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Abstract 

 

While a vast literature examines the impact of childhood health shocks, questions remain 

about the distribution of effects and the role of parents in mitigating or exacerbating the 

impact. Studying this is challenging as poor health is non-random. Our paper overcomes this 

challenge by using the quasi-random onset of Type 1 Diabetes (T1D) in childhood. Using 

Danish administrative registry data, we first use OLS to find differences, on average, in adult 

employment and labor market income by matching people with and without T1D on exact 

date of birth and sex. Second, results from the causal forest analyses show considerable 

heterogeneity. For example, we find the conditional average treatment effects for labor 

income range from DKK -68,122 to DKK 10,519. In a setting with universal and equal 

access to health care, we document a clear and economically meaningful socioeconomic 

gradient in effects, as high socioeconomic status parents mitigate the impact. 
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1. Introduction 

 

Health is likely an important mechanism in driving the intergenerational transmission 

of inequality (Bowles and Gintis, 2002). Case, Lubotsky, and Paxson (2002) show that the 

income gradient for health previously documented among adults also exists in early 

childhood. Additionally, they find that lower socioeconomic status children become even 

more penalized over time. Currie and Stabile (2003) test for potential mechanisms and 

determine that health shocks do not impact high and low socioeconomic status children 

differently, but rather the previous relationship seems to be driven by lower socioeconomic 

status children experiencing more negative health shocks.  

Researchers have documented that a wide variety of shocks that occur in utero or in early 

childhood can impact wages and employment in adulthood (see Almond, Currie, and Duque 

(2018) for an overview). While most of the literature finds negative impacts from childhood 

health shocks, Gensowski, Nielsen, Nielsen, Rossin-Slater and Wüst (2019) find positive 

impacts from the 1952 polio epidemic in Denmark. Specifically, they find positive effects on 

completing a university degree and working in a white-collar or computer intensive job. 

Despite the well-established health income gradient, the vast research on the long run 

impacts of childhood health shocks has largely focused on average treatment effects and thus 

could be missing important treatment effect heterogeneity, for instance by paternal and 

maternal socioeconomic status. In this paper we ask, can high socioeconomic status parents 

mitigate effects from a childhood health shock that has been previously found to have 

negative average treatment effects? We use childhood onset of Type 1 Diabetes (T1D), rich 

administrative registry data from Denmark, and multiple methodologies to answer this 

question. 

Our first contribution is to document considerable heterogeneity in effects that are missed 

by solely focusing on the average treatment effect. We do this by estimating average 
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treatment effects using OLS regressions and the full distribution of conditional average 

treatment effects using the causal forest methodology (Wager and Athey, 2018). Specifically, 

we find that the OLS results for labor market income suggest that the average treatment effect 

is a decline of DKK 32,422 while the causal forest shows the full distribution of conditional 

average treatment effects varies from DKK -68,122 to DKK 10,519. When the outcome is a 

dummy variable for employment (having a positive labor income), the OLS estimate is an 8.7 

percent decline, but the causal forest shows the full distribution of the conditional average 

treatment effects ranges from a 22.7 percent decline to no impact. Thus, the previously found 

significant and negative labor market impacts of a childhood T1D diagnosis (for example, see 

Persson et al. (2016)) masks considerable heterogeneity in effects. 

Not only do we document important heterogeneity in conditional average treatment 

effects, but we find evidence of some people not being negatively impacted. This means that 

some parents can mitigate the impact of a childhood health shock, even when the average 

treatment effect is negative. If we could pinpoint which subgroups of parents are mitigating 

the impact, we could leverage their strategies to reduce inequality stemming from childhood 

health shocks.  

Motivated by the income health gradient and Almond, Currie, and Duque (2018) which 

states “a greater understanding of the way that shocks and disadvantage interact, and of the 

role of parents in responding to them, is highly desirable”, we test for differences in relative 

effects by parental socioeconomic status. Thus, our second contribution is to show there is a 

socioeconomic gradient in relative effects by leveraging data on both mothers and fathers. 

The pattern of relative effects is similar for both maternal and paternal income quartiles in 

that having a parent who is in a higher income quartile leads to smaller penalties in labor 

market outcomes. Having a more educated father generally leads to smaller penalties in labor 

market outcomes (except for vocational education), whereas the pattern for mothers is an 
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inverse U-shape. Having a mother with a master’s degree or above results in a larger penalty 

than having a mother with a bachelor’s degree. Thus, we find clear evidence of a 

socioeconomic gradient in long run impacts among people with childhood onset of T1D, 

even in a country with universal access to healthcare. This contrasts with Currie and Stabile 

(2003) which did not find evidence of health shocks differentially impacting children by 

socioeconomic status.  

Related literature has shown variation in parental responses to other health shocks (for 

example, Datar et al. (2010), Hsin (2012) and Restrepo (2016) focus on low-birthweight and 

Guo and Zhang (2021) define poor health as having any of the following conditions by age 

18: migraine, rash, disability, serious hearing difficulties, heart disease, pollen allergy, 

neurasthenia, hypertension, or alcoholism).1 These papers importantly show variation in 

parental responses using direct measures of parental investments. We instead focus on the 

heterogeneity in relative effects on labor market outcomes by maternal and paternal 

characteristics and show there is a socioeconomic gradient in that.  

We investigate three key mechanisms that could explain impacts on labor market 

outcomes. First, despite universal access to health care and much lower out-of-pocket costs 

associated with treatment than in the United States, we find suggestive evidence that parental 

socioeconomic characteristics impact adult health. While the 95% CIs overlap, the point 

estimates suggest that individuals with fathers or mothers in lower income quartiles have 

worse T1D related health outcomes as adults. Specifically, they have higher HbA1c levels 

(worse glucose control) and are more likely to be hospitalized due to diabetic coma or 

diabetic ketoacidosis. Health capital likely matters because previous work has found worse 

 
1 Grätzand and Torche (2016) instead focus on how parental investments interact with child ability and 

Houmark, Ronda and Rosholm (2020) focus on how parents investment interacts with genetics. Literature has 

also documented important heterogeneity by family background for non-health related shocks (for example, see 

Havnes and Mogstad (2011), Løken, Mogstad, and Wiswall (2012), Carneiro, Løken, and Salvanes (2015) and 

Havnes and Mogstad (2015)). 
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educational outcomes for children and adolescents with more poorly controlled T1D (for 

example, see Skipper et al. (2019), Eriksen et al. (2020), and Lindkvist et al. (2021)). The 

second mechanism we test for is therefore human capital accumulation. We find clear 

evidence of those with the smallest impact on labor market outcomes having the highest 

levels of educational attainment. Lastly, we test for differences in impacts by T1D duration, 

and find that those diagnosed at younger ages (less than 9 years old) have larger negative 

impacts. 

 The rest of the paper is structured as follows. Section 2 provides background on T1D and 

the institutional setting in Denmark. Section 3 describes the Danish administrative registry 

data and provides some descriptive statistics. Section 4 discusses the OLS regression 

(homogenous effects) and the causal forest methodology (heterogeneous effects). Section 5 

discusses the results from both the OLS regressions and causal forests, along with evidence 

of a clear socioeconomic gradient in effects.  Section 6 discusses the mechanisms behind the 

variation found in the causal forest analyses, including health outcomes, educational 

outcomes and T1D duration. Section 7 summarizes and concludes. 

 

2. Background 

2.1 Background on T1D 

T1D2 is a chronic health condition in which the immune system kills the insulin producing 

cells in the pancreas. Insulin is a metabolic hormone needed to allow sugar (glucose) to enter 

the cells in the body to produce energy. In healthy individuals, the glucose concentration in 

the bloodstream is constantly kept within a narrow interval. This is done by secreting insulin 

when glucose levels rise, i.e., when eating and drinking (primarily carbohydrates), to get 

 
2 T1D has previously been known as juvenile diabetes or insulin dependent diabetes. 
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glucose levels down, and by releasing sugar (primarily from the liver) outside of meals (or 

when fasting). In individuals with T1D, the endogenous insulin supply is absent.  

Managing T1D is time consuming and complex. As there is no cure, the aim is to keep 

glucose levels as close to normal as possible by injecting insulin to counter the rises in 

glucose from both eating and the endogenous release of sugar. The amount of insulin needed 

depends on the food intake3 and amount of exercise, just to name a few things. In addition, 

numerous small blood samples from finger pricks or a continuous glucose monitor must be 

used to check glucose levels and adjust insulin dosages, as necessary.   

Even with insulin treatment, individuals with T1D have chronically elevated glucose 

levels (known as hyperglycemia) compared with individuals without T1D. Hyperglycemia is 

strongly associated with so-called late complications such as kidney disease/failure, 

blindness, amputation, cardiovascular disease, etc. (DCCT, 1993). At the other end of the 

spectrum, administering too much insulin will cause a low blood sugar (known as 

hypoglycemia), which can lead to seizures and coma. Thus, glucose levels need to be 

checked frequently, including during the night. Hypoglycemia is treated by ingesting a 

sugary snack or beverage. This constant alertness required to keep the blood sugar in check 

has been shown to negatively affect parental sleep (Cobry and Jaser, 2019, and Pillar et al., 

2003), and it obviously requires mental resources to keep the condition well-managed.  

T1D is – in contrast to the more common type 2 diabetes – not related to lifestyle or 

sedentary behavior. It most often presents in childhood, and it is, second to asthma, the most 

common chronic physical health condition in children and adolescents in most of the Western 

 
3 The amount of insulin needed is typically calculated as an insulin-to-carbohydrate ratio, i.e., a specific amount 

of insulin needs to go with a certain amount of carbohydrates. However, this ratio is different from individual to 

individual, and even varies over the time of day. The type of carbohydrate and the protein and fat content of the 

food has implications for the correct insulin dosage.  
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world4. The exact cause of the disease is unknown. While there is ongoing research to 

determine the origin, Regnell and Lernmark (2017) note, “The aetiology of beta cell 

autoimmunity is still unclear”. Genetics play a smaller role than for other chronic health 

conditions as Pociot and Lernmark (2016) note there is only a three percent risk of T1D in 

children of mothers with the condition. The condition is characterized by a rapid onset in 

children and adolescents and affected individuals will not go undiagnosed. Before insulin 

treatment was discovered in the early 20th century, a patient newly diagnosed with T1D had 

an average life expectancy of around 2 years (Hakim et al., 2013).  

To illustrate that the onset of T1D is sudden, we show results from Thingholm et al. 

(2020) which uses an event-study design to compare school absenteeism of children 

eventually diagnosed with T1D to matched comparison children (who are then assigned a 

pseudo diagnosis date) based on sex and date of birth. The graph is informative in several 

ways that are key to our identifying assumption of T1D constituting a near-random health 

shock. It illustrates that the child’s symptoms (severe enough to affect school absenteeism) 

are only present in the months very close to diagnosis (four-months prior is the first month 

with a significant difference). Related, there seem to be no differences in the underlying 

health of children who develop T1D, based on their pre-diagnosis levels of school 

absenteeism (i.e., more than four months before onset). Further, Figure 1 shows that after the 

onset of diabetes, these children have systematically and significantly more school 

absenteeism (roughly 50% more than the comparison children). This points to the fact that 

something is now different for these children.  

As we will show later, there is no SES gradient in T1D as our F-tests rule out differences 

between the treatment and comparison groups. Eriksen, Gaulke, Skipper, and Svensson 

 
4 In the US, around 1.25 million children and adults live with type 1 diabetes, with an estimated annual cost of 

US$ 14.4 billion (Tao et al. (2010)). In Denmark, approximately 32,000 people are diagnosed with type 1 

diabetes, including 3,500 children.  
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(2021) find that mothers and fathers of children who will be diagnosed with T1D had 

comparable wage earnings to parents of sex and age-matched children prior to the diagnosis. 

Further, Eriksen et al. (2021) shows that the children who are diagnosed with T1D have no 

significant differences in 5-minute APGAR scores compared with children who will not be 

diagnosed and both groups are equally likely to be of low birth weight. Lastly, later in the 

paper we provide more evidence consistent with no differences in underlying health prior to 

diagnosis. There are no significant differences between our treated and comparison children 

in terms of admission to the hospital, visits to the general practitioner (primary care 

physician) and the probability of pharmacy claims prior to diagnosis. 

2.2 Background on the Institutional Setting 

In Denmark, the financial cost of managing T1D is low, especially compared with the 

costs faced in the United States. There is no cost for in-patient or out-patient care and all 

medical devices are provided free of charge. However, medicine is not free and thus insulin 

has an associated out-of-pocket cost. The median yearly out-of-pocket expenditure for insulin 

in 2016 was approximately $229 and low-income families can apply to have the cost waived. 

In Denmark extensive legislation exists to ensure equal rights both in- and outside of the 

labor market concerning aspects related to gender, health, age, etc. Workers are not obliged 

to disclose the diagnosis to their employer, and in general, discrimination based on health 

conditions is illegal. This applies to both formal and informal discrimination; however, the 

latter can be hard to verify.  

 

3 Data and descriptive statistics 

The data are from several Danish registries. All children diagnosed with T1D in Denmark 

since 1996 are included in a national registry called DanDiabKids. It contains information on 

all Danish children and adolescents diagnosed with T1D who are seen at pediatric 
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endocrinology clinics. Transfer to an adult endocrinology clinic usually happens at age 18, 

although some transfer at age 16. Each child is identified through a person-specific ID 

(equivalent to a social security number). With these data, we observe the exact date of 

diagnosis along with clinical characteristics of the children and adolescents collected at 

annual follow-up visits in pediatric endocrinology clinics (ambulatories). We complement 

these data with hospitalization records which start in 1976 (Landspatientregisteret). This 

allows us to observe the exact day of the contact as well as the diagnosis associated with the 

visit (ICD-10 codes and before that ICD-8 codes). These two data sources are used to identify 

the children diagnosed with T1D. To ensure that the children are old enough to examine 

long-run labor market outcomes, we focus on the cohorts of children born from 1977 to 1987. 

Through population registries within Statistics Denmark, the diagnosis data is augmented 

with information on demographic and socioeconomic characteristics. Further, children can be 

linked to their parents. We observe age, sex, educational attainment, income, and immigrant 

or descendant status for all individuals. For the children, we further observe birth order and 

the number of siblings. All data are recorded at the yearly level. We restrict the sample to 

include only native Danes to ensure that we have 1) accurate information about the child’s 

medical history as we can only observe health records for care provided in Denmark and 2) 

information on parental background characteristics prior to the child’s birth so we can 

compare our treatment and comparison group means without worrying that characteristics are 

being impacted by the T1D diagnosis. This is important because Eriksen et al. (2021) find 

impacts on parental labor supply and mental health because of the child’s diagnosis. Using 

income measured in the year prior to the child’s birth does result in some missing data (one 

third have missing data) since we can only go back to 1980 for income data and some cohorts 

are born before that. We have, however, tested for whether there are differences in missing 

income data across our treatment and comparison parents and find no statistical difference. 
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As the information on other background characteristics is only available from 1986 and 

onwards, we limit our data to children and adolescents who are diagnosed from 1986 to 2004. 

We identify 1,810 children who are diagnosed with T1D before they turn 18. The mean age 

at onset is 11.8 years (SD 3.8). For each child with T1D, we identify and match five 

comparison children (9,050 individuals) who are not diagnosed with T1D before their 30th 

birthday. The matching is performed on the exact date of birth and sex.  

To lend further credibility to the assumption that T1D is conditionally random we use an 

event study analysis to compare healthcare utilization among individuals with and without a 

T1D diagnosis, each month from two years prior to diagnosis through two years after 

diagnosis, see Figure 2. Panel A shows there are no differences in the probability of 

admission to a hospital prior to diagnosis, Panel B shows there is no difference in visits to the 

general practitioner prior to diagnosis, and Panel C shows there are no differences in 

pharmacy claims prior to diagnosis. In all three cases, children who are diagnosed are 

significantly more likely to utilize that type of health care in the month of diagnosis and the 

months after diagnosis. These results further lend credibility to the claim that there were no 

differences in underlying health for children who are diagnosed with T1D. 

Lastly, we compare observable characteristics of the children and parents between the 

treatment and comparison groups; see Table 1. The two groups seem remarkably similar. We 

regress an indicator variable for T1D onset on the characteristics listed in Table 1 to see if we 

can predict which children will have childhood onset of T1D. Results are shown in Table 2. 

While there are some significant coefficients, this is to be expected given the number of 

coefficients we are estimating, and the joint F-test suggests no overall differences between 

the two groups. 
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4 Empirical Strategy 

In this section we present our empirical strategy to estimate the impact of a childhood 

health shock on adult labor market outcomes. Ultimately, we rely on the conditional 

randomness of a T1D diagnosis and employ a causal forest methodology, which is a novel 

non-parametric approach that estimates heterogeneous treatment effects. A causal forest 

is well suited for our setting, as we have a relatively large number of covariates, and no a 

priori theoretical ranking of their importance to the outcome.  

Investigating whether family background matters for how an individual is impacted by 

adverse health events in childhood is not straightforward. The ideal experiment from a 

statistical sense would be to randomly allocate adverse events to the general population and 

observe the differences in earnings at (e.g.) age 30. However, we obviously cannot do that. 

Our observed data consists of (𝑋𝑖, 𝑌𝑖, 𝐷𝑖), where 𝑋𝑖 are observed characteristics, 𝑌𝑖 is 

observed outcome and 𝐷𝑖 is an indicator equal to 1 if individual i experiences a health shock 

in childhood.  Everyone has two potential outcomes 𝑌𝑖
𝐷 , 𝐷 ∈ (0,1). In our setting, it is the 

outcome for a particular individual if she experienced a health shock (𝐷𝑖 = 1), or if she has 

not experienced the health shock (𝐷𝑖 = 0). The treatment effect we seek to estimate is 

defined as  

𝜏 = 𝐸[𝑌𝑖
1  − 𝑌𝑖

0 ] 

Since one of our research questions is the extent to which this treatment effect varies 

with parental background, we need to allow the treatment effect to be a function of our set of 

parental demographic covariates, 𝑋𝑖: 

𝜏(𝑥) = 𝐸[𝑌𝑖
1  − 𝑌𝑖

0 |𝑋𝑖 = x  ] 

The challenge is that we only observe either 𝑌𝑖
1 or 𝑌𝑖

0 for each individual i, and without 

further assumptions on the relationship between 𝐷𝑖 and 𝑌𝑖
𝐷 we cannot estimate the treatment 

effect, 𝜏(𝑥). Hence, to estimate the impact of a health shock, one needs a health shock that is 
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independent of the potential outcomes - (𝑌𝑖
1, 𝑌𝑖

0) ⊥ 𝐷𝑖. In this paper we leverage such an 

independence between T1D and potential outcomes.  

Estimation 

Under the (conditional)5 independence assumption we can estimate 𝜏, the homogenous 

impact of diabetes on labor market outcomes at age 30 in a linear model using ordinary least 

squares 

𝑌𝑖 = 𝜏𝐷𝑖 + 𝑿𝑖𝛽 + 𝜀𝑖                     (1) 

where 𝑌𝑖 is one of the two outcomes of interest measured at age 30 (labor income or reporting 

any positive labor income). 𝐷𝑖 is an indicator for being diagnosed with T1D in childhood 

(before age 18). 𝑿𝑖 is a set of parental demographic covariates, and 𝜀𝑖 is a normally 

distributed error term.  

Several approaches have traditionally been used to estimate heterogeneous treatment 

effects. First, heterogeneous treatment effects can be estimated by separately estimating (1) 

for each value of 𝑿𝑖:   

𝑌𝑖 = 𝜏(𝑥)𝐷𝑖 + 𝜀𝑖 𝑖𝑓 𝑿𝑖 = 𝑥  (2) 

While this is a very flexible approach, as it does not impose any additional structure on the 

relationship between 𝑌𝑖 and 𝐷𝑖, there are several issues with this approach. First, increasing 

the dimension of 𝑿𝑖 can lead to regions with very sparse density, and for continuous 𝑋𝑖’s 

perfectly subsetting is impossible. Hence continuous variables are often discretized. Second, 

there exist no ex-ante guidance on how to subset the data, how to discretize the continuous 

variables, and a researcher ex-ante must motivate the split and ex-post correct for multiple 

hypothesis testing. 

Alternatively, to estimate, 𝜏(𝑥), one can estimate a linear model like (1) where 𝐷𝑖 is 

fully interacted with the set of parental demographics. This again requires the researcher to 

 
5 We could equivalently impose a conditional independence assumption. 
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arbitrarily discretize continuous variables. In addition, as the dimension of 𝑿𝑖 increases, the 

estimation by OLS becomes infeasible. 

CART and Causal Forests 

In this paper we choose a different approach and estimate the 𝜏(𝑥) by causal forests. 

As described by Wager and Athey (2018) both trees and forests can be thought of as a k-

nearest neighbor method, where the closeness is defined in the context of a decision tree. 

Here the observations are divided into subsets or leaves using data-driven sample splits. In 

contrast to traditional methods, where a prespecified metric such as Euclidean distance is 

used, the closest observation to a given point is the observations that end up in the same leaf.  

Wager and Athey (2018) also note that causal forests are a way to increase power.  

To understand how the procedure works, it is helpful to recall how a standard 

classification and regression tree (CART) is used for prediction. A CART stratifies the set of 

characteristics into a number of regions often referred to as leaves. The prediction for a given 

observation is typically the mean of the outcome in the region to which the splits assign it.  

Let 𝐿(𝑋𝑖) denote end leaf of individual i, with characteristics 𝑋𝑖. The prediction of 𝑌𝑖 can 

then be written as 

�̂�(𝑋𝑖) = ∑ 𝛼𝑖(𝑋𝑖) 𝑁
𝑖=1 𝑌𝑖  (3) 

where  

𝛼𝑖(𝑋𝑖) =
1[𝑋𝑖 𝜖 𝐿(𝑋𝑖)]

|𝑖:𝑋𝑖 𝜖 𝐿(𝑋𝑖)|
 ,  (4) 

or the share individual i constitutes of the total number of individuals in leaf 𝐿(𝑋𝑖). In other 

words, the prediction from a CART is a local average of all the 𝑌𝑖′𝑠 that are “close” (in the 

same leaf as) to individual i.6 The leaves are obtained by recursively splitting the feature-

space, and at each decision node the object is to maximize heterogeneity of “child-nodes”. 

 
6 Conceptually the CART can be thought of as a non-parametric regression with a decision tree as the distance 

kernel 
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Several procedures exist for how to place the splits (see, for example, Hastie, Tibshirani, and 

Friedman (2009) for details).  

Causal trees extend this idea to estimation of heterogenous treatment effects. That is, 

as an estimator of heterogenous treatment effects, the causal tree calculates within each leaf 

the mean outcome for those who are treated, and subtracts the mean outcome for those who 

are not treated: 

�̂�(𝑋𝑖 = 𝑥) =
1

|𝑖:𝐷𝑖=1,𝑋𝑖∈𝐿(𝑋𝑖)|
∑ 1[𝐷𝑖 = 1, 𝑋𝑖 ∈ 𝐿(𝑋𝑖)]𝑌𝑖

𝑁
𝑖=1 −

1

|𝑖:𝐷𝑖=0,𝑋𝑖∈𝐿(𝑋𝑖)|
∑ 1[𝐷𝑖 =𝑁

𝑖=1

0, 𝑋𝑖 ∈ 𝐿(𝑋𝑖)]𝑌𝑖  (5) 

At each node, the Causal Tree maximizes the variation in eq. (5). Wager and Athey (2018) 

further lay out the additional properties that need to hold. It is critical for our application that 

we ensure the presence of treated and comparisons in each leaf – normally known as overlap 

– and this is ensured by imposing the rule that at least a fraction of 𝛼 ∈ (0,1) of the 

individuals in each leaf is either treated or part of the comparison group.7  

An obvious question is how to determine the “best” tree. Causal Forests build on the 

insights from Breiman (2001) that averaging over several trees is an improvement on 

estimating a single tree. Hence, after estimating B causal trees, and obtaining an estimate for 

each of these �̂�𝑏(𝑥),  the Causal Forest aggregate these by averaging them to obtain an 

estimator of the individual conditional treatment effect: 

�̂�(𝑥) = 𝐵−1 ∑ �̂�𝑏(𝑥)

𝐵

𝑏=1

 

Wager and Athey (2018) shows pointwise consistency, and that the predictions made by a 

causal forest are asymptotically normal and unbiased. As previously stated, this is the 

fundamental reason for why we apply this technique, as it implies that we can do post 

 
7 This is known as 𝛼-regularization. Another important distinction from standard CART estimation is the use of 

honest trees – also called double sample trees where the training data is split into two groups; the first used to 

determine the splits, the second used to evaluate the treatment effect. For details see Wager and Athey (2018). 
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estimation analysis without being concerned about multiple hypothesis testing. In practice we 

implement the causal forest with honest trees (Athey and Imbens, 2016), grow 2,000 trees 

and impose that at a minimum 5% of individuals in any leaf must be either treated or non-

treated (𝛼 =0.05). The final part of our analysis is to investigate variation in treatment effects 

by comparing mean estimated conditional treatment effects (CATEs) across subgroups.8 

A concern when estimating CATEs is that even in the absence of true treatment effect 

heterogeneity, the CATEs will be estimated with some distribution (noise). To assess if this is 

the case, we divide our sample into quartiles based on the predicted treatment effect.  For 

each quartile, we then estimate the group average treatment effect (GATE) and compare them 

across quartiles. If these are different, this is evidence of treatment effect heterogeneity.  

5 Results 

5.1 Main Results 

We start out by presenting evidence on the homogeneous treatment effects (OLS) of 

being diagnosed with T1D during childhood. Table 3 shows the results for our two main 

outcomes; labor income (Panel A) and having positive labor income (Panel B), both 

measured at age 30. In columns (1) to (4) the conditioning set is gradually expanded. 

Individuals who were diagnosed with T1D in childhood earn DKK 34,422 less (column 4). 

This corresponds to a T1D income penalty of 14%. The likelihood of having positive labor 

income is 8.7 percentage points (pp) lower in the T1D group, which corresponds to a relative 

difference of 11%. It is worth noting that adding more control variables does not affect the 

estimated treatment effects much but increases precision slightly.  

We next put this into context of the related literature that estimates the impact of a 

childhood shock. However, the related literature has largely focused on in-utero exposure and 

 
8 E.g., let 𝑋1 ∈ (𝑋𝐴, 𝑋𝐵). Then the average difference, 𝛿𝑋1

 in treatment effect between the two groups is simply: 

𝛿𝑋1
=

1

|𝑖:𝑋1=𝑋𝐴|
∑ �̂�𝑖(𝑋1 = 𝑋𝐴)𝑖:𝑋1=𝑋𝐴

−
1

|𝑖:𝑋1=𝑋𝐵|
∑ �̂�𝑖(𝑋1 = 𝑋𝐵)𝑖:𝑋1=𝑋𝐵
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very early life exposure while this paper focuses on a health shock that can occur throughout 

childhood. The most comparable setting would be that in Schwandt (2018), which finds that 

in-utero maternal exposure to influenza in Denmark leads to reductions in adult earnings of 9 

percent, which is 64% of our estimated effect of 14 percent. Nilsson (2017) uses variation in 

Swedish alcohol policy to find that those most exposed to alcohol in utero and born to 

mothers under the age of 21 had 20 percent lower earnings which is 1.4 times the magnitude 

of our effect size.  

Related literature has also found effects of childhood shocks outside of Scandinavia, 

although comparisons with the United States may be less than ideal. Despite the differences 

in settings, our results are similar in magnitude to Adhvaryu, Bednar, Molina, Nguyen, and 

Nyshadham (2020), which finds that the rollout of iodized salt across the United States led to 

an increase in income of 11 percent. Our results are also similar in magnitude to Smith (2009) 

which finds that controlling for education, which the author notes is negatively impacted by 

health, leads to income being 13 percent higher for those reporting their health to be excellent 

or very good. Our results are larger in magnitude to those in Beach, Ferrie, Saavedra, and 

Troesken (2016), which finds that eliminating early life exposure to typhoid fever led to a 

nine percent increase in earnings using an IV strategy. Our results are also larger than Isen, 

Rossin-Slater, and Walker (2017) which find the Clean Air Act of 1970 led to a one percent 

increase in annual earnings for the affected cohorts. Our estimate for labor force participation 

is about 13 times as large as the estimates in Adhvaryu et al. (2020) and 3 times as large as in 

Saez (2021), which studies the reduction in exposure to pneumonia in infancy in Chile.  

To test for heterogeneous treatment effects, we next turn to our causal forest analysis. We 

graphically show the distribution of the estimated CATEs for both main outcomes in Figure 

3. Panel A shows the distribution for labor income. The solid red line represents the mean of 

the conditional treatment effects whereas the dotted blue line is the OLS estimate (or 
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homogeneous treatment effect). The OLS estimate and the mean of the CATEs are not 

significantly different. The variation in the CATEs is considerable: the 10th percentile is DKK 

-47,949 and the 90th percentile is DKK -18,067. This is also true when looking at the 

likelihood of having positive labor income (-0.13 and -0.05 for the 10th and 90th percentile 

respectively; see Figure 3 Panel B). These results suggest that some subgroups of children are 

much less impacted by childhood onset T1D; thus, some parents can mitigate the effect. 

To gain insight into the characteristics that are associated with the treatment 

heterogeneity, we proceed by grouping the sample by quartiles of the predicted treatment 

effects. We then compare the observable characteristics of those with larger predicted effects 

(Q1) vs. those with smaller predicted effects (Q4). These results are reported in Table 4. 

Panel A shows the mean characteristics from this analysis by labor market income. Being 

first born is associated with larger predicted penalties (the mean share of firstborns who are in 

Q1 is 0.50 vs. 0.41 in Q4). This larger impact on first born children is consistent with the 

larger educational spillovers stemming from childhood onset T1D for younger siblings than 

older siblings found in Eriksen et al. (2022). Among those with the highest predicted effects 

the ratio of males to females is roughly the same, however, males are much more likely to 

have smaller predicted income penalties.  

Turning to the maternal characteristics, we observe that children of less educated mothers 

are more likely to have larger predicted effects. The share of mothers with only primary 

school as highest attained education is 0.64 in Q1 vs. 0.22 in Q4 – the share of mothers with 

medium tertiary education in Q1 is 0.03 vs. 0.45 in Q4. An age gradient is also at play: larger 

effects are associated with younger mothers. Larger predicted effects are also correlated with 

lower maternal income. In general, the paternal characteristics follow the same patterns as the 

maternal characteristics, although the educational gradient is less clear for the lowest levels 

of educational attainment.  
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The same pattern broadly emerges when looking at the CATEs regarding the outcome 

‘any labor market income’: Males are underrepresented among those with numerically 

smaller penalties (share of males 0.43 vs. 0.66 in Q1 vs. Q4). We do note that here, the share 

of firstborns is large for those with smaller treatment effects, which seems inconsistent with 

the findings from the results on labor income. Other than that, the same SES gradient as for 

the other outcomes is observed. For example, the share of children where the mother only 

completed primary school is 0.61 among those with largest effects and 0.26 among those 

with smallest effects.  

Of course, all these comparisons of characteristics are partial in that we are not holding 

all the other characteristics fixed.  Having documented a SES gradient in the estimated 

heterogeneous treatment effects, it is worth noting that these treatment effects are in levels, 

and that the baseline mean labor market income or probability of being employed can vary 

considerably across subgroups. Thus, we proceed by quantifying the estimated CATEs 

relative to these baselines by selected maternal and paternal characteristics.  

5.2 Relative Effects by Parental Socioeconomic Status 

To further investigate whether high socioeconomic status parents can mitigate the impact 

we compare the estimated CATEs across maternal and paternal background characteristics, 

see Figures 4 and 5 (maternal and paternal). Looking at maternal education we see an 

inverse-U shaped pattern such that more education leads to smaller income penalties, except 

children of mothers with at least a master’s degree (long tertiary education) have a larger 

penalty than children of mothers with a bachelor’s degree. The mean CATE for labor income 

among individuals where the mother has no more than a primary education is DKK -37,984 

while it is DKK -34,201 when the mother has a long tertiary education. While these means 

are statistically different, the difference in magnitude seems minor at the outset. However, 

taken relative to the income mean in each group this corresponds to relative effects of -17.8 



 19 

percent and -13.5 percent respectively (Figure 4, Panel A on the left). We find a similar 

pattern with maternal educational background and having positive labor income, but a strong 

positive pattern for completed schooling beyond high school. The mean CATE for having 

any labor income is -10 percent relative to the mean when the mother has a long tertiary 

education and -12.7 percent when the mother has only primary school (Figure 4, Panel A).  

Eriksen et al. (2021) examine the impact of a childhood T1D diagnosis on parental labor 

supply in Denmark. They find large impacts around the time of diagnosis for both parents, 

but mothers are more persistently impacted. Mothers experience a significant shift to part-

time work through at least ten years after diagnosis. However, for mothers with at least a 

master’s degree there is no impact on labor supply. This may explain the inverse-U shape we 

find for labor market outcomes.  

When considering differences across the maternal income distribution we find the 

predicted earnings penalty is greatest for children of mothers who were in the bottom income 

quartile the year before the child’s birth. At age 30, the mean CATE for these individuals is 

DKK -41,938 versus DKK -29,976 for those in the upper quartile. Relative to the mean this 

corresponds to -20% and -11% (Table 4, Panel A and Figure 4, Panel B to the left). This 

income gradient also holds for the probability of employment; see Figure 5.  

We further investigate the relationship between maternal age at the time of the child’s 

birth and the outcomes. The older the mother was at the child’s birth, the less detrimental 

effects on the outcomes. The mean differences in CATEs across the age distribution are on 

par with those found for maternal income and education. Again, one should remember that 

when investigating these characteristics in isolation, we are not holding the other 

characteristics fixed. Consequently, having a mother or father of older age might also be 

correlated with parental educational attainment.  
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We similarly compare relative effects across paternal educational levels, paternal income 

quartile and paternal age at child’s birth (Figure 4 and 5, right side). There is evidence of a 

strong gradient in paternal education and paternal income quartile for our main outcomes of 

interest. The key exception is that fathers who completed vocational training as their highest 

level of education have children with the second worse income penalties. The pattern for 

paternal age is more varied. 

To summarize our findings thus far, we have clearly demonstrated a social gradient in the 

impact of childhood onset T1D. At age 30, individuals who were diagnosed with T1D in 

childhood have larger penalties if they were more disadvantaged to begin with, i.e., their 

mother or father was in a lower income quartile. Thus, we find that children are differentially 

impacted by family background, despite Currie and Stabile (2003) not finding evidence to 

support this as the mechanism behind the income health gradient in childhood. This 

difference may be due to Currie and Stabile (2003) using data from a different country 

(Canada) and health status being based on the health rating of the person most knowledgeable 

about the child (on a scale from 1-5), as opposed to focusing on a specific diagnosis. 

5.3 Evidence of heterogeneity 

 Although the evidence on the associations between the estimated heterogeneity and 

the observable characteristics presented above is intuitive and meaningful, it is worthwhile to 

investigate further if the heterogeneity we observe is in fact true heterogeneity. We start out 

by estimating the group average treatment effect for those who are predicted to be in Q1 of 

the distribution. Among individuals predicted to be in Q1, the average treatment effect (S.E) 

is DKK -40,167.01 (9,174.26) vs. DKK -19,827.56 (9,589.63) in Q4 for the labor market 

income outcome. For the outcome ‘any labor market income’, we have -16.07 (2.11) pp. and 

-5.90 (1.77) pp. for Q1 and Q4, respectively. These are economically significant differences, 

but to formally test if the differences are significant in a statistical sense, we run regressions 
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with the two outcomes regressed on a set of dummy variables that indicates the quartile of 

predicted CATE (with Q1 as the left-out category). The results from this exercise are found 

in Table 5. For the labor market income, the treatment effects estimated within each group 

are not different in a statistical sense, as the CIs are overlapping. Again, it is worth 

mentioning that the difference between Q1 and Q4 is estimated at slightly more than DKK 

20K. This corresponds to two thirds of the overall average treatment effect. For the outcome 

‘any labor market income’, we observe statistically significant differences between Q1 and 

Q4. Individuals predicted to be in Q4 are on average 10 pp. more likely to have positive labor 

income compared with those in Q1. Again, this should be seen in relation to an overall 

average treatment effect of around 9 pp.  

 

6 Mechanisms 

6.1 Diabetes Management Outcomes 

A potential mechanism behind the heterogeneity in adult labor market outcomes could be 

health capital. Previous literature has documented clinically meaningful differences in 

glucose control among children by socioeconomic status in Denmark. For example, Nielsen 

et al. (2019) document large gaps in glycated hemoglobin (HbA1c) levels by maternal 

education. Specifically, they find that while children have similar HbA1c levels at the time of 

diagnosis, the gap becomes statistically significant starting two years after diagnosis. This 

matters because a large literature, starting with DCCT (1993), have shown a very strong 

relationship between higher HbA1c (i.e., higher average glucose concentrations) and the risk 

of diabetes related complications such as retinopathy (leading to blindness), nephropathy 

(leading to kidney failure), and cardiovascular disease. The socioeconomic gradient in child 

health could translate to a socioeconomic gradient in adult health as well. 
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In Figure 6 we plot the mean group differences by maternal and paternal education, 

income quartile, and age at child’s birth for HbA1c. The left side of Panel A shows the mean 

group differences by maternal education. While the estimates are not precise, the general 

pattern shows that those with more highly educated mothers have better (lower) HbA1c levels 

as adults9. Our results suggest that the gaps found in Nielsen et al. (2019) follow children into 

adulthood. Thus, children with less educated mothers may have larger long-run penalties 

because of worse disease management throughout childhood. The right side of Panel A 

shows the mean group differences by paternal education. The pattern is fairly similar to that 

of mothers. 

Panel B shows a similar pattern by maternal (left) and paternal (right) income quartile. 

While the effects are not statistically different from each other, the results suggest better 

glucose control (and thus reduced risk of complications) for children with parents who are 

higher in the income distribution. Panel C shows a rather similar pattern by maternal (left) 

and paternal (right) age at child’s birth. 

In Figure 7 we plot the mean differences in specialty ambulatory care, again by maternal 

and paternal education, income quartile and age at child’s birth. In Denmark, adults with T1D 

can receive care from their primary care physicians or at adult endocrinology clinics by 

diabetes specialists. Given that specialists should have more training and knowledge of T1D 

we may expect better outcomes for those who continue to receive medical care from a 

specialist as an adult. We can neither rule out differences across the groups, nor provide 

evidence of a clear pattern across the maternal or paternal characteristics.  

In Figure 8 we plot mean differences in hospitalizations related to diabetic coma or 

diabetic ketoacidosis (DKA). While there are again no significant differences across the 

 
9 In practice, we use test values in a window of 5 years around the year the individuals turn 30. If more than one 

test is observed, we use the average. We observe at least one HbA1c for 79% of the individuals with T1D.  
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groups, there is a clear pattern of more educated mothers and fathers having children who are 

less likely to be hospitalized in adulthood (Panel A). Panel B shows the impacts by maternal 

and paternal income quartile and the results also suggest better outcomes for more 

advantaged children. Lastly, we again find some suggestive evidence of better outcomes the 

older the mother and father are at child’s birth (Panel C). 

Lastly, in Figure 9 we plot mean differences in late diabetes complications by maternal 

and paternal education, income quartile and age at child’s birth. While the standard errors 

overlap, we do find some evidence to suggest that having a more educated mother or father 

leads one to be less likely to develop any late complication by age 30. There are fewer clear 

trends for maternal and paternal income quartile and age at birth.  

We more formally test for differences in health outcomes in adulthood by comparing the 

means in Q1 and Q4. Results are shown in the top portion of Table 6. The largest difference 

in characteristics for labor market income is for being hospitalized with diabetic coma or 

DKA. Forty three percent of those in Q1 have been hospitalized with diabetic coma or DKA, 

and 34 percent in Q4 have been, indicating a 9 pp. gap between the highest and lowest 

quartile. The two health outcomes with the largest difference across Q1 and Q4 for ‘any labor 

market income’ are diabetic coma or DKA, and HbA1c levels. Forty four percent of those in 

Q1 have been hospitalized with diabetic coma or DKA, and 36 percent in Q4 have, resulting 

in an 8 pp. gap. Individuals in Q1 have a mean HbA1c of 8.33 while those in Q4 have a mean 

HbA1c of 8.13, indicating worse glucose control among those in Q1 than Q4. We do not 

observe any difference across Q1 vs. Q4 on other health and utilization metrics, including 

LDL cholesterol levels, the probability of having ever smoked, and the probability of being 

treated for high cholesterol or high blood pressure.  

Taken together these results provide suggestive evidence that both maternal and paternal 

socioeconomic status matters for T1D health related outcomes in adulthood and that better 
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adult health is tied to better adult labor market outcomes. Children of more educated mothers 

and children of mothers in higher income quartiles may have better disease management as 

proxied by HbA1c levels and hospitalizations due to diabetic coma or DKA. We find a similar 

suggestive pattern for paternal education and paternal income quartile. Finding that parental 

characteristics matter for child health is consistent with medical literature documenting the 

role of parental behavior in children’s glucose control (for example, see Davis, Delamater, 

Shawn, La Greca, Eidson, Perez-Rodiguez and Nembery (2001) and Thompson, Auslander 

and White (2001)). 

6.2 Educational Outcomes 

Since health capital impacts human capital (for example, see Bhalotra, and 

Venkataramani (2015), Karbownik and Wray (2019) and Saez (2021)) we next discuss how 

T1D impacts educational outcomes. Previous research has documented a clear relationship 

between glucose control and T1D educational penalties. For example, Skipper et al. (2019) 

show that children diagnosed with T1D have similar test scores compared with their peers on 

average, but those with worse glucose control have worse test scores and those with the best 

glucose control have better test scores. Eriksen et al. (2020) study the association of T1D and 

school wellbeing among middle school children and find similar outcomes (except children 

with T1D reported higher levels of headaches). However, those with worse glucose control 

again were found to have worse outcomes. Lindkvist et al. (2021) find that T1D is associated 

with worse 9th grade exit exam scores, a higher relative risk of not completing 9th grade by 

age 16 (end of compulsory school in Denmark), and a higher risk of not being enrolled in or 

graduated from upper secondary school by age 20. Again, the results indicate larger penalties 

for those with worse glucose control. Taken together, this research suggests that poorly 

controlled T1D in childhood can negatively impact a wide variety of educational outcomes.  
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Even those with well controlled T1D could be negatively impacted in the longer term 

through increased absenteeism. For example, Thingholm et al. (2020) find after diagnosis 

there is an increase in school absenteeism of around 50 percent more than the matched 

comparison children. Even children with well controlled glucose must miss school to attend 

medical appointments at the pediatric endocrinologist multiple times a year. There may be 

cumulative effects of consistently missing more school than peers without T1D do. 

We next directly test for the role of educational attainment in explaining the labor market 

results. For each labor market outcome, we compare the mean of different levels of 

educational attainment for Q1 versus Q4. Results are shown in the bottom portion of Table 6. 

For labor market income, we find evidence of higher levels of educational attainment in Q4 

than Q1. For example, 22 percent of those in Q1 have only attained primary school, while 

only 14 percent in Q4 have attained primary school. Eighteen percent of those in Q4 have 

attained a long tertiary education while only nine percent of those in Q1 have attained a long 

tertiary education. Similarly, for ‘any labor market income’ we find evidence of higher levels 

of educational attainment among those in Q4 than in Q1. For example, 23 percent of those in 

Q1 have only attained a primary education while only 14 percent of those in Q4 have attained 

a primary education. In terms of long tertiary education, only nine percent of those in Q1 

have attained this level of education, while 17 percent of those in Q4 have attained it. 

Altogether, these results suggest impacts on educational attainment is likely an important 

mechanism in driving the differences in labor market outcomes.  

6.3 Disease duration 

As a last potential mechanism, we investigate if disease duration, i.e., age at onset of 

T1D, is associated with worse predicted outcomes. A fundamental challenge is that early 

onset is mechanically tied to being diagnosed early in the available data window we are 

using. As there have been large advancements in T1D management, such as new insulin 
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analogs, modern continuous glucose monitors and advancements in insulin pumps, we want 

to make sure that we are identifying the effects of duration and not picking up changes over 

time in treatment options. To address this, we create dummy variables for ‘early onset’ (age 

<9) and ‘early time’ (diagnosis year <1991) and regress them, along with their interaction, on 

the probability of being predicted to be in Q1 vs. Q4 (having numerically larger treatment 

effects) on the outcomes; see Table 7. For both our outcomes, the coefficient for early onset 

is positive and statistically significant, and the interaction with early time is also positive and 

significant. We interpret this as evidence that earlier onset of T1D is associated with worse 

outcomes. 

7 Conclusion 

In this paper we use the onset of T1D in childhood and Danish administrative registry 

data to study the impacts of a childhood health shock on adult labor market outcomes and test 

whether there is a socioeconomic gradient in the effects. We find significant and negative 

homogenous impacts on adult employment and labor income using OLS. However, this 

masks economically meaningful variation in the CATEs from the causal forest analysis. We 

find evidence of a socioeconomic gradient in the long-run impacts, in contrast with Currie 

and Stabile (2003) which concluded that the health-income gradient is not due to childhood 

health shocks differentially impacting children from high and low socioeconomic status 

families. Our results suggest that having a more highly educated mother or father or having a 

mother or father who is in a higher income quartile leads to smaller T1D penalties in 

adulthood. 

It should be noted that conducting a similar analysis using data from another country may 

result in a different distribution of CATEs. Variation in access to health insurance, 

availability and access to endocrinology care, costs of medicine and medical devices, worker 

and student protections and anti-discrimination laws related to health and disability status 
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could all impact the results. However, our results do suggest that it is important that research 

using data from other countries explore the full distribution of impacts. 

Future work could further explore the variation in parental responses in terms of investing 

in the child’s health capital. Given the universal access to healthcare and low costs of 

treatment in Denmark, budget constraints seem like an unlikely explanation as to why 

differences in adult health outcomes exist. If it is due to differences in disease management 

knowledge or an inability to follow prescribed treatment plans, then maybe children with less 

educated mothers or fathers and children of lower income mothers and fathers would benefit 

from increased clinic visits, telehealth meetings or at-home support. Differences in parental 

preferences or discount rates may also be driving the effects, in which case rules surrounding 

when additional clinical interventions are implemented may need to be reevaluated. 
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Table 1: Descriptive statistics 

    Diabetes No diabetes 

Number of observations  1810 9050 

Child characteristics   
Birth order First born (0/1) 0.45 0.47 

 Second born (0/1) 0.40 0.38 

 Third born or later (0/1) 0.16 0.15 

Sex Male (0/1) 0.53 0.51 

Paternal Characteristics   
Education Primary school (0/1) 0.33 0.31 

 Secondary school (0/1) 0.03 0.03 

 Vocational (0/1) 0.44 0.43 

 Short Ter. (0/1) 0.02 0.03 

 Medium Ter.  (0/1) 0.11 0.13 

 Long Ter. (0/1) 0.07 0.07 

Income First quartile (0/1) 0.17 0.17 

 Second quartile (0/1) 0.16 0.17 

 Third quartile (0/1) 0.16 0.17 

 Fourth quartile (0/1) 0.17 0.16 

Immigration status Native (0/1) 0.97 0.97 

 Immigrant or descendent (0/1) 0.03 0.03 

Age  <25 (0/1) 0.07 0.09 

 25-29 (0/1) 0.30 0.31 

 30-34 (0/1) 0.35 0.34 

 35+ (0/1) 0.27 0.26 

Maternal Characteristics   
Education Primary school (0/1) 0.41 0.39 

 Secondary school (0/1) 0.04 0.03 

 Vocational (0/1) 0.31 0.31 

 Short Ter. (0/1) 0.03 0.03 

 Medium Ter.  (0/1) 0.18 0.20 

 Long Ter. (0/1) 0.03 0.03 

Income First quartile (0/1) 0.18 0.17 

 Second quartile (0/1) 0.16 0.17 

 Third quartile (0/1) 0.17 0.17 

 Fourth quartile (0/1) 0.16 0.17 

Immigration status Native (0/1) 0.98 0.98 

 Immigrant or descendent (0/1) 0.02 0.02 

Age  <25 (0/1) 0.21 0.22 

 25-29 (0/1) 0.39 0.40 

 30-34 (0/1) 0.28 0.27 

  35+ (0/1) 0.12 0.11 

 

Notes: Descriptive statistics of individuals diagnosed with diabetes before the age of 18 and a 

group matched on birthday and onset year.   
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Table 2: Linear regression of diabetes status on observable characteristics 

    Coeff. S.E. 

Child characteristics    
Birth order First born (0/1)  Ref.  

 Second born (0/1) 0.002 (0.009) 

 Third born or later (0/1) -0.009 (0.012) 

Sex Male (0/1) 0.014** (0.007) 

Paternal characteristics    
Education Primary school (0/1) Ref.  

 Secondary school (0/1) 0.002 (0.022) 

 Vocational (0/1) -0.004 (0.009) 

 Short Ter. (0/1) -0.035 (0.022) 

 Medium Ter.  (0/1) -0.025* (0.013) 

 Long Ter. (0/1) -0.016 (0.018) 

Income First quartile (0/1 Ref.  

 Second quartile (0/1) -0.005 -0.013 

 Third quartile (0/1) -0.007 -0.013 

 Fourth quartile (0/1) 0.008 -0.014 

Immigration status Immigrant or descendent (0/1) -0.018 (0.022) 

Age   

 <25 (0/1) Ref.  

 25-29 (0/1) 0.028** (0.014) 

 30-34 (0/1) 0.035** (0.015) 

 35+ (0/1) 0.035** (0.017) 

Maternal characteristics    
Education Primary school (0/1) Ref.  

 Secondary school (0/1) 0.005 (0.022) 

 Vocational (0/1) -0.012 (0.009) 

 Short Ter. (0/1) -0.016 (0.021) 

 Medium Ter.  (0/1) -0.026** (0.011) 

 Long Ter. (0/1) -0.013 (0.023) 

Income First quartile (0/1) Ref.  

 Second quartile (0/1) -0.015 (0.013) 

 Third quartile (0/1) -0.015 (0.013) 

 Fourth quartile (0/1) -0.014 (0.014) 

Immigration status Immigrant or descendent (0/1) -0.022 (0.024) 

Age <25 (0/1) Ref.  

 25-29 (0/1) 0.006 -0.011 

 30-34 (0/1) 0.017 -0.014 

 35+ (0/1) 0.02 -0.017 

    

 Observations 10,860 

 R-squared 0.003 

 Joint F-test 0.589 

  Prob > F 0.995 

Notes: OLS regression of diabetes status on observable characteristics. The OLS additionally controls for 

cohort, onset-year and municipality fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, 

* p<0.1. Standard errors are clustered at the match group level.  
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Table 3: Average Treatment Effects of Diabetes onset in childhood. 

 

  (1) (2) (3) (4) 

Panel A Income (DKK) Income (DKK) Income (DKK) Income (DKK) 

          

Diabetes -33,102*** -32,978*** -32,453*** -32,422*** 

 (4,540) (4,482) (4,487) (4,460) 

     
Observations 10,418 10,418 10,418 10,418 

Mean Outcome 239,468.45 239,468.45 239,468.45 239,468.45 

Paternal Char. No Yes No Yes 

Maternal Char. No No Yes Yes 

R-squared 0.047 0.067 0.069 0.078 

     

     
  (1) (2) (3) (4) 

Panel B Any LMI (0/1) Any LMI (0/1) Any LMI (0/1) Any LMI (0/1) 

          

Diabetes -0.0875*** -0.0875*** -0.0866*** -0.0867*** 

 (0.0110) (0.0109) (0.0109) (0.0109) 

     
Observations 10,418 10,418 10,418 10,418 

Mean Outcome 0.81 0.81 0.81 0.81 

Paternal Char. No Yes No Yes 

Maternal Char. No No Yes Yes 

R-squared 0.043 0.054 0.058 0.064 

 Notes: Standard errors in parentheses. *** p<0.01. ** p<0.05. * p<0.1. Estimates of treatment impact of 

diabetes onset in childhood. The estimates are coefficients from separate OLS regressions of income, or an 

indicator for having any income. Column 1 controls for child characteristics, cohort, onset-year and 

municipality fixed effects. Column 2 and 3 additionally controls for paternal or maternal characteristics. Column 

4 controls for both paternal and maternal characteristics. Mean outcomes are reported for the control group.  
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 Table 4: Mean child, maternal, and paternal characteristics by predicted CATE 

quartile, Q1 vs. Q4 
Notes: The table reports the means and differences in means for child, maternal, and paternal characteristics by 

predicted quartile of the conditional average treatment effects. Q1 represents the numerically largest effects and 

Q4 the smallest. Panel A shows the differences by labor market income and Panel B for the outcome ‘any labor 

market income’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Panel A: Labor market income   Panel B: Any labor market income 

Child characteristics Q1 Q4 Difference t stat   Q1 Q4 Difference t stat 

Birth order First born (0/1)  0.50 0.41 0.10 7.00  0.34 0.57 -0.23 -16.89 

 Second born (0/1) 0.37 0.46 -0.09 -6.73  0.54 0.29 0.25 19.00 

 Third born or later (0/1) 0.13 0.14 -0.01 -0.53  0.12 0.15 -0.02 -2.35 

Sex Male (0/1) 0.49 0.58 -0.08 -6.15  0.43 0.66 -0.22 -16.72 

Maternal characteristics          
Education Primary school (0/1) 0.64 0.22 0.43 34.42  0.61 0.26 0.34 26.75 

 Secondary school (0/1) 0.05 0.02 0.03 5.88  0.03 0.03 0.00 0.78 

 Vocational (0/1) 0.22 0.27 -0.05 -3.78  0.23 0.35 -0.12 -9.46 

 Short Ter. (0/1) 0.03 0.03 0.00 1.00  0.02 0.03 -0.01 -3.48 

 Medium Ter.  (0/1) 0.03 0.45 -0.42 -40.77  0.09 0.29 -0.20 -18.84 

 Long Ter. (0/1) 0.03 0.02 0.01 1.27  0.02 0.04 -0.02 -3.75 

Age <25 (0/1) 0.28 0.13 0.14 12.96  0.26 0.22 0.04 3.58 

 25-29 (0/1) 0.53 0.30 0.24 17.77  0.52 0.24 0.28 21.92 

 30-34 (0/1) 0.14 0.43 -0.29 -24.20  0.16 0.39 -0.22 -18.73 

 35+ (0/1) 0.05 0.14 -0.09 -11.45  0.05 0.15 -0.10 -12.08 

Income First quartile (0/1) 0.37 0.05 0.32 31.27  0.44 0.02 0.42 41.81 

 Second quartile (0/1) 0.25 0.08 0.17 17.11  0.21 0.09 0.12 12.45 

 Third quartile (0/1) 0.18 0.12 0.06 6.10  0.12 0.13 -0.01 -1.08 

 Fourth quartile (0/1) 0.09 0.23 -0.14 -13.93  0.06 0.25 -0.19 -19.30 

Immigration status Immigrant or descendent (0/1) 0.02 0.03 -0.01 -2.02  0.02 0.03 0.00 -0.91 

Paternal characteristics          
Education Primary school (0/1) 0.33 0.35 -0.02 -1.51  0.41 0.24 0.17 13.21 

 Secondary school (0/1) 0.03 0.04 -0.02 -3.23  0.03 0.03 0.00 0.64 

 Vocational (0/1) 0.52 0.30 0.21 16.09  0.40 0.47 -0.06 -4.69 

 Short Ter. (0/1) 0.03 0.02 0.00 1.06  0.03 0.03 0.00 0.59 

 Medium Ter.  (0/1) 0.07 0.18 -0.11 -12.32  0.08 0.14 -0.06 -6.53 

 Long Ter. (0/1) 0.04 0.11 -0.07 -10.23  0.04 0.09 -0.05 -7.77 

Age  <25 (0/1) 0.13 0.04 0.09 11.16  0.12 0.08 0.04 5.24 

 25-29 (0/1) 0.39 0.19 0.19 15.88  0.43 0.21 0.22 17.84 

 30-34 (0/1) 0.31 0.44 -0.13 -9.45  0.30 0.39 -0.10 -7.34 

 35+ (0/1) 0.17 0.33 -0.16 -13.19  0.15 0.32 -0.17 -14.80 

Income First quartile (0/1 0.33 0.06 0.28 26.79  0.39 0.02 0.37 37.76 

 Second quartile (0/1) 0.22 0.09 0.13 12.75  0.20 0.13 0.07 6.52 

 Third quartile (0/1) 0.22 0.13 0.09 9.09  0.16 0.15 0.00 0.07 

 Fourth quartile (0/1) 0.12 0.17 -0.05 -5.26  0.09 0.17 -0.08 -8.29 

Immigration status Immigrant or descendent (0/1) 0.02 0.03 -0.01 -3.05   0.03 0.03 0.00 0.34 
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Table 5: Group Average Treatment Effects (GATES) by predicted CATE quartile 

 Labour Market Income   Any Labor Market Income 

  Difference 95% CI     Difference 95% CI 

Q1 Ref.    Q1 Ref.   
Q2 36.07 -25898.90 25971.04  Q2 0.10 0.05 0.15 

Q3 4153.41 -21241.75 29548.57  Q3 0.09 0.03 0.14 

Q4 20339.45 -5570.71 46249.62   Q4 0.10 0.05 0.15 

Notes: The sample is partitioned into quartiles by the predicted conditional average treatment effect. Group 

average treatment effects are then estimated using a set of quartile dummy indicators. This is done for both 

outcomes.  

 

 

 

 

Table 6: Differences in educational attainment and selected health outcomes by 

predicted treatment quartile 

  Panel A: Labor market income  Panel B: Any labor market income 

 Q1 Q4 Difference t stat   Q1 Q4 Difference t stat 

Diabetes Sample          

 Diabetic coma/DKA (0/1) 0.43 0.34 0.09 2.66  0.44 0.36 0.08 2.39 

 Late complications (0/1) 0.55 0.53 0.02 0.57  0.57 0.57 0.00 0.03 

 HbA1c 8.19 8.13 0.06 0.60  8.33 8.13 0.20 2.03 

 LDL cholesterol 2.54 2.52 0.02 0.38  2.56 2.60 -0.04 -0.77 

 Ever smoker (0/1) 0.32 0.34 -0.02 -0.67  0.36 0.31 0.05 1.69 

 Hypertension treatment (0/1) 0.17 0.19 -0.02 -0.62  0.20 0.19 0.01 0.30 

  Lipid lowering treatment (0/1) 0.14 0.14 0.01 0.38   0.17 0.14 0.03 1.23 

Full Sample 

Education 

 

Primary school (0/1) 0.22 0.14 0.08 7.82  0.23 0.14 0.09 8.75 

 Secondary school (0/1) 0.07 0.09 -0.01 -1.80  0.08 0.08 0.00 -0.47 

 Vocational (0/1) 0.38 0.29 0.09 6.98  0.37 0.33 0.04 3.33 

 Short Ter. (0/1) 0.04 0.06 -0.01 -2.08  0.04 0.06 -0.02 -3.12 

 Medium Ter.  (0/1) 0.18 0.24 -0.06 -5.57  0.18 0.22 -0.04 -3.61 

 Long Ter. (0/1) 0.09 0.18 -0.09 -9.47  0.09 0.17 -0.08 -8.41 

           

Notes: Differences in the probability of selected health outcomes for individuals with T1D by treatment effect 

quartile. Differences in educational attainment for the full sample by treatment effect quartile. DKA is diabetic 

ketoacidosis. 

 

 

Table 7: Probability of being in Q1 vs. Q4 by age at T1D onset 

 Labor market income  Any labor market income 

  Coef S.E.   Coef S.E. 

Early onset 0.18 0.03  0.15 0.03 

Early onset x Early time 0.29 0.04   0.16 0.04 

Notes: The probability of being in treatment effect quartile 1 vs. 4 by age at onset (< 9 years) and the interaction 

with early time (diagnosed before 1991).  
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Figure 1: Mean difference (95% CI) in days absent from school during a given month 

relative to diagnosis of type 1 diabetes (diabetes vs. no diabetes) 

 
Notes: n= 1,338 children diagnosed with type 1 diabetes from August 1 2010 to June 30 2017 compared with n= 

6,690 age and sex matched controls. Mean (95% CI) difference in number of days absent from school relative to 

diabetes diagnosis (month 0). The mean differences are adjusted for calendar-month and school grade specific 

effects. As the month of July is the only month of year with no school days in Denmark, it was left out of the 

analysis. Months -12 to -5 showed non-significant differences (with a level of significance at p<0.05). 

 

Published previously in Thingholm et al. Association of Prodromal Type 1 Diabetes with School Absenteeism of 

Danish Schoolchildren: A Population-Based Case-Control Study of 1,338 Newly Diagnosed Children. Diabetes 

Care 2020 Nov; 43(11): 2886-2888. Copyright 2020 by the American Diabetes Association. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Figure 2: Differences in health care utilization around the time of diagnosis, treatment 

vs. control 
Panel A: Probability of any hospital admission 

 
Panel B: Probability of any GP visit 

 
Panel C: Probability of any pharmacy claim 

 
Notes: Panel A shows the difference in ‘any hospital admission’ by month relative to the diagnosis month for 

treatment vs comparison individuals. In Panel B, the outcome is the probability of visiting the general 

practitioner, and Panel C shows the difference in the probability of having a pharmacy claim.  
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Figure 3: Estimated distributions of Conditional Average Treatment Effects 

 

Panel A: Estimated distribution of CATEs for income at age 30 

 
Panel B:  Estimated distribution of CATEs for having positive LMI at age 30 

 
  

Notes: The solid (red) line indicates the average CATE in the sample. The dashed (blue) line is the treatment 

effect estimate from an OLS regression including the full set of controls (equal to the coefficient reported in 

column (4) in table 3). The average CATE is not statistically significantly different from the OLS treatment 

estimate for any of the outcomes. The estimated distributions are capped at the 1st and 99th percentiles. 
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Figure 4: Relative treatment effects on income at age 30 by parental characteristics 

 

Panel A: Relative treatment effects by parental education 

 
 

 Panel B:    Relative treatment effects by parental income quartile 

 
Panel C:  Relative treatment effects by parental age 

 
 

Notes: This figure presents subgroup effects and 95% CI for the impact of diabetes on income at age 30. The 

graph shows mean CATE from causal forest analysis by maternal education, age, and income quartile. The 

mean is scaled by the mean outcome in the subgroup. The horizontal line indicates the relative treatment effect 

for the entire population 
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Figure 5: Relative treatment effects on any labor market income at age 30 by maternal 

characteristics 

 

 

Panel A: Relative treatment effects by parental education 

 
 

 Panel B:    Relative treatment effects by parental income quartile 

 
Panel C:  Relative treatment effects by parental age 

 
 

Notes:  This figure presents subgroup effects and 95% CI for the impact of diabetes on the probability of having 

any labor market income at age 30. The graph shows mean CATE from causal forest analysis by maternal 

education, age, and income quartile. The mean is scaled by the mean outcome in the subgroup. The horizontal 

line indicates the relative treatment effect for the entire population  
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Figure 6: Difference in HbA1C for People with T1D by parental characteristics 

Panel A: Difference by parental education 

 
 

 Panel B: Difference by parental income quartile  

 
Panel C: Difference by parental age 

 
Notes: This figure presents subgroup differences in diabetes related outcomes among the individuals with 

diabetes. Glycated hemoglobin (HbA1c) is a measure of how well the glucose levels are managed with lower 

values indicating better disease management. Mean differences relative to the comparison group are reported 

with 95% CI. The outcome mean is 8.2. 
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Figure 7: Difference in probability of receiving ambulatory care related to T1D by 

parental characteristics 

Panel A: Difference by parental education 

 
 

 Panel B:    Difference by parental income quartile 

  
Panel C:  Difference by parental age 

  
 

Notes: This figure presents subgroup differences in diabetes related outcomes among the individuals with 

diabetes. The outcome is the probability of receiving specialized ambulatory care. Mean differences relative to 

the comparison group are reported with 95% CI. The outcome mean is 0.77 
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Figure 8: Difference in probability of hospital admission with diabetes related acute 

conditions by parental characteristics 

Panel A: Difference by parental education 

 
 

 Panel B:    Difference by parental income quartile 

  
Panel C:  Difference by parental age 

  
 

Notes: This figure presents subgroup differences in diabetes related outcomes among the individuals with 

diabetes. The outcome is the probability of having been admitted to the hospital for diabetes related acute 

conditions (diabetic ketoacidosis or hypoglycemic coma). Mean differences relative to the comparison group are 

reported with 95% CI. The outcome mean is 0.37. 
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Figure 9: Difference in probability of diabetes related complications by parental 

characteristics 

Panel A: Difference by paternal education 

 
 

 Panel B:    Difference by paternal income quartile 

  
Panel C:  Difference by parental age 

  
 

Notes: This figure presents subgroup differences in diabetes related outcomes among the individuals with 

diabetes. The outcome is the probability of having been diagnosed with any late complication by age 30. Mean 

differences relative to the comparison group are reported with 95% CI. The outcome mean is 0.54. 
 


