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Abstract

A number of countries have recently implemented variants of a negative income
tax, to push the less skilled members of the economy into work, or to make work
pay in comparison with welfare bene�ts. In most cases, these measures have
resulted for the concerned groups in a decrease of the tax rates, that remain
positive, rather than in a subsidy, in conformity with the recommendations of
the current theory of optimal taxation. Indeed in the Mirrlees setup (continuous
labor supply or intensive margin, unobserved productivity, utilitarian planner)
the marginal tax rate is non negative at the optimum.

The purpose of the paper is to question this result of the theory. We study
economies where it is optimal to have people in the economy work more than in
the laissez-faire. We provide an example in the intensive setup. The utilitarian
optima in the extensive model seem to exhibit this property quite generally. We
hope that these results help towards providing some theoretical foundations for
low skilled work subsidy, and extending the scope of welfare to work programs.
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1 Introduction

A number of countries have recently implemented variants of a negative income
tax, to push the less skilled members of the economy into work, or to make work
pay in comparison with welfare bene�ts. In most cases, these measures have
resulted for the concerned groups in a decrease of the tax rates, that remain
positive, rather than in a subsidy (see e.g. CBO (2000) for the United States).
This is in conformity with the current recommendations of the theory of optimal
taxation. Indeed it is now well established in the Mirrlees setup (continuous labor
supply or intensive margin, unobserved productivity, utilitarian planner) that the
marginal tax rate is non negative at the optimum1 (Seade (1977), Seade (1982),
Hellwig (2005), Werning (2000)). The purpose of the present paper is to revisit
this theoretical result, to question its robustness when there are multiple dimen-
sions of heterogeneity, and to draw its implications for labor market distortions.
This is done through two examples, one in the intensive setup, the other in the
extensive framework.

In fact, early on Diamond (1980), more recently Saez (2002), Beaudry and
Blackorby (2004), Boone and Bovenberg (2004), Boone and Bovenberg (2006),
Choné and Laroque (2005) and Laroque (2005) have described setups where the
positive tax rate result does not hold. A common feature of the (rather di�erent)
models used in these works is that labor supply decisions involve a zero-one com-
ponent, an extensive margin. Furthermore there are typically several (sometimes
implicit) dimensions of heterogeneity. These studies exhibit cases where negative
tax rates can occur at an optimum. But it is fair to say that their theoretical
foundations remain unclear as well as their practical relevance. Also it is impor-
tant to note that the implications of negative tax rates are quite di�erent in an
extensive model and in an intensive model. In the intensive model, they imply
that labor supply is distorted upwards compared with the laissez-faire. In the
extensive model negative tax rates are mostly related to the shape of the distri-
bution of agents in the economy, and to the best of our knowledge, the previous
literature has not studied the extent of labor supply distortions in this setup.

We use a framework which contains as limit cases both the intensive and the
extensive models, and allow for multiple dimensions of heterogeneity. We take
a very simple separable speci�cation for the agents tastes, in fact much simpler
than the standard Mirrlees speci�cation: utility is linear in commodity and for
the participating agents labor supply has a constant elasticity with respect to
wages. Technically, our line of approach is to look �rst for properties of all the
second best optimal allocations, then restricting the attention to those that are
consistent with a utilitarian criterion.

The study of the intensive model follows on the steps of Sandmo (1993), but

1However Mirrlees (1976) in its Section 4 indicates, along a line that will be pursued further
here, that the sign of the marginal tax rate cannot be predicted when the agents in the economy
di�er along several dimensions of heterogeneity.
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we allow for a general non-linear tax. There are two dimensions of heterogeneity,
productivity and a variable opportunity cost of work. The speci�cation how-
ever makes it possible to subsume these two dimensions into a single one2. We
are able to completely characterize the set of second best allocations, including
the ones that involve pooling, in line with the general analysis of Jullien (2000).
Heterogeneity comes into play in the measurement of the agents' utilities, which
increase with productivity and may either decrease or increase with the variable
work opportunity cost. It is likely to decrease when the cost is associated with
poor living conditions (i.e. a handicap); it increases when the cost re�ects op-
portunities outside the legal market (such as gardening at home or black market
activities). We �nd that the Mirrlees result, of positive marginal tax rates, ex-
tends here whenever the distribution of opportunity costs is independent of that
of productivities, whatever the impact of these costs on the agents utilities. We
give an example of optimal negative marginal rates in an economy where agents
with low productivities exhibit a large spectrum of opportunity costs, and are
better o�, the larger their costs. The negative tax rate serves to screen out the
agents with large costs, who anyway bene�t from working at home or on the black
market, in the spirit of the imperfect screening literature (e.g. Akerlof (1978) or
Salanié (2002)).

The extensive model has built in several dimensions of heterogeneity, since
both di�erences in productivity and in �xed opportunity cost to work are an
essential feature of the model. It also presents technical di�culties because of
its intrinsic non convexity. We speci�cally study the shape of the second best
allocations that are consistent with a utilitarian criterion. For simplicity, and
for comparison with the intensive case, we restrict our attention to the situation
where work opportunity costs have a log-concave distribution and are distributed
independently of productivity in the population. To our surprise, we �nd that
all the utilitarian optima involve upwards labor supply distortions for low produc-
tivity workers. The optimal �nancial incentives to work involve a subsidy: low
productivity workers are paid more than their productivity at the optimal alloca-
tion. The argument is as follows. In the absence of income e�ects, the marginal
cost of public funds, say c, is equal to 1, the social value of transferring 1$ per
head to everyone in the population (the population size having been normalized
to one). Consider then a small change in the tax schedule in favor of the working
agents of (low) productivity ω, su�ciently small not to modify the situation of
the other agents, of productivity di�erent from ω. It has two e�ects: it gives
more money to the agents that are already working, and it brings into the la-
bor force some pivotal agents previously unemployed. Under utilitarianism (and
not full redistribution!), the social value of a marginal transfer to the working

2With a similar aim as ours, Beaudry and Blackorby (2004) have studied a model with
several `true' dimensions of heterogeneity. This makes the study of the optimal taxes much
more complicated.
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agents of productivity ω is larger than that of a transfer to the whole population,
and therefore has a social value larger than c per dollar transferred. The pivotal
agents that enter the labor force are essentially indi�erent between working and
not working, and their contribution is the di�erence between their productivity
ω and their pay. For the �rst order condition to hold, this di�erence must be
negative: pay has to be larger than productivity. The result appears to hold in a
number of cases, and it would be of interest to study more precisely its domain
of validity.

To summarize, non negative optimal marginal tax rates, which obtain under
utilitarianism in the Mirrlees model, appear to be non robust to the presence
of heterogeneity, apart from that a�ecting productivity, in the economy. Then
upwards distortions in labor supply may be useful for screening purposes. In our
simple intensive model, this occurs in a rather special case, when the low income
people are thought to be well o� agents who shirk. In the extensive model,
under utilitarianism, the less skilled workers have typically their work subsidized:
they work more than in the laissez-faire, and the utilitarian optimal allocations
have more `working poors' than the competitive equilibrium. All this should the
subject of further research.

2 The setup

2.1 The model

We consider an economy with a continuum of agents of measure 1. The agents
supply labor, in quantity h, h ≥ 0, to produce an undi�erentiated commodity in
quantity ωh = y. Here ω, ω ≥ 0, denotes the idiosyncratic productivity of the
agent, and y her before tax income.

After government transfers, the after tax income of the agent is denoted R(y),
where the non linear function R : IR+ → IR summarizes the action of the tax
authority. The tax function T corresponding to R is de�ned by

T (y) = y −R(y),

so that a negative marginal tax rate corresponds to a derivative R′(y) larger than
one.

Faced with the function R, the typical agent choses her labor supply by max-
imizing a choice index

u(R; α, β, ω) = max
h≥0

{
R(0) + α if h = 0

R(ωh)− βv(h) if h > 0
(1)

We say that an agent participates in the labor market when she choses a positive
labor supply, so that her choice index is given by the bottom line of the formula.
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This speci�cation is adopted for convenience, but is in line with a number
of works in the literature. The choice index of the agent is linear in commodity
(labor supply does not depend on the income level). The penibility of labor is
described with the function v(h), which we specify as

v(h) =
h1+ 1

e

1 + 1
e

.

The parameter e, e ≥ 0, common to all the agents in the economy, is the elasticity
of the labor supply of the participating agents with respect to wage. In the
limiting case e = 0, when R is non decreasing, everyone supplies one unit of
labor when participating: we obtain the extensive model.

On top of her productivity ω, an agent is characterized by the non negative
idiosyncratic parameters α and β. The former, α, the �xed opportunity cost of
work, represents the gain of being at home, not doing any work at all. When α
is equal to zero, we fall back on the intensive model. The latter, β, the variable
opportunity cost of work, scales the penibility of labor. We note θ = (α, β, ω).
The distribution of agents' characteristics has support Θ in IR3

+ and is known to
the government. The cumulative distribution function is H.

2.2 Second best optimality and utilitarianism

Given a function R, an allocation yR is a function from Θ into IR+ such that,
for all θ, yR(θ) = ωh for some h that maximizes the program (1) of the agent
of characteristics θ. In this paper, all allocations are associated in this way with
some function R. To alleviate notations, we shall drop the index R when this
does not create ambiguity. The allocation yR, and the associated function R are
feasible when ∫

Θ

[yR(θ)−R(yR(θ))] dH(θ) = 0.

An allocation yR∗ and the associated transfer function R∗ are second best
optimal when there does not exist another feasible allocation which gives at least
as much utility to everyone in the economy and strictly more to a subgroup of
agents of positive measure. By de�nition, R∗ is second best optimal if and only
if the program {

maxR

∫
Θ
[yR(θ)−R(yR(θ))] dH(θ)

u(R; θ) ≥ u(R∗; θ) for all θ in Θ
(2)

has solution R∗ and value 0. It follows that to any second best allocation there
is associated a non negative measure Π on Θ, such that the function R∗ is a local
maximum of the Lagrangian

L =

∫
Θ

[u(R; θ) dΠ(θ) + (yR(θ)−R(yR(θ)) dH(θ)]. (3)
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Note that by quasi-linearity of the utilities, the solution to the program where a
constant a is added to R∗ is a + R∗, with yR∗ equal to ya+R∗ . Therefore∫

Θ

dΠ(θ) = 1,

and Π is a probability measure. Furthermore, when looking for all the second best
allocations, it will be convenient to ignore the feasibility condition, which essen-
tially �xes the intercept of the function R∗, and choose a simpler normalization
condition, such as infθ∈Θ u(R∗, θ) = 0.

To simplify the presentation, in most of the paper, we shall work under the
assumption that the measure Π is absolutely continuous with respect to the
distribution of the agents characteristics. Then, for any measurable set A,

Π(A) =

∫
A

π(θ) dH(θ),

and π(θ) is interpreted as the social weight of the agents of characteristics θ. In
fact, the results that we obtain are typically valid for a general measure, possibly
with discrete masses: they cover in particular the Rawlsian optimum, which
corresponds to a unit mass on the agents with the lowest utility level.

Second best optimality is an ordinal concept, which does not depend on the
particular representation of the agents' utilities, up to an increasing transforma-
tion. For comparison with the literature, we also study the subset of allocations
that obtain under utilitarianism, a cardinal notion3. Let Ψ(u(R, θ), θ) be the
utility that society assigns to the agent θ when her choice index is u(R, θ). The
function Ψ is non decreasing and concave in its �rst argument (a requirement
of consistency with private values). The social weight of agent θ, Ψ′

u(u(R, θ), θ),
depends in an arbitrary way on its second argument: for instance society may
dislike the agents who like staying at home (decreasing in α), or would like to
compensate people with a large penibility of labor (increasing in β). The second
best allocation is consistent with utilitarianism when the associated weights are
proportional to the marginal social utility for some admissible function Ψ

π(θ) =
Ψ′

u(u(R, θ), θ)∫
Θ

Ψ′
u(u(R, θ), θ) dH(θ)

.

When Ψ is allowed to vary with the parameter θ, it is easy to see that any second
best optimal allocation can be supported with a well chosen Ψ: consistency with
utilitarianism is not a binding restriction.

3It may be worth emphasizing that we stick here to a purely welfarist viewpoint. We do
not consider situations where the social objective includes moral considerations other than the
e�ects of policies on individual utilities, as discussed in Sen (1982) and Kaplow and Shavell
(2001).
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Figure 1: Second best optimality and utilitarianism

When the function Ψ does not depend on its second argument, the standard
situation studied in the optimal tax literature, the condition binds and can be
written as

π(θ1) > π(θ2) if and only if u(R, θ1) < u(R, θ2).

This is illustrated on the stylized Figure 1, which sketches an hypothetical econ-
omy with two types of agents in the plan of their choice indices (U1, U2). The
second best frontier is the black curve ABCD, while the subset of the frontier
that is consistent with utilitarianism is made of the union of AB and CD, where
B and D are the points where the frontier has slope −1: it must have a tangent
of slope larger than 1 in absolute value below the 45 degree line, and larger than
1 above the 45 degree line.

Our purpose is to �nd properties of the second best optimal functions R, in
particular when the social weights are consistent with utilitarianism.

3 The pure intensive case

This situation obtains when the �xed opportunity cost of labour α is equal to
zero for all the agents in the economy.
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3.1 A change of variable

It turns out that there is a convenient reformulation of the problem, introducing
the choice index of the participating agents as a variable, instead of the func-
tion R. Indeed, in general when there are several dimensions of heterogeneity
(productivity, penibility of labor) and the government has only one dimension
of observation (income), a major di�culty is to identify the set of idiosyncratic
shocks that are associated with a given level of income, which typically depends
on the announced transfer function. Here, the speci�cation of the choice index
and of the way shocks enter the model allow to reduce the problem to a single
dimension of heterogeneity from the start, independently of the function R.

Proposition 1. 1. Consider a function R : IR+ → IR. Let

V (γ) = max
y≥0

R(y)− γ
y1+ 1

e

1 + 1
e

,

where

γ =
β

ω1+ 1
e

.

V is a convex nonincreasing function, which satis�es

V ′(γ) = −v(yR(γ)),

whenever it is di�erentiable, so that R(yR(γ)) = V (γ)− γV ′(γ).

2. Conversely, to any convex nonincreasing function V corresponds a real func-
tion R̃ : IR+ → IR+ through

R̃(q) = min
γ≥0

V (γ) + γq.

R̃(.) is concave non decreasing in its argument. If V has been derived from
a function R as in 1., R̃(.) coincides with the function R◦v−1 when R◦v−1

itself is concave, which implies that R itself is non decreasing.

We shall denote Γ the support of the distribution of γ, with γ ≥ 0 and γ
its lower and upper (possibly in�nite) bounds. From the point of view of the
agents the only thing that matters is the level V (γ) of their choice index, and
Proposition 1 shows that without loss of generality we can consider any convex
nonincreasing function. Also, without loss of generality, the government can
restrict the R functions to be non decreasing and such that R ◦ v−1 be concave.
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3.2 Optimal tax

Using the change of variable, the Lagrangian (3) becomes

L =

∫
V dΠ(θ) +

∫
[y − (V − γV ′)] dG(γ).

Since V depends only on γ, the Lagrangian depends only on the marginal dis-
tribution of dΠ in the dimension γ, which will be denoted dΠ(γ), with a slight
abuse of notation, and Π(γ) is its cumulative distribution. We can write

L =

∫
V dΠ(γ) +

∫
[y − (V − γV ′)] dG(γ)

By integration by parts (apply Lemma A.1. in Appendix with F = V , f = V ′,
y = Π, y(θ = 0) and y(θ) = 1) , the Lagrangian becomes

L =

∫
(y + γV ′) dG(γ) +

∫
V ′(G− Π) dγ,

where V ′ = −v(y). Note that it depends only on the allocation y, i.e. the
derivative of the choice index (and not on its level V ).

The problem is to maximize L on the set of nonincreasing and positive func-
tions y, or, equivalently, on the set of nondecreasing and negative functions V ′.
The Lagrangian is strictly concave in V ′. It is maximized on a convex set. It
follows that it has a unique maximum.

Lemma 1. An allocation y is second best optimal if and only if there exists a
nondecreasing function Π : [γ, γ] → [0, 1] such that y is the solution to

maxL =

∫
(v−1(−V ′) + γV ′) dG(γ) +

∫
V ′(G− Π) dγ,

on the set of nondecreasing and negative function V ′.

The set of second best optimal allocations is easy to describe when the dis-
tribution of heterogeneity is continuous, i.e.

Assumption 1 (Continuous distribution). The parameter γ is distributed in the
economy with the c.d.f. G of support [γ, γ], 0 < γ < γ < ∞. Furthermore G has
a continuous positive density g.

We have
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Proposition 2. Suppose that Assumption 1 holds. A non negative decreasing
function y(γ) de�ned on Γ is a second best allocation if and only if the function

Π(γ) =

 G(γ)− g(γ)

[
1

v′(y(γ))
− γ

]
for γ in [γ, γ)

1 for γ = γ

is non negative and non decreasing.

Then both y(γ) and Π(γ) are continuous on (γ, γ). There is no distortion at
the top when Π is continuous at γ: γv′(y(γ)) = 1. There is no distortion at the
bottom when Π(γ) = 0: γv′(y(γ)) = 1. The social weights π(γ) associated with
this allocation are the (Stieltjes) derivative of Π(γ).

Proof: I) Necessity. Since y is increasing, V ′ is strictly positive and a necessary
condition for optimality is that the pointwise derivative of the Lagrangian in
Lemma 1 be equal to zero. This yields the condition of the Proposition.

Continuity is proved as follows. Since y(γ) is decreasing, any discontinuity
has to be downwards. That creates a downwards discontinuity for −1/v′(y) and
therefore for Π, a contradiction with the fact that Π is non decreasing. The no
distortion properties are straightforward consequences of the �rst order condition.

II) Su�ciency. The measure Π de�ned in the proposition is an adequate
multiplier for the second best program. The function

V (γ) =

∫ γ

γ

v′(y(γ)) dG(γ)

is convex non increasing. It maximizes the Lagrangian of Lemma 1 since its
derivative is a pointwise maximum of a concave function of V ′.

Remark: Here is a general version of Proposition 2 with proof in the Appen-
dix, which allows for pooling (i.e. y may be constant on some interval). In what
follows, a pooling interval is a maximal interval where y is constant.

Proposition 3. Suppose that Assumption 1 holds. A nonnegative nonincreasing
function y(γ) de�ned on Γ is a second best allocation if and only if there exists a
nonnegative and nondecreasing function Π(γ) with values in [0, 1] such that∫ γ

γ

{
G(γ̃)− g(γ̃)

[
1

v′(y(γ))
− γ̃

]}
dγ̃ ≥

∫ γ

γ

Π(γ̃) dγ̃ (4)

for all γ, and (4) is an equality at any γ where y is decreasing.
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Figure 2: Social weights and negative marginal tax rates

3.3 Utilitarianism and marginal tax rates

The program of the typical consumer yields the �rst order condition

R′(y) = γv′(y),

or, using the equality R′ = 1− T ′

T ′(y)

1− T ′(y)
=

1

γv′(y)
− 1.

Let pI(γ) be the average value of the social weights of all the agents with idio-
syncratic characteristics smaller than γ:

pI(γ) =
Π(γ)

G(γ)
=

1

G(γ)

∫ γ

γ

π(x) dG(x).

Using Proposition 2, we get an expression of the optimal tax rate as a function
of the distribution of the heterogeneity in the population and of the social weights:

T ′(y(γ))

1− T ′(y(γ))
=

G(γ)

γg(γ)
(1− pI(γ)) . (5)

Under Assumption 1, G/g is well de�ned and positive for all γ larger than γ, and
the marginal tax rate has the same sign as (1− pI(γ)).
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Consider the standard Mirrlees case where β is constant across the population,
and ω has a continuous distribution on [ω, ω]. Then

γ =
β

ω1+ 1
e

γ =
β

ω1+ 1
e

,

and productivity, as well as utility, decreases with γ. Utilitarianism is equivalent
to have social weights which increase with γ, which in turn implies that pI(γ)
increases with γ. Since pI(γ) = 1, pI(γ) < 1 for all γ < γ, and we (fortunately)
get the standard result: the marginal tax rate is always positive, but for the
boundaries of the domain where it is equal to zero.

The situation can change when there are other dimensions of heterogeneity,
which non trivially act on the agents utility levels. Suppose as an illustration that
the utility is of the shape Ψ[V (γ), β], with Ψ concave in its �rst argument, i.e. Ψ′

V

decreasing in V . When Ψ′
V does not depend on β, the standard argument applies

and optimal marginal tax rates are non negative. But Ψ′
V can be decreasing

in β: this is the case when the utility of the agent is a concave transformation
of [V (γ) + βH], where H > 0 and the additive term βH stands for the `home'
production of the agent supposed to increase with her variable cost to work on the
market. It can also be increasing in β, when a negative H in the above formula
stands for a handicap: larger β's are associated with a lower quality of life, on
top of the direct market e�ects. Let

π̃(γ, β) =
Ψ′

V [V (γ), β]∫
Ψ′

V [V (γ), β] dH(θ)
,

so that the weights of interest to characterize the optimal allocation and tax
schedule are

π(γ) =

∫
π̃(γ, β) dG(β|γ),

where G(β|γ) is the distribution of β conditional on the parameter γ. There are
a variety of situations where tax rates are non negative:

Proposition 4. Assume that the social weight Ψ′
V [V, β] is decreasing in V , in-

creasing (resp. decreasing) in β and that the distribution of β, conditional on γ,
is �rst order stochastically increasing (resp. decreasing) in γ.

Then the weights π(γ) are increasing and marginal tax rates are non negative.

Proof: Let

f(a, b) =

∫
π̃(a, β) dG(β|b).

f is increasing in a, since π, proportional to Ψ′
V [V (a), β], is. It is increasing

in b by �rst order stochastic dominance. It follows that π(γ) = f(γ, γ) is also
increasing in its argument.
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Since β = γ/ω1+1/e, it is plausible that G(β|γ) be �rst order stochastically
increasing in γ. Then if Ψ′

V is increasing in β, i.e. larger opportunity costs are
due to a handicap, the optimal marginal tax rates are non negative.

As a counterpart to the above proposition, it is easy to build examples with
negative marginal tax rates, say when Ψ′

V decreases with β while the conditional
distribution of β given γ increases. Consider the following economy. At the lowest
wage rate ω, there are a variety of β's, a continuous distribution on [β, β]. For
all the wage rates above the minimum, a continuous distribution on (ω, ω], there
is a unique value of β, equal to β. In terms of γ's, we have:

γ =
β

ω1+ 1
e

γm =
β

ω1+ 1
e

γ =
β

ω1+ 1
e

.

The agent γ is the most productive with the smallest opportunity cost to work.
All the agents of the segment [γ, γm] di�er only by their productivities. All the
agents in [γm, γ] have the same low productivity ω, but have di�erent, increasing,
opportunity costs. Figure 2 represents in a stylized way a possible pro�le of π(γ),
when the social weights are decreasing in β. Following standard utilitarianism, π
is increasing on [γ, γm]; it is supposed to decrease further on, the home production
e�ect more than compensating the mechanical increase in γ as β rises. The
agent with the largest social weight is the person with lowest productivity and
opportunity cost to work. The associated function pI(γ), which measures the
average height of π(x) for x smaller than γ, is also represented: pI(γ) increases
whenever it lies under the graph of π, decreases when it is above the graph,
and has an horizontal tangent when it crosses the π curve. Also, we know that
pI(γ) = 1. In the situation depicted on Figure 2, all the agents in the segment AB
face negative tax rates. As noted by Saez (2002), page 1054, negative marginal
tax rates at the bottom of the wage distribution as here can only occur if the
social weight of the γ agent, smallest productivity, largest work opportunity cost,
is smaller than the average social weight4.

4 The extensive model

We now turn to the study of the second best optimal allocations in the extensive
model.

4.1 Optimal taxes

The extensive model obtains as a limit case of model (1) when the elasticity e
tends to zero: then the function v tends to zero for all h smaller than 1, and to +∞

4Indeed the function pI has to decrease towards one, and therefore must lie above the graph
of π.
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for all h larger than 1. If the agent participates, she is indi�erent supplying any
quantity of labor smaller than 1, since the variable opportunity cost βv(h) then
is equal to zero. It follows that the after tax income schedule R(y) can be taken
to be non decreasing without loss of generality5. Then, when she participates,
the agent supplies one unit of labor and her before tax income y is equal to ω.
As a consequence, before tax income can take any value in the support Ω of
productivity, as well as the value 0. The function R has to be de�ned on {0}∪Ω.

Let D(y) = R(y)−R(0) denote the �nancial incentive to work for an income
y. The choice index of the typical agent, taken from (1), is

u(R; θ) = R(0) + max[α, D(ω)].

An agent works whenever α is less than or equal6 to D(ω). This implies∫
Θ

[yR(θ)−R(yR(θ))] dH(θ) =

∫
α≤D(ω)

[ω −D(ω)] dH(θ)−R(0),

and the Lagrangian (3) becomes

L =

∫
Θ

{
max[α, D(ω)] dΠ(θ) + [ω −D(ω)]11α≤D(ω) dH(θ)

}
.

It is convenient to work under the

Assumption 2. For all ω, the distribution of opportunity costs of work α, con-
ditional on ω, is continuous with support [α(ω), α(ω)], α(ω) ≥ 0, and cumulative
distribution function F (α|ω). Its probability distribution function f(α|ω) is posi-
tive everywhere on its support.

After simple manipulations, the objective becomes

L =

∫
Θ

π(θ)α dH(θ) +∫
ω

∫ D(ω)

α=α(ω)

11α(ω)≤D(ω) dG(ω) {[D(ω)− α] dΠ(θ) + [ω −D(ω)] dH(θ)} .

We have shown

Lemma 2. An income tax schedule R(.) is second best optimal if and only if
there is a probability measure of cdf Π(θ) such that the incentive schedule D(ω) =
R(ω)−R(0) maximizes∫

ω

{
[ω −D(ω)]F (D(ω)|ω) dG(ω) +

∫ D(ω)

α(ω)

[D(ω)− α] dΠ(θ)

}
11α(ω)≤D(ω)

5Take any, possibly sometimes decreasing, function R̃(y). Let R(y) = maxy≥z R̃(z). The

agents have the same behavior under R and R̃.
6For e�ciency, since productivity is positive, the agents that are indi�erent between working

and not working are supposed to be working.
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on the set of non decreasing functions D(.), such that D(0) = 0. When Π(θ)
is absolutely continuous with respect to H(θ), with pdf π(θ) the criterion can be
rewritten as∫

ω

{
[ω −D(ω)]F (D(ω)|ω) +

∫ D(ω)

α(ω)

[D(ω)− α]π(θ) dF (α|ω)

}
11α(ω)≤D(ω) dG(ω)

(6)

Let

L(D; ω) = [ω −D]F (D|ω) +

∫ D

α(ω)

[D − α]π(θ) dF (α|ω).

Since under Assumption (2), L(α(ω); ω) is equal to zero, the program can be
restricted to the domain D(ω) ≥ α(ω). Whenever at the optimum L(D(ω); ω) =
0, D(ω) is indeterminate and can take any value less than or equal to α(ω),
without changing the objective: the condition D(0) = 0 can always be satis�ed.

We therefore have to maximize (6) on the set of non decreasing functions D(.)
which satisfy D(ω) ≥ α(ω). Unfortunately, contrary to the intensive case, the
function L is not a concave function of D. Nevertheless, at any point ω where
the solution is strictly increasing and larger than α(ω), it satis�es the �rst order
condition for a pointwise maximum7

∂L

∂D
= [ω −D]f(D|ω)− F (D|ω)[1− pE(D|ω)] = 0,

where pE(D|ω) is the average social weight of the agents of productivity ω and
of work opportunity cost smaller than D

pE(D|ω) =
1

F (D|ω)

∫ D

α(ω)

π(θ) dF (α|ω). (7)

The expression of ∂L/∂D has a direct economic interpretation: the �rst term [ω−
D]f(D) is the gain in government income obtained from the new f(D) workers
that participate because of the increase in D; the second term F (D)[1− pE(D)]
is the loss on the existing workers F (D) which depends on their social weights
(and indeed is a social gain for those of weights larger than 1).

The tax supported by the workers of productivity ω is T (ω) = ω−D(ω)−R(0),
so that the �rst order condition can be rewritten as

ω −D(ω) = R(0) + T (ω) =
F [D(ω)|ω]

f [D(ω)|ω]
[1− pE(D(ω)|ω))]. (8)

7The second order condition is

∂2L

∂D2
= [ω −D]f ′(D|ω)− (2− π(D,ω))f(D|ω) < 0.

In general, there may exist several solutions to the �rst order condition, corresponding to local
maxima or minima. Furthermore, as in the intensive case, the optimum may involve pooling,
with regions where D stays constant because of the monotonicity condition.
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Figure 3: The extensive model: `well behaved' optimal �nancial incentives to
work

This equation is strikingly similar to (5), which describes optimal taxes in the
intensive model. However, the formal similarity hides important di�erences. In
the intensive model this is the marginal rate of taxation that appears on the left
hand side, while here it is the level of tax. The right hand sides look the same,
but again this is deceptive. The average weight here, pE(D(ω)|ω)), is that of
the subset of the employed (α ≤ D(ω)) agents of productivity equal to ω. In
the intensive model it is the average weight of the agents of parameter β/ω1+1/e

smaller than the current γ, i.e. of larger productivity or smaller opportunity cost
to work. Social weights larger than 1, corresponding to a group of people whose
average social weight is larger than that of society as a whole, which are associated
with negative rates in the intensive model, here correspond to a �nancial incentive
D(ω) larger than ω. In both models they distort labor supply upwards, compared
with laissez-faire.

4.2 Comparison with the standard intensive literature

The extensive model has imbedded at its heart two dimensions of heterogeneity,
which cannot be reduced to one. This gives a lot of leeway to get results of
the type `any kind of tax function can occur' manipulating (8): one can play
with the distribution F (α|ω), as in Choné and Laroque (2005) for a Rawlsian
planner, or with the distribution of weights, see Laroque (2005) for all second
best allocations. For comparison with the literature on the intensive model, we
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restrict these degrees of freedom.
The main restriction bears on the distribution of the agents characteristics.

First, we do not want to play with the correlation between productivity and
the opportunity cost of work to play a role, and in the main analysis we assume
independence of the two distributions: F (α|ω) does not depend on ω. It simpli�es
the exposition to suppose that the lower bound of productivity is not larger than
the lower bound of the opportunity cost to work. Also we suppose that the
distribution of heterogeneity is well behaved. Formally, in this section, on top of
Assumption 2, we assume

Assumption 3. The cdf F (α|ω) of the work opportunity cost α is independent of
productivity. Furthermore ln(F (α)) is concave on its support (α, α], and α ≥ ω.

Of course, we require consistency with utilitarianism: the social weights
should be a decreasing function of the appropriately de�ned utility level of the
agents. Here, in the benchmark model, the parameter α is considered as an inci-
dental cost of work (and not as a bene�t in case of not working). The utility of
the typical agent is

Ψ[u(R, θ)− α] = Ψ[R(0) + max(0, D(ω)− α)].

Then the unemployed agents are the worse o� agents in the economy and, given
R(0), the social weights consistent with utilitarianism are of the form π̃(D − α),
with π̃ non increasing independent of ω, and π̃(x) = π̃(0) for all negative x.

It turns out that a number of the properties proved below are satis�ed for a
large class of economies and social welfare functions, apart form the benchmark
case. They rely on two aspects of the behavior of the average social weight of the
employed agents, de�ned in (7), formalized in the following assumption and the
next property.

Assumption 4. The average weight of the employed agents pE(D|ω)

pE(D|ω) =


π(α(ω), ω) for α = α(ω)

1

F (D)

∫ D

α(ω)

π(α, ω) dF (α|ω) for D > α(ω)

is a function pE(D) independent of productivity. It is continuously di�erentiable
and non increasing.

Assumption 4 is satis�ed in the benchmark model. The fact that the function
decreases seems natural to a utilitarist, but in fact it depends both on the welfare
criterion and on the shape of the distribution of α. A simple di�erentiation yields

p′E(D) =
f(D)

F (D)
[π̃(0)− pE(D)] +

1

F (D)

∫ D

α

π̃′(D − α) dF (α).
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An increase in D increases the wealth of all the already employed agents, and
therefore decreases their average social weights (the second term), but it brings
into employment new blood, formerly unemployed with a high social weight (the
�rst term). In the benchmark model, the �rst e�ect dominates:

Lemma 3. Under Assumptions 2 and 3, Assumption 4 in the benchmark model.

Proof: The continuous di�erentiability of pE(D) is straightforward. We �rst
show that it is decreasing. We have

F (D)2p′E(D) =

[
π̃(0)f(D) +

∫ D

α

π̃′(D − α)f(α) dα

]
F (D)

− f(D)

∫ D

α

π̃(D − α)f(α) dα.

So p′E ≤ 0 is equivalent to

π̃(0) +
1

f(D)

∫ D

α

π̃′(D − α)f(α) dα ≤ 1

F (D)

∫ D

α

π̃(D − α)f(α) dα. (9)

For α ≤ D, we have, thanks to the log-concavity of F

f(α)

f(D)
≥ F (α)

F (D)
.

Since π̃′ ≤ 0, we have

π̃(0) +
1

f(D)

∫ D

α

π̃′(D − α)f(α) dα ≤ π̃(0) +
1

F (D)

∫ D

α

π̃′(D − α)F (α) dα

=
1

F (D)

∫ D

α

π̃(D − α)f(α) dα

which gives (9).

An important threshold for the �nancial incentive to work is the one that
makes the average social weight of all the employed agents equal to the marginal
cost of public funds, here 1. Let Dm be such that pE(Dm) = 1, or when pE(D) is
smaller than 1 for all D, Dm = +∞. Then

Proposition 5. Consider the benchmark model under Assumptions 2 and 3.
When some agents in the economy work (i.e. have D(ω) > α), pE(Dm) = 1

for some �nite Dm, Dm > α.
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Proof: Since some agents are working and the utilitarian criterion is concave, the
weight of the least favored agents, π̃(0) = pE(α), is larger than 1. The weights
at an optimum sum up to 1:∫

Ω

[F (D(ω))pE(D(ω)) + (1− F (D(ω)))π̃(0)] dG(ω) = 1.

It follows that, for some D(ω), pE(D(ω)) < 1. By continuity, there exists Dm,
Dm > α, with pE(Dm) = 1.

We are now in a position to describe the qualitative properties of the optimal
tax schedule. The �rst proposition deals with all non pooling equilibria, the next
ones give su�cient conditions where there is no pooling at the equilibrium and
provide a more precise characterization of the optimum.

Proposition 6. Consider an economy satisfying Assumptions 2 to 4. Suppose
that the optimum D(ω) is strictly increasing at all points where D(ω) > α (no
pooling). Then:

1. For ω ≥ Dm, the �nancial incentive to work D(ω) is smaller than before
tax income ω: labor supply is distorted downwards compared to laissez-faire.
Furthermore the marginal tax rate is nonnegative.

2. For α ≤ ω ≤ Dm, the �nancial incentive to work D(ω) is larger than before
tax income ω: labor supply is distorted upwards compared to laissez-faire.

Proof: Since by assumption the optimal schedule is (strictly) increasing, the �rst
order condition (8) for a pointwise maximization holds everywhere

ω −D(ω) =
F [D(ω)]

f [D(ω)]
[1− pE(D(ω))].

Then ω ≥ Dm if and only if 1 ≥ pE(Dm).
When D is larger than Dm, using Assumption 4, the right hand side of the

above equation, [1− pE(D)]F (D)/f(D), is increasing as the product of two non
negative increasing functions. This implies that ω−D(ω) is an increasing function
of ω: the marginal tax rate is non negative.

A possible shape of the optimal incentive schedule is drawn on Figure 3, which
obtains in the cases described in the following proposition.

Proposition 7. Consider an economy that satis�es Assumptions 2 to 4.

Assume that

M(D) = D +
F (D)

f(D)
[1− pE(D)]

18



is strictly increasing on [α, Dm].

Then there is no pooling at the optimum. The optimal incentives D(ω) are
uniquely de�ned for all ω larger than α and satisfy the equation

M(D(ω)) = ω,

on [α, α].
Furthermore D(ω) is an increasing function of ω on [α, α] which satis�es

D(α) = α,

D(ω) >
< ω whenever D <

> Dm.

Proof: We �rst show that D(ω), de�ned through the equality M(D(ω)) = ω,
maximizes L(D; ω) on the set D ≥ α for all ω. We have

∂L

∂D
(D; ω) = f(D)[ω −M(D)].

By construction, under the monotonicity assumption, D(ω) is the unique solution
of the �rst order condition: we have to check that it yields a global maximum on
[α,∞). Now, at the lower end of the domain,

∂L

∂D
(α) = (ω − α)f(α) ≥ 0.

Also, for D larger than max(ω,Dm),

∂L

∂D
= [ω −D]f(D)− F (D)[1− pE(D)]

is negative as the sum of two negative terms. D(ω) is the unique zero of the
derivative which goes from non negative at α to negative for large D: it is the
unique maximum of the function L(D; ω).

Now note that M(D) is increasing for D > Dm as the sum of two increasing
functions. Since M is increasing everywhere, D(ω) is increasing too, and satis�es
the monotonicity constraint. It therefore is the global optimum. Finally, the lo-
cation of D(ω) with respect to the 45 degree line is a straightforward consequence
of the shape of M(D).

Figure 3 illustrates the two foregoing propositions in the `well-behaved' situ-
ation8. The �nancial incentives to work are a continuous increasing function of

8It is similar to Figure IIa in Saez (2002), who discusses from a more applied perspective
the occurrence of negative marginal tax rates.
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Figure 4: The extensive model: a possible shape of optimal �nancial incentives
to work in the uniform case

productivity. Under utilitarianism, there is a low skilled region, α ≤ ω ≤ Dm,
where labor supply is distorted upwards, while for higher productivities labor is
taxed and the marginal tax rate is positive. In the more restricted case of Propo-
sition 7, the marginal tax rate is negative for low enough productivities (indeed,
since D(α) = α and D(ω) > ω in a neighborhood, D′ has to be larger than one
in the region).

More generally, the function M(D) may very well be non increasing for D <
Dm, in which case the �rst order condition ω = M(D) typically has several
solutions. The proof of Proposition 7 goes through by selecting the solution
D(ω) associated with the global maximum of L(D; ω), provided this selection is
increasing in ω. The shape of the incentive curve in the region α ≤ D ≤ Dm then
could look quite di�erent, for instance starting at a point D(α) > α and possibly
exhibiting upward discontinuities at solution switches. This is illustrated in the
following example:

Proposition 8. Consider a benchmark economy satisfying Assumptions 2 and 3.
Suppose that the opportunity cost α is uniformly distributed on [α, α].

Then D(ω) is increasing and concave whenever some agents of productivity ω
work, i.e. on the set {ω|D(ω) > α}. Moreover:

1. If π̃0 ≤ 2, the conditions of Proposition 7 are veri�ed, D(α) = α and
D′

+(α) = 1/(2−π̃0) > 1. At the optimum, none of the agents of productivity
smaller than α work.
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2. If π̃0 > 2, there exists ω0, ω ≤ ω0 < α, such that D(ω) > α for all ω ≥ ω0

and D(ω) ≤ α for productivities smaller than ω0. There is an upwards
discontinuity in the incentives to work at ω0.

The situation where the social weights of the unemployed are high (π̃(0) > 2)
is shown on Figure 4. None of the agents with very low productivities, ω < ω0

work. But for all ω larger than or equal to ω0, a fraction of the agents do
some work. In fact the upwards distorsion to labor supply here is particularly
strong: some agents with productivity smaller than the minimal cost of going
to work participate in the labor force. The piece of horizontal parabola on the
Figure describes the roots of the �rst order condition. There is a single root,
corresponding to a global maximum of L for ω larger than α, but there are two
roots in a part of the low productivity region. The bold line describes the solution.
The curve is concave, implying a progressive tax system. It is not always the case
that there are negative marginal tax rates at the beginning of the curve, close to
ω0, contrary to the situation when π̃0 < 2 of Figure 3. But there is an upwards
discontinuity in the tax schedule at ω0, indeed an in�nite negative marginal tax
rate.

Remark: Proposition 6 does not apply to a Rawlsian planner that puts a
Dirac mass on the least favored agent in the economy. This case can be dealt with
here by letting pE(D) equal to zero for all D greater than α: all the employed
agents are better o� than the unemployed. Then, when there is no pooling, Dm is
equal to α and the optimal incentive satis�es 1. of Proposition 6: it is everywhere
smaller than productivity and the marginal tax rate is always positive. This is
in line with the results of Choné and Laroque (2005).

Remark: Theorem 6 of Choné and Laroque (2005) applies here: all the
utilitarian optimal allocations correspond to incentive schemes located above the
Rawlsian (La�er) curve. Theorem 3 of Laroque (2005) also applies: any incentive
scheme above the La�er curve which does not overtax and such that D(ω) ≤ ω
corresponds to a second best optimal allocation. Note that in a benchmark model,
from the above results, none of these allocations satisfy a utilitarian criterion.
All the utilitarian optimal allocations are such that D(ω) > ω for some ω's, a
property discussed in Remark 2.3 of Laroque (2005).

Remark: A number of the qualitative features of the solution carry over to
the more general model where the utilities of the agents take the form

R(0) + αu + max(0, D(ω)− α)),

where α = αu + αc is the opportunity cost of working, which separates into two
terms, αu the utility of staying at home, and αv a pure sunk cost of going to work.
The social weight of an agent is therefore of the form π̃(αu + max(0, D(ω)− α))
with, under utilitarianism, π̃ a decreasing function of its argument. As in the
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intensive example, society puts a low weight on the shirkers who enjoy staying
unemployed (high αu's). The average weight of the workers who have a �nancial
incentive equal to D can then be written

pE(D) =
1

F (D)

∫ ∫
αu+αc≤D

π̃(D − αc) dF (αc, αu).

The polar case where αc = 0 is easy to handle. It yields pE(D) = π̃(D) which is
decreasing and the previous arguments carry over to this situation. The economy
then is quite di�erent from our real world: here the unemployed agents have
a higher utility than the employed with the same productivity, and therefore
smaller social weights. It follows that, for small D, there is a zone of subsidy
where pE(D) is larger than 1; it is not sure that pE(D) becomes smaller than 1
for large enough D (Dm may be equal to +∞). The utilitarian criterion typically
subsidizes the workers through a lump sum tax on everyone, R(0) < 0.

More generally, a su�cient condition (proved in the Appendix) for pE(D) to be
a decreasing function of D is that αu, conditional on α, �rst order stochastically
increases with α:

Lemma 4. Let αu and αc be nonnegative random variables and α = αu + αc.
We suppose that F , the c.d.f. of α, is log-concave and that αu, conditional on α,
�rst-order stochastically increases with α. Then

pE(D) =
1

F (D)

∫ ∫
αu+αc≤D

π̃(D − αc) dF (αc, αu)

is nonincreasing with D.
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A Appendix

Lemma 5. Let f be in L1(θ, θ) and F be given by F (θ) =
∫ θ

θ
f(t) dt. Let y be a

nondecreasing and bounded function on [θ, θ].
Then the following integration by parts formula holds∫ θ

θ

f(θ)y(θ) dθ = F (θ)y(θ)− F (θ)y(θ)−
∫ θ

θ

F dy, (10)

where
∫ θ

θ
F dy is de�ned as a Riemann-Stieltjes integral, that is, as the limit of

S =
n∑

i=0

F (ti) [y(θi+1)− y(θi)]

for any mesh (θ0 = θ, θ1, ..., θn, θn+1 = θ) and any ti ∈ (θi, θi+1), when the mesh
size maxi |θi+1 − θi| tends to zero.

Proof of Lemma 5

First note that the left hand side of Eq. (10) is well de�ned since the function
fy is Lebesgue integrable. Note also that the function F is continuous and almost
everywhere di�erentiable with F ′ = f a.e.

A simple computation shows that

S = −F (t0)y(θ)− y(θ1)[F (t1)− F (t0)]− ...− y(θn)[F (tn)− F (tn−1)] + F (tn)y(θ)

= −F (t0)y(θ) + F (tn)y(θ)−
n∑

i=1

y(θi)

∫ ti

ti−1

f(t) dt.

By the Lebesgue Theorem, the last sum tends to
∫ θ

θ
f(θ)y(θ) dθ when the mesh

size tends to zero, which (together with the continuity of F ) gives (10).

Proof of Proposition 3

Suppose �rst that y is second best optimal. The derivative of the Lagrangian
is

< dL, H >=

∫ [
− 1

v′(y)
+ γ

]
Ḣ dG(γ) +

∫
Ḣ(G− Π) dγ.

Since the problem is concave, a function V is the solution if and only if

< dL, H >≤ 0

for all admissible variations Ḣ (ie, for all functions Ḣ such that V̇ +εḢ is negative
and non decreasing for ε small enough).
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When y is strictly decreasing, < dL, H > must be zero for all Ḣ (since, in
that case, V̇ and V̇ + εḢ are increasing for small ε). It follows that we have in
the no pooling region

Π(γ) = G(γ)− g(γ)

[
1

v′(y)
− γ

]
.

In a pooling interval [γ
i
, γi], the functions y and V̇ are constant and any H

such that Ḣ is decreasing is not an admissible test function (since V̇ + εḢ is
decreasing in [γ

i
, γi]).

It is easy to check that if H satis�es

Ḣ =

{
1 in [γ

i
, γi]

0 otherwise.,
(11)

then H and −H are admissible variations, so we must have: < dL, H >= 0. It
follows that ∫ γi

γ
i

{
G(γ̃)− g(γ̃)

[
1

v′(y)
− γ

]}
dγ =

∫ γi

γ
i

Π(γ̃) dγ̃. (12)

Now if H satis�es

Ḣ(γ̃) =

{
−1 for γ̃ < γ in [γ

i
, γi]

0 for γ̃ > γ in [γ
i
, γi]

(13)

for some γ ∈ [γ
i
, γi], then H is admissible (but −H is not) and we must have:

< dL, H >≤ 0. It follows that∫ γ

γ
i

{
G− g

[
1

v′(yi)
− γ̃

]}
dγ̃ ≥

∫ γ

γ
i

Π(γ̃) dγ̃. (14)

The conditions (12) and(14) are equivalent to the �rst statement of the propo-
sition. The last statement (geometrical interpretation) follows from the convexity
of the function

∫ γ

γ
Π(γ̃) dγ̃.

The su�cient part follows from the fact that conditions (12) and(14) are
equivalent to < dL, H >≤ 0 for all admissible variations H, since the set of non-
increasing functions Ḣ on [γ

i
, γi] is generated by the set of functions H satisfying

(11) and (13).

Proposition 3 has a geometric interpretation, shown on Figure 5. Let Y be
de�ned by

Y (γ) =

∫ γ

γ

{
G(γ̃)− g(γ̃)

[
1

v′(y(γ))
− γ̃

]}
dγ̃,
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Figure 5: Pooling in the intensive case

and Y ? be the convex hull of Y . Then y is second best optimal if and only if the
slope of Y ? is in [0, 1] and Y = Y ? outside the pooling intervals.

The derivative of Y ? is the c.d.f. of a social weight distribution for which the
allocation y is optimal. The distribution of social weights Π is unique outside
pooling intervals, but it is not unique in the pooling intervals (Π can be the
derivative of any convex function below Y which coincides with Y outside the
pooling intervals).

Proof of Lemma 4

We note Fc(αc|α) the cdf of the distribution of αc conditional on α, and
similarly, with a subscript u that of αu conditional on α. Let

K(α) =

∫ α

α

π̃(D − αc) dFc(αc|α)

= π̃(D − α) +

∫ α

0

π̃′(D − αc)Fc(αc|α) dαc, (15)

where we have used Fc(α|α) = 1.

It is easy to check that pE(D) nonincreasing is equivalent to

K(D) +
1

f(D)

∫ D

0

∫ α

0

π̃′(D − αc) dFc(αc|α) dF (α) ≤ 1

F (D)

∫ D

0

K(α) dF (α).

(16)
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By log-concavity of F , we have (using π̃′ ≤ 0)

1

f(D)

∫ D

0

∫ α

0

π̃′(D−αc) dFc(αc|α) dF (α) ≤ 1

F (D)

∫ D

0

∫ α

0

π̃′(D−αc) dFc(αc|α)F (α) dα

By integration by parts

1

F (D)

∫ D

0

K(α) dF (α) = K(D)− 1

F (D)

∫ D

0

K ′(α)F (α) dα.

It follows that (16) is implied by∫ D

0

∫ α

0

π̃′(D − αc) dFc(αc|α)F (α) dα ≤ −
∫ D

0

K ′(α)F (α) dα. (17)

By (15), we get

K ′(α) =

∫ α

0

π̃′(D − αc)
∂Fc

∂α
dαc.

It follows that (17) is equivalent to∫ D

0

∫ α

0

π̃′(D − αc)

[
fc(αc|α) +

∂Fc

∂α

]
dαc.F (α) dα ≤ 0. (18)

which is satis�ed when

fc(αc|α) +
∂Fc

∂α
=

∂Fc

∂αc

+
∂Fc

∂α
= −∂Fu

∂α
≥ 0

that is, when αu �rst-order stochastically increases with α.

Proof of Proposition 8: Let

λ =

∫
Θ

Ψ′[R(0) + max(0, D(ω)− α)] dH(θ).

Then

pE(D) =
1

λ

∫ D

α

Ψ′[R(0) + D − α]
dα

α− α
.

Integrating by parts and substituting yields

M(D) = 2D − α− 1

λ
[Ψ(R(0) + D − α)−Ψ(R(0))].

The function M(D) is strictly convex in D and M ′(α) = 2− π̃(0).
1) Case π̃0 ≤ 2. M(D) is strictly increasing and Proposition 7 applies. The

convexity of M(D) implies the concavity of D(ω).
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2) Case π̃(0) > 2. As in the proof of Proposition 7, we consider the pointwise
maximum of L(D; ω) for D ≥ α. Since it is increasing in ω, it satis�es the
monotonicity condition and is the optimum.

Recall that L(α, ω) = 0. Now,

∂L

∂D
(D; ω) = (ω −M(D))f(D) =

1

α− α
(ω −M(D))

for α ≤ D ≤ α is a concave function of D which becomes negative for large
enough D. We consider three cases:

a. For ω > α, ∂L/∂D(α; ω) is positive. There is a single zero D(ω) of the
derivative, solution to ω = M(D), which maximizes L(D, ω).

b. For ω = α, ∂L/∂D(α; ω) is equal to zero. ∂2L/∂D2(α; ω) = (π̃(0)− 2)f(α)
is positive, so that there is another root D(α), larger than α (D = α is a
local minimum of L). Recall that L(α, ω) is equal to zero for all ω: the
maximum is positive.

c. Finally consider ω < α. The function ∂L/∂D(·; ω) is linear increasing in
ω: when ω decreases from α, its smallest root increases, its largest root
(a local maximum of L), say ∆(ω), decreases, until eventually they both
disappear, say at ω1. Note that L(∆(ω), ω) is an increasing function of ω.
Since L(α, α) = 0, L(∆(ω1, ω1) is negative. Let ω2, ω2 > ω1, be such that
L(∆(ω2, ω2) is equal to zero. De�ne ω0 = max(ω, ω2, D(ω) = ∆(ω) for
ω0 ≤ ω ≤ α, and D(ω) = α for ω smaller than ω0.

It is easy to check that the D(ω) function thus de�ned indeed is the solution of
the problem.
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