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Abstract

Prepayment systems, though benefiting utilities’ revenue recovery, could impose
additional burdens on disadvantaged households. This paper provides novel evi-
dence on how prepaid metering affects households’ electricity-temperature relation-
ship. Leveraging a novel dataset on 150,000 customers billing record in Bangladesh,
we find that households’ electricity consumption becomes remarkably less responsive
to temperature after they are enrolled in prepayment systems. Larger effects are doc-
umented among households with lower wealth or education levels. Prepaid house-
holds tend to engage in mental accounting on their electricity consumption especially
during hot seasons. Our results implies that prepaid metering might have unintended
impact on energy poverty and climate justice.
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1 Introduction

As a technological solution to non-payment in billing systems, prepaid meters are increas-

ingly deployed by the electric utility sectors in both developed and developing countries.

Previous studies have documented considerable advantages of prepaid metering, includ-

ing higher energy savings and increased revenue recovery (Jack and Smith, 2015, 2020;

Qiu, Xing and Wang, 2017; Beyene et al., 2022). However, there is growing concern about

the equity consequences of prepaid metering and its impact on energy poverty, particu-

larly among disadvantaged households (Kambule and Nwulu, 2021). Prepayment sys-

tems can impose additional burdens on poor people. Consumers in debt or with inter-

mittent income might face disconnections of service if they are temporarily unable to

purchase credits. Low-income households may also under-utilize electricity, ultimately

returning to consumption of suboptimal fuels, like biomass or Kerosene, with relatively

lower costs.

Energy insecurity associated with prepaid metering can be exacerbated during tem-

perature extremes under climate change. Households rely on energy-intensive heating or

cooling technologies to adapt to cold or hot weather. The potential high energy bills can

be a financial burden for low-income households, who may end up with insurmountable

energy debt and lose access to energy services due to non-payment. With prepayment

systems, households are forced to engage in self-control and to shrink their energy con-

sumption to avoid auto-disconnections. As a result, these households might have limited

adaptive capacity to temperature extremes and become more vulnerable to temperature-

related harms. Despite emerging evidence on consumption and revenue recovery, little is

known about whether prepaid metering will disproportionately affect poor households

and to what extent can limit their capacity for climate adaptation.

In this paper, we examine how prepayment impacts household electricity consump-

tion in response to temperature extremes and investigate the distributional effects on

households’ climate adaptation capacity in Bangladesh, one of the most vulnerable coun-
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tries to climate change. Studying this question is empirically difficult for two main rea-

sons. First, the utility’s decision to deploy prepaid meters could be endogenously de-

termined by region-specific or customer-specific characteristics that are correlated with

electricity consumption patterns, such as historical records on revenue recovery or bill

non-payment. Second, obtaining granular data on household electricity consumption

across wide climate zones is notoriously difficult, especially in developing countries.

We overcome these challenges by exploiting two sources of exogenous variation –

the staggered introduction of prepayment systems and temperature. From 2015, elec-

tric utility companies started switching from postpaid to prepaid systems in large-scale

across the major urban areas in Bangladesh. By 2020, almost one-third of urban house-

holds have been enrolled in the prepayment system. The implementation of prepayment

was a mandatory program by the government. The rollout process of prepaid meters to

different locations was mainly determined by administrative capacities, which therefore

provides plausible exogenous variations across locations and over time. Therefore, we

employ a difference-in-differences (DiD) design to estimate the impact of prepayment on

the electricity-temperature relationship. Conceptually, we compare, in terms of how elec-

tricity consumption responds to temperatures, among households in the postpaid group

to those in the prepaid group before and after the implementation of prepayment. Our

regression models include a rich set of fixed effects and interaction terms to flexibly con-

trol for time-invariant or household-invariant differences in the electricity-temperature

relationships.

Our empirical analyses take advantage of a novel dataset on administrative elec-

tricity billing record for residential customers from five districts of Bangladesh: Dhaka,

Chittagong, Khulna, Bagherhat, Shatkhira and Pirojpur. The data contains 10 million ob-

servations on monthly electricity consumption from January 2014 to November 2019 for

a random sample of 150,000 households. We supplement this data with prepaid meter-

ing switching dates from the electric utility companies, socioeconomic and demographic
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information from the census, and weather variables from the Bangladesh Meteorological

Department.

We begin by confirming the electricity-temperature response function and the impact

of prepayment on electricity consumption within a single model. Consistent with central

results of prior studies, additional days with hot temperatures lead to a significant in-

crease in electricity consumption in the current billing period. In addition, we document

over 15% decline in household electricity usage after they switch to a prepayment billing

system.

Next, we explore how prepayment changes the electricity-temperature relationship

by adding an interaction term of the prepayment indicator and a flexible function of

monthly temperature measures. We find that the implementation of prepayment remark-

ably mitigates the relationship between hot temperatures and electricity usage. House-

hold energy spending becomes much less responsive to extreme weather after prepaid

metering. The results survive a series of robustness checks that address confounding fac-

tors or use alternative measurements of monthly weather patterns. More importantly,

heterogeneity analysis suggests that this effect is more pronounced among poor house-

holds who now have almost muted spending responses, and among regions with a hot

historical climate. The differential impacts on poor and rich households imply an energy

poverty gap, which could be explained by foregone space cooling during hot weather.

We are now collecting household survey data, and in the future steps, we plan to investi-

gate how prepaid metering affects household appliance adoption and other expenditures

during hot temperatures.

Taken together, these results provide novel evidence on how prepaid metering dis-

proportionately affects poor households and limits their adaptation capacity to hot tem-

peratures under climate change. We contribute to the literature on energy poverty and

climate justice, which we show could be exacerbated by prepayment systems under ex-

treme weather (Longden et al., 2021; Barreca, Park and Stainier, 2022; Doremus, Jacqz
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and Johnston, 2022). Our findings imply that the implementation of prepayment sys-

tems, though benefiting utilities’ revenue recovery, could impose huge burdens on disad-

vantaged households especially among temperature extremes, leaving them exposed to

higher climate-related risks.

2 Institutional Background

2.1 Climate Crisis in Bangladesh

As a country, Bangladesh contributes only 0.56% of the global greenhouse gas emissions.

The average person in Bangladesh emits 0.5 metric tons of CO2 per year, which is much

lower compared to developed countries. Despite the tiny proportion of carbon emis-

sions, Bangladesh – with low elevation, high population density and weak infrastructure

– ranks the seventh of countries most vulnerable to climate devastation (Eckstein, Künzel

and Schäfer, 2021).

Although Bangladesh has made substantial efforts and investments in climate adap-

tation, it continues to face severe and increasing climate risks. Climate change intensifies

extreme weather events, like heat waves and flooding, which bring remarkable damages

to the economy. During 2000 – 2019, Bangladesh encountered $3.72 billion in economic

losses and witnessed 185 extreme weather events due to climate change. By 2050, a third

of agricultural GDP could be lost and 15 to 30 million Bangladeshis could become in-

ternal climate migrants and be displaced from coastal areas (World Bank Group, 2022).

Severe flooding could cause a 9 percent reduction in GDP. These climate-related costs are

expected to rise over time, compounded by higher heat, humidity, and health impacts.

Evolving climatic conditions also pose a threat to physical and mental health, negatively

affecting human capital and productivity. Due to extreme heat induced by global warm-

ing, Bangladesh loses 7 billion working hours in a year (Parsons et al., 2021).

Poor and vulnerable populations will be hit by climate change the hardest. Disadvan-
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taged people have limited resources to invest in adaptation to extreme weather events.

Consequently, heat waves, sea level rise, powerful cyclones and devastating floods de-

stroy the lives and livelihoods of the poorest people. Rural families in Bangladesh are

estimated to be spending $2 billion annually to avoid or recover from climate damages

(Eskander and Steele, 2019).

2.2 Prepaid Metering

As a smart technological solution, prepaid electricity metering can address non-payment

problems, reduce system losses, avoid electricity thefts, and improve load management.

Prepaid meters operate on a debit basis. Customers should purchase credits upfront and

load the amount into their electricity meters. The available credits will be automatically

deducted from the meters when there is electricity usage. Once the money is exhausted,

the electricity will be automatically disconnected. To resume power supply, households

need to top up the meter again with credits.

Bangladesh’s large-scale implementation of prepaid metering started in 2015. Elec-

tricity distribution companies replaced existing postpaid system with prepaid electricity

meters among urban households. Figure 1 shows the share of households enrolled in pre-

payment over time on a monthly basis. Prepaid metering expanded rapidly since 2017,

reaching around 40% of total share of households in our sample by late 2019.

The staggered rollout of prepaid meters at different locations followed a random im-

plementation process, which therefore provides plausible exogenous variations. Accord-

ing to discussions with DESCO, DPDC, BPDB, WZPCL, Power Division, and MPENR

officials, the implementation of prepaid metering does not depend on any household or

location specific characteristics. Rather, they considered their own administrative capac-

ity, e.g., how easy and hassle-free to implement the prepaid metering in a particular area,

when determining the rollout process.

This metering replacement is not voluntary. Once utilities start to deploy prepaid
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meters at a certain distribution area, all of the residents in that region are forced to switch

to the prepaid system. Households are usually given notice two weeks in advance that

their electricity will be disconnected and the existing postpaid meter will be replaced by

a prepaid one. Since this is a mandatory program by the government, households do not

have an option to opt-out. Utility records also suggest that, once the meter replacement

starts in a region, all of the residents in that area will be covered in a short period, which

mitigates the concern of potential spillovers. More details about prepaid metering rollout

are provided in Appendix A1.

2.3 Temperature, Prepayment, and Electricity Consumption

The relationship between temperature and electricity consumption has been studied ex-

tensively in the literature across different countries (Longden et al., 2021; Auffhammer,

2022). In general, electricity usage has a positive link with temperature. However, ex-

treme temperatures can significantly impact electricity use for poor households. In par-

ticular, it incurs additional economic stress that often led to electricity disconnection (Bar-

reca, Park and Stainier, 2022; Cicala, 2021).

Recent literature found that prepayment can influence households to use less elec-

tricity (Allcott and Mullainathan, 2010; Jack and Smith, 2020; Das and Stern, 2020).The

behavioral economic theory suggests that when households use a prepayment system in

their consumption plan they pay more attention to tracking their consumption or pay-

ment than a postpaid system (Gourville and Soman, 1998; Chen, Kök and Tong, 2013;

Hochman, Ayal and Ariely, 2014; Tiefenbeck et al., 2019). In relation to that, when house-

holds use prepaid meter in their electricity consumption, they consider several factors,

such as transaction costs, risk of auto-disconnection, credit constraints and budgeting.

Evidence also suggests that both energy insecurity and energy saving caused by ex-

treme temperatures may have fatal effects on health (He and Tanaka, 2023; Cicala, 2021).

Poor people who are unable to afford adequate cooling during hot summers may be at
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increased risk for heatstroke, and other heat-related illnesses. Moreover, extreme temper-

atures can impact work productivity.

3 Data

The empirical analysis draws on three unique datasets obtained from several sources,

including the universe of residential customer electricity monthly billing information,

prepaid vending information, and socio-economic information of census regions. We

synthesise all these dataset and construct a balanced panel of household-level monthly

electricity billing record from January 2014 to November 2019, resulting in a total of over

10 million observations. This section briefly describes the main data sources, construction

of variables, and sample selection. We provide more details in Appendix A2.

3.1 Electricity Consumption and Prepaid Metering

The residential customer monthly electricity consumption data is extracted from four ma-

jor utility in Bangladesh: Dhaka Electricity Supply Company Limited (DESCO), Dhaka

Power Distribution Company Limited (DPDC), Bangladesh Power Development Board

(BPDB) and West Zone Power Distribution Company Limited (WZPDCL) whose territory

encompassed approximately 50 percent of total Bangladeshi urban residential customers

(Power Division, 2021). This administrative dataset includes details of monthly electric-

ity use and payment records for the full population of residential households in Dhaka,

Chittagong, and Khulna regions from January 2014 to November 2019. We extract a ran-

dom sample of 150,000 households and obtain their information on unique ID, location,

electricity consumption, demand charge, electricity bill (BDT), tariff type, sanction load,

bill cycle, meter phase, distribution location and feeder location. Data on prepaid meter

switching date for each household are obtained from the corresponding electricity distri-

bution companies’ vending information.
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3.2 Weather

The weather data comes from the National Centers for Environmental Information at

the National Oceanic and Atmospheric Administration (NOAA). We use Global Surface

Summary of the Day (GSOD) product that is derived from the Integrated Surface Hourly

(ISH) dataset. GSOD reports global station-level weather data on a daily basis since 1929.

We extract data from the 63 stations covering Bangladesh from 2014 to 2019. The data

contains geographic location of each weather station and daily summaries on tempera-

ture, precipitation, dew point temperature, and wind speed. Figure B1 shows the weather

stations in Bangladesh and our sample districts.

The electricity consumption data and weather data are merged by year, month, and

sub-districts (i.e., upazila), the smallest administrative geographic unit available for each

household. We transform weather data from the station to sub-district level using an

inverse-distance weighting method. Specifically, we calculate the weighted average of

weather measures from the stations located within a 100km radius of each sub-district’s

centroid. The weights are defined as the inverse distance between each station and the

centroid.

3.3 Demographics

To obtain households socio-economic and demographic information, we matched each

household’s electricity feeder location with nine-digit administrative unit in the 2011

Bangladesh Census (BBS, 2011). This census data includes mean household size, housing

quality, electricity access, poverty ratio, education achievement and many other variables.

3.4 Descriptive Evidence

The final merged sample is a balanced panel from January 2014 to November 2019 with

150,000 households from 96 subdistricts in Bangladesh. It has over 10 million observa-
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tions. Summary statistics for electricity consumption and weather variables are provided

for all households over all months in our sample in Table 1. Household average monthly

electricity consumption is 290 kWh, corresponding to 1,667 BDT billed amount. Due to

the hot climate, the average monthly temperature in our sample region is 80◦F.

Figure B2 shows the distribution of daily average temperature and monthly total

precipitation in our sample regions. We assign these temperatures into a series of 5◦F

temperature bins and plot in Figure B3 the distribution averaged across regions and years

in our sample. The height of each bar represents the number of days in a year with daily

average (or maximum) temperature falling in each temperature bin. On average, over 200

days in a year have daily average temperature above 80◦F. As illustrated in Figure B4, the

regions in our sample, especially the southwest districts, experience a substantial number

of hot days.

Box plots of daily average temperature, precipitation, electricity consumption, and

bills over each calendar month are presented in Figure 2. The average daily tempera-

ture rises and maintains at a level above 80◦F from April to September. These months

also have lots of precipitations. Similarly, household electricity consumption increases

remarkably during these hot months.

4 Empirical Strategy

The rollout process of meter replacement in Bangladesh provides plausible exogenous

variations across locations and over time in terms of the electricity bill payment method.

Therefore, we employ a difference-in-differences (DiD) design to study the causal impact

of prepayment on the relationship between temperature and household electricity con-

sumption. We first estimate the direct effect of prepayment and temperature using one

regression model, and then explore the change in electricity-temperature response func-

tion by adding interaction terms.
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4.1 Basic Model

We begin by investigating the direct effect of both prepayment and temperature on house-

hold electricity consumption in a single econometric model. Our unit of analysis is the

household-year-month. The following equation describes the regression model, with sub-

scripts i and t representing household and time.

ln qit = αPrepaidit + β′g(Tempit) + γ′Xit + ϕi + δy(t) + τm(t) + εit. (1)

The outcome of interest qit is the electricity consumption (kWh) or billed amount

(BDT). The dummy variable Prepaidit is an indicator for whether household i has enrolled

in prepaid metering at time t. The vector g(Tempit) is some function that aggregates

daily temperatures to the monthly level. We consider two forms of g(·) in the following

analysis: monthly average temperature; a vector of temperature bins measuring whether

the monthly average temperature falls into a specific temperature interval. In the main

specification, we estimate models that include two indicators for whether the monthly

average temperature falls into 80-85◦F or above 85◦F. The reference group is the months

with average temperature below 80◦F. We also test models that contain more temperature

bins to flexibly estimate the nonlinear temperature effect.

We add a vector of control variables, Xit, which vary across households and months.

They include quadratic functions of monthly precipitation, dew point, and wind speed.

To account for unobservable confounding factors, we control for household fixed effects

ϕi to capture time-invariant differences across households. Since both electricity con-

sumption and temperature exhibit substantial seasonality, We also include year fixed ef-

fects δy(t) and calendar month fixed effects τm(t). We do not control for year-by-month

fixed effects to avoid absorbing too much weather variation. In robustness checks, we

add region-specific year and calendar month fixed effects to allow differential seasonality

across regions. Lastly, εit is the idiosyncratic error term. Standard errors are clustered at
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the feeder line level.

The first coefficient of interest is α that captures the average treatment effect of pre-

payment on household electricity consumption. The identification of α requires the par-

allel trends assumption for a DiD design: trends in electricity consumption would have

been similar between prepaid households and postpaid households in the absence of the

treatment. We provide support of this assumption by estimating an event study model

and showing no differential trend prior to the prepaid meter rollout.

The second coefficient of interest is β that describes how electricity consumption

changes in response to temperature. The identifying assumption is that, within a house-

hold, weather realizations are uncorrelated with other unobserved determinants of elec-

tricity consumption. Conditional on year and month fixed effects and other controls,

weather realizations on generally considered to be random.

4.2 Interaction Model

To identify the interaction effect between prepayment and temperature, we leverage a

DiD design to estimate how prepayment affects the electricity-temperature relationship.

The specification is described below.

ln qit = β′g(Tempit) + η′Treati × g(Tempit) + θ′Prepaidit × g(Tempit)

+ κi × Prepaidit + γ′Xit + ϕi + δy(t) + τm(t) + εit. (2)

This interaction model is distinct from the basic model in three ways. First, we in-

troduce two interaction terms: (1) between the indicator for whether a household is ulti-

mately enrolled in prepayment and the temperature function (Treati × g(Tempit)), which

controls for fixed differences in the electricity-temperature relationship between the treat-

ment group (i.e., households ultimately enrolled in prepayment) and the control group

(i.e., households in postpaid system for the whole sample period); and (2) between the
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prepayment dummy and the temperature function (Prepaidit × g(Tempit)). Second, in

addition to previous weather controls, we fully interact these weather variables with

the treatment group dummy and the prepaid indicator. This allows the effect of other

weather conditions to vary across groups and treatment periods. Third, we control for

heterogeneity in the prepayment effect across all households by including the interaction

between household fixed effects and the prepaid indicator (κi × Prepaidit). Adding this

term is to make sure the electricity consumption of different households with different

payment methods is normalized to the same level during the months with the reference

temperature category. We consider alternative time fixed effects in robustness checks.

The coefficient of interest in Equation (2) is θ. It captures the change in electricity-

temperature relationship from before to after prepaid metering, relative to the change in

electricity-temperature relationship among households who are never enrolled in prepay-

ment at all. The additional identification assumption requires that the rollout of prepaid

metering is independent of the electricity-temperature relationship, conditional on our

control region. Since we are relying on random weather shocks, there is little reason to

be concerned that temperature variation is related to the deployment of prepaid meters.

Nonetheless, we show that estimates of the direct effect of prepayment and temperature

are stable across versions of Equation (1), where both treatments are included and each is

included separately.

Analogous to a standard DiD approach, another identifying assumption is that, in

the absence of prepaid metering, the electricity-temperature relationship should exhibit

similar trends between the treatment and control group. In later analyses, we separately

estimate the electricity-temperature relationship for the control group and the treatment

group during different event time windows to provide support for this assumption.
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5 Results

5.1 Direct Effect of Prepayment and Temperature

5.1.1 Basic Model

Table 2 presents the results of the most basic models. In the top panel, we use the log of

electricity consumption as the outcome variable, and all models include the set of weather

controls and fixed effects described in Equation (1). These models vary in whether and

how the effects of each treatment (i.e., prepayment and temperature) are incorporated.

Column (1) starts with a simple model that regress electricity consumption on the

prepaid indicator, excluding all temperature variables. The coefficient estimate indicates

that prepaid metering reduces household electricity consumption by 12.2%. Relative to

the mean electricity usage of 290 kWh, this corresponds to a 35 kWh decrease in monthly

consumption. Column (2) reports estimate from a simple model for the effects of tem-

perature on electricity consumption, excluding any measures of prepaid metering. The

coefficient estimate suggests that, an 1◦F rise in monthly average temperature leads to

an 1% increase in household electricity consumption. The statistical power is extremely

high for all estimates in columns (1) and (2), which is important for the estimation of

interaction effects that follow.

In column (3), we include both the prepaid indicator and temperature in a single re-

gression model. The coefficient estimates are almost identical to those from the simple

models where only one of the treatment variables is included. The result reassures that

the variation used to identify the effects of prepayment and temperature on electricity

consumption are independent of each other. Therefore, the identification of interaction

effects in the following analyses is unlikely to be confounded by some unaddressed inter-

dependence.

The estimates in columns (4) and (5) use models where the single temperature vari-

able is replaced by two indicators for whether the monthly average temperature falls
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into 80-85◦F or is above 85◦F. The results here reveal the nonlinear effect of temperature,

i.e., electricity consumption increases more during hotter months. The coefficient esti-

mates indicate that, relative to the months with average temperature below 80◦F, electric-

ity consumption increases by 8.2% (10.2%) during the months with average temperature

at 80-85◦F (above 85◦F). The bottom panel, with the log of electricity bill as the outcome

variable, yields similar results.

5.1.2 Dynamic Effects and Nonlinear Effects

We then estimate more flexible models that include event dummies of prepaid metering

rollout to trace the dynamic effect and include more temperature category indicators to

better capture the nonlinear temperature effect. Figure 3 shows the estimates of the single-

month event dummies relative to the initial rollout of prepaid metering. These estimates

provide more details on the dynamic effect of prepayment. Prior to the rollout of pre-

paid metering, there is no meaningful difference in the trend of electricity consumption

between the treatment group and the control group. After prepaid metering, we see an

immediate and remarkable decline in household electricity consumption, and the effect

persists one year later.

Figure 4 presents flexible estimates of temperature effects from the model with six

2◦F temperature bins. We aggregate the bins with temperature below 75◦F or in 75-80◦F

to guarantee sufficient sample size in those categories. The results characterize the non-

linear effect of temperature on electricity consumption. Relative to months with average

temperature below 75◦F, household electricity consumption increases dramatically in hot-

ter months. In particular, there is a sharp jump in electricity consumption when monthly

average temperature is above 80◦F.
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5.1.3 Heterogeneous Effect of Prepayment by Monthly Temperature

On average, prepaid metering leads to a remarkable decline in household electricity con-

sumption. An interesting question is whether the effect of prepaid metering differs across

months with various temperature levels. To explore the heterogeneous effects, we add in

Equation (1) interactions between the prepaid indicator and the temperature bins. The left

panel of Figure 5 plots the coefficient estimates and their corresponding 95% confidence

intervals for electricity consumption from households with prepaid versus postpaid me-

tering during months with different temperature levels. We consider months with av-

erage temperature below 75◦F as the reference group and hence the other estimates are

relative to the electricity consumption during the reference months.

We document consistent negative effect of prepaid metering on electricity consump-

tion under all temperature levels. Prepaid households’ electricity-temperature response

during 80-88◦F months becomes flatter. During months with temperature below 80◦F,

prepaid households consume remarkably less electricity compared to those postpaid house-

holds. In addition, prepaid households’ electricity consumption during the 80-88◦F months

is at a similar level of postpaid households’ consumption during months with cooler

weathers.

5.2 Effect of Prepayment on Electricity-Temperature Relationship

We have shown that prepaid metering significantly reduces the level of household elec-

tricity consumption under all temperature conditions. In this section, we explore how

prepaid metering affects the electricity-temperature response function. We start with

showing graphical evidence using one group of households who are enrolled in prepaid

metering in the same month. Then, we estimate the interaction model to formally identify

the changes in electricity-temperature relationship and explore the heterogeneous effects

by household consumption and education levels. Lastly, we explore the bunching fea-
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tures in household’s electricity consumption distribution and investigate how prepaid

metering intensifies bunching.

5.2.1 Graphical Evidence

To demonstrate how prepaid metering could affect the electricity-temperature relation-

ship and to illustrate our identification strategy, we plot the electricity consumption of

households who are enrolled in prepaid metering in January 2018 (henceforth the 2018m1

group) and households who are never enrolled during our sample (i.e., the control group)

in Figure 6. The coefficient estimates for different monthly temperature bins come from

separate regressions with household and year fixed effects using one group of households

over either the pre-2018 or post-2018 period.1

Before 2018, the electricity-temperature response functions are virtually similar be-

tween these two groups of households. After 2018 when households in the 2018m1 group

had been enrolled in prepaid metering, their electricity-temperature relationship becomes

significantly flatter. In contrast, the electricity-temperature response of households in

the control group does not change much. These results provide clear evidence that pre-

paid metering makes household electricity consumption less responsive to temperature.

This graph also intuitively illustrates the key idea of our strategy to identify the causal

impact of prepayment on household electricity consumption responses: comparing the

electricity-temperature relationship between households in the treatment group and con-

trol group and before and after prepaid meter rollout.

5.2.2 Main Results

Motivated by the graphical evidence, we estimate the interaction model in Equation (2) to

explore the effect of prepayment on the electricity-temperature response function. Table 3

1We do not include calendar month fixed effects to avoid absorbing too much variation in monthly
temperature, as we are using sub-samples for the pre-2018 and post-2018 period separately.
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shows the corresponding results. All columns include household-specific treatment dum-

mies, year fixed effects, and calendar month fixed effects. Column (1) presents estimates

of the model using monthly average temperature. The coefficient on the Tavg×Prepaid

interaction captures the change in the effect of temperature on electricity consumption

that can be attributed to prepaid metering. It yields a negative and statistically signif-

icant estimate, suggesting that prepaid metering reduces the effect of 1◦F increase in

average temperature on electricity consumption by 40%. In column (2), we measure

the temperature using two bins (80-85◦F and >85◦F) to better capture the nonlinearity.

The reference group is electricity consumption during months with average tempera-

ture below 80◦F. Similarly, we find that prepaid metering significantly flattens household

electricity-temperature response. Larger effect is documented in months with hotter tem-

perature. Specifically, after prepaid metering, households consume 25% less electricity

during months with temperature in 80-85◦F and 45% less electricity during months with

temperature above 85◦F. In the last two columns, we estimate the effect using electricity

bills (BDT) as the outcome variable and find similar results.

To better characterize the shape of the electricity-temperature response function and

study how it is affected by prepaid metering, we estimate a more flexible model with

six temperature bins that indicate whether the monthly average temperature falls into a

specific interval. Figure 7 plots the coefficient estimates of these temperature bins and

their 95% confidence intervals for the postpaid households (in gray) and prepaid house-

holds (in blue), respectively. Consistent to our previously findings, households’ electric-

ity consumption becomes in-responsive to temperature changes after prepaid metering.

For postpaid households, their electricity consumption sharply increases when monthly

temperature is above 80◦F and rises dramatically with temperature. In contrast, for pre-

paid households, we show an almost flat relationship between electricity and temperature

when it is below 86◦F, and the electricity consumption slightly increases after that. These

results indicate that, after prepaid metering, households are likely to conserve or under-
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utilize electricity even in hot days, which might limit their adaptation capacity to extreme

temperatures.

In Figure B7, we also separately plot the coefficient estimates for households in the

treatment group over the period prior to prepaid meter rollout. Their pre-treatment

electricity-temperature response function is virtually similar to households in the control

group who are never enrolled in prepayment during our sample period. This result pro-

vides further support that our identified change in electricity-temperature relationship is

mainly attributed to prepaid metering, rather than other differences between these two

groups of households.

Next, we test whether there are differential trends in electricity-temperature responses

between these two groups of households prior to the prepaid metering. In a similar spirit

of the event study framework, we separately estimate the electricity-temperature relation-

ship for households in the control group and the treatment group during various event

time windows. Specifically, for households in the treatment group, we divide the sample

into five time windows relative to the initial month of meter replacement: over 36 months

ago (<-36), 1-36 months ago ([-36,-1]), 0-18 months later ([0,18]), and over 18 months later

(>18). Each time window contains at least 18 months to guarantee sufficient sample size

and weather variations for the estimation of electricity-temperature response. Figure 8

shows the coefficient estimates and their 95% confidence intervals. For the months prior

to the prepaid meter rollout (i.e., <-1), the electricity-temperature relationship of house-

holds in the treatment group is comparable to that of the control group. After prepaid

metering, treated households’ electricity consumption starts becoming less responsive to

temperature changes, and their electricity-temperature relationship becomes much flatter

18 months later.
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5.2.3 Robustness Checks

We consider a series of alternative model specifications to check the robustness of our

findings. Table 4 presents the results for electricity consumption. In column (1), we con-

trol for region-specific year and calendar month fixed effects to account for local shocks

or differential seasonality across regions that might confound our identification. Along

this line, to capture the potentially different seasonal electricity consumption patterns

between the treated households and control households within a region, we add group-

specific year and calendar month fixed effects in column (2). In column (3), we estimate a

more flexible model that controls for individual-level seasonality in electricity consump-

tion using the household-specific calendar month fixed effects. Lastly in column (4), to

address the concern that our estimated change in electricity-temperature response could

be attributed to other shocks that are common to all households over time, e.g., the im-

provement in electricity distribution infrastructure, we add interactions between temper-

ature variables and year dummies in the regression. We also perform similar robustness

checks using electricity bills as the outcome in Table 5. In general, our conclusion still

hold.

5.2.4 Heterogeneous Effects

The effect of prepayment on electricity-temperature responses could vary across house-

holds with different demographic or socio-economic characteristics. To explore the het-

erogeneous effect, we estimate the model in Equation 2 separately for households with

different baseline electricity consumption levels or education achievements. Table 6 re-

ports the coefficient estimates. The first four columns show the results for electricity con-

sumption while the last four columns show the results for electricity bills. We model the

temperature function using monthly average temperature in Panel A while using tem-

perature bins in Panel B.

We first consider the heterogeneity by baseline electricity consumption level, which
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can be considered as a proxy for household wealth. Households in our sample are clas-

sified into two groups based on whether their average monthly electricity consumption

in 2014 (i.e., prior to the start of prepaid metering) is above or below the median. We

find that the coefficient estimates of the temperature function itself exhibit similar values

across these two groups. However, the estimates of those interaction terms yield much

smaller magnitude for households whose baseline electricity consumption is above the

median. The results indicate that the electricity-temperature responses of households

with originally high electricity consumption are less affected by prepaid metering, com-

pared to households with originally low electricity consumption.

Next, we explore how the effect differs across households with different education

levels. We are not able to observe household-level education background directly but in-

stead leverage subdistrict-level average education achievement using the 2011 Bangladesh

census. Based on the census data, we calculate the percentage of adults who have at

least completed primary education in each subdistrict, and then classify our sample re-

gions into two groups based on whether their average primary education achievement

rate is above or below the median. The results suggest that, regions with higher educa-

tion achievement rates witness a larger effect of prepayment on flattening household’s

electricity-temperature responses.

Figure 9 shows the heterogeneity analysis using flexible models with six tempera-

ture indicators. Panel A plots the results by baseline consumption level, where we see an

almost completely flat electricity-temperature relationship for prepaid households that

are in the low consumption group. The electricity consumption of households with high

baseline consumption, though becomes less responsive to temperature after prepaid me-

tering, is still steeper that the low-consumption households. In Panel B, we demonstrate

that regions with lower average education level witness a larger effect of prepayment

on flattening household electricity-temperature responses. Combining these results, we

show that vulnerable households, that are poor or less-educated, are affected by prepaid
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metering in a greater extent. Their electricity consumption becomes much in-responsive

to temperature increase after they are enrolled in prepayment systems. Therefore, pre-

paid metering could exacerbate the energy insecurity and climate injustice problems by

limiting poor households’ electricity consumption and lowering their adaptation capacity

to mitigate damages from extreme weather events.

5.2.5 Bunching in Electricity Consumption

To provide some insights on the underlying mechanisms, we explore how prepaid me-

tering changes in the bunching patterns in the distribution of household’s electricity con-

sumption during different seasons. Both the prepaid and postpaid households face the

same nonlinear tariff structure. There are six tariff blocks divided by the electricity con-

sumption at 75, 200, 300, 400, and 600 kWh (see B5).

In Figure 11, we plot the distribution of electricity consumption for three subsam-

ples: (i) households in the control group who are never enrolled in prepayment over our

sample period; (ii) households in the treatment group for the period prior to the prepaid

meter replacement; and (iii) households in the treatment group for the period after the

prepaid meter replacement. We find that, the distribution of electricity consumption is

virtually smooth, even around those tariff structure cutoffs, for control households or

treated households in the postpaid period. In sharp contrast, we see a lot of bunching in

the distribution of electricity consumption for treated households in the prepaid period.

This figure provides suggestive evidence that, after prepaid metering, households tend to

engage in mental accounting regarding their electricity consumption to avoid triggering

a higher tariff level.

In Figure 12, we further break down the distribution of electricity consumption for

households in the treatment group into four subsamples, depending on whether they

are currently in prepaid versus postpaid system over the summer (April to September)
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versus winter (October to March) season.2 The top panels show that, the distribution

of electricity consumption is quite smooth during both seasons when households are still

using the postpaid system. After they are enrolled in prepayment, the distribution pattern

changes dramatically with more bunching. In particular, the bunching pattern becomes

even more intensified during summer seasons, when households expect to consume more

electricity and therefore pay more attention to their bills.

6 Conclusion

Though considered as a technological solution to bill non-payment, prepayment systems

could disproportionately affect poor people and induce them to under-utilize electric-

ity, which might ultimately make them vulnerable to extreme environmental conditions.

This paper provides novel estimates on the effect of prepaid metering on households

electricity-temperature responses. We find that households’ electricity consumption be-

comes remarkably less responsive to temperature changes. The effect is larger among

households with lower wealth or education levels. Our mechanism analyses reveal that

prepaid households tend to engage in mental accounting and conserve electricity usage

especially in hot seasons. Our findings suggest that, prepaid metering can bring huge

burdens to disadvantaged households especially during temperature extremes, which

further limits their adaptation capacity to mitigate weather-related damages and exacer-

bate the climate injustice issue.

2In Figure B8, we show similar results when classifying months by whether their average temperature
is above versus below 85◦F.
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Figures and Tables

Figure 1: Rollout of Prepaid Metering

Notes: Figure shows the rollout of prepaid metering on a monthly basis.
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(a) Daily Average Temperature (b) Daily Precipitation

(c) Electricity Consumption (d) Electricity Bills

Figure 2: Monthly Patterns of Weather and Electricity Consumption

Notes: Figure shows the box plots of daily average temperature, daily precipitation, electricity consumption,
and electricity bills over calendar months.
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Figure 3: Dynamic Effect of Prepayment on Electricity Consumption

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for the
event dummies. One month prior to the prepaid metering is considered as the reference group and their
coefficients are normalized to 0.
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Figure 4: Relationship between Electricity Consumption and Temperature

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins. Months with average temperature below 75◦F is considered as the reference group and their
coefficients are normalized to 0.
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Figure 5: Heterogeneous Effect of Prepayment by Monthly Temperature

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins. In the left panel, electricity consumption of postpaid households during months with average
temperature below 75◦F is considered as the reference group and the coefficient is normalized to 0.
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Figure 6: Electricity Consumption by Group and Temperature for the 2018-Jan Wave

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins.

30



Figure 7: Effect of Prepayment on Electricity-Temperature Relationship

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins.
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Figure 8: Dynamic Effect of Prepayment on Electricity-Temperature Relationship

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins.
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(a) By Electricity Consumption

(b) By Education

(c) By House Quality

Figure 9: Heterogeneous Effect of Prepayment on Electricity-Temperature Relationship

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins.

33



(a) By Poverty Ratio

(b) By Household Size

Figure 10: Heterogeneous Effect of Prepayment on Electricity-Temperature Relationship
– cont’d

Notes: Figure shows the coefficient estimates and their corresponding 95% confidence intervals for temper-
ature bins.
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Figure 11: Distribution of Electricity Consumption by Group & Payment Method

Notes: Figure shows the distribution of electricity consumption by different groups of households enrolled
in postpaid versus prepaid systems.
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Figure 12: Distribution of Electricity Consumption by Payment Method & Season

Notes: Figure shows the distribution of electricity consumption for households in the treatment group by
payment method and season.
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Table 1: Summary Statistics

Variables N Mean SD Min Median Max

Electricity Consumption (kWh) 10,650,000 290 221 00 233 3,000
Electricity Bill (BDT) 10,650,000 1,667 1,805 0,000 1,138 189,509
Monthly Average Temperature (F) 10,650,000 79.9 6.3 61.8 82.3 90.4
Monthly Maximum Temperature (F) 10,650,000 88.1 5.1 74.4 89.7 99.5
Precipitation (inch) 10,650,000 0.2 0.3 0.0 0.1 2.1
Dew Point (F) 10,650,000 70.3 8.1 52.7 73.8 80.9
Wind Speed (knot) 10,650,000 2.8 1.7 0.1 2.4 10.6

Notes: The last five columns show the mean, standard deviation, minimum, median, and maximum of each vari-
able.
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Table 2: Effects of Prepayment and Temperature on Electricity Consumption

(1) (2) (3) (4) (5)

Dep. Var.: Electricity Consumption (kWh)
Prepaid -0.122*** -0.122*** -0.123***

(0.007) (0.007) (0.007)
Tavg 0.010*** 0.010***

(0.000) (0.000)
80-85F 0.082*** 0.086***

(0.003) (0.003)
> 85F 0.102*** 0.107***

(0.004) (0.004)

Dep. Var.: Electricity Bill (BDT)
Prepaid -0.083*** -0.083*** -0.084***

(0.007) (0.007) (0.007)
Tavg 0.015*** 0.015***

(0.001) (0.001)
80-85F 0.099*** 0.102***

(0.004) (0.004)
> 85F 0.127*** 0.130***

(0.005) (0.004)

Weather Controls ✓ ✓ ✓ ✓ ✓
HH FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓
Observations 10,650,000 10,650,000 10,650,000 10,650,000 10,650,000

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3: Effect of Prepayment on Electricity-Temperature Relationship

Dep. Var. (in logs) Electricity Consumption Electricity Bill

(1) (2) (3) (4)

Tavg 0.010*** 0.015***
(0.001) (0.001)

Tavg × Prepaid -0.004*** -0.006***
(0.001) (0.001)

80-85F 0.087*** 0.107***
(0.004) (0.005)

> 85F 0.118*** 0.146***
(0.005) (0.006)

80-85F × Prepaid -0.022*** -0.040***
(0.007) (0.009)

> 85F × Prepaid -0.054*** -0.074***
(0.009) (0.010)

Weather Controls ✓ ✓ ✓ ✓
HH-Treatment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓
Observations 10,650,000 10,650,000 10,650,000 10,650,000

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: Robustness Checks for Electricity Consumption

Dep. Var. (in logs) Electricity Consumption

(1) (2) (3) (4)

A. Average Temperature
Tavg 0.015*** 0.012*** 0.016*** 0.011***

(0.000) (0.001) (0.001) (0.001)
Tavg × Prepaid -0.003*** -0.006*** -0.007*** -0.005***

(0.001) (0.001) (0.001) (0.001)

B. Temperature Bins
80-85F 0.091*** 0.094*** 0.081*** 0.060***

(0.003) (0.004) (0.004) (0.005)
> 85F 0.124*** 0.126*** 0.115*** 0.134***

(0.004) (0.005) (0.004) (0.005)
80-85F × Prepaid -0.016*** -0.030*** -0.021*** -0.024***

(0.006) (0.007) (0.007) (0.007)
> 85F × Prepaid -0.043*** -0.064*** -0.054*** -0.052***

(0.008) (0.009) (0.009) (0.009)

Weather Controls ✓ ✓ ✓ ✓
HH-Treatment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Month FE ✓
Subdistrict-Year FE ✓
Subdistrict-Month FE ✓
HH-Month FE ✓
Temperature-Year Control ✓
Group-Year FE ✓
Group-Month FE ✓
Observations 10,650,000 10,650,000 10,650,000 10,650,000

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: Robustness Checks for Electricity Consumption

Dep. Var. (in logs) Electricity Bill

(1) (2) (3) (4)

A. Average Temperature
Tavg 0.021*** 0.017*** 0.022*** 0.016***

(0.001) (0.001) (0.001) (0.001)
Tavg × Prepaid -0.006*** -0.008*** -0.009*** -0.005***

(0.001) (0.002) (0.001) (0.001)

B. Temperature Bins
80-85F 0.111*** 0.112*** 0.100*** 0.110***

(0.004) (0.005) (0.004) (0.006)
> 85F 0.153*** 0.154*** 0.142*** 0.191***

(0.005) (0.006) (0.005) (0.007)
80-85F × Prepaid -0.033*** -0.049*** -0.038*** -0.030***

(0.007) (0.009) (0.008) (0.009)
> 85F × Prepaid -0.061*** -0.084*** -0.071*** -0.064***

(0.009) (0.010) (0.010) (0.011)

Weather Controls ✓ ✓ ✓ ✓
HH-Treatment FE ✓ ✓ ✓ ✓
Year FE ✓ ✓
Month FE ✓
Subdistrict-Year FE ✓
Subdistrict-Month FE ✓
HH-Month FE ✓
Temperature-Year Control ✓
Group-Year FE ✓
Group-Month FE ✓
Observations 10,650,000 10,650,000 10,650,000 10,650,000

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Heterogeneous Effect on Electricity-Temperature Relationship

By Consumption By Education By Poverty By House Quality By Household Size

Low High Low High Low High Low High Low High
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. ln(Electricity Consumption)
Tavg 0.009*** 0.009*** 0.005*** 0.013*** 0.014*** 0.007*** 0.008*** 0.010*** 0.008*** 0.012***

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Tavg × Prepaid -0.009*** 0.003 -0.005*** -0.001 -0.002 -0.017*** -0.013*** -0.005*** -0.009*** 0.002

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.001) (0.001) (0.003)

B. ln(Electricity Bills)
Tavg 0.014*** 0.015*** 0.010*** 0.019*** 0.020*** 0.013*** 0.012*** 0.015*** 0.014*** 0.017***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Tavg × Prepaid -0.011*** 0.002 -0.008*** -0.003* -0.004** -0.018*** -0.015*** -0.006*** -0.011*** 0.001

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003)

Observations 5,283,820 5,508,535 5,283,820 5,508,535 6,151,156 4,641,199 4,310,552 6,481,803 7,310,302 3,482,053

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.
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A Additional Information

A1 Prepaid Metering Rollout

Prepaid metering in Bangladesh began in 2005 with two pilot projects in Dhaka and Chit-
tagong, utilising a completely independent (proprietary) systems. This project did not
materialise at that time due to several challenges with central management system. Later,
in 2013, under the supervision of Bangladesh Government’s Power Division, Bangladesh
Power Development Board signed a MoU with all utilities to introduce unified prepaid
metering system (UPMS). As a result, in early 2014, three utilities BPDB, DPDC and DE-
SCO launched UPMS pilot project in five major cities. Finally, in March 2015, utilities
started implement in large-scale across the major urban areas in Bangladesh. By the end
of 2016, about 3% urban households were replaced to the new system. From the begin-
ning of 2017, a substantial prepaid metering replacement occurred. By the end of Novem-
ber 2019, the last month for which I obtained DESCO and DPDC households electricity
billing and vending information, a total of 43% of households had switched from post-
paid to prepaid metres in Dhaka city. By 2020, nearly one-third of Bangladeshi urban
households switched into prepaid system and in Dhaka city this rate is around 43%.

The utilities administrative documents revealed that several bureaucratic stages have
been followed to assign the prepaid meter at the utility’s sales and distribution level: (i)
tilities submit their yearly prepaid meter implementation plan to the Power Division of
Bangladesh Government; (ii) Power Division submit the plan and cost estimates to the
MPENR for placing to the Executive Committee of the National Economic Council (EC-
NEC); (iii) after ECNEC approval, the distribution companies top management and ad-
ministrative body call for tender to purchase the prepaid meter and assigned a sales and
distribution location conditions on the availability of required meter, technical and ad-
ministrative capacity; (iv) distribution companies also set meeting with local government
and administrative body about their implementation plan of prepaid meter in that area.
Finally, after assessing all the technical capabilities, skilled workforce, administration dif-
ficulties and political factors, the utility’s administration approve the location for the final
rollout.

A2 Data Details

The postpaid billing data include information on households unique ID, location, unit of
electricity (kWh) use, demand charge, value-added-tax (VAT), monthly electricity bill, tar-
iff type, Sanction load, bill cycle, electricity meter phase, electricity distribution location
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and feeder location.
The prepaid vending data includes all the households specific information men-

tioned in postpaid billing data along with households prepaid vending system records
such as amount recharge, meter rent, rebate and so on. Most importantly, the data con-
tains detailed recharge information specifically for recharge date with time and recharge
frequency in a calendar month. This dataset also contain the prepaid households monthly
average electricity use (kWh) variable that calculated6 by the respective utility using the
block pricing system from the recharge information.

We merged the two administrative dataset and construct a strongly balance panel
from the raw population data, where the unit of observation is the customer who use
electricity for their house by monthly electricity billing and vending information. After
cleaning the raw population data, finally I set a balanced panel of 768,380 households
over 71 months period, therefore total panel observations become 54,554,980 among them
29,847,193 and 24,707,787 are in postpaid (control group) and switched from postpaid to
prepaid system (treatment group) respectively. Data on prepaid meter switching dates
are obtained from the respective electricity distribution companies vending information.
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B Additional Tables and Figures

Figure B1: Weather Stations and Sample Districts

Notes: The map shows NOAA weather stations and our sample districts.
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(a) Daily Average Temperature

(b) Monthly Precipitation

Figure B2: Distribution of Daily Temperature and Precipitation

Notes: Figure plots the distribution of daily temperature and monthly precipitation for the sample districts
over 2014-2019.
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Figure B3: Daily Temperature Distribution

Notes: Figure plots the number of days per year with daily temperature falling into a certain interval.
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(a) #Days with Average Temperature > 80F (b) Annual Precipitation

Figure B4: Geographic Distribution of Temperature and Precipitation

Notes: The map plots geographic distribution of annual temperature and precipitation measures at the
district level.
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Figure B5: Residential Electricity Tariff Structure

Notes: Figure depicts the residential customers per kWh electricity price in a nonlinear price schedule.
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Figure B6: Monthly Electricity Consumption Patterns by Household Group

Notes: Figure plots the average electricity consumption (kWh) in each month for the treated and control
households separately in each district.
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Figure B7: Electricity-Temperature Response Function by Group and Payment Method

Notes: Figure plots the coefficient estimates and their corresponding 95% confidence intervals.
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Figure B8: Distribution of Electricity Consumption by Payment Method & Temperature

Notes: Figure shows the distribution of electricity consumption for households in the treatment group by
payment method and season.
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