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Abstract: 

This study investigates the mitigative effects of issuing a heat warning on 

the well-established heat-mortality relationship. To this end, exploiting the 

errors in weather forecasts, we manage to compare days with similar 

meteorological conditions but different heat warning statuses. Employing a 

fixed-effects model applied to the German states, we find that within each 

temperature range, the impact of rising temperatures on mortality rates is 

moderated by the presence of a heat warning. The contribution of our 

results is twofold. First, we reveal the crucial role of meteorological alerts 

in enhancing people’s adaptive capacity to climate change. Second, we 

underscore the importance of accurate weather forecasts for public safety. 
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1. Introduction 
We live in a world that is destinated to heat up rapidly in the next decades and that is already 1.5 

degrees hotter than in the preindustrial time. The severe effects of exposure to heat on human health 

have been documented for long (Deschênes & Greenstone (2011); Rupa & Samet (2002); Bosello et 

al. (2006)) and have often pointed out to an exacerbation of existing inequalities (Cruz (2024); Zhang, 

et al., (2024)). Despite some evidence that in developed countries the extreme heat is becoming less 

fatal over time (Barreca, et al., 2016), recent papers using daily data proof that heat caused mortality 

has been largely underestimated in the past (Huber, et al., 2024) even when accounting for adaptation 

(Carleton, et al., 2022). In Europe alone in the summer 2022 more than 61’600 people died because of 

heat stress (Ballester, et al., 2023). 

The unavoidability of more frequent extreme heat hazards poses serious questions on how we can 

reduce the risk for human health making our communities resilient to the new climate. Since the late 

’90s, in the US at first, and in Europe later, early warning systems for heat stress have been put in 

place with the intent to reduce the exposure to heat, particularly of vulnerable people. Recently, in 

Europe operational, open-access, continental heat-cold-health early warning system has been 

implemented (Quijal-Zamorano, et al., (2024) Ballester, et al., (2024)). This advanced system not only 

uses weather forecast to issue warning, but it also considers the vulnerability and exposure of people 

and manages to produce gender and age group specific warnings both for heat and cold waves. At the 

same time however, despite the WMO great efforts to implement a global early warning system, today 

still 63% of the countries do not have an early warning system and most of them are developing and 

low-income countries (UN-WMO, 2024). 

Despite a political consensus on the importance of informing people of the upcoming hazards, the 

academic literature has found mixed effects of the implementation of early warning systems on 

mortality and human health in general. Studies that have focused on the case of single North 

American cities found that early warning systems have reduced heat related mortality in cities like 

Toronto, Montreal, Philadelphia and New York (Smoyer-Tomic & Rainham, (2001); Benmarhnia et 

al., (2016); Ebi  et al, (2004); Benmarhnia et al., (2019)). Likewise, papers that have looked at Asian 

cities lead to similar conclusions (Chau et al., (2009); Heo, et al., (2019)). On the contrary, 

Weinberger, et al., (2021) finds no effects on mortality of warning when looking at the entire US. 

Each early warning system has its own particularities and characteristics. For this reason, the external 

validity of the cited studies is not to be taken for granted. As no study has so far looked at any  

European country we focus our research on the case of Germany. Germany offers a particularly 

interesting case study for several reasons. First, its warning system is very advanced and uses not only 

temperature but a much more comprehensive indicator of perceived temperature as well as night 

temperature and other weather factors that influence people’s risk for heath. Second, Germany has 

significant climatic variability, with regions experiencing extremely high summer temperatures and 

others maintaining more temperate conditions. Third, in Germany there is high socioeconomic 

heterogeneity across states, which makes a comparison of the effects of alerts under heterogeneous 

climatic and economic conditions possible. 

In our study, we aim to analyse the impact of heat alerts on the relationship between temperature and 

mortality in Germany. Using a fixed effects model applied to state data, we exploit discrepancies in 

weather forecasts to compare days with similar weather conditions but different alert states. 

To the best of our knowledge, except for Weinberger, et al., (2021) we are the first to cover a long 

time period and an entire country. Although Weinberger, et al., (2021) represents a fundamental 
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reference in the literature, in our work we manage to go in more details as we do not only look at the 

impact of maximum temperature and vapor pressure on mortality, but we also consider other climatic 

factors of the day, notably night temperature and the temperature of the previous days. Wang et al., 

(2024) shows that night temperatures have fatal effects on humans and are at the same time often used 

in the decision process of warning issuing, even in the US. It is therefore fundamental to account for it 

in the model as we do below. Finally, we bring novelty in the fact that we look at the heterogeneity of 

the effectiveness of warnings across temperatures and we explore the role of the fatigue to warnings. 

Our findings indicate that heat alerts systems are important to help people reducing their risk of dying 

due do heat. Moreover, we find that warnings are more effective at lower, but still hot, temperatures 

compared to extremely high ones, and that the first day of a series of warning days is the one in which 

most lives are saved. 

The effectiveness of the warning system is strictly linked to the accuracy of weather forecasting. With 

our work, we therefore contribute to another stream of literature that advocate for more precise 

weather forecasting (Song, (2024); Downey et al., (2023)). Our results are in line with those of 

Shrader et al., (2023) that estimates the cost in terms of mortality of errors in weather forecast in the 

US. Finally, our findings have some implications for effectively implementing early warning systems 

in low-income countries. Indeed, these countries suffer from a largely inadequate weather forecast 

precision (Linsenmeier & Shrader, 2023) that makes the efforts in implementing early warning 

systems (UN-WMO, 2024) less effective.   

In the next sections we proceed as follows: In Section 2 we present the data and in Section 3 the 

methodologies. Section 4 presents the results of the baseline model, while Section 5 explores the 

heterogeneity and the robustness of our results. Finally, we conclude with Section 6. 

2. Data 
To estimate the efficacy of heat warnings in reducing heat related mortality we have merged 

meteorological data and early heat warnings from the Deutscher Wetterdienst (Section 2.1) with data 

on mortality and population from the German Statistical Office (Section 2.2). Moreover, using the 

“suncalc” R package we obtain the daylight time of the geographical centre of each state in each day, 

and we have matched the dataset with the official German holiday calendar.  

2.1. Meteorological and Warning Data 
We obtained the weather station records of hourly observations for temperature, humidity and 

cumulative precipitations for each weather station within the German territory over the period 2005 - 

2023 from the Deutscher Wetterdienst (DWD). These data are publicly available on the DWD 

opendata website1. The distribution of the stations in Germany is reported in Figure 1. Missing 

observations are imputed by iteratively training a Lasso model with cross-validated sparsity parameter 

for every station on all other stations. We then aggregated the 3 variables (temperature, humidity and 

precipitations) at district2 and hour level by assigning a weighted average of the 3 stations closest to 

the centroid of each district using as weights the inverse distance from the centroid. The DWD uses 

forecasts for 12 UTC noon to inform the decision process of warning issuing. Therefore, we used 

temperature, humidity and precipitation at noon for each day and district. Moreover, we obtain night 

temperature and night humidity as the average of the temperatures and humidities respectively 

 

1 https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/ 
2 In Germany there are 401 districts and 16 States. 

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/


4 
 

registered between 10pm on day -1 and 6am of the current day. Furthermore, using the DWD model 

illustrated in Matzarakis et al.,  (2020), we computed the physically equivalent temperature (PET) for 

each day and district combination. We ran the DWD model with the temperature and humidity at noon 

obtained as described above. The remaining variables needed to compute PET are taken from the 

same DWD source when available and from the ERA5 dataset otherwise3.  

In the decision process of the DWD to issue a warning the variables that are taken into account are 

perceived temperature (PT), night temperature and humidity, and the temperature of the previous 30 

days (Matzarakis, Laschewski, & Muthers, 2020). In our model we use physically equivalent 

temperature (PET) instead of PT because the model provided by the DWD to compute PT introduces 

many gaps and accumulation points in the frequency distribution. The temperature of the previous 30 

days is important to be able to account for body adaptation to high temperature over time. We have 

constructed our previous 30 days PET variable by taking the average of PET in the previous 30 days 

and assigning lower weights to days further in time (from 1/30 for day -30, to 30/30 for day -1). 

Finally, the heat warning records are obtained from the DWD opendata historical database4. This 

database contains a list of the days for which a heat warning was issued at district level. We generate a 

dummy variable that takes value 1 if a warning was issued for that day and district and 0 otherwise. 

As we will see in the next section, daily mortality data are only available at the state level. For this 

reason, we must aggregate all our meteorological variables from the district to the state level. To do 

so, for each of the variables described above, except for the heat warning dummy, we take the average 

across all districts within each state weighting by the population of the district in the corresponding 

trimester. As for warnings we aggregate the dummy variable in several manners across which we test 

the robustness of our results (Section 5.6). The main model uses a dummy variable that takes value 1 

if all the districts within the state were under warning and 0 otherwise. We then also produce other 

version of the state level warning variable by assigning value 1 if at least 25% of the population 

within the state was under warning, and we do the same putting 50% and 75% as thresholds. 

In Figure 2 we show the relationship between temperature at noon and PET at noon. We aggregate 

observations every 0.1C° for temperature and distinguish between observations with a relative 

humidity above average in red and below average in blue within each 0.1C° temperature aggregation. 

We observe that in general PET increases with temperature but for low temperatures PET is lower 

when humidity is high, while this relationship is almost reverted for high temperatures. The fact that 

the difference in the two means of humidity is shrinking with temperature (light colours), is part of the 

explanation of the convergence of the two dark lines. 

In Figure 3 we show the distribution of PET distinguishing by heat warning days and non-warning 

days. in the left part of the figure we show the entre distribution, in the right one we zoom in to the 

upper tail of the distribution where we find both observations with and without warning for a same 

PET value. We observe that for values of PET above 25 degrees there are already observations with 

warning and observations without. The number of days with warning follows a surprisingly normal 

 

3 Air temperature, vapor pressure (as a measure of humidity), surface air pressure, wind speed, and mean radiant 

temperature (as a measure of solar radiation) are the other variables needed to compute PET. All of these except 

for mean radiant temperature are also from the DWD station data and processed the same way as described for 

temperature and humidity. For wind speed we assume a logarithmic wind profile to map from wind speed at 10 

m to wind speed at 2 meters (this is a standard assumption; we assume a "roughness length" of 0.1 m). The 

DWD does not provide mean radiant temperature (MRT) so we took it from ERA5. MRT is also extracted for 

12 UTC and the aggregation from grid points to districts is done the same way as for the DWD station data. 
4 https://opendata.dwd.de/climate_environment/health/historical_alerts/heat_warnings/  

https://opendata.dwd.de/climate_environment/health/historical_alerts/heat_warnings/
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distribution centred at 31.5C° PET. Finally, there are no more observations without warning for 

PET>35. The range between 25C° and 35C° is what allows us to compare days similar in PET but 

with different warning status. 

 
Figure 1: Distribution of weather stations in Germany 

 

 
Figure 2: Scatterplot of rounded temperature and PET by humidity above and below average 

                          Notes: in dark colours PET, in light colours humidity 
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Figure 3: Frequency distribution of PET distinguishing by warning days in red and non-warning days in blue. On the right a 

zoom in to high temperature. 

 

2.2. Mortality and Population Data 

We obtained the mortality data from the German Statistical Office (DESTATIS)5. Daily number of 

deaths for each German state are publicly available from 2000 to 2024. From DESTATIS we obtained 

also data on the number of inhabitants per state at the trimester level6. Dividing the number of deaths 

in a day by the corresponding number of inhabitants and multiplying by 100 thousand, we obtain a 

mortality rate every 100th inhabitants at daily level for all the 16 German states. The average daily 

mortality rate all year round is 3.17 deaths every 100’000 inhabitants7. Finally, from the same data 

source we compute the share of people over 75 years old over the total population, obtaining an 

estimate at a trimestral frequency for each state. 

In Figure 4 we show the relationship between PET and mortality distinguishing by warning and non-

warning days. In this figure we have aggregated observations every 0.5C° PET. From this figure we 

can observe that the relationship between PET and mortality is positive for temperatures above 20C°. 

The difference in mortality within each PET bin between warning and non-warning days is unclear. 

However, an explanation for this is that, because of how the warning issuing process is made by the 

DWD, even if we are comparing observations with similar PET days with warning have a higher 

probability of having higher night temperatures and lower temperatures in the previous 30 days, 

which in turns increase mortality. For this reason, it is fundamental to account for all the factors that 

affect the probability of issuing a warning and to look at the impact of warning through PET as we do 

below. 

 

5 https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-

Lebenserwartung/_inhalt.html#_c6uskug3s  
6 https://www-genesis.destatis.de/genesis//online?operation=table&code=12411-

0012&bypass=true&levelindex=0&levelid=1725974287379#abreadcrumb  
7 Considering only the subset of days used in our model as explained later in Section 3, the mortality rate is 

lowered to 3.07, indicating that in summer there is generally a lower risk of dying. 

                     

https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/_inhalt.html#_c6uskug3s
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/_inhalt.html#_c6uskug3s
https://www-genesis.destatis.de/genesis/online?operation=table&code=12411-0012&bypass=true&levelindex=0&levelid=1725974287379#abreadcrumb
https://www-genesis.destatis.de/genesis/online?operation=table&code=12411-0012&bypass=true&levelindex=0&levelid=1725974287379#abreadcrumb
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Figure 4: Scatterplot of rounded PET and mortality rate with quadratic fits distinguishing by warning and non-warning days. 

3. Methods 
After having merged all the dataset described above, we obtain a panel with, for each of the 16 

German states, one observation for each day between 2005 and 2023. The heat warning system is only 

active in the hot months from May to September included. For this reason, we subset our sample to 

this period of the year. Moreover, in order to compare days with warning with days without warning 

that are as similar as possible based on the climatic conditions, but keeping enough observation within 

each group of comparison, we further subset the sample by restricting to observations within certain 

boundaries of PET. These limits are chosen as follows: we start from the highest registered PET and 

we create bins of PET every 0.5C°. Then we only include observations that are in those bins for which 

there are at least 10 observations with warning and 10 without warning. In this way we remove the 

highest values of PET (PET > 34.5) because there are not enough non warning observations and, 

similarly we exclude low PET values (PET <= 27) because there are not enough warning 

observations. 

We then define a fixed effects (FE) liner model to identify the difference in mortality related to PET 

between warning and non-warning days within each state, year and 0.5C° PET bin, controlling for the 

other climatic and sociodemographic variables. 

(1) 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑠,𝑑 = 𝛼𝑠,𝑦 + 𝛽1𝑃𝐸𝑇𝑠,𝑑 + 𝛽2𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑠,𝑑 + 𝛽3(𝑤𝑎𝑟𝑛𝑖𝑛𝑔: 𝑃𝐸𝑇)𝑠,𝑑 + 𝛾𝐽 +

𝛿𝑦 + 𝜃𝑠 + 𝜎𝑚 + 𝜔𝑏 + 𝜀𝑠,𝑑  

Where: 

- 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑠,𝑑 is the mortality rate every 100’000 inhabitants in sate 𝑠 on day 𝑑 as defined in 

Section 2.2 

- 𝑃𝐸𝑇𝑠,𝑑 is the population weighted average of the districts’ physically equivalent temperature in 

sate 𝑠 on day 𝑑 as described in Section 2.1 

- 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑠,𝑑 is a dummy variable = 1 if all the districts within the state 𝑠 are under heat 

warning on day 𝑑 

- 𝛿𝑦 is a set of dummies for each year 𝑦 

- 𝜃𝑠 is a set of dummies for each of the 16 states 𝑠 

Warning Status:
• Warning 
• No Warning
• Full sample
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- 𝜎𝑚 is a set of dummies for each of the 5 months-of-the-year 𝑚 considered (from May to 

September)  

- 𝜔𝑏 is a set of dummies for each PET 0.5C° bin 𝑏 

- 𝜀𝑠,𝑑 is the overall error term for each sate 𝑠 on day 𝑑 

- 𝐽 is a 𝑁𝑥𝑗 matrix of control variables with 𝑗 being the number of control variables and 𝑁 the 

number of observations (𝑁 = 𝑆 ∗ 𝐷) 

- 𝛾 is a vector of 𝑗 coefficients 

The 𝐽 control variables are the following as described in Section 2: 

- 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 30𝑑 𝑃𝐸𝑇𝑠,𝑑 is the weighted average of the PET variable observed in the previous 30 

days weighted by the distance from the current day 

- 𝑁𝑖𝑔ℎ𝑡 𝐻𝑢𝑚𝑖𝑑𝑠,𝑑 is the average humidity during the night hours 

- 𝑁𝑖𝑔ℎ𝑡 𝑇𝑒𝑚𝑝𝑠,𝑑 is the average temperature during the night hours 

- 𝑃𝑟𝑒𝑐𝑖𝑝𝑠,𝑑 is the cumulative precipitation at noon 

- 𝑆ℎ𝑎𝑟𝑒 𝑜𝑓 𝑜𝑣𝑒𝑟 75𝑠,𝑡 is the share of residents over 75 years old in each state and each trimester  

- 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠,𝑡 is the total population in each state and each trimester  

- 𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡𝑠,𝑑 is the difference in time between sunset and sunrise  

- 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 𝑜𝑟 𝑊𝑒𝑒𝑘𝑒𝑛𝑑𝑠,𝑑 is a dummy variable equal 1 if the state is on holiday or if it is 

weekend, 0 otherwise  

- 𝐶𝑖𝑡𝑦𝑠 is a dummy variable equal 1 if the state contains a municipality with more than 100 

thousand inhabitants and 0 otherwise. This variable is interacted with 𝑁𝑖𝑔ℎ𝑡 𝑇𝑒𝑚𝑝𝑠,𝑑 and 

𝑁𝑖𝑔ℎ𝑡 𝐻𝑢𝑚𝑖𝑑𝑠,𝑑 to capture urban heat island effects 

The state effects capture the specificities of each state that do not vary over time, while the year 

effects capture everything that is common across states within each year. This is of extreme 

importance as the DWD decision process of issuing heat warnings has changed over time. To make 

sure we are comparing days within groups of similar risk of death we also control for the month of the 

year and for PET bins of 0.5C° size FEs. All the other control variables also serve to avoid omitted 

variable bias of those variables that simultaneously affects risk of dying and the probability of issuing 

a warning or the probability that this warning is equally acknowledged by the population. 

The fixed effects linear model (1) is estimated using heteroskedasticity robust standard errors. We 

intentionally decided not to use clustered standard errors following Angrist & Jörn-Steffen, (2009) 

that sets 40-50 clusters as a rule of thumb for the minimum number of clusters. However, the 

Breusch-Pagan test still detects heteroskedasticity. We therefore use heteroskedasticity robust standard 

errors. 

Our main coefficient of interest is 𝛽3 that identifies how, within each FE group, the impact of a 

marginal increase of PET on the mortality rate differs in cases when there is a warning and when there 

is not. Indeed, excluding the interaction term to analyse the direct impact of warning on mortality 

would probably capture other factors that simultaneously affect the choice of issuing a warning and 

mortality. Although in our model we control for all the variables that the DWD uses to make a 

decision, we cannot know how exactly these variables are used and which weights are given to them 

in the process. However, looking at the indirect effect of warning through PET and within each PET 

0.5C° bin, allows us to concentrate on one component at the time and properly infer the effects of 

warning on mortality through PET rather than an overall effect of warning. 
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4. Results 
The results of the estimation of Model (1) are presented in Table 1. We can observe that the 

coefficient for the interaction term (β₃ = -0.0202) is negative and significant, which means that the 

presence of a warning reduces the impact of PET on mortality. Specifically, it suggests that when a 

warning is in place, a unit increase in PET (within each PET 0.5°C bin) results in 0.0202 fewer deaths 

per 100,000 inhabitants per day than it would without the warning. 0.0202 is equal to 0.66% of the 

average daily mortality rate in our sample. Moreover, we can interpret the coefficient of the warning 

variable as the total effect of warning on mortality when PET = 0. Being 𝛽3 negative, we know that 

the overall effect of warning on mortality becomes smaller when PET increases. To estimate the value 

of PET for which the total effect of warning on mortality becomes negative we need to solve: 

0 = 𝛽2 + 𝛽3 ∗ 𝑃𝐸𝑇 

that leads to: 

𝑃𝐸𝑇 =
0.6875

0.0202
= 34.05 C° 

This indicates that when PET = 34.05C° also the overall effects of warning on mortality becomes 

negative. 

Table 1: The mitigative effects of warning on heat related mortality 

 
          Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 
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The remaining variables have an intuitive coefficient’s sign. As assumed by Matzarakis et al., (2020) 

the previous 30 days temperature plays an adaptation role. Night temperatures are associated with 

higher mortality and especially, even if not significantly, in cities. A higher share of elderly people 

increases the mortality rate and more inhabited states, probably due to better services, register lower 

mortality. Moreover, mortality is significantly lower during holiday and weekends. In the Appendix 

we also show the same results of Model (1) including the coefficients of the 0.5C° PET bins. As 

expected, higher PET bins are associated with higher mortality rates, and they capture most of the 

variation making 𝛽1 non-significant. 

5. Robustness and Additional Results 
In this section we test for different specifications of Model (1). We look at other indirect effects of 

warning on mortality and at what happens when we increase the PET bin size within which we 

observe the effects of warning. We test if after the first day of warning within a row of warning days 

the mitigative effects on mortality are different and we explore the heterogeneity across PET groups. 

5.1. Changing PET Bin Size 

In this section we estimate what happens when we gradually increase the size of the bins of PET in 

the fixed effects. Making the range wider, we allow for more observations within each bin, but we are 

simultaneously allowing observations within each bin to be less similar and therefore comparable. For 

a clear comparison, we prefer, in this case, to maintain the same sample in all the models. The choice 

is between keeping the same sample in which we use PET bins of size 0.5C° to determine if there are 

et least 10 observations per group, or instead using different bin sizes not only as FE controls but also 

for the exclusion of observations with not enough counterfactuals. 

Table 2 presents the results. We observe that increasing the size of the bins makes the effects of PET 

within the bins more significant while it reduces the significance of the mitigative effects of warnings. 

This result is in line with the expectations, warning is now just capturing the observations that within 

each bin have higher PET and in turn higher mortality. 
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Table 2: Warning effects with different PET bin FE size 

 
  Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

 

5.2. Warning Effects through other Climate Variables 

In this section we show that the indirect effects of warning on mortality reduction are not only visible 

through the physically equivalent temperature, but also through temperature itself. However, the 

effects through the night temperatures are not significant. In this case, as indicated by the different 

number of observations in the models, we also change the sample from one model to the other. 

Indeed, in each model we control for fixed effects relative to the variable that we want to analyse. For 

instance, when we look at the impacts of warning on mortality through temperature, we control for 

0.5C° bins for temperature instead of PET. For this reason, we need to guarantee that within each 

temperature bin there are more than 10 observations both for warning and no warning cases. The same 

thing applies to the night temperature model. The results are in Table 3. 
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Table 3: Warning effects on mortality through different weather variables 

 
             Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

 

5.3. Warning Fatigue 

To test if people can maintain their adaptive behaviour for multiple days, we divide the warning 

variable in 5 groups. As in the baseline model, warning = 0 if not all the districts within the state are 

under warning. However, in Model (2) of Table 4, warning is = 1 if the entre state is under warning 

and it is the first day to be so (namely, on day -1 warning was 0). Warning is = 2 if it is the second day 

of warning for the entire state and so on up to warning = 4 that indicates if the entire state is in its 4th 

or later day of warning. By factorising this new warning variable, we compare the reference value of 

warning (warning = 0) with each of the other warning values. To make observations even more 

comparable we further control for the lag of the original warning variable that takes value 1 if the 

previous day was a warning day and 0 otherwise. From the results in Table 4 we observe that the 

effects of warning are only significant for the first day of warning suggesting that after a day, people 

get some level of warning fatigue. In model 3 we reproduce the baseline model adding only the lag of 

the warning dummy. The results remain unchanged. 
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Table 4: Warning effects on mortality distinguishing by the duration of the warning 

 
           Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

 

5.4. Heterogeneous Effects for Low and High PET 

In this subsection we answer the following question: “Are heat warning more effective at high or low 

values of PET?”, namely are most lives saved when warning is issued for lower (but still dangerous) 

temperatures or for extremely high ones? The answer to this question is shown in Table 5, in which 

we divided PET into 3 ranges: 27-29.5 C°; 29.5-32 C°; 32-34.5 C°.  The coefficients for PET alone 

and for PET x Warning refer to the reference PET group which here is the low range 27-29.5 C°. The 

coefficients for Mid and High PET are to be interpreted with respect to this reference PET 

coefficients. From the table we can infer that the effects of warning mitigate mortality for all PET 

ranges, but they do less so for the mid values and significantly less so for the high values of PET. This 

suggest that it is important to issue warnings starting from low values of PET. 
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Table 5: The heterogeneous effect of warning on mortality by PET value 

 
            Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

 

5.5. Robustness to Control Variables 

In this section we test for the stability of the interaction term coefficient (our main coefficient of 

interest of model (1)) while adding and removing control variables. In Table 6, we show that our 

results are robust to the variation of the control variables and that the mitigative effects of warning on 

mortality through PET are stable across models. However, using fixed effects is crucial for our 

estimation. 
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Table 6: Robustness of the effects of warning on mortality to different control variables 

 
    Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

 

5.6. Different Aggregations of Warning 

In our baseline model we aggregate the warning variable from the district to the state level giving 

value 1 if all the districts within the state are under warning. Here we explore what happens when we 

change the definition of warning at the state level. In Table 7, we change the threshold to assign value 

1 to the dummy variable. In model 2 we impose value 1 if at least 25% of the population within the 

state is under warning, and 0 otherwise. In model 3 and 4 we do the same but increasing the threshold 

to 50% and 75% respectively. In Model 5 instead, we define the warning variable as the share of 

inhabitants of the state that are under warning. Therefore, in this case, the warning variable is 

continuous and not binary. Although the coefficient of the interaction term remains negative in all 

model specifications, its significance is only strong in the baseline model. 
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Table 7: Robustness of the effects of warning on mortality to different data aggregation methods 

 
Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 

6. Conclusions 
In conclusion, this study offers valuable insights into the efficacy of early heat warning systems. The 

findings reveal that heat related mortality is significantly reduced thanks to heat warnings. These 

results are robust to most specifications and evident also through other types of climate variables. 

Interestingly, we find that the positive effect of issuing a heat warning is largely concentrated on the 

first day of a series of days under warning. This suggest the importance of issuing warnings in the 

right moment and that the warning fatigue must be taken into account in the warning issuing process.  

Overall, the findings are of important guidance for policymakers and stakeholders involved in short 

term prevention of climate disasters. By understanding the factors that increase the efficacy of early 

warning systems, more targeted and effective strategies can be developed. Investing in weather 

forecast precision is fundamental to give people the time and the tools to take precautions in the short 

time preceding extreme weather events. 
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Appendix 
Herein we report the additional tables and figures. 

Table A. 1: Results of Model (1) including PET bins as factors 

 
         Notes: Significance codes:  '***' 0.01 '**' 0.05 '*' 0.1 


