ρt

ρ

¶
η̂(Yt −A∗t , t) +E

∙Z ∞

t

e−ρs (as − ws) ds

¯̄̄̄
FY
t

¸
.

The martingale property of beliefs and risk neutrality imply that we can take the
posterior mean η̂ out of the integral. It is in this sense that incentives are optimally
designed to reward effort and not ability. This implies that one of the two sufficient
statistics of beliefs, the mean, can be dispensed with as a state, leaving only precision
as the remaining belief state. Furthermore, given that ht is deterministic, we can
simply index it by t.
We therefore can state the principal’s optimization problem as20

jt = max
{a,w,γ,ϑ}

E

∙Z ∞

t

e−ρs (as − ws) ds

¯̄̄̄
FY
t

¸
,

17See Proposition 2 for the definition of ξ.
18The convergence as T goes to infinity of the conditions derived in subsection 3.1 should be

understood as an approximation because they are derived using Girsanov’s theorem which, as is well
known, may fail to produce an equivalent martingale measure in infinite-horizon settings (Firoozi
2006).
19Profits are discounted from date 0 for analytical convenience.
20We use a strong formulation for the principal’s problem even though we have used a weak

formulation for the agent’s problem. This change of solution method is usual for principal-agent
models. Yet, as discussed in Cvitanic, Wan and Zhang (2009), it may lead to measurability issues
if the optimal action directly depends on the Brownian motion. In our case, however, a∗ turns out
to be constant over time so that measurability of the optimal control will not be problematic.
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subject to the two promise-keeping constraints (9) and (18) and subject to the incen-
tive constraint (14) which holds with equality almost everywhere. This is because,
as shown below, the principal’s value function is concave in the promised value v so
that he would like to lower the volatility in v as much as possible. Hence we can
treat the volatility term γt = −Ua (w, a)− σ−2

ht
pt as a function of the other controls.

Furthermore, (15) implies that the deterministic trend for p is equal to ρp−Ua (w, a)
when (14) binds.
The resulting optimization problem is a standard one since the state variables

are Markovian. We are therefore justified in using a Hamilton-Jacobi-Bellman (HJB)
equation in order to characterize the principal’s value function.21 If we had to keep
all three states (t, v, p), the HJB equation would read

0 = max
{a,w,ϑ}

(
e−ρt (a− w) + ∂j

∂t
+ ∂j

∂v
(ρv − U (w, a)) + ∂j

∂p
(ρp− Ua (w, a))

+σ2

2

h
∂2j
∂v2

γ (t, p, w, a)2 + ∂2j
∂p2

ϑ2 + 2 ∂
2j

∂vp
γ (t, p, w, a)ϑ

i )
. (19)

We can, however, reduce the list of states by eliminating p, and this will simplify (19)
considerably.

Eliminating p from the list of states.– We can also dispense with p as a state if
we assume the following utility function:22

U(w, a) = − exp(−θ (w − λa)) , with λ ∈ (0, 1) , (20)

for a ∈ [0, 1] . Imposing λ < 1 ensures that the first-best action is a = 1 because
the marginal utility of an additional unit of output exceeds the marginal cost of
effort regardless of η.23 The utility is defined even for negative consumption which in
equilibrium occurs with positive probability.
When U(a,w) is given by (20), the problem greatly simplifies because Ua (w, a) =

θλU (w, a). Then (8) and (15) imply that

pt = θλvt.

The proportionality of v and p means that keeping track of one of the two states is
sufficient.24 This further reduces the dimensionality of the problem and allows us to
21Appendix B.2 shows that the HJB equations defined below can be extended to include η̂ and

would still be satisfied.
22Even though the full characterization of the contract will be restricted to utilities of the form

(20), the optimality conditions derived in Section 4.1 hold independently of this parametric restric-
tion.
23Accordingly, one could interpret our model as resulting from a situation where the agent is able

to divert cash flows 1 − a at the rate λ. As in DeMarzo and Sannikov (2009), setting λ below
one ensures that cash diversion entails linear losses. Our problems differ because DeMarzo and
Sannikov (2009) focus on risk neutral agents whereas we introduce risk aversion by taking a concave
transformation of the agent’s income net of his opportunity cost λa.
24To the best of our knowledge, this simplification of the principal’s problem with private infor-

mation and exponential utility was first noticed by Williams (2008).
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rewrite the HJB equation (19) as

0 = max
{a,w}

½
e−ρt (a− w) +

∂j

∂t
+

∂j

∂v
(ρv − U (w, a)) +

µ
σ2

2

¶
∂2j

∂v2
γ (t, p, w, a)2

¾
.

(21)
Given that effort levels lie in a compact set, the recommended action satisfies

e−ρt − ∂j

∂v
Ua (w, a) + σ2

∂2j

∂v2
γ (t, v, w, a)

∂γ (t, v, w, a)

∂a
≥ 0 ,

whereas wages take value over the real line and so fulfill the optimality condition

−e−ρt − ∂j

∂v
Uw (w, a) + σ2

∂2j

∂v2
γ (t, v, w, a)

∂γ (t, v, w, a)

∂w
= 0 .

Using once again the fact that the Incentive Constraint (14) holds with equality, we
obtain ∂γ/∂w = −λ∂γ/∂a > −∂γ/∂a, which implies in turn that when the optimality
condition for wages binds, the one for effort is not tight. It follows that optimal effort
is constant and set equal to the upper-bound a = 1. Fixing the agent’s action to its
first best level allows us to solve for the value function by guess-and-verify.

Proposition 3 Assume that U(w, a) = − exp(−θ (w − λa)) , with λ ∈ (0, 1) , and
that a ∈ [0, 1] .Then the recommended effort is set equal to the first best level a∗ = 1
and the principal’s value function is of the form

j (t, v) =
e−ρt

ρ

∙
j0 (t) +

ln (−v)
θ

¸
, (22)

The function j0 (t) is the unique solution of the first order ODE

j00 (t)− ρj0 (t) = −ρ
µ
1− λ+

ln(−kt)
θ

¶
+

θ (σλ)2

2

µ
1

σ4h2t
− k2t

¶
, (23)

with boundary condition limt→∞ j00 (t) = 0 and kt being given by the negative root of
the quadratic equation

k2t (σλθ)
2 − kt

µ
1 +

1

ht
(λθ)2

¶
− ρ = 0 . (24)

The optimal wage is

w∗t (v) = −
ln(ktv)

θ
+ λ , (25)

and the optimal volatility reads

γ∗t (v) = Γtv , λθ

µ
kt −

σ−2

ht

¶
v . (26)
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To establish the implementability of the first best action, remember that our
parametrization of U (w, a) is such that pt = θλvt. Consequently, the volatility terms
γ∗t and ϑ∗t must also remain proportional. Reinserting ϑ

∗
t = θλγ∗t into (16) and using

the explicit solution (26) for γ∗t yields the following requirement.

Corollary 2 First best effort is implementable (i.e., meets conditions (11) and (16))
when

ρσ2 >
1

h0
+ 2 (λθ)2

1

h20
. (27)

The sufficient condition (27) is more likely to hold when: Both parties are im-
patient, output noise is high, the marginal cost of effort λ is low, the coefficient of
absolute risk aversion θ is small, or parameter precision h0 is high. Indeed, (27)
always holds in the limit case without parameter uncertainty (h0 = ∞) because
multiple deviations are then not a concern.
We shall henceforth assume that our parameters satisfy (27). The condition is

sufficient and not necessary, however, and our comparative statics results hold in-
dependently of it, which suggests that they are robust over a wider region of the
parameter space.

4 Characterization of the optimal contract

The optimal wage process described in (25) has a declining volatility, as well as a neg-
ative and declining drift. The first property appears to be quite general, and should
hold for any utility function. The second property is specific to the parametrization
in (20) . The following arguments will suggest that if we could solve the problem for a
utility function for which the inverse marginal utility of income (1/U 0 (w)) is concave
in w, the drift would be positive and declining to a positive limit.

4.1 Wage dynamics

The mechanism driving wage volatility is the decrease in the ability of the agent to
manipulate beliefs as they become more precise over time. It enables the principal
to sustain first best effort with less variance and to trade lowers wages in exchange
of more stable income. This channel is easily derived from the analytical expression
(25) for wages.

Corollary 3 For any given promised value v, the optimal wage w∗t (v) is a decreasing
function of time.

Corollary 3 does not directly apply to income dynamics because the promised
value, v, evolves over time. To obtain the law of motion of v, we reinsert the optimal
volatility γ∗t (v) defined in (26) into the SDE (9)

dvt = vt [(ρ+ kt) dt+ ΓtσdZt] . (28)
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Since kt is the negative root of (24), the drift can be positive or negative. The drift of
the promised value indicates how earnings are allocated over time: When it is positive,
wages are back loaded, meaning that the expected average wage exceeds current
earnings. Conversely, when the trend is negative, payments are front loaded. Since
kt is decreasing over time,25 the principal resorts more intensively to back loading
when parameter uncertainty is higher. Payments are deferred because incentives can
be provided at a cheaper cost in the future through higher income stabilization.
Accordingly, income dynamics result from the interaction of the following three

mechanisms: (i) For a constant promised value, wages decrease over time, as stated in
Corollary 3; (ii) Back loading weakens over time, raising current income; (iii) Wages
are driven downwards by the agent’s immiserization. Of the three channels, only the
first two are specific to the learning process whereas the third one remains relevant
when belief precision is infinite. Deriving the law of motion of wages allows one to
analytically identify each mechanism. The optimal wage at time t as a function of
the promised value v is given by w∗t (v) = − ln(ktv)θ

+ λ ,

w∗t = −
µ
1

θ

¶
[ln(−kt) + ln(−vt) + λ] ,

so that its law of motion reads

dw∗t = −
µ
1

θ

¶ ∙µ
1

kt

¶
dkt + d ln(−vt)

¸
. (29)

Reinserting from (28) into (29) and applying Ito’s lemma to the logarithmic trans-
formation of v yields the “reduced form” for wage growth

dw∗t =
1

θ

⎛⎜⎜⎜⎝ −dkt/dt
kt| {z }

Income Stabilization

+
(θλ)2

2

µ
σ−1

ht

¶2
| {z }

Back Loading

−(σθλ)
2

2
k2t| {z }

Immiserization

⎞⎟⎟⎟⎠ dt+
Γt
θ
σdZt . (30)

The trend and volatility terms in (30) are both deterministic, and are plotted in
the second and third panels of Figure 2. The first two terms in the expression for the
trend are due to parameter uncertainty and they vanish when belief precision ht is
infinite. The middle panel of Figure 2 shows that the trend is decreasing over time.
Hence, parameter uncertainty alleviates the immiserization process because the back
loading channel dominates the income stabilization channel.
The third term in the trend in (30) represents the agent’s immiserization, on the

other hand, is specific to the utility function (20). It follows from the inverse Euler
equation which can be established in the infinite-precision limit using Ito’s lemma

d

µ
1

∂U/∂wt

¶
= −λσ

v
dZt , when

σ−2

ht
= 0 .

25See the proof of Corollary 3.
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Figure 2: Wage dynamics as a function of contract duration when ρ =
4, σ = λ = 0.5, θ = 15, v = −1
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Under (20), (∂U/∂w)−1 = exp (θ [w − λ]) /θ is convex in w, hence the immiserization.
However, if utility were U (c) = 1

1−φc
1−φ and φ < 1, (∂U/∂w)−1 = cφ would be

concave and the inverse Euler equation would imply that wages exhibit a positive
trend. Similarly, in the log utility case φ = 1, wages would follow a martingale.
The top panel of Figure 2 plots the mean wage and the one-standard-deviation

bands for the parameter values ρ = 4, σ = λ = 0.5, θ = 15, v = −1. The bands are
equidistant from the mean because the distribution of wages normal and, hence, sym-
metric. The stochastic term dZ is the output surprise defined in (6), which means that
the solution w∗t to the stochastic difference equation is a normally distributed random
variable, and that the distribution of wages at date t in the frequency distribution of
wages among age-t workers with abilities randomly drawn from η ∼ N

¡
0, h−10

¢
.

Now, from (47) we find that kt has a strictly negative limit so that

|kt|→
1

2

Ãsµ
1

(σλθ)2

¶2
+

4ρ

(σλθ)2
− 1

(σλθ)2

!
> 0;

implying that the volatility of the wage increments does not die off¯̄̄̄
Γt
θ
σ

¯̄̄̄
=

¯̄̄̄
λσ

µ
kt −

σ−2

ht

¶¯̄̄̄
→ λσ |k∞| > 0.

Since these increments are independent, the cross-section variance of wages converges
to infinity
We sum up our findings in the Corollary below, whereas Figure 2 illustrates them

Corollary 4 The volatility of the wage increments is decreasing to a positive limit
so that the cross-section variance of wages grows without bound. Provided that the
sufficient condition (16) is satisfied, wages exhibit a negative trend.

4.2 Value of Commitment

Instead of focusing on wage dynamics within a given match, we can use the model
to compare the value of commitment across different environments. As discussed in
the Introduction and in Section 5, the total surplus is decreasing in prior precision
when wages are set through spot contracts. To the contrary, when parties are able to
commit, the surplus is higher when priors are more accurate.

Corollary 5 The principal’s expected lifetime profit as a function of the value v
promised to the agent is increasing in the prior precision h0.

The intuition for this result directly follows from Corollary 4: An increase in the
precision with which the productivity of the match is known enables the principal to
stabilize further the agent’s income. As contracts get closer to the second best, the
principal can deliver the reservation value v at a lower expected cost.
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Figure 3: Agent’s value as a function of 1/h0 and θ when ρ = σ = 1 and
λ = 0.9

Figure 3 plots the agent’s value as a function of the prior variance 1/h0 and
of the marginal utility parameter θ, holding the principal’s value constant at zero.
The vertical line labeled “sufficient condition” identifies the maximal prior variance
1/h0 and maximal θ for which condition (27) holds. Thus (27) holds to the left of
the dashed vertical line. For the parameter values used in the plot in Figure 3 are
ρ = σ = 1, and λ = 0.9, so that (27) reads ρ > 1

h0
+ (1.6) θ2 1

h20
, and the maximal θ as

a function of h0 is
θ = 0.79

p
h0 (h0 − 1).

The RHS of this equation is positive only if h0 ≥ 1. In other words, (27) can be met
only if 1/h0 < 1, and then more easily if θ is low enough.
The approximate value of commitment in current consumption units.–The pa-

rameter θ represents not only risk aversion, however, but also the marginal utility
of consumption, and the agent’s value is in measured in utils. To convert it into
consumption units we can use a continuous-time asset-pricing formula that translates
a utility flow into current consumption units. Taking as exogenously given the pre-
contract levels of consumption and effort, (c0, a0), in units of date-zero consumption,
the agent would be willing to pay roughly

1

Uc (c0, a0)
E

½Z ∞

0

e−ρtUc (wt, 1)wtdt

¾
≈ 1

θ
eθ(c0−λa0) |v0| . (31)

This quantity need not decline with theta, especially if c0 is large.
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Williams (2009) proves qualitatively similar results in a reporting problem when
income shocks are persistent: Efficiency losses due to private information increase
with the persistence of the endowment and, parallel to our result that the principal
back loads payments more when ht is lower, Williams also finds that persistence of
shocks leads to a tendency to backload payments that is absent in reporting problems
with i.i.d. shocks.

5 Limited vs. full commitment

Our model has two alternative interpretations for η: Match specific productivity or
the agent’s general ability. Which interpretation one adopts can affect the solution
only via the positioning of the initial point on the Pareto frontier because after that
there are no participation constraints. In what follows we shall contrast our com-
mitment solution to two spot-market solutions. The first does of these spot-market
solutions does not allow any pay for performance and it is one that Holmström (1999)
first considered; the second allows for pay to respond linearly to performance during
the period at hand, and is the one that Gibbons and Murphy (1992) considered.
Note, however, that the utility function in (20) differs from the utility functions used
in those papers. Holmström assumes a time-additive utility function with a risk-
neutral agent, and Gibbons and Murphy assume that utility is exponential but not
time separable.

5.1 η as general ability

We begin with the case where η denotes general ability. We shall contrast our full-
commitment solution (P-J) to the no-commitment solution of Holmström (1999; H)
and the partial-commitment solution of Gibbons and Murphy (1992; G-M) under the
assumption that the principal is risk neutral and that the agent has in each case the
period utility (20) and lifetime utility (4). Imposing this utility function in H and
G-M means that in each case our discussion pertains to a version that differs from
the original. In particular, in contrast to (20), in H the agent is risk neutral and in
contrast to (4), in G-M the utility function is not additively separable.26

H and G-M impose zero expected profits for the principal after every history and
at each date. Since G-M also have partial commitment, the G-M agents receive
a higher utility after every history than the H agents. The P-J principal has full
commitment and his profits will not be zero at an arbitrary date. To compare our
solution to H and G-M, it is natural to impose zero expected lifetime profits on the
principal at the outset of the contract. Thus we shall assume that at date zero, the
agent gets all the rents from the relationship. If we maintain the same belief about

26G-M’s eq. (2) states lifetime utility to be − exp
©
−
P

δt−1 (wt − g (at))
ª
.
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Figure 4: lifetime rents of the agents in the three models.

η across the three models, and if we denote vH, vG-M, and vP-J the agent’s lifetime
utility, then they are related as shown in Figure 4.
The relation that Figure 4 depicts exists only at the outset when risk-neutral

firms could be imagined to compete for the agent by offering lifetime contracts. Of
course, here we are discussing three separate economies each with its own distinct
contracting arrangement, and not a single economy in which lifetime contracts and
spot contracts could coexist. We now wish to transport this intuition to the behavior
of wages.

5.1.1 Ex-ante payments

In this section we show that under risk aversion, the equilibrium behavior of wages
and effort is essentially the same as in H: Reputational concerns are the only reason
why the agent exerts any effort, and when information about η accumulates and as
these concerns disappear, his effort converges to zero, just as in the risk-neutral case.
Of itself this is not surprising. Rather, the result is useful because it enables us to
isolate the role that full commitment plays in generating economic outcomes for the
parties to the contract.
Employers cannot commit to paying wages that depend on performance, and com-

petition among employers bids wages up to expected output. Denoting equilibrium
actions by an asterisk, wages are equal to expected productivity:

wt = η̂ (Yt −A∗t , t) + a∗t . (32)

In H, equilibrium effort entails a strictly declining deterministic sequence a∗t . Effort
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Figure 5: Effort as a function of precision in spot markets.

is sustained by the market’s imprecise knowledge of η and the agent’s attempts to
raise the market’s expectation of η. With our utility function and a spot market, the
sequence at also decreases, eventually reaching zero and remaining there, as drawn in
Figure 5 and described in Proposition 4.

Proposition 4 (i) The equilibrium effort path at is deterministic, and it depends on
t only through ht = h0 + σ−2t, as drawn in Figure 5.
(ii) There exist two numbers h1 and h2 satisfying 0 ≤ h1 ≤ h2 such that (A) a (h) = 1
for h ≤ h1; (B) a (h) is strictly decreasing for h ∈ (h1, h2) ; and (C) a (h) = 0 for
h ≥ h2.
(iii)(A) If

λ <

Z ∞

0

e−ρτ

"µ
σ−2

h0 + τσ−2

¶
exp

Ã
θ2

2

µ
σ−2

h0 + τσ−2

¶2 ¡
τσ2 + h−10

¢!#
dτ. (33)

then h2 > 0. (B) h1 < h2. Moreover, if

∂U

∂a
(m0, 1) +

Z ∞

0

e−ρt
∂

∂Y
E0 [U (η̂ (Yt −At, s) , 1)] ds > 0 (34)

then (C) h1 > 0, i.e., an initial horizontal segment at a = 1 exists.

The following properties are of note:

1. Since a depends on t only through the effect that t has on h, lowering the initial
precision of the prior (i.e. decreasing h0) raises the time T at which the agent
stops providing effort. In (a, t) space, the entire effort path shifts to the right.
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Figure 6: η as general ability

2. Since at is deterministic, wage volatility is declining with experience because
the volatility of η̂ is declining with t. Of course, conditional on η̂ and h, the
wage is not random.

3. Since first-best effort is equal to the upper bound of unity, effort cannot ever
exceed its first-best level. In terms of welfare this is the only difference from H.

Remember that the equilibrium wage is η̂ + a∗t . If we normalize the mean of η to
zero (as we shall do throughout this section), the average equilibrium wage is

wH = a∗t , (35)

with the sequence of a∗t depicted in Figure 5. The efficient level a = 1 is implementable
only early on, and wages reflect that fact. The sequence a∗t is reproduced in Figure
6.

5.1.2 Ex-post linear payments

Between the extremes of the no-commitment model H on the one hand and the full-
commitment model P-J on the other, there is the partial-commitment model G-M in
which a contract lasts one period: Wage are paid at the end of each period and can
depend linearly on output that period and in previous periods as well. The market
is otherwise still a spot market as there is no contracting for more than one period.
Expected profits must still equal zero, but the set of contracts is richer, including a
piece rate. The G-M solution therefore provides the agent with a higher expected
utility than the H solution, but a lower lifetime utility than our full-commitment
solution. The equilibria of H and G-M are summarized in Figures 4 and 6.
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Figure 7: The cross-section distributions of commitment wages and
piece-rate wages

We use discrete time to explain the G-M results for our utility function. Output
is y , a+η+ε. Given that wages are restricted to be linear in output, we can denote
the one-period wage function by w = b0 + b1y. Figure 6 plots the mean wage in each
of the three models, along with the one-standard-deviation bands for the P-J model.

We now simulate our solution together with the piece-rate spot-market solution
along with the one-standard-deviation bands for the two models. The piece-rate
contracts can implement the efficient level of effort. This will be achieved if λ is
small enough and as long as the zero-expected-profit constraint holds. We know that
E (w) = E (y) = 1 + η̂, and therefore for the mean agent for all t, wG-M = 1, and
piece-rate contracts are linear with zero profit on a period-by-period basis. For each
t, they maximize the agent’s lifetime utility subject to non-negativity of profits

E [wt] = b0,t + b1,t (η̂t + a∗t ) ≤ η̂t + a∗t , (36)

and subject to incentive compatibility (see (11) and its simplification in (55) and
(57)). Details are in Appendix C. In the commitment solution we impose a zero
expected lifetime value on the principal, whereas in the spot-market solution the
expected profit is zero in each period.Eq. (59) reports the standard deviation of the
piece-rate wage to beq

h−10 − h−1t−1 + σ2b21,t →
q
h−10 + σ2λ2 =

q
(11.4)−1 + 0.81 = 0.95.
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Figure 8: η as match-specific ability

The standard deviation of the commitment wage converges to infinity because as
noted in Corollary 4 the variance of its increments does not die off. For at least the
first twenty periods that Figure 7 shows, the cross-section variance of commitment
wages is smaller than the standard deviation of the piece-rate wage. The latter are
bounded because level shocks are assumed to be i.i.d.

5.2 η as a match-specific ability

If we assume that η is fully match specific, then all reputational concerns disappear.
A a spot-market solution with no piece rates would entail zero effort at all dates, so
that every agent would receive the same up-front wage equal to zero at all dates.
The linear piece-rate solution of the G-M type solution would sustain first-best

effort, but with a contract that does not change over time, with

b0,t = 1− λ and b1,t = λ

for all t, and the mean wage is wG-M = 1 at which the principal breaks even.
Full commitment then again delivers the effort levels described by the P-J solution

above and, also as described above, the value of commitment is larger when the match-
quality parameter is known more precisely. Mean wages are once again plotted in
Figure 8. The contract is identical except possibly for the initial utility for the agent.

As was the case with Figure 4, the wage behavior that Figures 6 and 8 depict
is in each case a comparison of three separate economies. The P-J solution is for a
contract that would yield the principal zero lifetime utility at the outset. Since in
P-J there is full commitment by both parties, as the one-standard-deviation bands

26



in Figure 6 make clear, after some histories the agent’s continuation values will fall
below vH , and after others the principal’s value will fall below zero. Yet P-J assumes
no participation constraints for either party to the contract. The next step would be
to extend these contracts to an equilibrium setting as Rudanko (2010) and Lustig,
Syverson, and Van Nieuwerburgh (2007) have done for environments without learning.
In partial equilibrium settings without learning there are more papers, most recently
the principal-agent model of Sannikov (2008) which, under some adjustments to the
parametric form of the utility function,27 is encompassed in our framework as the
limit case where posteriors have converged to the true parameter value.

6 Conclusion

We have solved a contracting problem involving parameter uncertainty and uncovered
a new mechanism whereby higher uncertainty about the environment worsens the
incentive/insurance trade-off. We developed an approach that works for any utility
function when the parameter and noise are normally distributed. We found that
the agent faces two opposite effects when considering a downward deviation from
recommended effort. On the one hand, he will be punished by a lower promised value
because of the decrease in observable output. On the other hand, he will benefit from
higher expectations than the principal about the unknown productivity of the match.
This second channel that we label belief manipulation is specific to problems under
parameter uncertainty. The extent to which it influences incentive provisions depends
on the remaining length of the relationship. This is why it is not relevant in markets
based on spot agreements.
We found, in particular, that the Pareto frontier shifts out when information about

quality improves, and this we contrasted to spot markets where, at least when ability
is transferable, the Pareto frontier shifts inwards. Therefore incentives are easier to
provide and commitment is more valuable when quality is known more precisely. In
further contrast to results under partial commitment, wage volatility declines with
experience.
By focusing on the extreme case where both parties commit over an infinite hori-

zon, we have been able to illustrate that effort rewards and reputational concerns
mostly work in opposite directions. However, spot and full commitment settings are
both highly stylized depictions of how markets operate in reality. We therefore believe
that the most promising task would be to combine the two environments in a model
with limited commitment so as to evaluate how the two incentive channels interact.
27More precisely, Sannikov (2008) considers a utility function that is (i) defined over the positive

real line; (ii) is bounded from below; and (iii) is separable in income and effort. We focus instead on
exponential utility functions, as described in equation (20). In contrast to Sannikov (2008), we do
not have a low retirement point because our utility function is not bounded from below. Observe,
however, that our characterization of the agent’s necessary condition (11) does not depend on the
parametric assumption and so coincides with Sannikov’s when parameter precision is infinite.
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Appendix A

Proof. Proposition 1: Consider the Brownian motion Z0 under some probability
space with probability measure Q, and FZ0 ,

n
FZ0

t

o
0≤t≤T

the suitably augmented

filtration generated by Z0. Let

Yt =

Z t

0

σdZ0s ,

so that Yt is also a Brownian motion under Q. Given that expected output is linear
in cumulative output,28 the exponential local martingale

Λa
t,τ , exp

ÃZ τ

t

µ
η̂(Ys −As, s) + as

σ

¶
dZ0s −

1

2

Z τ

t

¯̄̄̄
η̂(Ys −As, s) + as

σ

¯̄̄̄2
ds

!
, t ≤ τ ≤ T .

is a martingale, i.e. Et

£
Λa
t,T

¤
= 1. Thus Girsanov theorem ensures that

Za
t , Z0t −

Z t

0

µ
η̂(Ys −As, s) + as

σ

¶
ds ,

is a Brownian motion under the new probability measure dP a/dP , Λa
0,T . Given that

both measures are equivalent, the triple (Y,Za, Qa) is a weak solution of the SDE

Yt =

Z t

0

(η̂(Ys −As, s) + as) ds+

Z t

0

σdZa
s .

Adopting a weak formulation allows us to view the choice of control a as the choice
of probability measure Qa. In order to define the agent’s optimization problem, let
Ra (t) denote the reward from time t onwards so that

Ra (t) , eρt
∙Z T

t

U
¡
s, Y s, as

¢
ds+W (T, YT )

¸
,

where, with a slight abuse of notation, U
¡
s, Y s, as

¢
, e−ρsU

¡
w
¡
Y s

¢
, as
¢
andW (T, YT ) ,

e−ρTW (YT ) are utilities at time t discounted from time 0. The agent’s objective is
to find an admissible control process a∗ ∈ A that maximizes the expected reward

28More formally, the martingale property holds true because

|η̂(Yt −At, t) + at| ≤ K
¡
1 +

°°Z0°°
t

¢
, for all t ∈ [0, T ] ,

with K = σ
³
hε
h0

´
+ 1 and

°°Z0°°
t
, max0≤s≤t

¯̄
Z0 (s)

¯̄
.
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Ea [Ra (0)] over all admissible controls a ∈ A. In other words, the agent solves the
following problem

vt = sup
a∈A

V a(t) , sup
a∈A

Ea
t [R

a (t)] , for all 0 ≤ t ≤ T .

The objective function can be recast as

V a(t) = Ea
t [R

a (t)] = Et

£
Λa
t,TR

a (t)
¤
, (37)

where the operator Ea [·] and E [·] are expectation under the probability measure
Qa and Q, respectively. One can see from (37) that varying a is indeed equivalent
to changing the probability measure. The key advantage of the weak formulation
is that, under the reference measure Q, the output process does not depend on a.
Hence, we can treat it as fixed which enables us to solve our problem in spite of its
non-Markovian structure.
Our derivation of the necessary conditions builds on the variational argument in

Cvitaníc, Wan and Zhang (2009). Define the control perturbation

aε , a+ ε∆a ,

such that there exists an ε0 > 0 for which any ε ∈ [0, ε0) satisfy |aε|4 ,
¯̄
Uaε

¯̄4
,
¯̄
Uaε

a

¯̄4
,
¯̄
Λaε

t,τ

¯̄4
,¡

Uaε

t,τ

¢2
and

¡
∂aUaε

t,τ

¢2
being uniformly integrable in L1 (Q) where

Ua
t,τ ,

Z τ

t

U
¡
s, Y s, as

¢
ds .

We introduce the following shorthand notations for "variations"

∇Ua
t,τ ,

Z τ

t

Ua

¡
s, Y s, as

¢
∆asds , (38)

∇At ,
Z t

0

∆asds , (39)

∇Λa
t,τ , Λa

t,τ

µ
1

σ

¶ ∙Z τ

t

µ
−σ

−2

hs
∇As +∆as

¶
dZ0s −

Z τ

t

(η̂s + as)

µ
−σ

−2

hs
∇As +∆as

¶
ds

¸
= Λa

t,τ

µ
1

σ

¶Z τ

t

µ
−σ

−2

hs
∇As +∆as

¶
dZa

s . (40)

Step 1: We first characterize the variations of the agent’s objective with respect
to ε

V aε(t)− V a(t)

ε
= E

£
Λaε

t,TR
aε (t)− Λa

t,TR
a (t)

¤
= E

"Ã
Λaε

t,T − Λa
t,T

ε

!
Raε (t) + Λa

t,T

µ
Raε (t)−Ra (t)

ε

¶#

= E

∙
∇Λaε

t,TR
aε (t) + Λa

t,T

µ
Raε (t)−Ra (t)

ε

¶¸
.
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To obtain the limit of the first term as ε goes to zero, observe that

∇Λaε

t,TR
aε (t)−∇Λa

t,TR
a (t) =

£
∇Λaε

t,T −∇Λt,T

¤
Ra (t) +∇Λaε

t,T

£
Raε (t)−Ra (t)

¤
.

As shown in Cvitaníc, Wan and Zhang (2009), for any ε ∈ [0, ε0), this expression is
integrable uniformly with respect to ε and so

lim
ε→0

E
£
∇Λaε

t,TR
aε (t)

¤
= E

£
∇Λa

t,TR
a (t)

¤
.

The limit of the second term reads

lim
ε→0

Raε (t)−Ra (t)

ε
= eρt∇Ua

t,T .

Due to the uniform integrability of Λa
t,T

¡
Raε (t)−Ra (t)

¢
/ε, the expectation is also

well defined. Combining the two expressions above, we finally obtain

lim
ε→0

V aε(t)− V a(t)

ε
= E

£
∇Λa

t,TR
a (t) + Λa

t,Te
ρt∇Ua

t,T

¤
, ∇V a(t) . (41)

Step 2: We are now in a position to derive the necessary condition. Consider
total earnings as of date 0

Ia(t) , Ea
t

∙Z T

0

U
¡
s, Y s, as

¢
ds+W (T, YT )

¸
=

Z t

0

U
¡
s, Y s, as

¢
ds+ e−ρtV a(t) .

(42)
By definition, it is a Qa−martingale. According to the extended Martingale Repre-
sentation Theorem29 of Fujisaki et al. (1972), all square integrable Qa−martingales
are stochastic integrals of {Za

t } and there exists a unique process ζ in L2 (Qa) such
that

Ia(T ) = Ia(t) +

Z T

t

ζsσdZ
a
s . (43)

We are now in a position to solve for ∇V a(t). Reinserting (38), (39) and (40) into
(41) yields30

∇V a(t) = Et

∙
Λa
t,TR

a (t)σ−1
Z T

t

µ
−σ

−2

hs
∇As+∆as

¶
dZa

s + Λa
t,Te

ρt

µZ T

t

Ua∆asds

¶¸
= eρtEa

t

∙
Ia(T )σ−1

Z T

t

µ
−σ

−2

hs
∇As+∆as

¶
dZa

s+

Z T

t

Ua∆asds

¸
.

29We cannot directly apply the standard Martingale Representation theorem because we are con-
sidering weak solutions, so that {Za

t } does not necessarily generate
©
FY
t

ª
.

30The additional expectation termµZ t

0

U
¡
τ , Y τ , aτ

¢
dτ

¶
E

"Z T

t

µ
−
µ
hε
hs

¶
∇As +∆as

¶
dZa

s

#
= 0 ,

because both
³
hε
hs

´
∇As and ∆as are bounded.
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where subscripts denote derivatives and arguments are omitted for brevity. Given
the law of motion (43), applying Ito’s rule to the first term yields

d

µ
Ia(τ)

Z τ

t

µ
−σ

−2

hs
∇As +∆as

¶
dZa

s

¶
=

∙
ζτσ

µ
−
µ
σ−2
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s + Iat (τ)

µ
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¶¸
dZa

τ .

Hence ∇V a(t) can be represented as

e−ρt∇V a(t) = Ea
t

∙Z T

t

Γ1sds+

Z T

t

Γ2sdZ
a
s

¸
,

where
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∙
−σ

−2

hs

Z s

0

∆aτdτ +∆as

¸
+ Ua
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.

An argument similar to Lemma 7.3 in Cvitaníc, Wan and Zhang (2009) shows that,
for any ε ∈ [0, ε0), Γ2s is square integrable and so

Ea
t

∙Z T

t

Γ2sdZ
a
s

¸
= 0 .

As for the deterministic term, collecting the effect of each perturbation ∆as yields

e−ρt∇V a(t) = Ea
t
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µ
−
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ζτ

µ
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hτ
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¡
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.

Finally, noticing that ∆as was arbitrary leads toµ
Ea
t

∙
−
Z T

t

ζs
σ−2

hs
ds

¸
+ ζt + Ua

¡
t, Y t, a

∗
t

¢¶
(at − a∗t ) ≤ 0 . (44)

Step 3: We now rewrite our solution as a function of the promised value vt.
Differentiating (42) with respect to time yields

e−ρtdvt − ρe−ρtvt + U
¡
t, Y t, at

¢
= dIa(t) = ζtσdZ

a
t ,

so that
dvt =

¡
ρvt − U

¡
Y t, at

¢¢
dt+ γtσdZ

a
t ,

with γt , ζte
ρt. Collecting the exponential terms in (44) leads to (11).
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Proof. Proposition 2: The sufficient conditions are established comparing the
equilibrium path {a∗t}

T
t=0 with an arbitrary effort path {at}

T
t=0. We define δt , at−a∗t

and ∆t ,
R t
0
δsds = At − A∗t as the differences in current and cumulative effort

between the arbitrary and recommended paths. We also attach a star superscript to
denote the value of the FY−measurable stochastic processes along the equilibrium
path. The Brownian motions generated by the two effort policies are related by

σdZa∗
t = σdZa

t + [η̂ (Yt −At, t) + at − η̂ (Yt −A∗t , t)− a∗t ] dt

= σdZa
t +

∙
δt −

σ−2

ht
∆t

¸
dt .

By definition, the total reward from the optimal policy reads
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U
¡
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Hence, the total reward from the arbitrary policy is equal to
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dt+
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Let us focus on the third term on the right hand side

−
Z T

0

ζ∗t
σ−2

ht
∆tdt = −

Z T

0

ζ∗t
σ−2

ht
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0

δsds

¶
dt =

Z T

0
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µ
−
Z T
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ζ∗s
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hs
ds

¶
dt

=

Z T

0

δt

µ
e−ρt

σ−2

ht
p∗t +

Z T

t

ξ∗sσdZ
a∗
s

¶
dt ,

where the last equality follows from the definition of p and ξ.31 Changing the Brown-

31Observe that this additional step is linked to the introduction of private information. Then the
volatility ζ of the continuation value will differ on and off the equilibrium path. To the contrary, in
problems without private information, the volatility remains constant because it only depends on
observable output and not on past actions. This is why sufficiency holds without restriction in e.g.
Schättler and Sung (1993) or Sannikov (2008).
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ian motion and taking expectation yields

V a (0)− V a∗ (0) = Ea
0 [I

a (T )]− V a∗ (0)

= Ea
0
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µ
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¸
+Ea
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¸
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∗
t ) + δt

µ
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σ−2
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¶¶
dt

¸
+Ea
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0
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µ
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σ−2

ht
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¶
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¸
.

We know from the optimization property of a∗t that the first expectation term is at
most equal to zero. On the other hand, the sign of the second expectation term
is ambiguous. In order to bound it, we introduce the predictable process32 χ∗t ,
ζ∗t − eρtξ∗tA

∗
t and define the Hamiltonian function

H (t, a,A;χ∗, ξ∗, p∗) , U (w, a) +
¡
χ∗ + eρtξ∗A

¢
a− eρtξ∗

σ−2

ht
A2 +

σ−2

ht
p∗a .

Taking a linear approximation of the Hamiltonian around A∗ yields

Ht (at, At)−Ht (a
∗
t , A

∗
t )−

∂Ht (a
∗
t , A

∗
t )

∂A
∆t

= U (wt, at)− U (wt, a
∗
t ) + δt
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∗
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ht
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µ
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¶
,

so that

V a (0)− V a∗ (0) = Ea
0

∙Z T

0

e−ρt
µ
Ht (at, At)−Ht (a

∗
t , A

∗
t )−

∂Ht (a
∗
t , A

∗
t )

∂A
∆t

¶
dt

¸
is negative when the Hamiltonian function is jointly concave. Given that the agent
seeks to maximize expected returns, imposing concavity ensures that a∗ dominates
any alternative effort path. Concavity is established considering the Hessian matrix
of the Hamiltonian

H (t, a, A) =
µ

Uaa (wt, at) eρtξt
eρtξt −2eρtξt σ

−2

ht

¶
,

which is negative semi-definite when −2σ−2
ht

Uaa (wt, at) ≥ eρtξt, as stated in (16).

32χ is predictable since both ξ∗ and A∗ are FY−predictable.
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Proof. Corollary 1: By definition

pt , eρtσ2ht

∙
bt +

Z t
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e−ρsγs
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hs
ds

¸
,

and so p solves the SDE33
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with ϑt , eρtσ2htξt.

Proof. Proposition 3: Assume that
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Hence, differentiating the Incentive Constraint yields
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Therefore, the FOC for wages is equivalent to

−e−ρt − ∂j

∂v
θvkt − σ2

∂2j

∂v2

"µ
λθv

µ
kt −

σ−2

ht

¶¶2
+ (λθv)2

µ
kt −

σ−2

ht

¶
σ−2

ht

#
θ

=

µ
e−ρt

ρ

¶"
−ρ− j1θkt + σ2j1

"µ
kt −

σ−2

ht

¶2
+

µ
kt −

σ−2

ht

¶
σ−2

ht

#
(λθ)2 θ

#

=

µ
e−ρt

ρ

¶ ∙
−ρ− j1θkt + σ2j1

∙
kt

µ
kt −

σ−2

ht

¶¸
(λθ)2 θ

¸
= 0 ,

33The change with respect to time of hε/ht is given by

d (hε/ht)

dt
=

d
³
hε (h0 + thε)

−1
´

dt
= −h2ε (h0 + thε)

−2 = −
µ
hε
ht

¶2
< 0.
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implying the following quadratic equation for kt

−ρ− kt

µ
j1θ + σ2j1

σ−2

ht
(λθ)2 θ

¶
+ k2t

¡
σ2j1 (λθ)

2 θ
¢
= 0 .

The remaining task is to check that the HJB equation is indeed satisfied

e−ρt (1− w) +
∂j

∂t
+

∂j

∂v
(ρv − U (w, 1)) +

µ
σ2

2

¶
∂2j

∂v2
γ2

= e−ρt

⎡⎣ ³1 + ln(−v)
θ

+ ln(−kt)
θ
− λ

´
− [j0 (t) + j1 ln (−v)] +

³
1
ρ

´
j00 (t)

+
³
1
ρ

´
j1 (ρ+ kt)−

³
σ2

2

´³
1
ρ

´
j1
³
λθ
³
kt − σ−2

ht

´´2
⎤⎦ = 0 ,

when j1 = θ−1 and

j00 (t)− ρj0 (t) = −ρ
µ
1− λ+

ln(−kt)
θ

¶
− ρ+ kt

θ
+

θ (σλ)2

2

µ
kt −

σ−2

ht

¶2
. (45)

Reinserting j1 in the quadratic equation for kt yields

−ρ− kt

µ
1 +

σ−2

ht
(σλθ)2

¶
+ k2t (σλθ)

2 = 0 .

The relevant solution is unique and given by the negative root because wages are not
well defined when kt > 0. The ODE described in the Proposition is obtained noticing
that the quadratic equation above implies that

(σθλ)2

2

µ
kt −

σ−2

ht

¶2
= ρ+ kt +

(σθλ)2

2

Ãµ
σ−2

ht

¶2
− k2t

!
,

and reinserting this expression into (45).
As usual, the unique solution to the ODE is pinned down by its boundary con-

dition. The value function as t → ∞ must converge to the solution of the problem
without parameter uncertainty. It can be derived solving the following HJB

0 = max
{a,w}

½
e−ρt (a− w) +

∂l

∂t
+

∂l

∂v
(ρv − U (w, a)) +

µ
σ2

2

¶
∂2l

∂v2
γ (v, w, a)2

¾
,

with
γ (v, w, a) ≥ −Ua (a, w) , for all a > 0.

The solution is of the form ρl (t, v) = e−ρt
h
l0 +

ln(−v)
θ

i
with

ρl0 = ρ

µ
1− λ+

ln(−k∞)
θ

¶
+

θ (σλ)2

2
k2∞ ,
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where k∞ = limt→∞ k (t) =
³

1
2(σλθ)2

´ ¡
1−
√
1 + 4ρ

¢
. One can easily verify that the

desired convergence of j0 (t) to l0 as t→∞ holds true when the boundary condition
limt→∞ j00 (t) = 0 is satisfied.

Proof. Corollary 2: Given that ϑ∗t = λθγ∗t (v) = (λθ)2 v
³
kt − σ−2

ht

´
and

Uaa (wt, a
∗
t ) = (λθ)2 (−ktv) , the sufficient condition of Proposition 2 are satisfied

when

2ktv − v

µ
kt −

σ−2

ht

¶
= v

µ
kt +

σ−2

ht

¶
> 0⇔ −kt >

σ−2

ht
. (46)

The explicit solution of the quadratic equation for kt reads

2kt =
1

(σλθ)2
+

σ−2

ht
−

sµ
1

(σλθ)2
+

σ−2

ht

¶2
+

4ρ

(σλθ)2
, (47)

and so

dk (t)

dt
=

µ
1

2

¶⎡⎢⎢⎣1− 1
(σλθ)2

+ σ−2

htr³
1

(σλθ)2
+ σ−2

ht

´2
+ 4ρ

(σλθ)2

⎤⎥⎥⎦ d
¡
σ−2h−1t

¢
dt| {z }
<0

< 0 . (48)

Since σ−2/ht is decreasing in t, condition (46) is satisfied for all t provided that
−k0 > σ−2/h0, i.e.

− 1

(σλθ)2
− 3

µ
σ−2

h0

¶
+

sµ
1

(σλθ)2
+

µ
σ−2

h0

¶¶2
+

4ρ

(σλθ)2
> 0 ,

which, after some straightforward simplifications, leads to the requirement (27).

Proof. Corollary 3: The statement immediately follows from

1

2
>

dk(σ−2/ht)

d (σ−2/ht)
=

µ
1

2

¶⎡⎢⎢⎣1− 1
(σλθ)2

+ σ−2

htr³
1

(σλθ)2
+ σ−2

ht

´2
+ 4ρ

(σλθ)2

⎤⎥⎥⎦ > 0 ,

and the solution for wages w∗t (v) = − ln(ktv)/θ + λ .

Proof. Corollary 4: Reinserting the law of motion (28) for v into (29) and
applying Ito’s lemma yields34

dw∗t = −
µ
1

θ

¶"Ãµ
1

kt

¶
dkt
dt
+ ρ+ kt −

(σθλ)2

2

µ
kt −

σ−2

ht

¶2!
dt+ λθ

µ
kt −

σ−2

ht

¶
σdZt

#

= −
µ
1

θ

¶"Ãµ
1

kt

¶
dkt
dt
− (σθλ)

2

2

Ãµ
σ−2

ht

¶2
− k2t

!!
dt+ λθ

µ
kt −

σ−2

ht

¶
σdZt

#
.

34See the proof of Proposition 4 for the intermediate step linking the two equalities.
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The statement for the volatility component is established reinserting dk(σ−2/ht)/d (σ−2/ht)
into

−
d
³
k(t)− σ−2

h(t)

´
dt

= −
µ
dk(t)

dt
− d (σ−2/h (t))

dt

¶
= −

⎛⎜⎜⎜⎝dk(σ−2/h (t))

d (σ−2/h (t))| {z }
∈(0,1/2)

− 1

⎞⎟⎟⎟⎠ d (σ−2/h (t))

dt| {z }
<0

< 0 .

The sign of the deterministic trend is established remembering that the sufficient
condition (16) holds if and only if −kt > σ−2/ht. Hence, (σ−2/ht)

2 − k2t < 0, and so
the trend is negative.

Proof. Corollary 5: Let

Ψ (t) , ρ

µ
(1− λ) +

ln(−kt)
θ

¶
− (σλ)

2 θ

2

¡
s2 − k2t

¢
so that

j00 (t)− ρj0 (t) +Ψ (t) = 0 .

Differentiating Ψ (t) with respect to time yields35

Ψ0 (t) = ρ

µ
1

kt

¶
dk(t)

dt
− (σλ)

2 θ

2

µ
−σ

−2

ht
− kt

dk(t)

dt

¶
> 0 .

Thus if ρj0 (t) ≤ Ψ (t), we have j00 (t) < 0 and so ρj0 (τ) < Ψ (τ) for all τ ≥ t. But this
contradicts the boundary condition limt→∞ j0 (t) = Ψ (t). We can therefore conclude
that ρj0 (t) > Ψ (t) which implies in turn that j00 (t) > 0. Given that parameter
precision is increasing in time, the claim stated in the Corollary follows.

Proof. Proposition 4: The proof proceeds one part at a time:
Parts (ii)(C) and (iii). We construct a solution to the first-order condition in the
way that implies the claims. If the claims (i) and (ii) are correct, since ∂Ys/∂at = 1
for s ≥ t, the first-order condition for optimal effort at date t is

∂U

∂a
(η̂ (Yt −At, t) , at)+

Z ∞

t

e−ρ(s−t)
∂

∂Y
Et [U (η̂ (Ys −As, s) , as)] ds

⎧⎨⎩ > 0 if ht < h1
= 0 if ht ∈ [h1, h2]
< 0 if ht > h2

.

(49)
Now let T be such that hT = h2. Then as = 0 for s ≥ T and As = AT . Then at
t = T (49) becomes

−∂U (η̂ (YT −AT , T ) , 0)

∂a
=

Z ∞

T

e−ρ(s−T )
∂

∂Y
ET [U (η̂ (Ys −AT , s) , 0)] ds . (50)

35Remember that both dk(t)/dt and k(t) are negative.
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The “final part” of the proof shows that (50) is equivalent to

λ =

Z ∞

0

e−ρτ

"
1
σ2

hT + τ 1
σ2

exp

Ã
θ2

2

µ 1
σ2

hT + τ 1
σ2

¶2 ¡
τσ2 + h−1T

¢!#
| {z }

=g(τ ;T )

dτ , (51)

which does not depend on the posterior η̂T . This implies that the stopping time T
does not vary with YT . Since that g(τ ;T ) is strictly decreasing in T , the equality can
be satisfied only for at most a single T . The RHS of (51) is continuous in T , and
limT→∞ g(τ ;T ) = 0. Therefore a solution for T exists if λ <

R
g (τ , T ) dτ , i.e., (33)

holds. This proves (iii) (A).and (ii)(C).

Part (ii)(B). Since at is continuous in t, there exists a δ > 0 such that optimal effort
is interior, i.e. at ∈ (0, 1) for all t ∈ (T − δ, T ) . Similar steps as before (and also
reported in the “final part” of the proof) yield

λf(t) =

Z ∞

0

e−ρτf(t+ τ)

"
1
σ2

ht + τ 1
σ2

exp

Ã
θ2

2

µ 1
σ2

ht + τ 1
σ2

¶2 ¡
τσ2 + h−1t

¢!#
| {z }

=g(τ ;t)

dτ . (52)

where f (t) = exp (λθat). Differentiating (52) yields

λf́ 0(t) =

Z ∞

0

e−ρτ
∙
f 0(t+ τ)g(τ ; t) + f(t+ τ)

∂g(τ ; t)

∂t

¸
dτ .

Given that ∂g(τ ; t)/∂t < 0 and that both f (·) and g (·) are nonnegative, if (i) (52)
holds as an exact equality and if (ii) f (t) > 0, then

f 0 (t+ τ) ≤ 0 for τ > 0 =⇒ f 0 (t) < 0 .

That is, a sufficient condition for the derivative at time t to be negative is that it is
at most zero afterwards. This is easily established considering the limit as t goes to
T . First, we know that f 0(T + τ) = 0 for all τ > 0. Furthermore, since T is unique,
f (t) > 0 for t ∈ (T − δ, T ). Iterating this argument we conclude that

at ∈ (0, 1) =⇒ f́ 0(t) < 0 .

Part (iii)(C). If h0 is small enough so that h0 < h1, we shall end up at the upper

bound. Since

∂2

∂Yt∂at
E0 [U (η̂ (Yt −At, t) , at)] = λ2θ

σ−2

h
U < 0 ,

a sufficient condition for an initial horizontal segment in Figure 5 to exist is that (34)
should hold.
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Final part of the proof : It remains for us to show that (50) implies (51) and (52).
First we show that (50) implies

λ exp (−θη̂ (YT −AT , T )) =

Z ∞

T

e−ρ(s−t)
σ−2

hs
ET [U (η̂ (Ys −AT , s) , 0)] ds . (53)

Observe that

∂

∂Y
Et [U (η̂ (Ys−As, s) , as)] = lim

∆→0

Et [U (η̂ (Ys−As+∆, s) , as)]−Et [U (η̂ (Ys−As, s) , as)]

∆

= Et [− exp (−θ (η̂ (Ys−As, s)−λas))] lim
∆→0

³
exp

³
−θ σ−2

hs

´
∆− 1

´
∆

= Et [U (η̂ (Ys−As+∆, s) , as)]

µ
−θσ

−2

hs

¶
.

For any s ≥ t, since

η̂ (Ys −As, s) =
h0m0 +

1
σ2
(Ys −As)

ht

ht
hs
+

Ys−t −As−t

σ2hs

= η̂ (Yt −At, t) +
σ−2

hs
(Ys−t −As−t − η̂ (Yt −At, t) (s− t)) ,

we have

Et [U (η̂ (Ys −As, s) , as)]

= exp (−θη̂ (Yt −At, t))Et

∙
− exp

µ
−θ
µ
σ−2

hs
[Ys−t −As−t − η̂ (Yt −At, t) (s− t)]− λas

¶¶¸
.

Reinserting this expression into the RHS of (53) and rearranging yields

λ =

Z ∞

T

e−ρ(s−t)
σ−2

hs
ET

∙
exp

µ
−θ
µ
σ−2

hs
[Ys−T − η̂ (YT −AT , T ) (s− T )]

¶¶¸
ds .

The expectation can be derived noticing that the distribution of Ys−T =
R s
T
dYτ can

be expressed as

ϕY (Ys−T |η̂T ) =
Z

ϕY (Ys−T |ηT )ϕη(ηT )dη = N
¡
(s− T ) η̂T , (s− T ) σ2 + h−1T

¢
because ϕY (Ys−T |ηT ) = N ((s− T ) ηT , (s− T )σ2) and ϕη(ηT ) = N

¡
η̂T , h

−1
T

¢
. Hence

the expectation is taken over a lognormally distributed variable so that

ET

∙
exp

µ
−θ
µ
σ−2

hs
[Ys−T − η̂T (s− T )]

¶¶¸
= exp

Ã
θ2

2

µ
σ−2

hs

¶2 £
(s− T )σ2 + h−1T

¤!
.
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The optimality condition is therefore given by (51).

Derivation of (52).–We have

−∂U (η̂ (Yt −At, t) , at)

∂a
=

Z ∞

t

e−ρ(s−t)
∂

∂Y
Et [U (η̂ (Ys −As, s) , as)] ds, i.e.,

λ exp(λθat) =

Z ∞

t

e−ρ(s−t)
σ−2

hs
exp(λθas) exp

Ã
θ2

2

µ
σ−2

hs

¶2 £
(s− t)σ2 + h−1t

¤!
ds ,

which, upon a change of variable to τ = s− t can be rewritten as (52).

Appendix B

Derivation of (15)

To derive (15), we first change variable and define p̃t , (σ−2/ht) pt. Then p̃t =

−E
R T
t
e−ρ(s−t)γs

σ−2

hs
ds, so that differentiating with respect to time leads to

dp̃t
dt
= ρp̃t +

σ−2

ht
γt = ρp̃t −

σ−2

ht
(Ua (wt, at) + p̃t) ,

where the second equality follows after substitution of γt = −Ua (wt, a)− p̃t. Integrat-
ing this expression, we obtain p̃t = Ea

∙R T
t
e−ρ(s−t)+

s
t
σ−2
hτ

dτ σ−2

hs
Ua (ws, as) ds

¸
. Now

σ−2

hτ
= σ−2

h0+τσ−2
= d lnht

dτ
=⇒ exp

³R s
t

σ−2

hτ
dτ
´
= exp (lnhs − lnht) = hs

ht
. Therefore

p̃t = Ea

∙Z T

t

e−ρ(s−t)
hs
ht
.
σ−2

hs
Ua (ws, as) ds

¸
=

σ−2

ht
Ea

∙Z T

t

e−ρ(s−t)Ua (ws, as) ds

¸
,

which, given the definition of p̃t, is equivalent to (15). When a = 0 for some t, then
(13) is not representable as (15).

Extending the HJB eqs to include η̂

The HJB equations defined in (19) and (21) can be extended to include η̂ and would
still be satisfied. To see this, define X , Y − A and g (X, t) , e−ρtη̂(X, t)/ρ. This
function satisfies the HJB equations below because

e−ρtη̂(X, t)+
∂g

∂t
+η̂X(X, t)

∂g

∂X
+
σ2t
2

∂2g

∂X2 = e−ρt
∙
η̂(X, t)− η̂(X, t)+

1

ρ
η̂t(X, t)+

1

ρ
η̂X(X, t)η̂(X, t)

¸
=

µ
e−ρt

ρ

¶
[η̂t(X, t) + η̂X(X, t)η̂(X, t)] = 0 ,

where the last equality follows from (7).
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Appendix C: Details of the piece-rate simulation in
Figure 7

As explained in the text, we simulate the piece rate model using a discrete-time
solutions and then choose periods to be short. We consider agents with a finite
lifetime horizon T and establish the properties of interest when T goes to infinity.

Last Period.–The Zero Profit Condition (ZPC) on the RHS of (36) holds when

b0,T = (1− b1,T )E
£
yT | yT

¤
= (1− b1,T ) (η̂T + a∗T ) .

Given the utility function in (20), the agent’s utility is maximized when he provides
full effort aT = 1, which is incentive compatible iff b1,t ≥ λ. Minimizing the income
variance yields

b0,T = (1− λ) (η̂T + 1) ,

b1,T = λ .

Previous Periods.–We have

Claim 1 The sequence {b1,t}Tt=1 is deterministic. Hence, output history and cross-
agent differences in beliefs η̂t affect only the mean, not the variance of wages

Proof. The proof is established recursively. From the discussion above, we know
that b1,T = λ, independently of the output history. We now establish that if {b1,s}Ts=t+1
is deterministic, so is b1,t. By the definition of preferences and by ZPC

U (ws, as) = exp (−θ [(1− b1,s) (η̂s + a∗s) + b1,sys − λas]) ,

where recommended a∗s and actual as efforts are allowed to differ. Given that ys is
independent of at for all s > t, we have

∂U (ws, as)

∂at
= −θ

µ
∂η̂s
∂at

¶
(1− b1,s)U (ws, as) + θ

µ
∂b1,s
∂at

¶
εsU (ws, as) .

The second term on the RHS is equal to zero under the premise that {b1,s}Ts=t+1 is
deterministic. Then after dividing by θ, the agent’s FOC reads

(b1 − λ)Et−1 [Ut] +
TX

s=t+1

βs−t
hε
hs
(1− b1,s)Et−1 [Us] = 0 . (54)

Observe that the premise is again required in order to take (1− b1,s) out of the
expectation term. Because the optimal contract minimizes the variance of income,
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the agent’s FOC also defines the optimal indexation to performance b1,t. Rearranging
yields the simplified optimality condition

b1,t = max (0, λ−Rt)

but if T is large, then after a certain point,

b1,t = λ−Rt , (55)

where

Rt =
TX

s=t+1

βs−t
hε
hs
(1− b1,s)

Et−1 [Us]

Et−1 [Ut]
. (56)

is the reputational concern. The ZPC implies that in every period

b0,t = (1− b1,t) (η̂t + a∗t ) ,

and so utilities along the equilibrium path are equal to

U (ws, as) = exp (−θ [η̂t + b1,tεt + a∗t (1− λ)]) .

According to our parametric assumption, conditional on beginning-of-date-t informa-
tion,

−θ [η̂s + b1,sεs] ∼ N
¡
−θη̂t, θ2

¡
h−1t−1 − h−1s−1 + b21,sσ

2
ε

¢¢
.

Furthermore, we know that full effort is sustainable at time T . Since incentives are
more easily provided in previous periods due to reputational concerns, full effort is
implementable at all t ≤ T , and will be recommended because the higher the action,
the better off the agent is. Hence we can set a∗t = 1 for all t ≤ T , implying that

Et−1 [Us] = − exp
µ
−θη̂t +

θ2

2

¡
h−1t−1 − h−1s−1 + b21,sσ

2
ε

¢¶
exp (1− λ) ,

and, since

Et−1 [Ut] = − exp
µ
−θη̂t +

θ2

2
b21,tσ

2
ε

¶
exp (1− λ) ,

we have
Et−1 [Us]

Et−1 [Ut]
= exp

µ
θ2

2

¡
h−1t−1 − h−1s−1 +

£
b21,s − b21,t

¤
σ2ε
¢¶

.

Substituting into (56) we finally obtain

Rt =
TX

s=t+1

βs−t
hε
hs
(1− b1,s) exp

µ
θ2

2

¡
h−1t−1 − h−1s−1 +

£
b21,s − b21,t

¤
σ2ε
¢¶

, (57)

which is independent of output history. Since b1,t = 1−Rt the claim is proved.
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The simulated equations.–We now simulate the difference-equation implied by
(55) and (57), which we derive as follows: Let bt stand for b1,t. Then taking the limit
in (57),

bt = λ−Rt

=
TX

s=t+1

βs−t
∙
(1− β)

λ

β
− hε

hs
(1− bs) exp

µ
θ2

2

¡
h−1t−1 − h−1s−1 +

£
b2s − b2t

¤
σ2ε
¢¶
(̧58)

= (1− β)λ− β
hε
ht+1

(1− bt+1) exp

µ
θ2

2

¡
h−1t−1 − h−1t +

£
b2t+1 − b2t

¤
σ2ε
¢¶

+
TX

s=t+2

βs−t
∙
(1− β)

λ

β
− hε

hs
(1− bs) exp

µ
θ2

2

¡
h−1t−1 − h−1s−1 +

£
b2s − b2t

¤
σ2ε
¢¶¸

But
TX

s=t+2

βs−t
∙
(1− β)

λ

β
− hε

hs
(1− bs) exp

µ
θ2

2

¡
h−1t−1 − h−1s−1 +

£
b2s − b2t

¤
σ2ε
¢¶¸

= exp

µ
θ2

2

¡
h−1t−1 − h−1t + [bt+1 − bt]σ

2
ε

¢¶
·

·
TX

s=t+2

βs−t
∙
(1− β)

λ

β
− hε

hs
(1− bs) exp

µ
θ2

2

¡
h−1t − h−1s−1 +

£
b2s − b2t+1

¤
σ2ε
¢¶¸

+

∙
1− exp

µ
θ2

2

¡
h−1t−1 − h−1t + [bt+1 − bt]σ

2
ε

¢¶¸ TX
s=t+2

βs−t (1− β)
λ

β

= exp

µ
θ2

2

¡
h−1t−1 − h−1t + [bt+1 − bt]σ

2
ε

¢¶
βbt+1 +

∙
1− exp

µ
θ2

2

¡
h−1t−1 − h−1t + [bt+1 − bt]σ

2
ε

¢¶¸
βλ

= βλ+ β exp

µ
θ2

2

¡
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Figure 9: b1,t when λ = 1/2 and T = 100

and Matlab solved it with the terminal condition bT = λ.

Mean wages and the standard-deviation band .–Since at = 1, mean wages are
unity at η̂ = 0. As Chernoff (1968) shows, the variance of η̂t is h

−1
0 − h−1t−1. The

piece-rate variance is σb1,t. Therefore the one-SD band isq
h−10 − h−1t−1 + σ2b21,t (59)

For Holmstrom’s model they are justq
h−10 − h−1t−1 (60)

Comparison to full commitment.–Figure (7) compares the above to a continuous-
time formulation with (ρ, σ) given. Taking period length to be ∆, the discrete-time
piece-rate model chooses the discount factor

σ2ε = ∆σ2 and β =
1

1 + ρ∆

and solve the discrete case for ∆ small. A preliminary simulation in Figure 9, with
T = 100 shows that b1,t shown showing them to rise quite rapidly to their limit of
λ = 0.5.
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