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Abstract  
This paper shows a cascading mechanism through which international trade-induced 
deforestation results in a decline of health outcomes in cities distant from where trade activities 
occur. We examine Brazil, which has ramped up agricultural export over the last two decades to 
meet rising global demand. Using a shift-share research design, we first show that export shocks 
cause substantial local agricultural expansion and a virtual one-for-one decline in forest cover. 
We then construct a dynamic area-of-effect model that predicts where atmospheric changes 
should be felt – due to loss of forests that would otherwise serve to filter out and absorb air 
pollutants as they travel – downwind of the deforestation areas. Leveraging quasi-random 
variation in these atmospheric connections, we establish a causal link between deforestation 
upstream and subsequent rises in air pollution and premature deaths downstream, with the 
mortality effects predominantly driven by cardiovascular and respiratory causes. Our estimates 
reveal a large telecoupled health externality of trade deforestation: over 700,000 premature 
deaths in Brazil over the past two decades. This equates to $0.18 loss in statistical life value per 
$1 agricultural exports over the study period. 
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1. Introduction   

  Globalization creates complex interactions between consumption, production, and 

environmental impacts that can occur in locations far apart. 1  This paper demonstrates the 

importance of such telecoupling for understanding the health burden of international trade. We 

study Brazil, where agricultural export value has quadrupled over the last two decades due to 

rising global demand. This surge is accompanied by substantial forest losses to accommodate the 

agricultural expansion. We show that these export-driven deforestations have far-reaching 

health ramifications, as the lost forests would otherwise serve to absorb harmful air pollutants as 

they travel, influencing air quality in cities hundreds or even thousands of miles downstream. 

We find that the magnitude of the health effects is substantial, even when compared to the entire 

value of Brazil’s agricultural trade over the study period.  

  We are motivated by an emerging debate on the “non-economic” effects of trade, 

particularly with regard to its interaction with the environment (Copeland, Shapiro, and Taylor, 

2022). This is especially relevant in developing country context, where the reliance on exporting 

resource-intensive products plays a key role in achieving development goals (Frank and 

Schlenker, 2016). In current literature, the environmental costs of deforestation are 

predominantly associated with climate change and disruptions to ecosystems (Copeland, 

Shapiro, and Taylor, 2022; Balboni et al., 2023). These include projected alterations in global 

temperature and precipitation patterns (Bonan, 2008), impacts on biodiversity (Dasgupta, 2021), 

and increased risk of crossing ecosystems tipping point (Franklin and Pindyck, 2018). Though 

expected to be profoundly important, these effects are hard to empirically pin down due to their 

long-run nature. Our paper instead examines human health effects that can be directly measured 

in the data today. The main message of our work is that the environmental costs of trade-induced 

deforestation are considerable, even when considering immediate cardio-respiratory health 

impacts alone. 

 
1 Economists have extensively studied how trade enhances growth (Grossman and Helpman, 1990) and 
productivity (Alcalá and Ciccone, 2004), and how it interacts with institutional quality (Levchenko, 2007). 
Empirical studies show international trade could affect the environment in positive or negative ways (e.g., 
Antweiler et al., 2001; Frankel and Rose, 2005; Managi et al., 2009; Abman and Lundberg, 2020), and 
emphasize the large spatial ranges of these impacts. Incorporating multiple locations and environmental 
consequences is important in assessing the overall welfare effects of globalization. 
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  We begin by estimating the causal effect of agricultural exports on local forest land 

coverage. During the two decades of our study period (1997–2019), Brazil significantly expanded 

its agricultural land use, coinciding with a substantial decline in forest cover. This pattern of 

deforestation is widely suspected to be associated with growing agricultural export demands, 

particularly from China and the European Union, which drive farmers to employ slash-and-burn 

methods for rapid land clearing to boost agricultural production. We estimate the causal link 

between agricultural exports and deforestation using a shift-share research design, which 

exploits variation in regions’ exposure to global demand shocks (“shift”) due to historical 

differences in export capacity across product categories (“share”). Brazilian regions are exposed 

to idiosyncratic import shocks across a wide range of product categories, providing an apt 

context for applying the shift-share research design (e.g., Adao, Kolesár, and Morales, 2019; 

Borusyak, Hull, and Jaravel, 2022). Our estimates show that each 1,000 BRL increase in export 

per capita reduces forest cover in the area by 0.174 percentage points. Using the same 

econometric framework, we demonstrate that areas experiencing forest retreat also saw 

agricultural expansion. Consistent with existing knowledge, this effect is mainly explained by 

increases in soybean and sugar farming—both land-intensive crops long associated with 

deforestation concerns.  

  Next, we estimate the impact of forest loss on downstream environmental and health 

outcomes. To accomplish this, we need to identify the extent of cross-boundary pollution 

spillover: the impact of a pollution source—or in our case, the absence of forests that would have 

reduced pollution—does not conform to administrative boundaries and can extend far beyond 

its origin (e.g., Heo, Ito, and Kotamarthi, 2023). We develop a simple area-of-effect (AoE) model, 

where we predict the geo-temporal influence of a given city’s forest change by solving a dynamic 

model that tracks airflows across space and time. From this model, we obtain information on the 

intensities of upwind-downwind linkages, or the lack thereof, of all pairs of cities in Brazil in all 

months. Our model is simplistic enough to be computationally feasible, but at the same time it is 

sufficiently realistic: we show that the model’s output linearly predicts the correlation between 

upwind and downwind cities’ observed pollution levels (which we did not use in training the 

model); conversely, when our model predicts a lack of up-downwind link, there is indeed a lack 
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of correlation between two cities’ pollution levels. Put differently, our model appears to predict 

the potential extent of pollution transport very well.2 

  Building on this data, we develop a quasi-experimental design to estimate the impact of 

forest losses on downwind environmental quality and health. For each “sender” city (where 

deforestation happens), potential “receiver” city (those on the downwind path of the sender city), 

and month, we examine the relationship between the sender’s forest volume (acreage) and the 

receiver’s environmental and health outcomes, allowing this relationship to vary according to 

the intensity of the sender-receiver downwind intensity score as suggested by the AoE model 

above. Our estimation includes flexible controls such as sender-receiver city pair by month-of-

year fixed effects and year fixed effects, which enables us to leverage quasi-random wind 

patterns to isolate how upwind forests influence downwind conditions. 

  Our findings show that deforestation in upwind cities significantly leads to increased air 

pollution and higher mortality rates in downwind cities. The mortality effect is primarily driven 

by excess deaths from cardiovascular and respiratory causes, consistent with a pollution 

exposure pathway. In placebo tests, we find that deforestation has no effect on plausibly 

irrelevant mortality outcomes, such as accident-related deaths. We also examine periods of calm 

wind conditions and show that the pollution and mortality effects do not arise when the same 

city pairs lack a significant upwind/downwind relationship. 

  Losses in upwind forests can lead to changes in downwind air quality and health through 

two pathways. The first is a pollution cleansing effect, where deforestation reduces the forest’s 

capacity to filter and absorb airborne pollutants, which would otherwise help cleanse the air 

before it reaches downwind areas. The second is a fire effect, where deforestation, often done 

using slash-and-burn method, increases the frequency of fires, producing smoke that drifts 

toward downwind cities. To disentangle these effects, we use remote-sensing data on fire 

incidents and augment our estimation model to allow fires to have flexible and independent 

effects on downwind conditions. Our analysis shows that the pollution and mortality estimates 

 
2 An expanding body of literature has leveraged variability in wind conditions to estimate the causal effects 
of air pollution (e.g., Deryugina et al., 2019; Rangel and Vogl, 2019; Anderson, 2020; Graff Zivin et al., 2023; 
Guidetti, Pereda, and Severnini, 2024). A key methodological innovation in our work is the development 
of a computationally feasible approach to build a comprehensive matrix of wind transport relationships 
across city pairs. This is crucial when the researcher’s goal is not only to measure the burden of pollution 
in the destination area but also to trace that burden back to its sources. 
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remain largely unchanged with the inclusion of fire information, indicating that the fire pathway 

plays a minor role. 

  Together, these estimates can be readily integrated to compute the overall impact of 

trade-induced forest losses. Our calculation reveals that agricultural exports over the study 

period are responsible for over 3.6 million hectares of forest losses and 732,000 premature deaths. 

This is a substantial figure compared to the total number of deaths reported in the entire country 

in 2018, which is 1.28 million. Using a Value of Statistical Life (VSL) approach, we calculate that 

the life value loss associated with these excess deaths is around 513 billion USD. This is about 18 

percent of the total agricultural value of Brazil over the entire study period – thus our headline 

number. This estimate is likely conservative, as our study focuses on monthly mortality 

responses, and the literature indicates that the long-term effects of pollution are usually more 

significant (Ebenstein et al., 2017). Moreover, individuals who do not die from pollution exposure 

may still experience other significant, albeit non-fatal, consequences, such as reduced 

productivity (Graff Zivin and Neidell, 2012; Borgschulte, Molitor, and Zou, 2022).  

  We make three contributions to the literature. First, we quantify the causal impact of trade 

on deforestation. While the trade and environment literature has traditionally focused on the role 

of industrial emissions, there is a growing body of work that examines the environmental impact 

of trade through its interaction with natural resources. To the best of our knowledge, this paper 

provides among the first causal estimates on the impact of exports on deforestation. The most 

closely related work is Carreira, Costa, and Pessoa (2024), who study the impact of agricultural 

productivity changes and China shocks – and their interactions – on forest cover in Brazil.3 Earlier 

work such as Ferreira (2004) also documents a negative relationship between trade and forest 

cover, though mostly based on cross-country comparison without causal identification.4 

 
3 Carreira, Costa, and Pessoa (2024) identify a strong negative impact of new agrotechnology (genetically 
engineered soy seeds) on forest cover in Brazil, along with a negative, though less statistically robust, effect 
from trade shocks. Our findings on trade-driven deforestation in Section 4 align broadly with their results, 
though our approach differs in two key ways. First, instead of focusing solely on demand shocks from 
China, our instrumental variable captures agricultural demand variation from multiple major importing 
countries. Second, we utilize a more extensive dataset with additional years and refined satellite 
measurements of forest cover, likely enhancing the precision of our estimates. In unreported analysis, we 
successfully replicate Carreira, Costa, and Pessoa (2024) using same subsample, satellite measurement, and 
IV construction.  
4 The general link between agricultural expansion and deforestation is more extensively studied. See, for 
example, Busch and Ferretti-Gallon (2017), Heilmayr et al. (2020), and Penderill et al. (2022). 
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  Second, we add to the literature on the environmental and health effects of forests. This 

literature is nascent in itself, but emerging applications have found important implications of 

forest presence on weather, climate, agriculture, infectious diseases, health, among other social 

economic outcomes such as property values (Berazneva and Byker, 2017, 2022; Garg, 2019; Jones 

and Goodkind, 2019; Druckenmiller, 2020; Han et al., 2021; Arujo, 2023; Grosset, Papp, and 

Taylor, 2023; Li, 2023; Xing et al., 2023). The most closely related study is Xing et al. (2024), which 

studies the impact of an urban afforestation program in Beijing, China, on air quality and 

respiratory emergencies in the city. Our study is the first to identify a direct link between forests 

and mortality rates, adding a significant dimension to the costs associated with forest loss, and 

doing so across a wide, inter-city geographical scale.  

  Third, and most importantly, our study connects the dots between trade, deforestation, 

and health, revealing natural resource depletion as a critical yet overlooked pathway through 

which trade impacts health. Trade shocks are understood to affect health via either an income 

channel or an emission channel. Trade-induced job loss has been shown to increase drug 

overdoses (Pierce and Schott, 2020), reduce access to employment insurance (Guerrico, 2021), 

and worsen workers’ physical and mental health (Adda and Fawaz, 2020). Bombardini and Li 

(2020) show that Chinese cities specializing in dirty industries experience both pollution and 

income effects, leading to increases in mortality. In contrast, cities specializing in clean industries 

only enjoy income effects and experience decreases in mortality. Gong et al. (2023) examine how 

foreign demand shocks due to the global economic crisis reduce demand for Chinese products, 

drive local changes in air quality, and affect mortalities. In contrast, our study emphasizes the 

role of natural resource—in our case, the Amazon forests—which we demonstrate has a 

significant contribution to human health production. Trade-induced depletion of this natural 

resource can substantially undermine the social value of trade. 

  More broadly, our work provides a quantitative basis to discuss the environmental 

damage of agricultural trade as well as the value of forests as an important piece of natural 

capital. Domestic environmental regulations are among the limited number of tools the 

government can use to mitigate the impacts of trade on natural capital depletion (Copeland, 

Shapiro, and Taylor, 2022). Such policymaking must be grounded in rigorous economic science 

that monetizes the value of natural assets, and our study describes a feasible framework to 
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achieve this.5 In addition to providing an overall estimate of the export-health trade-off, our 

estimates may also be useful for targeting, e.g., identifying areas where the same amount of 

deforestation would lead to the largest downwind environmental health damage.   

Section 2 continues with institutional knowledge on trade, deforestation, the 

environment, and human health. Section 3 describes the overall research framework and data 

sources. Section 4 presents the causal estimation of the effect of export on forest coverage. Section 

5 presents the health analysis. Section 6 presents the cost calculation and concludes the paper.  

 

2. Institutional Background 

2.1 Agricultural Export and Deforestation in Brazil  

 Brazil is the eighth largest economy and the world’s seventh most populous country. At 

the same time, Brazil is an ecological hotspot, home to 60 percent of the Amazon rainforest and 

the Cerrado biome, the world’s most biodiverse tropical savannah. It is estimated that Brazil 

holds about 10 percent of the world’s known biodiversity (Lewinsohn and Prado, 2005). In the 

shadow of the rapid expansion of agribusiness in Brazil, deforestation is emerging as an 

environmental crisis. In many developing countries, including Brazil, farmers are driven to 

deforest land as a means to increase their agricultural output and income. The prevalent method 

of land conversion involves slash-and-burn techniques, where trees are cut down and the 

remaining vegetation is burned, enriching the soil with nutrients from the ash. The opening of 

new lands for agriculture is frequently facilitated by government subsidies or lax enforcement of 

environmental regulations, further incentivizing farmers to engage in these practices (Fearnside, 

2005). 

 The interplay between agricultural expansion and deforestation is particularly evident in 

the Brazilian Amazon Rainforest and the Cerrado, where the cultivation of soybeans and the 

expansion of cattle ranching are the primary agricultural activities driving deforestation (Song et 

al., 2021). Soybeans, a major export crop, have seen increased demand globally, particularly from 

 
5 See, for example, Recommendation 3 of National Strategy to Develop Statistics for Environmental-Economic 
Decisions, Office of Science and Technology Policy, Office of Management and Budget, Department of 
Commerce (2023). In addition to direct regulations, many alternative methods for fighting deforestation 
may also benefit from concrete estimates of health effects of forest losses, such as conservation contracting 
and ecosystem payment programs (Jayachandran et al., 2017; Harstad, 2024). 
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China and the European Union, for use as livestock feed and in various food products. This 

demand has propelled Brazilian farmers to clear vast tracts of the Amazon to cultivate this 

lucrative crop. Similarly, cattle ranching, which requires extensive land area for grazing, has 

expanded dramatically, making Brazil one of the world’s largest beef exporters. The profitability 

of these agricultural ventures, along with government policies that frequently favor economic 

growth over environmental protection, is widely regarded as a major driver of significant 

deforestation in the region (Barona et al., 2010).  

 

2.2 Forests and the Environment   

 Forests represent a crucial component of natural capital, contributing to the ecosystem 

and the environment. They function as indispensable habitats for 80% of the global terrestrial 

species (Aerts and Honnay, 2011). Besides, forests contribute to water, oxygen, and carbon cycles, 

and other biogeochemical balances. They also play a pivotal role in the global and local climates. 

Forests are the world’s largest storehouses of carbon. Trees absorb greenhouse gasses, and are 

primary instruments for carbon storage featured in carbon offset programs like the REDD+. At 

the local level, forests affect micro-climate via shading and evaporation (Bonan, 2008; Pan et al., 

2011). 

 Forests matter a lot for human well-being. Over 1.6 billion people depend on forests for 

food, fuel, or shelter, and 70 million people including indigenous communities rely on forests for 

settlement (UN, 2021). Forests also mitigate damages from pollution and natural disasters such 

as floods. In this paper, we focus on air pollution impacts of forests as short-term consequences 

of trade-induced deforestation. Unlike other effects, air pollution responds quickly to tree cover 

change and could be linked to export changes of interest. Air pollution also leads to immediate 

mortality responses, enabling us to quantify health externality. 

Why do forests mitigate air pollution? First, leaves and bark serve as filters for particles, 

providing deposition sites for airborne pollutants. Previous studies have documented that forests 

are efficient pollution collectors and improve air quality (e.g., Betts et al., 2008; Janhall, 2015). 

Second, leaves can absorb specific hazardous gases like SO2, NOx, and O3. They can also interact 

with pollutants and alter atmospheric compositions. Leaves are reported to biodegrade or 

transform pollutants into less or nontoxic molecules (Wei et al., 2017). Third, trees indirectly affect 

the formation and deposition of air pollution by altering the micro-climate. Ozone formation is 
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inhibited by lower temperatures (Coates et al., 2016), and increased rainfall decreases the lifespan 

of particles. 

The link between deforestation, air pollution, and health can span a wide spatial range 

due to the long-distance transport of pollutants through wind flows. Winds carry upwind 

pollution into downwind regions, thus wind speed, direction, and other climatic factors 

determine the residence time and location of pollution. Existing papers have shown the impacts 

of cross-regional or transboundary air pollution on downwind areas (e.g., Heo, Ito, and 

Kotamarthi, 2023). Focusing on trees, policymakers have implemented afforestation initiatives to 

protect downwind populations from air pollution. For example, in China, the Three-North 

Shelter Forest is designed to restrain sandstorms from the Gobi Desert and improve air quality 

near the capital region.   

 

3. Research Framework and Data  

3.1 Research Framework 

 Before proceeding, it is worth laying out how various parts of our empirical estimation 

are eventually going to line up. Our goal is to estimate the external health effects of trade-induced 

deforestation that occurs in city i, recognizing that this effect need not confine locally to where 

deforestation occurs. The empirical analyses can be thought of as being organized around the 

following conceptual equation: 

Health	Effects! = ∑ "#$%&'(!
")%*+&!/0102
,&-(!$.	0

% ⋅ 	 (	"1&*2(3"
"#$%&'(!

| 	 Wind!→%9:;:<
,&-(!$.	5.7

/000001000002
,&-(!$.	5.8

 )     (1) 

 Section 4 estimates the causal effect of trade on deforestation ( "#$%&'(!
")%*+&!

 ). This estimate is 

entirely local in nature: we want to learn how much of city i’s deforestation is due to trade shocks 

to that city. Section 5 estimates the spillover health effects of city i’s deforestation on all potential 

“receiver” cities indexed by r. Section 5.1 first builds an algorithm that identifies these potential 

receivers. We use high-frequency wind direction information to create a downwind exposure 

index Wind!→% which summarizes the degree to which city i may have an influence on city r’s 

environmental condition due to atmospheric motions. Section 5.2 then builds on this information 

to estimate the relationship between city i’s forest cover and receiver city r’s health outcomes – 
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which we show is highly dependent on, and nonlinear with respect to, the downwind exposure 

index. The total effect of city i’s is thus the summation across its effects on various downwind 

receiver cities.  

 In Section 6, we come back to an empirical version of equation (1) to derive our headline, 

cost-of-trade-induced-deforestation number.  

  

3.2 Data   

 Our analysis is done almost entirely using publicly available datasets, many of which are 

maintained by the Brazilian government. We briefly describe each source. 

 Exports. Our export data is from the Comex database provided by Brazil’s Foreign Trade 

Secretariat (Secretaria de Comércio Exterior - Comex). The original data is at the municipality by 

month level and is structured using the Harmonized System at the 4-digit level (“HS-4”), 

providing detailed categorization of exported goods. We have access to data between 1997 and 

2019. 

 Land Use. Our land use data is from MapBiomas. Based on the Landsat satellite images 

produced by NASA and USGS, MapBiomas processes the pixel-per-pixel data with machine 

learning algorithms through the Google Earth Engine platform. It produces annual land use and 

land cover maps and provides information on the dynamics of different types of land cover for 

Brazil from 1985 to 2022 on a 30m spatial resolution. Specifically, there are six types of land, 

namely forest, non-forest natural formation, farming, non-vegetated area, water, and not 

observed. We mainly analyze the data on forest land and farming land. There are four types of 

forest lands, namely forest formation, savanna formation, mangrove, and sandy coastal plain 

vegetation. There are four types of farming land, namely pasture, agriculture, forest plantation, 

and mosaic of uses. For agricultural land, the MapBiomas offers information on major crops, such 

as soybean, sugar cane, rice, cotton, coffee, and citrus. The data used in our paper is the 7.0 version 

obtained in 2022.   

 Meteorology. We draw daily temperature and precipitation data from BDMEP (Banco de 

Dados meteorológicos para Ensino e Pesquisa). During the majority of our study period (2000-

2015), BDMEP provided data from 150 weather monitoring stations. The network expanded to 

include 5,611 stations for the years 2016-2020. For each station-day, we observe daily minimum 
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and maximum temperatures (°C) – from which we calculate average temperature by taking the 

average of the two – and precipitation (mm). We then compute station by month average 

temperature and precipitation. To derive city-level weather variables, we match all weather 

stations within a 300-kilometer radius of each city’s centroid and calculate the average 

temperature and precipitation across these matched stations. 

             We use wind direction and speed data from the European Centre for Medium-Range 

Weather Forecasts Reanalysis 5 (ERA5) reanalysis product. This dataset provides hourly U 

(horizontal) and V (vertical) components of the wind vectors at a 0.25° grid resolution. We use 

this data to compute daily prevailing wind directions, which are used in the air flow analysis in 

Section 5. 

 Air Quality. Air quality data is sourced from IEMA (the Instituto de Energia e Meio 

Ambiente). It contains hourly air quality monitoring data from 380 stations in 28 cities from 2015-

2022. The IEMA data keeps track of six different air pollutants: fine particulate matter (PM2.5), 

coarse particulate matter (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and 

carbon monoxide (CO). Because trees can mitigate both particulate and gaseous pollutants 

(Section 2.2), rather than focusing on these pollutants individually, we compute the z-scores for 

each of the six pollutants and then average these z-scores to construct an overall air pollution 

index. This index serves as our primary measure of air quality in the regression analysis. 

Regression results using individual pollutant concentrations as the outcome variables are 

available in the Online Appendix. 

 Mortality. We obtain mortality microdata from the Mortality Information System 

(Sistema de Informações sobre Mortalidade, or SIM) via the Brazilian National Health System 

Information Technology Department (Departamento de Informática do Sistema Único de Saúde, 

DATASUS). The SIM data are derived from administrative death records, which are completed 

and issued by physicians, and collected from hospitals and medical examiner offices. 

 From the death record microdata, we observe the decedent’s municipality of residence, 

date of death, and the underlying cause of death coded in ICD-10 classification. Using these 

information, we aggregate the microdata to obtain death counts at the microregion-by-month 

level between 2000-2021.6 We categorize deaths into those due to cardiovascular or respiratory 

 
6  The SIM mortality data began in 1997, although we drop data from 1997 to 1999 due to missing 
information on causes of death. 
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causes (“cardiovascular”, ICD10: I00-I99, J00-J99) and all other, non-cardiovascular causes. 

Separately, we count deaths due to accidents (“external”, ICD10: S00-T98, V01/V989), which we 

will use as a “placebo” outcome in our econometric analysis. Finally, we convert death counts to 

death rate by dividing microregion level population counts from the Brazilian Institute of 

Geography and Statistics. 

 Geography. Because municipality boundaries changed over time over our study period, 

we aggregate geographic units to the 3,826 Minimum Comparable Areas (henceforth “AMC” 

area) level for temporal consistency (Ehrl, 2017). We drop five municipalities that cannot be 

identified in the municipality-to-AMC crosswalk.7 Our primary trade-deforestation analysis is 

based on AMC-level data. Our environmental data have a coarser resolution than AMCs (e.g., 

0.25 degree for wind, 380 air quality stations). Therefore, in airflow modeling and the subsequent 

environmental health analysis, we aggregate AMCs into 557 “microregions” as defined by the 

Brazilian Institute of Geography and Statistics (IBGE).  

 

4. Trade, Agricultural Expansion, and Deforestation 

4.1 Raw Statistics 

 We first present a set of summary statistics on the shifts in Brazil’s trade structure, 

agricultural expansion, and deforestation. Figure 1, panel (a) plots Brazil’s national total 

agricultural export value, which grew from about 20 billion USD in 1997 to over 80 billion USD 

in 2018. Appendix Figure 1 panel (a) shows distribution of export values across agricultural 

products. Appendix Figure 1 panel (b) shows that the increase in exports is mainly driven by 

rising demand from China and the EU.8 Figure 1, panel (b) shows the decline in Brazil’s forest 

cover over the past decades, accompanied by a virtual one-for-one increases in farmland. The 

map on the right side of the panel highlights areas of deforestation which shows a strong spatial 

 
7 Mojuí dos Campos, Pescaria Brava, Balneário Rincão, Pinito Bandeira, and Paraíso das Águas. 
8 Appendix Figure 3, panel (a) shows the geographic distribution of the agricultural export growth. Not 
surprisingly, growth hotspots concentrate in areas with high crop production. Panel (b) reports 
corroborative evidence of remarkable agricultural employment growth with a similar geographic pattern. 
We present maps of mining product exports – the other main sector that saw substantial growth during the 
study period – in Appendix Figure 4. The geographic pattern is markedly different from that of agricultural 
exports. 



13 
 

correspondence with regions experiencing significant agricultural export growth. 9  We next 

describe our econometric method to quantify the causal effect of export shocks on deforestation.  

 

4.2 Research Design  

 The main estimation equation is: 

ΔLand	Cover!,: = β ⋅ ΔExport!,: + λ ⋅ W!,: + ε!,:  (2) 

where ΔLand	Cover!,: is the four-year rate of change in a certain type of land cover at AMC area i 

and year y. For example, when the outcome of interest is deforestation, the land cover variable is 

defined as ΔForest!,: = KForest!,:;0 − Forest!,:M/Land!,:  where “Forest” denotes forest cover in 

acreage in the area-year, and “Land” is total area land size. We use a four-year differencing period 

in both equation (2) and in the construction of our instrumental variable below. In Appendix 

Table 3, we present robustness checks with alternative differencing windows, ranging from one 

to six years. We chose the four-year period as our primary specification as the magnitude of the 

estimated effect stabilizes from this point onward, suggesting that a four-year window is 

sufficiently long to capture the temporal dynamics between export shocks and deforestation 

activities. 

 The key right hand side variable ΔExport!,: is the four-year change in agricultural exports 

per capita. W!,: is a series of control variables, including macro-region fixed effects, year fixed 

effects, and region-time control variables including income per capita, literacy rate, rural 

population, urban population, population density, and the presence of genetically-modified 

soy.10 The coefficient of interest β therefore captures the impact of agricultural export growth on 

land cover changes. We cluster standard errors at the AMC level. All regressions are weighted 

with each area’s agricultural population in year y. 

 Simple OLS estimation of equation (2) may suffer from endogeneity and measurement 

errors. We build the following shift-share instrumental variable (IV) for the export variable: 

 
9 We report actual levels of farmland gains and forest losses in Appendix Figure 2. 
10 We follow Carreira, Costa, and Pessoa (2024) in selecting these control variables. Our estimates are 
insensitive to the exclusion of these covariates. 
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where Export!,?,(B0/Export!,(B0 is the “share” of product j in area i’s exports at period t − 4, which 

captures an area’s historical export of a certain type of agricultural product. Import?,(	  is major 

importing countries’ total import from the world in product j and year t, which measures the 

global import demand for product j . The term 
!"#$%&!,#$%

	 '!"#$%&!,#
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	 )!"#$%&!,#

	 */,
 therefore captures percent 

change (or “shift”) in product demand over the period of interest. Together, the shift-share terms 

in brackets of equation (3) capture the variation in an area’s exposure to global demand shocks 

due to historical differences in export capacity across product categories. To express the IV 

variable in terms of per-capita dollar value – consistent with the endogenous variable in equation 

(2) – we multiply by <=>$%(!,%&'
F$>!,%&'

, which represents area i ’s overall historical export exposure. 

Because the export values of many products are zero in early years, it is not possible to calculate 

growth for some products. To address this issue, we construct the modified version of import 

growth following Davis and Haltiwanger (1992), where the denominator is the average of the 

start-of-period value and end-of-period value.  

The shift-share IV strategy relies on trade shocks being diverse, uncorrelated across 

product categories, and as-good-as-random conditional on shock-level unobservables and 

exposure weights (Borusyak, Hull, and Jaravel, 2022). Several empirical facts and tests support 

these assumptions. 

First, Brazil’s agricultural exports span a broad range of products. Between 1997 and 2019, 

our study period includes over 190 product categories at the HS-4 level, with an average 

Herfindahl–Hirschman index (HHI) of 0.07, indicating low concentration. Second, import 

demand shocks vary widely across products. As shown in Appendix Figure 5, import demand 

growth over the study period fluctuates significantly across HS-4 product categories. Together, 

these two points support the assumption that the shift-share variation in our IV estimation is 

driven by diverse import growth shocks across a wide range of products, rather than by 

concentrated shocks in a few product categories. 

The exogeneity of shocks cannot be tested directly. Instead, we conduct a balancing test 

following Borusyak, Hull, and Jaravel (2022). Specifically, we regress pre-shock observable 

characteristics on the IV variable, controlling for the same set of fixed effects variables as in 
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equation (2). We look at control variables that we used as covariates in equation (2), as well as 

climate variables such as temperature, precipitation, and humidity which might correlate with 

agricultural suitability. Appendix Table 3 shows that the IV variable does not significantly 

correlate with these predetermined characteristics. 

Yet another common concern with the shift-share strategy is correlated shocks, where 

regions with similar export structures may experience similar shocks, potentially leading to 

overrejection in 2SLS estimation (Adão, Kolesár, and Morales, 2019). We follow Adão, Kolesár, 

and Morales (2019) and conduct a placebo test, where we simulate shift-share IV variables with 

shift shocks randomly drawn from a normal distribution with mean 0 and variance 5. We then 

estimate the reduced form effect by regressing forest growth on the placebo IV, repeating this 

procedure 1,000 times. To assess overrejection, we examine rejection characteristics in the 

distribution of placebo coefficients. Appendix Figure 6 shows that the placebo regressions render 

significant results approximately 10.6% of the time at the 5% significance level and 1.5% of the 

time at the 1% significance level, suggesting a lack of severe overrejection issues. 

 

4.3 Results   

 Figure 2 reports the primary estimates. Each node on the tree represents a separate 

regression. All regressions follow the exact same IV specification as laid out in equations (2)-(3), 

except for the outcome variables which are denoted by the name of the node. Branches of the tree 

represent hierarchies of the land use variables defined in the MapBiomas dataset. For example, 

the “forest” land use category consists of four subcategories: “forest formation”, “savanna 

formation”, “mangrove”, and “sandy”. The values on the four sub-nodes represent the causal 

impacts of export on each subcategory, which collectively sum to the overall causal impact on the 

main forest node.  

 The headline “export-deforestation” estimate of this paper is shown on the “∆Forest” 

node of the figure: each 1,000 BRL increase in export per capita reduces forest cover by 0.174 

percentage points. This estimate is statistically significant at the 5 percent level, and the effect size 

converts to about 5.7 percent of a standard deviations (S.D.) reduction in forest cover per 1 SD 

change in export. The sub-nodes show that this total deforestation effect is driven mainly by 

decrease in forest and savanna formation.  
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  Now come to the lower parts of the graph. We show that export leads to significant 

increases in farmland coverage by about 0.214 percentage points. This effect is diluted by the fact 

that, in the land use data, “forest plantation” is counted toward farming activities, which – 

consistent with our deforestation results above – is negatively affected by exports. Consistent with 

institutional knowledge, the main farming effect is driven by increases in agriculture by 0.334 

percentage points.   

 We can further look at which crop types drive the agriculture effects. The right-hand-side 

parts of the graph show that export’s effect of agriculture is driven primarily by an increase in 

soybean farming. This is once again consistent with the well-known fact that soybean demand 

from China and the EU has substantially increased over the past decades.  

 

5. Health Effects 

5.1 Area-of-Effect Modeling 

 To capture downwind environmental and health effects, we build a matrix that 

summarizes monthly wind flow intensities between all pairs of cities in Brazil. In the interest of 

space, here we provide an intuitive explanation of the procedure, leaving computational details 

to the Online Appendix. 

 The input data are 0.25-degree resolution by hourly wind direction and speed information 

(i.e., vectors) from the ERA5 product. We first generate a spatial representation of wind flows from 

individual wind vectors, as illustrated in Figure 3a. Beginning from a particular day and city, we 

construct streamlines by sequentially following the wind’s speed and direction on a daily basis. 

This process maps out the evolving trajectories of the wind field, giving us daily representations 

of the distribution of wind flows throughout the country. 

 Our goal is to build an index, Wind!→%,+ , which is a summary of downwind intensity 

blowing from a sender city i to a receiver city r on day d. Note that, for any pair of cities that are 

significantly distant from each other, it is meaningless to talk about up/downwind relationship 

on any given “day” because winds blowing from the sender city may take days to arrive at the 

receiver city. We therefore track the trajectory of winds “originating” from a sender city and their 

impacts of downwind cities over multiple days – or “steps” as we refer to them below – using the 

wind streamline data that we constructed earlier.  
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 We define downwind intensity score using the following formula: 

Wind!→%,+,( = expV−α ⋅ rad( − β ⋅ |θ|!→%,+,( − γ ⋅ dist!→%,+,(Z     (4) 

 Starting from sender city i on day d and at step t, we assume downwind intensity of 

receiver city r follows an exponential decay as a function of three components (U.S. EPA, 2018; 

Phillips et al., 2021). The first component is the search radius at the step (rad(), which captures 

general decreases of downwind intensity over steps. The initial radius is 300 km, and we increase 

the search radius by 20 km at each step to capture both the uncertainty in the streamline 

computation and the dispersion of air. The second component is the scalar product of the angle 

between the receiver city and the wind direction originating from the sender’s location (|θ|!→%,+,(), 

which means we assign higher intensity to receiver cities that sit closer to the exactly-downwind 

direction of the sender. The third component is simply the distance between the sender and the 

receiver city (dist!→%,+,(), which captures geographic decay. We assume Wind!→%,+,( to be zero if 

d!→%,+,( > rad( (i.e., if receiver city lies outside of the search radius at step t) or if θ!→%,+,( > 0.4π  

(i.e., if the receiver city is not obviously in the downwind direction from the sender city.11 Starting 

from each particular sender city and day, we iterate the procedure for seven steps (i.e., a week).  

 Perhaps an easier way to think about the procedure above is that, we essentially “move” 

the location of the sender city with the wind flow and see which receiver cities it touches along 

the path over the next week period. A visualization of the procedure is shown in Figure 3b. The 

red arrow at the center represents the locus of the wind flow starting from the sender city. The 

growing ball of uncertainty around the arrow shows expanding search radius rad over steps in 

equation (4). The visualization also explains why both the relative angle and distance variables 

(θ and dist) have starting day and step subscripts (d and t): we track where winds originate and 

where they move to, and we compute each receiver city’s relative angle and distances 

dynamically.  

 We aggregate step-wise downwind intensity scores to the day level: 

Wind!→%,+ = ∑ Wind!→%,+,((     (5) 

 
11 We use parameter values {α, β, γ} = {0.7, 0.5, 0.2}. These numbers are empirically determined such that 
we would obtain a spatially continuous flow coefficient function through the successive steps, and that the 
directionality of the observed winds are respected through the flow coefficient representation. See Online 
Appendix for more details. 
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and in the econometric analysis below, we further average this city pair-daily score to the monthly 

frequency (Wind!→%,A,G where the variable is indexed by month m, and year y) to make the size of 

the regression dataset manageable. Because the numerical values of these scores lack direct 

contextual meaning, in econometric analysis we use a nonparametric approach, grouping this 

variable into decile bins for positive values plus a separate bin for when downwind score is zero 

(i.e., because the receiver city is too far away or it is not in the downwind direction, as discussed 

earlier).     

   Recall that the goal of this exercise is to predict the atmospheric influence gradient of 

deforestation. How well does the downwind index—which is built on an arguably parsimonious 

model—perform in this vein? To test this, we examine how well our index captures sender-to-

receiver air pollution passthrough. Our focus is on fine particulate matter pollution (PM2.5), 

which is known for its long-range transport. We test how the elasticity between PM2.5 pollution 

in the sender city and the receiver city—data not used in constructing the area-of-effect model—

varies as a function of the downwind score.  

 Appendix Figure 7 reports an estimation of the passthrough between Pollution!,A,: and 

Pollution%,A,:  – monthly particulate matter pollution levels at the sender city and at the receiver 

city – as a function of bins of Wind!→%,A,:. We estimate the following regression equation: 

                                  Pollution%,A,: = β ⋅ Wind!→%,A,: × Pollution!,A,: 

                                                           +γ ⋅ Wind!→%,A,: + δ ⋅ Pollution!,A,: + α!,%,A + α: + ε!,%,A,:      (6) 

where Wind!→%,A,:	enters the regression as decile bins, with the 10th bin representing the weakest 

wind condition being the reference category and thus omitted from the regression. Equation (6) 

includes sender-by-receiver-by-month-of-year fixed effects (α!,%,H ), capturing the identifying 

variation from within sender-receiver-seasonal pairs across different years, where variations in 

wind intensities are plausibly exogenous. The pattern of the β’s in Appendix Figure 7 suggests 

that indeed the receiver city’s measured air pollution concentration respond most strongly to 

sender city’s pollution when the modelled wind transport from the sender to the receiver city is 

stronger.   
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5.2 Research Design 

 Our goal is to estimate the relationship between a sender city’s quantity of forests and its 

downwind receiver’s environmental and health outcomes, leveraging month-to-month 

fluctuations in the downwind score (as illustrated in Figure 3b). Our estimation equation is as 

follows: 

Y%,A,: = β ⋅ Forest!,: ×Wind!→%,A,: + Forest!,: +Wind!→%,A,: + α!,%,A + α: + ε!,%,A,:   (7) 

 A unique observation in our estimation data is indexed by sender city (i), receiver city (r), 

month (m), and year (y). The three key variables in this estimation equation are: Y%,A,:, which is 

the receiver city’s outcome in a given month; Forest!,:, which is the sender city’s forest acreage in 

the corresponding year (standardized to mean zero and standard deviation one) multiplied by 

minus one to capture the effects of losses; and Wind!→%,A,:, which is the downwind score reflecting 

strength of wind blowing from i to r in that month. In practice, we categorize the Wind!→%,A,: 

variable into 11 groups: 10 decile bins for non-zero downwind scores and one additional bin for 

zero wind scores representing “calm” conditions with no downwind relationship between the 

two cities. We then include Wind!→%,A,: as a categorical variable in the regression, and so there is 

one β coefficient for each of the 11 downwind score bins. We include sender by receiver by 

month-of-year fixed effects (α!,%,A), which isolate downwind variation arising within a city pair 

and month of the year to address potential cross-sectional and seasonal confounds. For example, 

consider the city pair of Sao Paulo and Brasilia. Our specification compares a particular January 

when the wind blowing from Sao Paulo to Brasilia is particularly strong with other Januaries in 

different years when the wind strength for the same city pair is comparatively weaker. This 

strategy enables us to parse out cross-sectional correlations (e.g., the fact that downwind 

relationships tend to be generally stronger for city pairs where the two cities are in close 

proximity) and city pair-specific seasonality of wind patterns. We also include year fixed effects 

(α: ) to account for common shocks at the year level. In all regressions, we two-way cluster 

standard errors at the sender and receiver levels. 

 Our coefficients of interest are the β’s, which capture the relationship between upwind 

forest losses and downwind environmental or health condition at varying levels of wind intensity 

blowing from the upwind to the downwind city. We hypothesize that at high levels of wind 

intensity, the coefficient should be positive, indicating that forest losses in the upwind city 

increases pollution and mortality in the downwind city. As wind intensity decreases, we expect 
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this relationship to weaken. The coefficient estimated under “calm” conditions (i.e., no wind 

between the city pair) serves as a placebo test: without wind, we anticipate no relationship 

between upwind forest cover and downwind pollution or health outcomes.   

One potential alternative explanation for the observed pollution and mortality effects is a 

fire channel, where burning in the upwind area—a common practice for deforestation and 

conversion to farmland—could generate pollution that drifts downwind, thereby reducing air 

quality and leading to a negative relationship between upwind forest volume and downwind air 

pollution levels. To assess the relevance of the fire channel, we use remote-sensing data to 

measure fire activity in upwind cities and then augment equation (7) by adding a full interaction 

of upwind fire activity with downwind intensity bins. We show below that our forest effect 

estimates remain largely unchanged after conditioning on the fire effects. 

 

5.3 Results  

 Figure 4 plots the β coefficients from equation (7). Each chart represents results for a 

separate outcome. Start with panel (a), which shows atmospheric outcomes. To facilitate 

interpretation and comparison of results, we use standardized outcomes (mean 0, standard 

deviation 1) in each regression, so that the interpretation of the β coefficients is “the number of 

standard deviation change in receiver city’s atmospheric outcome per 1 standard deviation 

decrease in sender city’s forest coverage.” 

 The left panel of Figure 4a shows that forests have a large effect on downwind air 

pollution reduction. The middle and right panels of Figure 4a suggest there is little/null effect of 

upwind forests on downwind temperatures and precipitation. Two notable patterns are worth 

pointing out about the pollution effect. First, the forest-pollution effect increases monotonically 

with the downwind intensity score. In the strongest wind decile bin (bin “1st” on the x-axis), a 

standard deviation decrease in upwind forests increases downwind pollution concentrations by 

3 standard deviations.12 Second, we find precisely estimated zero effect for the no-wind bin (bin 

“calm” on the x-axis). This serves as a reassuring “placebo” exercise, suggesting that our 

econometric specification indicates an absence of forests’ downstream environmental effect when 

 
12 We will discuss plausibility of this effect size in conjunction with the health effects estimates.  
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our wind analysis indeed suggests an absence of a significant downwind relationship between 

the city pair.  

 The empirical impacts of forests on the atmospheric conditions is a subject of ongoing 

research. Here we compare our findings to some existing studies. On temperature effects, most 

empirical studies we are aware of document the local cooling effects of forests through shading 

and evapotranspiration (e.g., Han et al., 2021), and so it is not surprising we are not finding a 

transported effect at large-distance scale. On precipitation effects, our null effects seem at odds 

with recent studies that show positive impacts of forests on downwind rainfalls (Grosset, Papp, 

and Taylor, 2023). One important difference of our estimation and Grosset, Papp, and Taylor 

(2023) is the time scale: while we look at monthly frequency impacts, their findings pertain mostly 

to longer-term changes. In Appendix Figure 8, we show that, when aggregating our analysis to 

the annual level, we do see a substantial positive impact of forests on downwind precipitation.13  

Our pollution results echo Xing et al. (2023) which uses a similar design – though looking at 

within-city scale – to examine the impact of urban forests on city air quality improvement.  

 We report health effect estimates in Figure 4b. Given the findings of forests’ impact on air 

quality, we separately examine mortality due to cardiovascular/respiratory causes – which are 

expected to be more responsive to pollution changes – and other, non-cardiorespiratory causes. 

The left panel of Figure 4b shows that upwind forest losses lead to significant increase in 

downwind cardiorespiratory mortality rates. Once again, as we saw in the pollution analysis 

results, the mortality effects are monotonic with respect to downwind intensity score, and we 

find a precise-zero effect when there are no significant downwind connections between the city 

pair. The middle panel reports that we find little impact of upwind forests on mortality of non-

cardiorespiratory causes. Finally, as an additional “placebo” exercise, in the right panel we look 

specifically at mortality due to external causes (“accidents”) and we find no relationship between 

upwind forests and external mortality, regardless of downwind intensity levels. 

 In Appendix Figure 10, we present a heterogeneity analysis in which we use land cover 

transition information to classify each upwind city-year’s forest volume based on its land cover 

 
13  While forests can contribute to increased local humidity through evapotranspiration, this increased 
moisture might not be sufficient to alter weather patterns significantly in the downwind area, especially 
over short distances or periods. Over the long term, extensive forests can modify regional climate patterns. 
As forests mature, they contribute to higher levels of evapotranspiration. This increased moisture in the air 
can eventually influence weather patterns, potentially leading to more rainfall in downwind areas. 
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type from the previous year, distinguishing how much of the current year’s forest acreage was 

previously forest, non-forest vegetation land, agricultural land, or non-vegetated land (i.e., 

urbanized area). We then separately estimate the impacts of upwind forests on downwind air 

quality and cardio-respiratory mortality based on the previous year’s land cover. We found that 

environmental and health benefits primarily arise when upwind areas were forested in the 

previous year, as opposed to other land cover types.  

In Appendix Figure 11, we report our main downwind pollution and mortality estimates 

after conditioning on the impact of upwind fire activities. The results remain virtually unchanged, 

indicating that fire-related pollution is unlikely to be driving the forest effects we observe.  

 The magnitude of our pollution and health effects estimates are generally in line with 

prior literature on the causal effects of air pollution. Our pollution regression in Figure 4a 

suggests that, with the strongest downwind score, each standard deviation decrease in forests 

increases pollutants by 3 standard deviations, which would convert to about 65 ug/m3 increase 

in PM10. The mortality regression in Figure 4b suggests the corresponding change in 

cardiorespiratory mortality rate is about 0.37 deaths per 100,000 people. These numbers imply 

about a PM10-mortality elasticity of 0.99%. In comparison, in one of the most cited quasi-

experimental studies in the U.S., the estimated mortality-PM2.5 elasticity among the elderly 

population aged 65 and above is 1.86% (Deryugina et al., 2019).  

  

6. Discussion and Conclusion 

 We are now ready to draw conclusions by plugging in various pieces of our empirical 

estimates back into the conceptual equation (1) we laid out in Section 3. The empirical version of 

the equation is as follows: 

 Excess	Deaths	due	to	city	i′s	agricultural	trade 

                                 = ∑ 	(βI)%*+&→I#$%&'( ⋅ ΔTrade!)%,A,: ⋅ (β#$%&'(→JK	A$%(*2!(:
!→%,A,: ⋅ Population%,:)     (8) 

 That is, the total excess deaths due to city i  equals the product of trade-induced 

deforestation in i  (the first parenthesis) and excess deaths per unit of deforestation at a receiver 

city r (the second parenthesis), summed across all receiver cities and time periods. The subscript 

of the term β#$%&'(→JK	A$%(*2!(:
!→%,A,:  means we only consider the impact of forest on downwind 
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cardiovascular mortality – what we found to be responding to upwind forest changes; the 

superscript indicates we use nonlinear estimates as shown in Figure 4, panel (b) based on the 

downwind index associated with the city pair i → r, month m, and year y.  

 One key qualitative insight from this calculation is that trade shocks (and the resulting 

deforestation) occur in areas distinct from where the associated mortality burden is felt. Figure 5, 

panel (a) shows a map of trade-induced deforestation based on our estimates. In panel (b), we 

plot the distribution of total mortality burdens at receiver cities. That is, for each city, we sum up 

excess deaths due to deforestation from all upwind cities over the study period. The difference of 

the spatial patterns between the two panels is apparent: because of wind directivity and 

population distribution, areas with large numbers of excess deaths may situate hundreds if not 

thousands of miles away from where trade deforestation is happening.    

 Quantitatively, our estimates suggest a total of 3.6 million ha loss of Brazilian forests due 

to trade, resulting in over 732,000 excess deaths over the study period. For reference, total deaths 

in Brazil in the year of 2018 is estimated to be around 1.28 million. We quantify the mortality 

impacts in terms of its statistical life value, which is a common way to think about the costs 

(values) of environmental damage (protection) (e.g., U.S. EPA, 2000). Because direct estimation 

of the value of a statistical life (VSL) for Brazil is lacking, we use a transfer approach that 

downscales the U.S.-based VSL estimate of $2.3 million (Ashenfelter and Greenstone, 2004) by 

factors of a transfer elasticity of 1.2 (Narain and Sall, 2016) times a Brazil-U.S. income per capita 

ratio of 7. This yields a VSL estimate of $0.7 million USD. The total statistical life value loss of the 

732,000 extra deaths thus amounts to about 513 billion USD. This represents a significant number 

– about 18 percent of the total agricultural export value of Brazil over the study period.    

 Our estimated elasticity of 0.18 may underestimate the actual health effects of trade-

induced deforestation, as it does not account for morbidity, long-term health impacts beyond 

same-month pollution exposure, or productivity and income losses that could indirectly worsen 

health outcomes. In addition to air pollution, trade-induced deforestation may also degrade water 

quality, alter microclimates, and disrupt ecosystems, all of which could further affect health and 

increase the actual elasticity between agricultural exports and mortality. 

 On the policy front, our study does not suggest that agricultural trade is inherently 

negative. Trade can generate multiplier effects in the exporting country through sectoral changes, 

employment, and migration, leading to welfare gains that exceed the value of the exports 
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themselves. However, our paper highlights a large negative aspect of trade on health and the 

resulting regional inequality, as the mortality costs and income benefits may not be distributed 

in the same areas.  

With increased globalization, to meet foreign demand without high health costs, 

agricultural producers should prioritize increasing yield rather than expanding agricultural lands.  

This requires domestic policies for deforestation monitoring, which are shown to be effective in 

our heterogeneity results across presidential administrations. International pressure or green 

trade policy can also effectively avoid deforestation shown by existing studies (e.g. Nolte et al., 

2013; Kerr, 2013; Hsiao, 2021).  

For future research, our paper provides a framework to estimate the value of forest and 

other natural capitals. Our identification strategy relies on foreign demand changes that serve as 

exogeneous drivers of forest loss, as well as quasi-random wind flow that separates upwind 

drivers and downwind recipients. For the latter, future studies may exploit other networks that 

connect spatially different regions. In addition, our wind trajectory simulation is also helpful for 

future environmental economics studies to estimate the impacts of air pollution. 
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Figure 1. Trends in Trade, Agricultural Expansion and Deforestation 

(a) Agricultural Exports 

    

 

(b) Agricultural Land Expansion and Deforestation 

     

Notes: Panel (a) shows temporal and geographic trends in Brazil’s agricultural exports. Panel (b) shows temporal 
and geographic trends in the substitution between agricultural land and forests. “Fluctuations” correspond to 
areas with less than 3 percent changes in forest or farmland coverage over the study period.  
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Figure 2. The Effect of Trade on Deforestation and Agricultural Expansion 

 

Notes: Each node on the tree represents a separate IV regression following the exact same specification except 
for the outcome variable, which is denoted by the name of the node. Each regression has 57,189 underlying 
observations with a first-stage Kleibergen-Paap F-statistic of 8.1. Branches of the tree represent hierarchies of the 
land use categorizations. Interpretation of the coefficients is change in land cover land use type (in percentage 
points) per 1,000 BRL increase in export per capita.  
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Figure 3. Area-of-Effect Modeling 

(a) Airflow Modeling 

     
(b) Downwind Score: Belo Horizonte as Example 

    

Notes: Figures show dotted map of Brazil where each dot represents centroid of a city. Panel (a) shows a day 
snapshot of wind flows built from location-specific wind vectors data (left) and a visualization of our wind flow 
model that tracks downwind cities influenced by winds from a sender city (Belo Horizonte in this example) over 
the course of seven steps (i.e., days). Panel (b) shows aggregation of step-specific downwind scores to sender-
receiver-day level (left) and sender-receiver-month level (right) where the sender city is Belo Horizonte. 
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Figure 4. The Downwind Effects of Forest Losses 

(a) Atmospheric Outcomes 

   
 

(b) Mortality Outcomes 

   

Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover, 
separately by downwind exposure score bins. Each chart shows a separate regression following the exact same 
specification except for the outcome variable. Within each chart, horizontal step lines show point estimates, and 
range bars show 95 percent confidence intervals. 
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Figure 5. Distribution of Trade-Induced Forest Losses and Excess Deaths  
 

      

Notes: The map on the left shows the spatial distribution of trade-induced deforestation over the study period. 
The map on the right shows the spatial distribution of the downstream cardio-respiratory deaths due to trade-
induced deforestation.  
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Appendix Figure 1. Brazil’s Agricultural Export Structure 

(a) Product Categories 

 

(b) Trade Partners 

 

Notes: Panel (a) shows distribution of export values in billions of USD by product category. Panel (b) shows 
agricultural export share by trade partner in 1997 (left) and in 2019 (right). 
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Appendix Figure 2. Geography of Land Use Changes 

 

Notes: Maps show 1997-2018 percentage change in land use for farming purposes (left) and forest land (right). 
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Appendix Figure 3. Geography of Agricultural Growth 

(a) Agricultural Employment Growth 

 

(b) Agricultural Export Growth 

 

Notes: Panel (a) shows growth in agricultural employment over the 1997-2007 period (left) and the 2007-2019 
period (right). Panel (b) shows growth in agricultural exports per capita over the 1997-2007 period (left) and 
the 2007-2019 period (right). 
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Appendix Figure 4. Geography of Mining Activities 

 

Notes: Maps show mineral exports per capita in year 1997 (left) and in year 2018 (right). 
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Appendix Figure 5. Export Demand Shock Variability 

 
Notes: Major importing countries’ export demand growth rates variation across HS-4 product categories, 
represented by points. Points are grouped into broader HS-2 categories.   
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Appendix Figure 6. Effects of Placebo Export Shocks on Forest Cover 

 
Notes: This figure plots the coefficient on placebo shocks in 1,000 separate regressions, where the dependent 
variable is the forest land use 4 years growth. The placebo shock is the placebo change in agricultural import 
growth by HS code and municipality, a normally distributed random variable with mean 0 and variance 5. The 
regression also contains year and macroregion fixed effects, and agricultural employees are used as weights. 
Standard errors are clustered at the AMC level.   
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Appendix Figure 7. Passthrough of Air Pollution from Upwind to Downwind Cities 

by Downwind Score Deciles 

  

Notes: This figure shows coefficients from a regression of a receiver city’s PM2.5 concentration on an upwind 
city’s PM2.5 concentration, with the effect allowed to vary by the downwind score from the upwind location to 
the downwind location according to our area-of-effect model. All regression controls for city pair by month-of-
sample fixed effects and year fixed effects. Standard errors are two-way clustered at the sender city and receiver 
city levels. Range bars show 95 percent confidence intervals.   
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Appendix Figure 8. The Downwind Effect of Forest Losses on Precipitation:  

Month-Of versus Annual Effects 

  

Notes: Charts show estimates on changes in downwind precipitation outcomes per 1 SD decrease in upwind 
forest cover. Left panel shows regression estimates based on monthly data. Right panel shows regression 
estimates from the same data aggregated to the annual level. The annual regression equation, analogous to the 
monthly equation (7), controls for sender-by-receiver fixed effects and year fixed effects, with standard errors 
two-way clustered at the sender and receiver levels.   
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Appendix Figure 9. The Downwind Effect of Forest Losses on Air Pollutants 

  

Notes: Chart shows estimates on changes in downwind pollution outcomes per 1 SD decrease in upwind forest 
cover. Each line represents a separate regression using standardized pollutant concentrations as the outcome 
variable.    
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Appendix Figure 10. The Downwind Effect of Forests: Heterogeneity by Prior Land Type 

  

Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover, 
separately by land cover in the previous year. We use land cover transition information to classify each upwind 
city-year’s forest volume based on its land cover type from the previous year, distinguishing how much of the 
current year’s forest acreage was previously forest, non-forest vegetation land, agricultural land, or non-
vegetated land (i.e., urbanized area). We then separately estimate the impacts of upwind forests losses on 
downwind air quality and cardio-respiratory mortality based on the previous year’s land cover. 
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Appendix Figure 11. The Downwind Effects of Forest Losses: Fire Controls 

 

Notes: Charts show estimates on changes in downwind outcomes per 1 SD increase in upwind forest cover, 
separately by downwind exposure score bins. Each chart shows two separate regression, one with and the other 
without controls for upwind fire occurrences.  
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Appendix Table 1. Major Import Countries Selection 

 

Notes: This table tabulates Brazil’s major export destinations ranked by Brazil’s export value, highlighting 
countries that are selected in constructing the shift-share instruments. Excluded countries are those with either 
missing UN import or Comex export data, low correlation between UN import and Comex export data, or those 
with high numbers of mismatches between UN import HS-4 and HS-2 product categories. 
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Appendix Table 2. Summary Statistics 

Variable Name Obs Mean SD 
ΔForest land share (%) 57189 -0.13 2.494 
ΔFarming land share (%) 57189 0.05 2.666 
ΔPasture land share (%) 57189 -1.10 4.194 
ΔAgriculture land share (%) 57189 0.98 2.754 
ΔForest plantation land share (%) 57189 0.26 0.732 
ΔMosaic of uses land share (%) 57189 -0.09 2.884 
ΔExport per capita (1000 BRL) 57189 0.22 1.327 
ΔExport per capita (real 1000 BRL) 57189 0.19 1.562 
Population 57189 48431.26 2.45e5 
Agricultural employee 57189 23721.17 1.82e5 
Income per capita 57189 191.40 114.516 
Literacy rate (%) 57189 70.32 16.445 
Population density 57189 0.82 3.808 
Rural population 57189 9398.84 16462.777 
Urban population 57189 28374.83 1.99e5 
GE soy 57189 0.03 0.005 

 

Notes: The variables for land use and export per capita describe the growth over four years within the period 
from 2001 to 2019; Real export values have been deflated by the Brazilian Consumer Price Index (IPCA) 
calculated by IBGE and are denominated in 2019 reals; Income per capita, literacy rate, population density, rural 
population, and urban population are values from 1991, calculated by IBGE.  
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Appendix Table 3. Shift-Share Balancing Tests 

  (1) (2) (3) (4) 
  Coef.  S.E. p value q value 
Urban population 4704.262 3952.672 0.234 .429 
Rural population 3050.763 2608.679 0.242 .429 
Total population 7755.025 6395.578 0.225 .429 
Per capita income 4.635 1.635 0.005 .06 
Literacy rate 0.264 0.151 0.081 .429 
Population density -0.003 0.007 0.691 .754 
GE soy seeds 0.000 0.000 0.608 .73 
Average temperature 0.030 0.031 0.332 .498 
Average humidity  -0.005 0.078 0.947 .947 
Average pressure -0.478 0.416 0.250 .429 
Average wind speed -0.006 0.007 0.383 .511 
Total precipitation 652.890 438.455 0.137 .429 

 

Notes: Export values are deflated by the Brazilian Consumer Price Index (IPCA) calculated by IBGE and are 
denominated in 2019 reais. The number of AMC regions is 3812. All regressions include Year fixed effects and 
macroregion fixed effects. The independent variable is the four-year shift-share instrument generated for the 
growth of Brazilian agricultural exports. “q value” is the False Discovery Rate adjusted significance level 
(Anderson, 2008) 
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Appendix Table 4. Trade-Deforestation Regression Estimates: Alternative Time Lags 

 (1) (2) (3) (4) (5) (6) 
Panel A. First stage Export 

(Δ1y) 
Export 
(Δ2y) 

Export 
(Δ3y) 

Export 
(Δ4y) 

Export 
(Δ5y) 

Export 
(Δ6y) 

Shift-share IV 0.21 1.12*** 1.78*** 0.91*** 1.12*** 1.04*** 
 (0.14) (0.12) (0.30) (0.23) (0.25) (0.28) 
       
Panel B. Second stage Forest  

(Δ1y) 
Forest  
(Δ2y) 

Forest  
(Δ3y) 

Forest  
(Δ4y) 

Forest  
(Δ5y) 

Forest  
(Δ6y) 

ΔExport per capita (1000 BRL)  -0.118 -0.038** -0.043* -0.174** -0.207*** -0.192** 
 (0.12) (0.02) (0.02) (0.08) (0.07) (0.10) 

 
Observations 68,585 68,585 64,814 57,189 49,564 41,939 
First-stage F (Kleibergen-Paap) 1.250 81.63 41.01 8.072 16.59 6.492 
Year FE Yes Yes Yes Yes Yes Yes 
Macroregion FE Yes Yes Yes Yes Yes Yes 
Control Yes Yes Yes Yes Yes Yes 
 

Notes: The IVs are constructed based on the agricultural imports by top import countries. All monetary 
values have been deflated by the Brazilian Consumer Price Index (IPCA) calculated by IBGE and are 
denominated in 2019 reals. *: p < 0.10; **: p < 0.05; ***: p < 0.01. 
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Technical Appendix: Area of Effect Estimation Details 

 To build a matrix that summarizes monthly wind flow intensities between all pairs of cities in Brazil, we 

designed a model that evaluates the intensity of the wind between a sender city and a receiver city at a given 

date. Beginning from a particular day and city, the model constructs streamlines by sequentially following the 

wind’s speed and direction on a daily basis.  

 The input wind data (wind direction and speed information, i.e., vectors) are at a city-day level. Thus, 

the first step is to construct for each day a wind vector field with a grid resolution to estimate wind vectors at 

any point of the Brazilian territory. For that purpose, we divided the largest dimension of Brazil dim in polar 

coordinates (its width) by res = 64. Then, we built a coordinates grid with a resolution of dim/res	 ≈ 	0.6. The 

wind vector grid is then computed using linear interpolation from the city-day level wind data on the 

coordinates grid. Note that the higher the resolution res, the longer the computation so the value of res was 

chosen to obtain a sufficiently thin grid while keeping the computation time reasonable.  

 More precisely, we can illustrate how the algorithm works for a sender city i when starting at a given 

day d. We initialize the step t by t = 0	and the position p( by the position of the sender city: 

§ At step t , we extract from the input data the wind direction and speed information at day d + t, and we 

build the daily vector grid as described previously. Given that p( is not exactly at an intersection of the 

grid, nearest interpolation is used to approximate the wind vector at position p(. Let’s note that wind 

vector w( = (u(, v(). 

§ We look for potential receiver cities within a disk of radius rad( from p(. For each city r found, we define 

raw downwind intensity score as:  

Wind!→%,+,( = expV−α ⋅ rad( − β ⋅ |θ|!→%,+,( − γ ⋅ dist!→%,+,(Z 

where α, β, γ are positive parameters. 

The first component is the search radius at step t  (rad(), which captures general decreases of downwind 

intensity oversteps. We increase the search radius by 0.2 which represents about 21km at Brazil latitudes 

at each step to capture both the uncertainty in the streamline computation and the dispersion of air. The 

initial search radius radL has a value of 2.8 which represents about 300km at Brazil latitudes. 

The second component enables to assign higher intensity to receiver cities that sit closer to the exactly-

downwind direction of the sender. More precisely, let’s note l!→% the vector between sender city i  and 

receiver city r . The sense of the vector is not important. Let’s note v(  the vector defined as v( =

	(v(, −u()/||w(||. Thus, it is a normal vector to the wind vector w( that has a norm of 1. Then, we define 
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the absolute scalar product |θ|!→%,+,( 	= 		 v(	. l!→% . The higher this term, the closer l!→%  is to be 

perpendicular to w(. Since the higher |θ|!→%,+,( , the lower the score Wind!→%,+,( , and thus the aim of this 

term is to penalize cities that are less impacted by the wind streamlines because they are not in the 

exactly-downwind direction from the wind streamline at that step. It is also important to note that v( is 

normalized to avoid seeing lower scores when the speed of the wind is higher. However, l!→% is not 

normalized to penalize cities that are further from the sender city. 

The third component is simply the distance between the sender and the current position p( (dist!→%,+,(), 

which captures geographic decay. This component is inspired by Phillips et al. (2021) that also uses an 

exponential decay with the distance from the emitter to model dispersion. This term also aims to 

penalize cities further from p( but gives more flexibility to the formula by decorrelating the decay in 

terms of angle (second term) and the one in terms of distance. 

We assume Wind!→%,+,( to be zero if d!→%,+,( > rad( (i.e., if receiver city lies outside of the search radius at 

step t) or if θ!→%,+,( > 0.4 radian (i.e., if the receiver city is not obviously in the downwind direction from 

the wind streamline at that step). We choose parameter values {α, β, γ} = {0.8,0.49,0.23} . These 

coefficients are chosen empirically so that the function that attributes wind scores over 7 days is 

approximately continuous. For that purpose, we used visualisations consisting in heatmaps that 

simulate the wind scores values not only for cities of interest but for all points of the map for different 

days and different sender cities. Examples of those heatmaps showing the approximate continuity of the 

wind score function for the final value of the parameters can be seen on the figure below. 

§ If t < 6, coefficients need to be updated for step t + 1. We increase rad( as described previously by 0.2 

to obtain rad(;7. We update p( = (x(, y() by following the local direction and speed of the wind i.e. using 

w( : 

x(;7 = x( + 24 ∗ 3600 ∗ u(/distA((x(, y(), (x( + 1, y()) 

y(;7 = y( + 24 ∗ 3600 ∗ v(/distA((x(, y(), (x( + 1, y()) 

p(;7 = (x(;7, y(;7) 

To understand those expressions, we must consider that x and y coordinates are in degrees while the 

vectors’ coordinates u	and v are in m/s. The distance (positive or negative) in meters crossed by the 

wind in 24 hours is of dA,= = 24 ∗ 3600 ∗ u( along the x-axis and dA,: = 24 ∗ 3600 ∗ v( along the y-axis. 

To obtain an approximation of the distance d>  crossed in polar coordinates corresponding to a distance 

dA in meters, we use a cross product : if a delta of 1 degree in longitude at the latitude y( represents 
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distA((x(, y(), (x( + 1, y()) meters, then, an approximation of d> is d> ≈ 1 ∗ dA/distA((x(, y(), (x( + 1, y()). 

Thus,  

d>,= ≈ 1 ∗ dA,=/distAK(x(, y(), (x( + 1, y()M 

d>,: ≈ 1 ∗ dA,:/distA((x(, y(), (x( + 1, y()) 

hence the expression of x(;7 =	x( + d>,=	and y(;7 = y( + d>,:. 

We can then proceed to step t + 1. 

 Starting from each particular sender city and day of the period 1998-2001, we iterate the procedure for 

seven steps (i.e., a week) so for t = 0 to t = 6.  

Examples of wind indexes heat maps for two emitters 

 

 After the computation, we have a set of wind scores Wind!→%,+,( that need to be aggregated at a day level, 

which means that we want to have a single coefficient for a given tuple (sender city i , receiver city 

r, date	of	arrival	d′). For a given index a given index Wind!→%,+,(, the date of arrival d′ is the sum of the delay in 

days from the emission at the sender city i.e. step t and of the date of emission d : d′ = t + d. The downwind 

intensity score aggregated at a day-level for tuple (sender city i, receiver city r, date	of	arrival	d′)	is:  

Wind!→%,+M = ∑ Wind!→%,+,(+;(N+M   

After that, the second aggregation step is at a month-level to make the size of the regression dataset manageable 

in the econometric analysis. This aggregation consists in computing average intensity scores for each tuple 

(sender city i, receiver city r,month	of	arrival	m): 

Wind!→%,A = Average+M∈A	Wind!→%,+M 

At the end, we record every pair (sender city i, receiver city r) among the monthly aggregated intensity scores. 

For each pair (sender city i, receiver city r), when there is no intensity score found for a given month m of the 

period of interest (1998-2021), we add the monthly aggregated intensity score Wind!→%,A = 0. The final matrix 
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containing monthly intensity scores should therefore present n rows per couple (sender city i, receiver city r) 

where n = 24 is the number of months in the period (1998-2021). Note that not every pair of cities would be in 

the matrix. Indeed, if wind “originating” from a city i has not reached city r within 7 days, for each day of the 

period as starting date, then no scores will be associated to couple (sender city i, receiver city r) in the summary 

matrix.     

 


