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Abstract

The design of forest conservation policies matters for their environmental and wel-

fare impacts, cost-effectiveness, and distributional consequences. In this paper, we first

build a theoretically-founded econometric model of land users’ deforestation decisions

based on global, spatially-granular data. Second, we use this model to simulate dif-

ferent policies intended to decrease emissions by reducing deforestation. Our analysis

shows the large potential of carbon pricing to reduce emissions from deforestation, as

well as the substantial hurdle of information asymmetry to achieving that success. We
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find that a perfectly targeted carbon price of $80/ton CO2 could reduce global emis-

sions from deforestation by about 32%. In contrast, if the payments were made to

all remaining forested land, it would cost multiple trillions of dollars, with only 3% of

these payments going to additional emission savings. Even assuming a highly informed

policy-maker, information asymmetry increases the cost of reducing emissions per ton

of CO2 by 211% due to both enrolling non-additional land parcels while missing other

cost-effective parcels. The problem of non-additionality is particularly large at low car-

bon prices. Carbon taxes do not require similar targeting efforts and might therefore

be a viable alternative but impose large costs on land users in the poorest countries.

Emission savings from avoided deforestation largely occur in lower income countries

and the poorest decile of land users contributes six times the reduced emissions of the

richest. Monetary transfers could mitigate tax-related equity concerns.
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1 Introduction

Payments for avoided deforestation have the potential to achieve large reductions in green-

house gas emissions at a low cost (Busch, Engelmann, et al. 2019; Franklin and Pindyck

2024). However, past payments for avoided deforestation often fail to deliver meaningful

changes in deforestation (Börner et al. 2017). In particular, many policies seeking to pay

landowners for changes in deforestation behavior have been undermined by inaccurate tar-

geting and an associated lack of additionality (West, Wunder, et al. 2023). This gap between

the prospective benefits of payments for avoided deforestation and their observed impacts

has undermined enthusiasm for this climate policy (Song 2019). Careful design of forest

carbon policies can improve their effectiveness, although empirical evidence is limited (Jack

et al. 2008; Kerr 2013; Cattaneo et al. 2010; Grabs et al. 2021).

In this paper, we explore how the choice and design of policies for avoided deforesta-

tion affects their environmental and welfare consequences. In contrast to previous empirical

estimates of the potential supply of avoided deforestation, we explicitly account for asymme-

tries in information about the returns to deforestation held by policymakers and land users.

This approach enables us to quantify the extent to which non-additionality undermines the

cost-effectiveness, equity, and environmental performance of different incentives at global

scale.

To simulate global deforestation under alternate policy scenarios, we develop a theoretical

model of land users’ deforestation decisions in response to economic opportunities (section 2).

Our theoretical model explicitly accounts for the heterogeneity in agricultural net returns

between land units and that deforestation is constrained by remaining standing forest in
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the short term. Our model builds upon Van Benthem and Kerr’s (2013) theoretical model

of deforestation under payments for avoided deforestation in the presence of asymmetric

information. We estimate this model econometrically, combining remotely sensed maps of

global deforestation (Hansen et al. 2013) with estimates of local returns to agricultural

production (Section 2). We then use our estimate of the land supply elasticity to simulate

the effect of carbon taxes and payments for avoided carbon emissions under different levels

of information on changes in forest cover and carbon (section 3).

We find that a price on carbon emissions from deforestation can achieve large welfare

gains. For example, a carbon price of $80/ton CO2 could reduce global deforestation emis-

sions between 2021 and 2030 by 32% compared to the counterfactual, yielding a $515 billion

net increase in global welfare if implemented as a payment under full information. However,

even with no price on carbon, 93% of the world’s forest carbon is unlikely to be released in

this period. Therefore, if the policymaker has no information about counterfactual defor-

estation and provides untargeted payments of $80/ton CO2 to all stewards of forests, this

would require $55 trillion in transfers.

Given the large cost of conditional but undifferentiated transfers, payments for avoided

deforestation require targeting to improve cost-effectiveness. However, our empirical results

highlight that even small information asymmetries are very costly. Modeling a well-informed

decision maker who can perfectly discriminate payments at a county level, we estimate that

70% of all payments will be non-additional. In addition, information asymmetries can reduce

the environmental benefits of targeted payment programs by discouraging participation by

some cost-effective suppliers. In aggregate, at $80/ton CO2, we estimate that imperfect

targeting would reduce the welfare benefits of carbon pricing by 50%.
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In contrast to targeted payments for avoided deforestation, deforestation taxes do not

require policymakers to assign land users a baseline level of counterfactual deforestation,

eliminating the challenges that emerge from information asymmetries. However, such taxes

would shift costs towards land users in lower-income and tropical countries, where most of

the emissions from deforestation occur, which raises distributional concerns. We argue that

international agreements that provide financial compensation to lower-income countries that

adopt domestic deforestation taxes may be an overlooked mechanism to achieve efficient

and equitable reductions in carbon emissions from deforestation. Our results show that a

redistribution of the simulated carbon tax returns as a lump-sum transfer to land users in

the lower income deciles would offset their opportunity costs of avoided deforestation in most

of the cases.

By bridging the theoretical (Van Benthem and Kerr 2013) and empirical literature

(Busch, Engelmann, et al. 2019) on payments for avoided deforestation, we address an im-

portant tension in the current policy debate. Specifically, payments for avoided deforestation

have high potential for low-cost abatement (Griscom et al. 2020), but existing payment pro-

grams have had little impact on deforestation (West, Börner, et al. 2020). Our model provides

an explanation for these two seemingly contradictory patterns: although a large amount of

abatement is possible at low costs, the scale of non-additionality due to information asym-

metries is also large at low carbon prices. For example, at 2022 voluntary carbon market

prices for forest-related credits of $10 per ton CO2 (Forest Trends’ Ecosystem Marketplace

2023), only 5% of payments yield additional changes in deforestation behavior already at a

low level of information asymmetries. However, additionality is increasing in carbon prices

– at $80 per ton CO2 we estimate that 30% of payments would be additional, while at $20
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per ton, only 10% would be additional.

By linking our estimation model closely to its theoretical foundation, it allows us to es-

timate welfare impacts unlike previous studies (Busch and Engelmann 2017; Busch, Engel-

mann, et al. 2019). Moreover, we do this at a global scale and address endogeneity concerns

by constructing a potential revenue variable that is assumed exogenous to the deforestation

decision (as in Berman et al. 2023; Cisneros et al. 2021).

Our assessment emphasizes the need for precise targeting of payments to land users,

providing additional emission savings given that environmental policy budgets are limited.

At the same time, payment schemes should not be based on too conservative assumptions

about counterfactual deforestation behavior, as this would put the abatement contributions

of many land users at risk. Our global analysis adds to existing policy comparisons that

focus on specific local contexts (Souza-Rodrigues 2019).

This paper proceeds as follows. In section 2, we first present a theoretical model of land

users’ decisions to deforest, deriving several theoretical results. We then present the esti-

mation strategy, data and resulting estimates of supply curves for carbon emissions savings.

In section 3, we add carbon pricing to our theoretical model to generate results on how

carbon taxes and payments for avoided carbon emissions will affect land use, emissions, and

welfare. We then present our approach to simulating tax and payments under different levels

of asymmetric information, and then present our policy simulation results. In section 4 we

present a discussion and conclude in section 5.
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2 Empirical model of deforestation

2.1 Theoretical foundation

We assume that land is managed by J land users j, located in region l, each of whom manages

Njl units of land, where Njlt is the number of units allocated to forest by user j in region l

and year t. The potential returns associated with using unit i for agriculture a, or forest f,

in year t, located in region l are given by:

raijlt = µa
jlt + ξai , (1)

rfijlt = µf
jlt + ξfi , (2)

where µa
jlt is the expected per unit return that would be obtained by land user j across her

land portfolio if all of her units of land were devoted to agriculture, µf
jlt captures the same

for forest, and ξai and ξfi are i.i.d Type-I Extreme Value random variables that represent

unit i’s fixed characteristics that impact potential returns and are known to land users, such

as plot-specific soil quality. If deforesting costs K per unit1, the net return from clearing a

forested plot is given by

rijlt = µjlt + ξi, (3)

where rijlt is the net return of unit i, µjlt is the expected potential per unit net return for

deforesting land user j’s land portfolio if all units were forested (µjlt = µa
jlt − µf

jlt −K), and

1All heterogeneity between land units, including heterogeneous costs of clearing, is assumed to be absorbed
in ξai and ξfi .
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ξi is the difference between the two i.i.d Type-I Extreme Value random variables, distributed

logistically with location zero and scale normalized to 1. Let F denote the CDF of rijlt in

what follows.

In the standard land allocation problem, land users select the use in each period that

provides the highest net return rijlt (Lubowski et al. 2006). Given our emphasis on defor-

estation for agriculture, wherein land tends to remain under cultivation for a long time once

cleared, we focus on the one-way transition from forest to non-forest use. In this context,

it is important to account for the fact that land parcels that are more profitable for conver-

sion (i.e., have larger values of ξi) will be converted first, truncating the distribution F and

affecting the likelihood of conversion in subsequent periods. Our first result shows how the

probability of deforestation varies with the number of forested units Njlt remaining at the

beginning of period t:

Theoretical result 1: Assume land users deforest all units for which rijlt > 0 and let

κjlt = Njlt/Njl be the fraction of forested units at the beginning of period t in land user j’s

land portfolio, and Q(κjlt) the κjlt quantile of F . Because the most profitable parcels are

converted first, Q(κjlt) represents the highest net return among units that are still forested

in period t. Land users will only deforest if Q (κjlt) > 0, with a probability given by

πjlt = 1− 1

κjlt

1

1 + exp(µjlt)
. (4)

See the demonstration in the Appendix.
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Figure 1 illustrates Result 1. The fraction of land units remaining in forest is illustrated on

the x-axis, where land units are ordered from smaller to larger net returns, and marginal net

returns are shown on the y-axis. Assume we start in t− 1 with all land units in forest (i.e.

κ = 1). For the purpose of this illustration, assume further that µjlt−1 = 0, and the yellow

curve represents net returns across the Njl units. Since κjlt−1 = 1 and limκ→1Q (κ) = ∞,

the probability of deforestation is given by 1 minus the CDF of rijlt evaluated at zero with

location 0, assumed to equal 0.5 in this illustration. In other words, the land user deforests

all units with positive returns —namely, units to the right of the dashed line. In period

t, κjlt = 0.5, and the relevant distribution for the returns of forested units is truncated at

the 50th percentile. If returns to deforestation decrease, i.e. µjlt < µjlt−1 = 0, then the

remaining forested units have negative net returns since all units with positive values of rijlt

were deforested in the previous period. In this case, illustrated by the red curve, Q(κjlt) < 0

and there will be zero deforestation in period t. This is also the case if the expected potential

net returns remain unchanged compared to the previous period, that is, µjlt = µjlt−1 = 0 and

Q(κjlt) = 0. If, on the other hand, returns to deforestation increase, µjlt > µjlt−1, rijlt will

be positive for some units, shown by the blue curve, and these land units will be deforested.

In this case, Q(κjlt) > 0. The probability of deforestation is given by 1 minus the CDF of

rijlt truncated above at the 50th percentile, evaluated at zero with location µjlt. Graphically,

the expected share of deforested units in period t is represented by the horizontal distance

between the points where the blue and yellow curves cross the horizontal axis.

Estimation of the empirical model, below, will account for the truncation of F . To

avoid a complex likelihood function, it will be convenient to approximate the probability of

deforestation, πjlt, with a standard non-truncated logistic function, as shown in the following
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Figure 1: Illustration of Theoretical result 1—The yellow curve represents marginal net
returns rijlt in t − 1 for land units in the x-axis ordered from smaller to larger net returns
when all land units were forested initially (here, remaining forest share = 1 in t − 1 and
thus remaining forest share in t = κjlt = Njlt/Njl). The land user deforests all land units
with positive returns, located to the right of the vertical dashed line. The blue and red
curves represent two alternative scenarios for the net return of deforestation in t. Under
the blue line, expected net returns have increased, and the land user deforests an additional
fraction of her land. Under the red line, expected net returns have decreased and no further
deforestation occurs, as the net return is negative for all land units that remained forested
at the beginning of t.

result:

Theoretical result 2: An approximation of πjlt is given by:

π̃jlt =
exp(νj + η1µjlt + η2κjlt)

1 + exp(νj + η1µjlt + η2κjlt)
, (5)
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where the parameters ν1, . . . , νJ , η1, η2 minimize the mean square error of a linear approx-

imation to f(µjlt, κjlt). Given π̃jlt and defining Ijt = 1(Q (κjlt) < 0), the likelihood function

that approximates the probability of observing k deforested land units for land user j is

given by:

Pr(Djlt = k) =


Ijt + (1− Ijt)

(
Njlt

0

)
(1− π̃jlt)

Njlt if k = 0

(1− Ijt)
(
Njlt

k

)
π̃k
jlt(1− π̃jlt)

(Njlt−k) if k > 0.

(6)

where Djlt is the count of deforested units. See the demonstration in the Appendix.

To the best of our knowledge, this result provides the first theoretically derived justification

for including the remaining standing forest in the specification of the deforestation probabil-

ity, a common practice in applied research (Busch and Engelmann 2017; Busch, Engelmann,

et al. 2019).

2.2 Estimation method and identification strategy

The likelihood function in equation 6 is identical to a standard binomial likelihood with a

logistic link function but by introducing Ijt it captures the fact that zero deforestation occurs

with probability one whenever µjlt < µjlt−1. We account for this zero inflation by estimating

a quasi-binomial model (QBM) with likelihood:

Pr(Djlt = k) =

(
Njlt

k

)
π̃jlt(π̃jlt + kϕ)k−1(1− π̃jlt − kϕ)(Njlt−k), (7)
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where ϕ is the dispersion parameter and π̃jlt is given in equation 5. Equation 7 is a general-

ization of a standard binomial model, and accommodates discrete response data that exhibit

greater variation than that implied by the binomial model. In our application with relatively

small deforestation probabilities, the QBM provides meaningful additional mass at zero.

We use the following parameterization of µjlt to estimate the model:

µjlt = ψj + ρlt + τRjt, (8)

where ψj represents a land user specific component of expected benefits to deforestation, ρlt

represents changes in benefits, capturing country-specific policies or economic trends, and

Rjt is an estimate of the average potential net revenue land user j would obtain in t if all of

her land units suitable for agriculture were allocated to crop production. Replacing 8 into 7

yields the following logit link function we estimate for the QBM:

logit (Pr(Djlt = k)) = γj + δlt + αRjt + η2κjlt, (9)

where γj = νj + η1ψj, δlt = η1ρlt, and α = η1τ , with νj, η1, and η2 defined in Result 2.

The variable γj is a land user fixed effect, δlt a region-by-year fixed effect (e.g., accounting

for time-varying regional changes in agricultural or forestry policies). Data on returns to

forestry is sparse. For our estimation, we assume that returns to forestry are constant over

time and thus absorbed within land user fixed effects. Note that, as the scale of the logistic

link function has been normalized to 1 and Rjt is measured in dollars, 1/α equals the value

of 1 unit of standardized net returns rijlt in dollars.
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Our primary goal is to obtain a causal estimate of α, as this captures land users’ defor-

estation decisions in response to changes in returns to agriculture. To this end, we construct

the measure of Rjt using plausibly exogenous components of net revenues. Our measure

of returns to agriculture, Rjt, is calculated as the product of international crop prices and

grid cell specific attainable yields less travel time to the nearest port times fuel prices (see

equation 10 below). Individual land user’s deforestation behavior is unlikely to affect in-

ternational prices, but local shocks could simultaneously affect local deforestation and local

crop prices, if those transmit to international crop prices, which we attempt to capture by

country by time fixed effects. Berman et al. (2023) alleviate this concern in a comparable

setting. Our estimation strategy requires the assumptions that ports we observe (in the year

2015) have not been built in response to prior deforestation. We use attainable yield data

from 2000, which is a projection based on agro-climatic, soil and terrain information, not

generated from observed yields, which might be affected by prior deforestation. By including

grid cell fixed effects, we capture average yields over time, and our identification only relies

on changes in international prices differentially affect local potential agricultural revenues.

One remaining concern is that the effect of changes in agricultural revenue on the decision

to deforest might be subject to the security of land property rights. For example, land users

might only decide to pursue agricultural investments if they feel that their property rights

to this land are secured. We run a robustness check for the subset of our sample for which

property rights data are available.

The QBM is estimated using the fixest package in R. The model parameters are estimated

using iteratively reweighted least squares and the fixed effects are obtained with a fixed-point

algorithm described in Bergé 2018. We use Conley standard errors (Conley 1999) to account
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for spatial correlation with a maximum distance (bandwidth) of 100 km identified using a

parametric variogram (see Appendix section 6.2.5). Alternative specifications that have been

applied to similar problems do not seem to represent our data well (i.e., the quasi-poisson

assumes a principally infinite number of trials) or introduce arbitrary scaling effects (i.e., the

inverse hyperbolic sine transformation (e.g. Bellégo et al. 2022; Mullahy and Norton 2022)).

2.3 Data for estimation

Our primary data set is a global annual time-series of tree cover loss between 2001 and

2020 (Hansen et al. 2013). Land user j’s portfolio is defined by a 5 arc-minute grid cell

(approximately 9 X 9 km at the equator), comprised of up to 96,721 1 arc-second pixels

(approximately 30 X 30 m at the equator). The dependent variable in our estimation is the

deforestation share relative to remaining forest cover at the end of t-1 (Djlt/Njlt−1), where

Njt−1 is the number of forested pixels in t − 1 with at least 25% forest cover, and Djlt is a

count of the land units i that are deforested in t. These variables are combined to calculate

the number of remaining forested units Njlt in time t and the share of remaining forested

units κjlt.

Potential agricultural revenue Rjt is calculated as the weighted sum of attainable crop

yields Ycj in 2000 (Fischer et al. 2021) multiplied by annual global prices Gct for each crop c,

measured in $1000 (Bank 2023). Weights are calculated using the harvested area shares Hca

by crop within each continental agro-ecological zone a (Monfreda et al. 2008) to compute a

weighted sum of the crop-specific revenues. To account for yield increases driven by crop-

specific technological progress between 2000 and 2020, we multiply yields by a production
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index based on global supply changes since 2000 (FAO 2022). The crop price is adjusted

by transport costs Tjt based on the travel time to the nearest port (Nelson et al. 2019) and

global crude oil prices (Bank 2023). Our measure of potential revenues accounts for fixed

characteristics of land units (land productivity in 2000, transport distance in 2015) and

exogenous temporal variation in crop and fuel prices.

Given that deforestation is not reversible over a short time frame, land users are likely

to consider the future stream of agricultural revenues when making decisions of whether to

clear the land. Modeling a forward-looking dynamic decision problem is beyond the scope of

this study. Rather, we assume that land users have myopic expectations and base decisions

on the present discounted value of future revenues, formulated as:

Rjt =

∑
c((Gct − Tjt)× Ycj ×Hca)

ι
(10)

where ι = 0.05 is the interest rate (see Plantinga 1996; Lubowski et al. 2006). In equation 10,

land users have static revenue expectations, which they update in response to price changes.

Agricultural revenues are measured at the farm gate level. We assume complete pass-through

of prices along the supply chain (i.e., full competition and market integration at all stages).

In a robustness test, we include country-level data on the perceived security of land tenure

rights for 2019/2020 (Land Portal and Prindex 2021).

The final dataset includes 20.3 million observations of grid cells that have non-zero forest

cover in 2000 and non-zero potential yield for at least one of the included crops. In the fully-

specified model, we include 1.02 million grid cell fixed effects and 3,080 country-by-year fixed

effects (γj and δlt, respectively, in equation 8). Once all forest in a grid cell is completely
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deforested, it is removed from the dataset.

2.4 Estimation results

We present estimation results for four versions of the deforestation model (table 1). Model 1,

reported in column 1, omits the grid cell and country-by-year fixed effects. Model 2 includes

grid cell level fixed effects. Model 3 includes grid cell level and country-by-year fixed effects,

but does not control for remaining forest cover, while Model 4, our preferred specification,

includes all, remaining forest cover variables, country-by-year and grid cell fixed effects. In all

models, as hypothesized, current agricultural revenue has a positive effect on the probability

of deforestation. We also observe, consistent with our model, that remaining forest cover

increases the probability of deforestation once fixed effects are controlled for.2 All coefficients

on forest cover are significantly different from zero at the 1% confidence level.

Interpreting the estimated revenue coefficient as a semi-elasticity implies that an increase

in revenues of $1000 increases the deforestation share by 2%. This implies that a 16% increase

in average revenues results in additional deforestation of about 0.4 hectares (or 0.01%) in a

grid cell with the average starting forest cover of 3,468 hectares. Finally, in the versions of the

model with grid cell fixed effects (Models 2, 3 and 4), the estimated dispersion parameter ϕ

is close to zero, indicating that the standard binomial model provides a good representation

of the data despite the truncation at zero (see also equation 7).

Since land property rights are presumably important for the decision to invest in agri-

cultural land and to deforest for this purpose, we test the robustness of the average global

2Note that for small values of the deforestation probability π, the estimated coefficients are approximately
equal to the semi-elasticity for a given regressor X: i.e., B̂ ≈ ∂π

∂X
1
π
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Table 1: Estimation results for the global Quasi-Binomial Model of deforestation decisions
Model 1 Model 2 Model 3 Model 4

(Intercept) −5.19∗∗∗

(0.04)
revenue 0.03∗∗∗ 0.06∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00)
treecover −0.30∗∗∗ 0.57∗∗∗ 1.39∗∗∗

(0.05) (0.13) (0.17)
Deviance 548438 262407 243046 242117
Dispersion 0.17 0.02 0.02 0.02
Squared Cor. 0.00 0.24 0.30 0.30
Num. obs. 20337441 20337441 20337441 20337441
FE: grid cell 1020903 1020903 1020903
FE: year & country 3080 3080
Note: Conley standard errors in parentheses. *** indicates significance at the 1% confidence level.

revenue estimate to the perceived security of property rights. Appendix table 3 shows that

the estimates are robust to tenure security. Additional heterogeneity tests are provided in

the Appendix section 6.2.6.
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3 Simulation model of deforestation policies

3.1 Theoretical foundation carbon pricing

Policy makers have several options to induce land users to consider the externalities from

deforestation in their land use decisions. Policy makers could introduce a carbon price P

and pay land users for avoided carbon emissions. Alternatively, they could tax deforestation

at the same rate. In practice, policy makers often set quantitative carbon reduction targets

to be reached within a specific time period (e.g., Paris Agreement (UNFCC 2016)). In this

paper, we focus on modeling various forms of carbon price instruments to reduce emissions

from deforestation. We explore deforestation and carbon impacts under different carbon

price levels, accounting for possible information asymmetry between the policy maker and

land user.

To model how individuals respond to different policies, we build on the model in Van

Benthem and Kerr (2013) and introduce a carbon price into our empirical model of defor-

estation (section 2). We then use our model to derive the opportunity cost of keeping land

in forest incurred by land users, and generate a supply curve for avoided carbon emissions at

different carbon prices. This net benefit curve allows us to assess the effectiveness of various

policy interventions, such as carbon taxes and payments, under varying assumptions about

asymmetric information.

Returning to our empirical model, assume net returns to deforestation are reduced by

the price of carbon P . Under a constant average carbon density Cj per land unit in land
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user j’s forest:

R′
jlt = Rjlt − PCj. (11)

Denote the counterfactual probability of deforestation (P = 0) by π∗
jlt and the deforestation

probability under a positive carbon price by π′
jlt, both predicted by equation 9. Then, we

have that

Theoretical result 3: An approximation of the opportunity cost Ljt under carbon price

P for land user j is given by:

Ljtp ≈ −Ajκjlt

(
π′
jltPpCj +

1

α
log

(
1− π∗

jlt

1− π′
jlt

))
, (12)

where Aj is the average area per land unit suitable for agriculture controlled by land user j

and κjlt the fraction of her land forested at the beginning of period t. See the demonstration

of this result in the Appendix.

We illustrate how a carbon price shifts the PDF of net returns from deforestation, rijlt

relative to the shares of remaining forest cover after deforestation within t in figure 2 for a

hypothetical land user. Positive carbon prices shift the marginal net return curves down and

increase the share of remaining forest. To generate a net benefit curve for avoided carbon

emissions, the difference in remaining forest cover could be translated into the embedded

avoided carbon emissions Ejtp in tons of CO2 generated under each carbon price.
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Figure 2: (a) Carbon pricing shifts the marginal net returns curves (net returns rijlt on the
y axis and Fr being the CDF of rijlt on the x axis); (b) the remaining forest shares under
different carbon prices are derived from intersection points at rijlt = 0 in (a)

3.2 Theoretical foundation policy design

We model four policies designs: (i) a carbon tax on deforestation, (ii) a perfectly targeted

carbon payment to avoid deforestation, (iii) a universal carbon payment, and (iv) an im-

perfectly targeted carbon payment due to information asymmetry. The carbon price P can

be implemented as a tax on the carbon released through deforestation or as a payment for

avoided carbon emissions through avoided deforestation (i.e., payments for ecosystem ser-

vices). Under the assumption of full information3, the resulting change in carbon emissions

is the same from either a tax or a payment. However, the level and distribution of costs and

benefits will differ between policies.

3This also requires to assume that there are no other general equilibrium effects that change emissions in
other sectors.
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In the case of a tax (i), land users need to pay the carbon price P for every ton of

released carbon CO2 from their deforested area. Since land users would not try to pay the

tax in the absence of deforesting, there is no adverse selection problem. Only monitoring

and enforcement are needed to levy the tax appropriately.

In the case of carbon payments for avoided deforestation, land users are compensated

for not deforesting land that they would have deforested in absence of the payment. This

approach requires the policy makers to know, or estimate, the counterfactual decisions of

land users. We initially assume that policy makers have full information about the behavior

of the land user in the absence of a carbon price (ii), i.e., they are able to correctly assess

the land unit-specific net returns and thus the deforestation behavior under a zero carbon

price.

If policy makers do not know the behavior of land users in the absence of the policy, they

could offer a payment to all forest land users, no matter whether the user had they had the

intention to deforest or not (iii). All land users for whom the net return of deforestation

inclusive of the payment is weakly negative for at least one of their land units (i.e. rijlt ≤ 0)

would participate in the program. Under this policy, every land unit that remains forested

receives a payment. Despite the fact that the resulting (additional) carbon savings are

equal to those under the previously described policies, the amount of money required for

redistribution would be extremely large due to the non-additional payments.

The most realistic payment scenario is one in which policy makers try to assess the

counterfactual deforestation behavior given the information available to them, and offer a

payment for a specified reduction in carbon emissions (iv). We assume that the exact net

returns an individual land user experiences for each unit of land is private information.
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Policy makers seeking to influence the land user’s deforestation behavior estimate each land

unit’s net returns with some mean-zero error ϵj:

r̃ijlt = rijlt + ϵj. (13)

We assume the policy maker’s error is land user-specific and constant over time. Although

a policy maker could potentially learn about ϵj over time, in practice payment programs are

implemented for a period of years without any changes made to the assumed counterfactual

level of deforestation.

We assume that policy makers propose a contract based on their estimate of the quantity

of deforestation-related emissions of each land user EPM
jtp∗ under a zero carbon price, and a

fixed price per ton of avoided emissions generating an offered payment of Ojtp to reduce

deforestation. If the land user accepts the contract, she will be paid for all the avoided

emissions in comparison to the counterfactual. Note that while contracts apply to the full

property, users can still deforest portions of their land and receive the payment for the

avoided emissions relative to the contract baseline based on counterfactual emissions.

This idea to base payments on projected counterfactuals is established in the voluntary

carbon market, although many of these markets project baselines purely on simple historical

averages (Teo et al. 2023). In contrast, we assume a relatively well-informed policy maker

that explicitly models the economic incentives facing land use decision-makers.

Given this information and their true deforestation plans, the land users respond to the

offered payment Ojtp′ for reducing deforestation to Djtp′ . Because Djtp′ is based on the

policy maker’s estimate of net returns, the policy maker will over- or underestimate the
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Figure 3: Avoided deforestation and emissions when the policy maker assumes a too con-
servative (upper panel) or too generous counterfactual (lower panel) for a hypothetical land
user. Panel (a) shows the marginal net returns curve at counterfactual and underestimated
guess of policy maker (PM). Panel (b) shows the offered payment (O), illustrated as α + β
given underestimated net returns and opportunity costs (OC), illustrated as α + γ. Panel
(c) illustrates the counterfactual marginal net returns curve and the overestimated guess
by policy maker. Panel (d) shows the offered payment (α′ + β′ + γ′) and the opportunity
cost (α′) given overestimated net returns and payments for ‘non-additional carbon savings’
Ep∗ − EPM

p∗
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land users’ counterfactual deforestation levels. Land users compare the offer to their actual

opportunity costs of not deforesting (Ljtp′). If the offered payment is too low given their true

opportunity costs, Ojtp′ < Ljtp′ , i.e., where the policy maker’s guess about the counterfactual

is too conservative and the net returns are underestimated by the policy maker, the land

user will not participate in the program and instead decide to deforest, such as illustrated in

the top panel of figure 3 (a,b). Specifically, they will participate if area γ > β. Thus, some

land users who would have beneficially enrolled choose not to participate, reducing both the

total payments, and the emissions savings.

Alternatively, the policy maker may overestimate the land users’ counterfactual returns

from deforestation. In this case, some land users are offered a payment for land units they had

not intended to deforest. These land users will opt in to the program and receive a payment

for keeping their forest. While paid for, these emissions are not additional (illustrated as

Ep∗−EPM
p∗ in figure 3 c,d). The payment for these ‘non-additional emission savings’ increases

the cost of the policy without achieving additional environmental impact.

3.3 Simulation method

We use our estimated model to predict deforestation shares for each land user under varying

carbon prices for the years 2021 - 2030. Analogously to the way we treat potential agricultural

revenues, we model taxes and payments for ecosystem services as annualized monetary flows

under a 5% discount rate.
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3.3.1 Asymmetric Information

Following our model, we simulate asymmetric information by assuming the policy maker does

not know the specific time-invariant net return of each land user. As in Bushnell (2011),

suppose the policy maker knows the distribution of land user-specific characteristics affecting

net returns within each local administrative zone (z), but not where each land user is located

in this distribution. We then assume that the policy maker bases the deforestation expec-

tation for each land user on the median of γj in a local administrative zone z. To simulate

this assumption, we replace the grid cell fixed effects with their medians γ̃jz. Ex-post, there

is no reason to assume that a policy maker could not also use our non-manipulated model.

This exercise shall demonstrate the consequences for avoided emissions arising already from

a rather small inaccuracy in the payment targeting.

3.3.2 Endogenous price response

If carbon prices are sufficient to affect the amount of new agricultural land available, we would

expect them to also affect the total supply of agricultural commodities and therefore prices.

These higher prices for agriculture would then enter into land users decisions to deforest. To

capture this price response, we first extract the amount of deforestation predicted in the first

year (i.e., 2021) by the model for any given carbon price. Then we transform this amount

of deforestation into the implied increase in agricultural supply of each crop associated with

these deforested lands. We convert this amount to a percent change by dividing by total

production of that crop in the prior year, and then translate it into a percent change in price

using the prior year’s price as a base (e.g. 2020 prices for 2021) and global demand elasticities
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from the literature. We then update the price and the implied agricultural revenue for the

simulation in the following year. We repeat this process for each year in our simulation. We

then compare the trajectory of deforestation (and its implied prices) under no carbon price

to that of any carbon price.

For our predictions, year-by-country fixed effects for the ‘future’ years (2021-2030) are

required. Therefore, we regress year fixed effects against a time trend and project year-by-

country fixed effects from 2020 for the subsequent years.

3.4 Data for simulation

For the policy simulations, we calculate carbon prices based on the average carbon density

per hectare of a land user’s forest. For estimates of the carbon contained in each hectare of

forest, we apply carbon density data from Spawn et al. (2020). The carbon data comes at

300m resolution for 2010 and we calculate the mean carbon density for each grid cell. These

carbon densities are converted to CO2 and multiplied with the respective global CO2 price

Pp in each scenario. We assume that these prices are set by the policy maker.

To calculate the endogenous price feedback, we combine information on deforestation

(Hansen et al. 2013) and land use types (Zanaga et al. 2021; Descals et al. 2021) to approx-

imate how much deforested area ends up being employed in agricultural production. We

use global demand elasticities from Roberts and Schlenker (2013). For those crops that are

not modeled in their paper, we use an average elasticity. Technological progress is extended

until 2030 based on forecasted aggregate crop production (OECD and FAO 2022) and thus

exogenous to the carbon price level. Additional data inputs for yields or travel time are taken
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from the same sources as used in the estimation (see section 2.3). As a comparison to the

endogenous price update, we simulate the future impact of the policies based on exogenously

forecasted crop price trends from OECD and FAO (2022) and based on fixed prices at 2020

levels.

3.5 Simulation results

3.5.1 Environmental impacts under different policies

In the counterfactual scenario without carbon price intervention, we expect deforestation to

emit 33.0 gigatons CO2 between 2021 and 2030. Under a carbon price around estimates

of the level of the global social cost of carbon of $80/ ton CO2 (Tol 2023), our simulations

show a potential for global carbon savings of 1.6 gigatons CO2 per year, or 15.8 gigatons

CO2 between 2021 and 2030. The assumed carbon price is close to the 2023 average price

in the EU emission trading system of $90/ ton CO2, but is considerably higher than in the

California cap-and-trade program of $32/ ton CO2 (Partnership 2024).

The aggregated quantity of avoided carbon emissions appears to be robust to alterna-

tive assumptions of price developments (see Appendix section 6.3). The endogenous price

mechanism changes crop prices only slightly compared to 2020 crop prices. This result may

alleviate concerns about the potential feedback of carbon pricing on food prices and food

security. When introducing a $80/ ton CO2 carbon price, we overestimate resulting emission

savings by 0.02 gigatons CO2 when fixing crop prices at 2020 price levels, all else equal,

compared to the endogenous price mechanism. In comparison, when using exogenous price

trend projections from OECD and FAO (2022), the carbon projected emission savings are
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by 0.09 gigatons CO2 smaller.

Total avoided emissions under a carbon price are the same, no matter if implemented as

deforestation taxes (scenario i), payments for avoided deforestation under full information

(scenario ii) or to all remaining forest (scenario iii). However, the size and distribution

of the payments differ substantially under the first three scenarios. Under taxes and full

information payments, all avoided emissions are additional (figure 4, a). However, when all

remaining forest in 2030 receives a payment under an $80/ ton CO2 carbon price, only 3%

are paid for (additionally) avoided emissions (figure 4, b).

When introducing asymmetric information (scenario iv), the policy maker has incomplete

information about the individual land users’ deforestation behavior in absence of a payment.

The policy maker underestimates the net returns for half of the land users, making them

unlikely to participate in the payment program due to an insufficient payment offer. In

figure 5, a, the true supply of additional emission savings is the solid line to the left under

asymmetric information, while the dotted line to the right represents the supply curve under

full information that includes emissions savings of land users that now opt out of the payment

program because their opportunity costs are higher than the offered payment. These land

users account for 43% of the predicted carbon savings under full information at a carbon

price of $80/ ton CO2. This share declines with increasing carbon prices as a smaller fraction

of land users opt out of the proposed contract (figure 6, a).

For other land users, the policy maker overestimates their marginal net returns and

offers more payments than necessary to ensure their participation, resulting in payments

for non-additionality. In figure 5, b, the actual supply of additional emission savings under

asymmetric information is again illustrated by the solid line on the right, but the amount
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paid is represented by the dotted line on the left. As can be observed, the largest increase in

non-additional payments occurs just above a zero carbon price, and with increasing carbon

price levels, the share of emissions that are non-additional falls (figure 6, b). Intuitively,

even at low carbon prices, land users who are offered payments do not deforest land they

wanted to keep in forest anyway, would opt in. In contrast, an increase in carbon prices will

bring in land users who face a positive opportunity cost of keeping their land in forest.

Figure 4: Taxes and payments under $ 80/ ton CO2 at global level (a) avoided carbon emis-

sions during 2021-2030 under different carbon prices (abatement cost curve) either generate

taxes or require payments for avoided deforestation under the assumption of full information,

(b) remaining forest carbon in 2030 under different carbon prices implemented as a payment

to all remaining forest implies substantial payments for nonadditionality
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Figure 5: Payment under asymmetric information a) yellow area shows emissions that are

not avoided because land users opt out, b) green area shows non-additionality

Figure 6 illustrates the emissions, emissions savings and payments under different carbon

prices. Panel (a) shows the total emissions under full information (scenario i) in the dark

gray bars, and the emissions savings relative to no carbon price in the light gray bars. As

expected, the emissions savings increases with the carbon price. Panel (a) also illustrates the

emissions savings under asymmetric information (the brown bars). The difference between

the savings under full versus asymmetric information is the emissions lost due to land users

opting out because the policy-maker underestimates their deforestation under a zero carbon

price, resulting in the offered payment being too low. As expected, the fraction of landowners

opting out decreases as the carbon price increases. Panel (b) illustrates the payments made

under asymmetric information, and divides them into additional and non-additional. All
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the non-additional payments occur at low carbon prices, so as prices increase, the new

emissions reductions brought in by the higher prices are all additional. Thus, the fraction of

non-additional payments decreases as the price of carbon increases. At high carbon prices,

further additional emissions savings arise from land users that have opted out under low

carbon prices. In these cases, the policy maker still underestimates the amount of savings,

but the payment offer nonetheless exceeds their opportunity costs. For these land users, the

additional emissions savings exceed the amount paid for (represented by the light blue bar

being lower than the sum of the brown and dark blue one in Panel (b)).
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Figure 6: Carbon emissions assuming payments under full or asymmetric information for

different carbon prices per ton of CO2. Panel (a) the amount of additional emissions savings

under full information, under asymmetric information, and those emissions that would have

been avoided if land users had not opted out due to the offers being too low. Panel (b)

illustrates the payments made under asymmetric information in total, and split between

those payments that are additional and non-additional.

3.5.2 Cost effectiveness and equity

The level and distribution of monetary transfers is affected by the chosen policy design.

Table 2 summarizes aggregated changes in emissions, government spendings, and welfare

changes under different policies for a $80/ ton CO2 carbon price. It also shows the average

cost effectiveness in terms of additionally avoided emissions per $1 spent as government

payments to land users or as tax payments from land users under a $80/ ton CO2 carbon
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price. A payment under full information would require about $1,293 billion of government

payments. In this scenario, 0.012 tons of CO2 are uniformly saved per $. We calculate the

change in overall welfare, by multiplying the additionally avoided emissions with the social

cost of carbon of $80/ ton CO2 and then deducting the aggregated opportunity costs of land

users avoiding deforestation. Taxes and payments are not considered here. Thus, welfare

changes are equal in all scenarios except for the payment under asymmetric information. The

payment under full or no information and the tax create additional welfare of $515 billion.

Table 2: Avoided emissions and government balance at $80/ ton CO2

FI payment payment to all AI payment tax

add. avoided emis. (GT) 15.786 15.786 6.759 15.786

nonadd. ’avoided’ emis. (GT) 0.000 673.914 14.729 0.000

opted out emis. (GT) 0.000 0.000 9.027 0.000

government balance ($ bill.) -1262.908 -55091.461 -1685.309 2639.121

average cost effectiveness (T/$) 0.012 0.000 0.004 0.006

welfare change ($ bill.) 514.883 514.883 254.602 514.883

Note: FI= Full Information, AI = Asymmetric Information, GT= Gigatons, T= Metric Tons

If the payment was made to all global forested land remaining in 2030, the required

government spending would be about $55 trillion at this carbon price. More than 97% of the

spending would be paid for ‘non-additional emission savings’ (as was shown in figure 4, b).

Avoided emissions per $1 are very close to 0 tons CO2 across land units. Under asymmetric

information, payments of $1,685 billion are spent by the policy maker at this carbon price
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but nearly 70% are paid for ‘non-additional savings’, which reduces the cost-effectiveness in

terms of additionally avoided tons CO2 compared to the payment under full information.

Also, the net increase in welfare is reduced to $255 billion, about half of the welfare change

under the other policies.

Under the $80/ ton CO2 carbon price, a tax is on average less cost effective than a

payment under full information, but achieves more mitigation per $1 spent than the payments

under asymmetric information. Of course the tax is paid for by landowners to governments

while the reverse is true for the payments that they receive. From a government perspective,

the tax payments would be budgeted as government revenues. For land users who deforest

despite the carbon price, the tax reduces their welfare gains from deforestation. For other

and potentially poorer land users, the deforestation tax might be prohibitively high, leaving

land users with their opportunity costs of the foregone agricultural investment. Where the

tax raises equity concerns, the payment can generate revenue opportunities for poor land

users, particularly in the absence of information asymmetries.

In our simulations, a large share of the avoided emissions occurs in lower-income countries.

To evaluate distributional and equity concerns, we use data from a global gross domestic

product (gdp) data (Kummu et al. 2019) and differentiate policy burdens by gdp deciles.

Figure 7 shows opportunity costs and tax payments by globally defined gdp decile based on

sub-national gdp levels in 2000. The decile with the lowest gdp contributes more than 6

times the emission savings of the decile with the highest gdp under an $80/ ton CO2 carbon

price. Under a carbon tax, the poorest decile faces aggregated opportunity cost around $140

billion for their avoided deforestation between 2021 and 2030.
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Figure 7: Tax burdens by gdp decile (a) opportunity costs and (b) tax payments under $80/

ton CO2 carbon price by (c) gdp decile (globally defined based on gdp levels in 2000 from

Kummu et al. (2019))

While the poorest decile avoids most emissions, it also remains the largest contributor

of emissions from deforestation and thus pays the largest tax burden of all deciles. While

taxes reduce the welfare gains that can potentially be obtained from agricultural production

on newly deforested land, the level of tax payments also serves as a lower bound of the
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agricultural revenues4.

Nonetheless, in comparison to the counterfactual without carbon pricing, revenues from

deforestation are reduced for all land users. For some land users especially in poorer regions,

deforestation-related revenues can be an important income source and the only opportunity

to escape poverty. A potential lever to reduce these equity concerns related to the tax

implementation could be a lump-sum transfer to land users living the regions of the lower

gdp deciles.

As an example, the $2,639 billion collected from the carbon tax, could be redistributed

equally to the 517,092 land users related to the five lower gdp deciles, resulting in a transfer

of about $5 million each after the project period has finished (in this case, after 2030).

For most of these land users, these transfers would offset their opportunity costs from

avoided deforestation. For a few land users with extremely high opportunity costs (i.e.,

land users with very carbon-dense forests and high expected net revenues), the lump-sum

transfer is not enough to cover their opportunity costs. Also, those land users that have not

avoided a lot of emissions would receive the transfer. A worry might be, that the transferred

money could lead to increased deforestation in the following period by land users whose

deforestation activity has been capital-constrained beforehand. Nonetheless, the lump-sum

transfer to poorer regions helps to address equity concerns and provides an alternative source

of income for these land users that can be used in deforestation-unrelated ways. In contrast to

the payment for avoided deforestation, there is no need to establish a counterfactual baseline,

no worry about non-additionality and the funding of the transferred money is guaranteed

4Our data only provides us with the average expected revenues for a land user, but we have no information
about the plot-specific revenues. The fact that land users deforest implies for those plots that revenues are
higher than the imposed tax.

36



by design.

Figure 8: Lump-sum transfer to land users in lower gdp deciles offset opportunity costs (OC)

for most land users

4 Discussion

Unlike earlier papers that focus on the tropics, we estimate global potential supply of avoided

carbon emissions from deforestation. To better capture the nature of deforestation data, we

use the share of deforestation in remaining forest cover instead of the deforestation count or

its share in the grid cell area as the dependent variable. Lastly, we address endogeneity by

instrumenting revenue in a way that allows us to simulate policies at different carbon prices.

Our estimates of the supply of emission savings under a perfectly targeted carbon price

are similar, but a bit smaller than those reported in Busch, Engelmann, et al. (2019) and

Busch and Engelmann (2017). Specifically, the emission savings we estimate under a $80/

ton CO2 are about one gigaton CO2 per year smaller. These fall even further when we
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simulate asymmetric information.

Our analysis is based on the assumption that land users are rational, profit-maximizing

agents. At the same time, grid cell fixed effects mimic land users’ general deforestation pref-

erences and/ or costs. Due to the lack of actual spatial forest property data, the grid cell scale

of our data provides only a rough approximation of the true decision making unit. All policy

results require that property rights and the discussed policies are enforced and implemented

efficiently. Nonetheless, our robustness test stresses that, despite differences in perceived

security of land property rights, we find a robust effect on the change in deforestation in

response to a change in revenues.

Especially at the global scale of this analysis, implementing such a tax or payment pol-

icy would require major coordination efforts by governments and international institutions.

Implementation problems arising from weak institutions and corruption, for example, are

not directly accounted for in our analysis, apart from those effects that are related to in

average deforestation rates, and thus are captured in fixed effects. Transaction costs could

differ by policy; taxes would ‘only’ require monitoring and enforcement, whereas (targeted)

payments require the calculation of and agreement on a payment offer based on assumptions

of unobserved, counterfactual behavior. In case of taxes, tax revenues could partly refinance

the implementation efforts, unless the money is redistributed to address equity concerns.

Under all policies, transaction costs could be high given the assumed detailed spatial scale

in our assessment. Differences in forest coverage and in (actual) property sizes imply het-

erogeneous transaction costs at country level. In addition, actual land tenure rights would

affect implementation and transaction costs in various ways. Where land tenure rights are

unclear, the need for monitoring is even higher as illegal deforestation can only be taxed if
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the perpetrator is caught. Equally, the payments would be difficult to implement where the

legal recipient is unclear.

Our analysis has not only assumed, that land tenure rights are enforced, but also that

there is a symmetric response to carbon pricing policies across land ownership types. The

contractor and land user in our analysis do not necessarily need to be individual private

agents, but could also be a community or other collective forest holder. Public lands can be

affected by financial (dis-)incentives in a similar way and are not automatically conserved.

Local governments could decide to convert the land in the pursuit of other policy goals,

similarly driven by potential (agricultural) revenues. Also, the discussion around voluntary

carbon credit schemes could expose public lands to comparable incentives as private land

owners. However, it shall be pointed out, that our assessment is not capturing any conse-

quences of a (voluntary) carbon credit scheme. The trade and leakage problems related to

such a scheme have not been investigated in this paper. In contrast, the presented results

necessarily assume that the same carbon price is affecting deforestation decisions at global

scale.

Given that agricultural expansion is one of the main drivers of global deforestation (Curtis

et al. 2018), agricultural revenues serve as a good proxy for deforestation responsiveness.

However, deforestation for other reasons e.g., timber or cattle production are only captured

in as much as their potential revenues are correlated with agricultural products. Thus,

our analysis likely underestimates the responsiveness of deforestation to potential carbon

payments in some areas. Finally, our predictions for future years do not account for changes

in population, preferences or economic growth.
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5 Conclusions

Carbon pricing can lead to dramatic increases in carbon sequestration in the world’s forests.

Although payments for avoided deforestation have been a popular policy recommendation,

our analysis highlights the large cost that full payment would incur. In response, many

policies have sought to target payments towards additional actions. However, we show that

information asymmetries are likely to undermine many targeting efforts. On the one hand,

conservative assumptions about land users’ counterfactual deforestation provide insufficient

incentives for many land users to participate in the payment program. Their additional

contributions to avoided emissions would be foregone. On the other hand, too generous

assumptions about counterfactual deforestation induce payments for non-additionality. This

implies a loss of budget for environmental policies without actual abatement and is getting

increasingly problematic if these non-additional emissions reductions would enter the offset

market.

In contrast, carbon taxes do not require such an assessment and can therefore be consid-

ered a viable alternative. Nonetheless, if the burden of opportunity costs is largely carried

by land users in lower-income countries, monetary transfers may be used to mitigate these

equity concerns. For example, a lump-sum transfer of tax revenues to land users located

in lower-income countries would offset their opportunity costs from avoided deforestation in

most cases.
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Cisneros, Eĺıas, Krisztina Kis-Katos, and Nunung Nuryartono (2021). “Palm oil and the

politics of deforestation in Indonesia”. en. In: Journal of Environmental Economics and

Management 108, p. 102453. issn: 0095-0696. doi: 10.1016/j.jeem.2021.102453.

Conley, T. G. (1999). “GMM estimation with cross sectional dependence”. In: Journal of

Econometrics 92.1, pp. 1–45. issn: 0304-4076. doi: 10.1016/S0304-4076(98)00084-0.

Curtis, Philip G. et al. (2018). “Classifying drivers of global forest loss”. In: Science 361.6407.

Publisher: American Association for the Advancement of Science, pp. 1108–1111. doi:

10.1126/science.aau3445.
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6 Appendix

6.1 Demonstration of theoretical results

Demonstration of Result 1: As Q (κjlt) is the quantile of the land unit with the highest net

return among forested units, the result that there will be zero deforestation if Q (κjlt) < 0

follows from the assumption that land users only deforest units with positive net returns.

Conditional on deforesting, the fraction of forested units that are deforested—i.e. the

probability of deforestation—is given by the mass of units with positive returns among those
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that are forested:

πjlt =
1

κjlt

∫ Q(κjlt)

0

f(x|µjlt)dx (14)

= 1− 1

κjlt

∫ 0

−∞
f(x|µjlt)dx (15)

= 1− 1

κjlt

1

1 + exp(µjlt)
. (16)

where f(x|µjlt) is the logistic pdf with location µjlt. Equation 15 uses the fact that the

probability of the truncated distribution across its support integrates to 1, while equation

16 evaluates the logistic CDF at zero for location µjlt.

Demonstration of Result 2: Consider the equality

exp(f(µjlt, κjlt))

1 + exp(f(µjlt, κjlt))
= 1− 1

κjlt

1

1 + exp(µjlt)
. (17)

Applying the logit function at both sides of the equality and solving for f(µjlt, κjlt):

f(µjlt, κjlt) = log(κjlt(1 + exp(µjlt))− 1). (18)

The linear function in (µjlt, κjlt) that minimizes the expected square distance to f(µjlt, κjlt),

given a continuous join distribution of (µjlt, κjlt), is given by

f(µjlt, κjlt) ≈ xjltΘ, (19)
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where xjlt = (ej, µjlt, κjlt), ej is the j-th standard basis vector in RJ , and

Θ = (ν1, . . . , νn, η1, η2)
′ = E(x′jltxjlt)

−1E(x′jltf(µjlt, κjlt)). (20)

Hence, we obtain the following approximation for πjlt:

π̃jlt =
exp (xjltΘ)

1 + exp (xjltΘ)
=

exp (νj + η1µjlt + η2κjlt)

1 + exp (νj + η1µjlt + η2κjlt)
. (21)

Given this approximation, the approximate likelihood of observing k deforested units for land

user j in year t is given by a standard binomial distribution with probability π̃jlt, tweaked

to reflect the fact that deforestation equals zero with probability one if Q(κjlt) < 0:

Pr(Djlt = k) =


Ijt + (1− Ijt)

(
Njt

0

)
(1− π̃jlt)

Njlt if k = 0

(1− Ijt)
(
Njt

k

)
π̃k
jlt(1− π̃jlt)

(Njlt−k) if k > 0,

(22)

where Ijt = 1(Q (κjlt) < 0).

Demonstration of Result 3: Let π∗
jlt and π′

jlt represent the predicted probability of de-

forestation under carbon prices zero and Pp, given by equation 7. We approximate the

theoretical quantile function of net returns with the empirical quantile function given by

equation 5 to obtain an approximation to the opportunity cost of complying with carbon

price Pp.

The marginal net returns given average net returns µ∗
jlt = γj + δlt + αRjt + η2κjlt at

probability of deforestation πjt is approximated by the 1 − πjt quantile of the empirical
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distribution of net returns:

B̃(πjlt, µ
∗
jlt) = µ∗

jlt + log

(
1− πjlt
πjlt

)
. (23)

This benefit is expressed in units of the standardized return. As the logistic function

scale parameter has been normalized to 1 and the returns Rjt are meassured in dollares, the

dollar value of one standardized unit of the net return is given by 1
α
. Hence, the marginal

benefit from deforestation in dollars equals:

B(πjlt, µ
∗
jlt) =

1

α

(
µ∗
jlt + log

(
1− πjlt
πjlt

))
. (24)

The opportunity cost of complying with carbon price Pp, ljt(Pp), follows from integrating

this expression from π∗
jlt to π

′
jlt:

αljt(Pp) = µ∗
jltπ − log(1− π) + π log

(
1− π

π

)∣∣∣∣π′
jlt

π∗
jlt

. (25)

Noting that B̃(π∗
jlt, µ

∗
jlt) = B̃(π′

jlt, µ
′
jlt) = 0 and rearranging:

ljt(Pp) = π′
jltPpCj +

1

α
log

(
1− π∗

jlt

1− π′
jlt

)
, (26)

where Cj is carbon density for grid-cell j. As the total area has been normalized to one, the

expression above represents the opportunity cost per hectare that was not deforested due to
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having carbon price Pp. Then, the total opportunity cost is given by:

Ljt(Pp) = Ajκjlt

(
π′
jltPpCj +

1

α
log

(
1− π∗

jlt

1− π′
jlt

))
, (27)

where Aj is the total land suitable for agriculture of land user j and κjlt the fraction of

remaining forest at the beginning of period t.

6.2 Data preparation, estimation and robustness checks

6.2.1 Deforestation

We extract deforestation from the global forest watch data products on google earth engine.

The data is described in Hansen et al. (2013) and was updated for the following years. We

classify pixels as forest if their initial forest cover exceeds 25% in 2000. We extract deforested

pixels (1 arc-second resolution) if they have been classified as forest. Similarly, we extract

forested pixels for the year 2000 subject to the same minimum forest cover threshold. For

initial forest cover and deforestation, we sum up the number of pixels that are forested in

2000 or deforested by year, respectively, within our larger-scale grid cells (5 arc-minutes

resolution).

The original data product contains information of the initial tree cover share in 2000 for

each 1-arc second pixel. We use this information for the inclusion criteria of initially forested

pixels. Deforestation counts and shares in remaining forest cover are calculated based on

‘full’ pixel counts.
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6.2.2 AEZ for harvested area shares

To aggregate crop-specific revenues, we create harvested area shares within each continental

global agro-ecological zones. By interacting continents with 57 agro-ecological zone groups,

we group the (forested) grid cells into 216 categories, displayed in the map in figure 9.

Figure 9: Included grid cells are grouped into 216 continental agro-ecological zones

6.2.3 Transport costs

Transport costs are supposed to reflect market integration. Especially since our revenue vari-

able is based on international agricultural prices, we assume that integration in international

markets matters for the effect we estimate. We construct transport costs as follows:

The revenue contains travel costs based on crudeoil prices:

Rjt =

∑
((Gct − Tjt)× Ycj ×Hca)

0.05
(28)
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with

Tjt = oilpricet ∗ fuelcon ∗ speed ∗ factor/truckload/60 ∗ traveltimej (29)

based on converted crudeoil prices

oilpricetUSD/liter = oilpricetUSD/bbl/45 (30)

as about 45 liters of diesel (i.e., 12 gallons 3.78 liters per gallon) can be produced from one

42-gallon barrel of crudeoil 5. We define fuel consumption as

fuelcon = 0.4liter/km (31)

and

speed = 40km/h (32)

assuming an optimal speed of 32-52 km/h related to efficient fuel consumption (Wang and

Rakha 2017) and

factor = 2 (33)

under the assumption that crudeoil makes up 50% of the diesel price and that changes in

crudeoil prices translate to changes in diesel prices. Moreover, we assume a truck carries 20

tonnes (Wang and Rakha 2017):

truckload = 20t (34)

Lastly, we divide by 60 to get cost per minute to be multiplied with travel time in minutes.

5see eia.gov (accessed March 2024) https://www.eia.gov/tools/faqs/faq.php?id=327&t=9
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6.2.4 Potential revenue

We construct the potential agricultural revenue variable such that it is assumed to have

exogenous temporal and spatial variation. Figure 10 and 11 exemplify this for two years in

our data.

Figure 10: Potential revenue in 2001

Figure 11: Potential revenue in 2020
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6.2.5 Variogram

We explore spatial correlation using a parametric variogram. The exponential form as dis-

played in figure 12 aligned best with the observed data. After a range of about 100km a

plateau for the sill is reached.

Figure 12: Parametric variograms of exponential form with two different distance cutoffs

6.2.6 Heterogeneity

Since land property rights are presumably important for the decision to invest in agricultural

land and to deforest for this purpose, we test the robustness of the average global revenue

estimate to the perceived security of property rights. Table 3 first of all shows that the

estimates are robust to subsetting the data to observations for which property rights data

is available, with a slight increase in the treecover estimate (Model 1 vs Model 2). Model 3

shows that adding an interaction term of revenues and continuous tenure security (normalized

to z-scores) results in an insignificant effect of zero. Creating an interaction term in Model 4
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Table 3: Estimation results for the global model of deforestation under tenure security

Model 1 Model 2 Model 3 Model 4 Model 5
revenue 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.01) (0.01)
treecover 1.39∗∗∗ 1.48∗∗∗ 1.48∗∗∗ 1.48∗∗∗ 1.48∗∗∗

(0.17) (0.17) (0.17) (0.17) (0.17)
revenue:security normalized 0.00

(0.00)
revenue:security high 0.02∗

(0.01)
revenue:security low 0.02∗∗∗

(0.01)
revenue:high security dummy −0.00

(0.01)
Num. obs. 20337441 18524759 18524759 18524759 18524759
FE: grid cell 1020903 929702 929702 929702 929702
FE: year&country 3080 2380 2380 2380 2380
Deviance 242116.95 227699.99 227698.31 227699.72 227699.72
Log Likelihood
Pseudo R2

Note: Conley standard errors in parentheses. *** indicates significance at the 1% confidence level.

with a categorical indicator for high (above medium) and low (below medium) tenure security,

shows similar effects with even stronger significance for places of low tenure security. Lastly,

including a dummy with high tenure security = 1 shows that the estimate of the difference

between groups is insignificant and 0.

The estimate for a change in potential agricultural revenues is our key parameter of

interest, as it is also used in the simulations to account for carbon pricing. When we calculate

the average estimate by temperate and tropical regions, we can see that it is robust to the

overall average for the main model (see figure 13 a,b). After interacting revenues with

a variable indicating whether the grid cell is located in a tropical or temperate region, the

coefficient for tropical regions is close to the one from our main model specification (see figure
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13 c). For temperate regions the interacted estimate is lower, so that our main specification

might overestimate the change in deforestation potentially for these regions. However, for

tropical regions, that contribute a substantial share to globally avoided emissions due to

carbon pricing, the estimate of the main model is rather close to the one for the tropical

interaction term.

Figure 13: Semi-elasticity estimates, a: main model average, b: main model grouped by

temperate and tropical regions, c: adjusted main model for interaction of revenue and tem-

perate vs. tropical region and also grouped by regions

6.3 Implications of endogenous price feedback

For the model simulations presented in the manuscript, we use endogenous prices constructed

as explained in section 3.3.2 of the manuscript. For this exercise, 2020 global crop prices are

annually adjusted in response to the additional cropland area available after deforestation.
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Resulting percentage price changes over time are small and decline with increasing carbon

prices as shown in figure 14. This is in line with expectations, since higher carbon prices

reduce deforestation and thus the price shock resulting from additionally available cropland.

Exogenous global trends and expectations of economic changes are not reflected in these

prices.

Figure 14: Endogenous crop price changes over time under different carbon prices

In figure 15 we compare the aggregated avoided carbon emissions from reduced deforesta-

tion under the endogenous price specification to three alternative price trend assumptions:

First, we keep crop revenues fixed at 2020 price levels. Second, we keep crop prices fixed

at 2020 price levels but allow for technological progress and changes in transportation costs
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over time. Third, we use prices reflecting exogenous price trends as provided by OECD and

FAO (2022), but that do not account for endogenous effects from deforestation. Globally

aggregated avoided emissions are on a very similar order of magnitude under all price as-

sumptions. Only at higher carbon prices a marginal difference becomes apparent. It suggests

that without considering endogenous price feedbacks and technological progress, the abate-

ment potential of avoided deforestation will be slightly underestimated. On the other hand,

general macroeconomic changes could potentially counteract this development.

Figure 15: Comparison of additionally avoided emissions for different carbon price trends

over 2021-2030 and under full information assuming an endogenous price feedback (main

specification), fixed prices at 2020 levels, and exogenous global crop prices.
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