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Abstract 
This study demonstrates that heat disproportionately impairs 
human capital accumulation among low-performing students 
compared with their high-performing peers, using nationwide 
examination data from 22 million students in Japan. Given the 
strong correlation between academic performance and 
socioeconomic background, this suggests that heat exposure 
exacerbates pre-existing socioeconomic disparities among children. 
However, access to air conditioning in schools significantly 
mitigates these adverse effects across all achievement levels, with 
particularly pronounced benefits for lower-performing students. 
These findings suggest that public investment in school 
infrastructure can help reduce the unevenly distributed damage 
caused by heat to student learning, thereby promoting both 
efficiency and equity. 
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1. Introduction 
 Climate change affects a wide range of societal outcomes, including human health, 

agriculture, labor productivity, income, cognition, and conflict, among many others (Carleton 
and Hsiang 2016). However, most studies are limited to measuring the average impact of heat, 
and thus its distributional impacts—identifying which individuals disproportionately bear the 
burden of heat-related damage—and the implications for inequality remain largely unexplored. 

This study examines how cumulative exposure to extreme heat affects student achievement 
differently based on their socioeconomic statuses (SES). Cognitive ability constitutes an essential 
component of human capital and is closely associated with future labor market performance and 
the emergence of economic inequality (Cunha and Heckman 2007). Due to their physiological 
and neurocognitive immaturity, children’s cognitive functions may be particularly vulnerable to 
environmental stressors (Rowland 2008). Prolonged heat exposure can disrupt students’ learning 
through distractions and loss of concentration, leading to a lasting impact on their accumulation 
of human capital. Therefore, the warming climate underscores the importance of improving 
children’s learning environments.  

There are two main challenges in studying the distributional consequences of heat exposure. 
First, assessing distributional impacts requires a representative sample. However, prior studies 
have been unable to assess these impacts due to their specific samples or the lack of individual-
level data. For example, Cho (2017) and Park et al. (2020) examined the effects of cumulative 
heat exposure on test scores but focused on high school students taking college entrance exams 
in Korea and the Preliminary Scholastic Aptitude Test (PSAT) in the United States (US). These 
students are likely to come from higher socioeconomic backgrounds than the general population, 
making them unsuitable for a distributional analysis. Despite their representativeness, Park et al. 
(2021) used aggregated achievement data at the school district level in the US, which did not 
allow for distributional analysis. 

Second, even if the heat damage on test scores is greater for disadvantaged students than for 
advantaged students, two different (but not necessarily mutually exclusive) mechanisms are 
consistent with the finding: students from disadvantaged households live in warmer regions and 
experience extreme heat (“exposure”), or because they have limited resources, which makes 
them more susceptible to the same heat exposure (“vulnerability”). This distinction is crucial 
because different policy responses are required to improve heat resilience among the poor 
(Hsiang et al. 2019). 

To overcome these challenges, we analyze individual-level test scores from nationwide 
exams in Japan between 2007 and 2019 for all public-school students in grades six and nine 
during their compulsory education period, encompassing an extensive sample of approximately 
22.8 million students. Importantly, the combination of individual-level data and the nationally 
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representative nature of the exams provides an ideal setting for examining, for the first time, the 
distributional impact of temperature on test scores. 

Specifically, we analyze test scores at percentile ranks (10th, 25th, 50th, 75th, and 90th 
percentiles) within schools over time, comparing students who experienced hotter summer 
(colder winter) school days with those who experienced milder summer (milder winter) school 
days. Since a student’s rank correlates with SES, such as household income and parental 
education, it serves as a reasonable proxy for socioeconomic background, allowing us to assess 
whether cumulative exposure to extreme temperatures differentially impacts student performance 
based on SES. Importantly, by holding the “exposure” constant for all students in the school, we 
can isolate the role of vulnerability—if low-SES students experience greater score declines than 
their high-SES peers under the same heat exposure, the disparity is likely to reflect differences in 
“vulnerability” by socioeconomic backgrounds (e.g., differential access to private tutoring). 

This study has two major findings. Our first major finding is that the negative effects of heat 
are regressive, that is, they are far greater for low-performing students than for high-achieving 
students. Each additional day with the maximum temperature exceeding 34°C lowers scores by 
0.09% SD for students in the top 10th percentile, but by 0.30% SD for those in the bottom 10th 
percentile, an impact approximately three times larger. This disproportionate effect of heat by 
student rank contributes to widening academic inequality, highlighting how average effects mask 
substantial disparities in heat-related damage between low- and high-performing students. 

Importantly, by comparing temperature effects within schools, we hold school-level 
“exposure” constant, eliminating influences by school-level resources such as staffing ratio, 
teacher quality, or access to air conditioning (AC). Instead, the results likely reflect differences in 
“vulnerability”—how advantaged and disadvantaged students differentially adapt to the same 
school heat exposure. Indeed, advantaged students tend to study longer after school, spend more 
money on education, and are more likely to attend cram school. Given the strong link between 
academic performance and SES, this finding suggests that without any further intervention, 
climate change will widen pre-existing socioeconomic disparities among children. 

This finding speaks to the emerging literature linking environmental and economic 
inequalities (Burke et al. 2015; Diffenbaugh and Burke 2019; Gilli et al. 2024). As educational 
attainment and earnings are positively correlated (Chetty et al. 2011), our findings suggest that 
environmental inequality, which exacerbates inequality in academic performance, may be a 
pathway through which global warming accelerates economic inequality. Specifically, our 
sample (grades six and nine) comprises younger students compared with samples from other 
studies that focused more on students nearing high school graduation (Cho 2017; Park et al. 
2020). Dynamic complementarities, in which human capital investment in early childhood may 
complement later investments (Cunha and Heckman 2007; Johnson and Jackson 2019), indicate 
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that earlier heat shocks could have a more lasting impact on future economic outcomes.  
 Our second major finding is that adaptation through school AC can largely offset the 

adverse effects of heat on learning, and importantly, these benefits are progressive, benefiting 
low-performing students more than high-performing ones. In schools without AC, the negative 
effects of extreme temperatures are significantly more pronounced for low-performing students, 
who are more likely to come from low-SES backgrounds. However, in schools with AC, extreme 
heat has little impact on test scores across all achievement levels, resulting in a larger benefit for 
low-achieving students. Specifically, without AC, one extra day with the maximum temperature 
exceeding 34°C widens the 90th–10th score gap by 0.71% SD, but school AC reduces this 
widening gap by 0.55% SD. This finding suggests that public school investment, such as 
installing AC, can largely mitigate unevenly distributed heat damage. This is particularly 
encouraging because both primary and secondary education are compulsory in Japan, as in many 
other countries, and thus, public investment should play a critical role in improving children’s 
learning environments. 

This second finding speaks to the literature on temperature adaptation, addressing whether 
environmental hazards are unavoidable or can be mitigated using current technology (See 
Carleton et al. 2024 for a review). While evidence supports adaptation for heat-related mortality 
(Barreca et al. 2016; Cohen and Dechezleprêtre 2022) and violence (Colmer and Doleac 2023), 
findings on workplace injuries are mixed (Dillender 2021; Park et al. 2021b). Regarding 
educational outcomes, a seminal study by Park et al. (2020) demonstrated that school AC 
reduces the cumulative impact of heat on learning. Moving beyond the average impact, we 
examine its distributional effects, revealing how adaptation unequally benefits students. 

Furthermore, this finding contributes to the debate on the effectiveness of resource-based 
education policies in fostering human capital accumulation (Baron 2022; Cellini et al. 2010; 
Jackson et al. 2015; Lafortune et al. 2018), focusing on investments in school facilities 
(Lafortune and Schönholzer 2022; Martorell et al. 2016; Neilson and Zimmerman 2014). With 
few exceptions—such as mold remediation and ventilation (Stafford 2015) and school AC (Park 
et al. 2020)—prior research has rarely examined the effects of specific facility upgrades. While 
existing studies primarily assess the average effectiveness of such policies, we show that public 
investment in school infrastructure, particularly in AC, not only improves overall test scores but 
also disproportionately benefits lower-achieving students, thereby promoting both efficiency and 
equity. 
 
2. Conceptual framework 

This section outlines a simple conceptual framework for the distributional impact of 
extreme temperatures, based on Hsiang et al. (2019) and Behrer et al. (2021). We discuss how an 
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empirical observation (i.e., climate impacts are often greater for poor individuals) can mask two 
different explanations: differing exposure and/or vulnerabilities. Exposure refers to the degree to 
which individuals are subjected to environmental stressors (e.g., heat, cold, and pollution), while 
vulnerability denotes the extent of their susceptibility to these stressors. 

Damage from environmental stressors is defined as a function of two factors: exposure and 
vulnerability. Here, we aim to estimate the marginal damage, which is the slope of the damage 
function. Importantly, it can vary by SES (e.g., income, education, and occupation) for two 
reasons, as shown in Figure 1. We assume that exposure is higher for low-SES individuals than 
for high-SES ones because the poor tend to live in hotter places, both within and across countries 
(Park et al. 2018). 

First, as shown in panel A of Figure 1, a convex damage function with respect to exposure 
can lead to greater marginal damage for low-SES individuals who experience more exposure 
than their high-SES counterparts (i.e., differential exposure).1 Alternatively (or additionally), as 
illustrated in panel B of Figure 1, the damage function itself may differ by SES due to factors 
such as baseline health or defensive investments correlating with SES (i.e., differential 
vulnerability).  

Distinguishing whether SES-based disparities in heat impact stem from a single nonlinear 
damage function with differential exposure or differing vulnerabilities is crucial for policy 
design. The former requires reducing direct contact with extreme heat (e.g., urban cooling, 
housing interventions, and warning systems). Conversely, the latter requires targeted support to 
enhance adaptive capacity (e.g., subsidizing AC and expanding medical programs to address 
heat-related illnesses) or promoting broader poverty reduction to strengthen the heat resilience of 
low-SES individuals. 

However, distinguishing between exposure and vulnerability is challenging because the 
poor tend to live in hotter locations. Thus, even if heat damage is greater among the poor, this 
may simply result from differential exposure (panel A) rather than differential vulnerability 
(panel B) by SES. This study is the first to rigorously isolate the impact of vulnerability from 
exposure. Using individual-level data from nationally representative exams, we analyze the 
distributional impact of temperature within schools, while holding exposure constant, at least in 
the school environment where most learning is supposed to occur. If the reductions in test scores 
are greater for low-SES students than for high-SES counterparts in the same school with 
identical heat exposure, the difference in marginal damages likely arises from varying 
vulnerabilities between these groups. 
 

 
1 Park et al. (2018) demonstrated that the poor tend to live in hotter locations both within and across countries.  
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3. Data  
We combine temperature data with nationwide test data of nearly 22.8 million students in 

Japan. Appendix B provides details of the data sources. We discuss the school AC penetration 
data in Section 6. 

 
3.1. Test scores 

We use data on the nationwide exams, called the National Assessment of Academic Ability 
(hereinafter “NAAA”), conducted by the Ministry of Education, Culture, Sports, Science and 
Technology (MEXT). The NAAA aims to monitor the academic performance and progress of 
students nationwide and contribute to the improvement of educational policies (MEXT 2024a). 
The NAAA has been conducted annually since 2007, except in 2011, when the NAAA was 
completely canceled because of the Great East Japan Earthquake, and in 2010 and 2012, when 
the NAAA was administered to a random subset of schools.2 

The NAAA is administered to students in their final years of public primary (grade six) and 
secondary school (grade nine).3 Both primary and secondary education are compulsory in Japan. 
Nearly 100% of public primary and secondary schools participate in the NAAA (NIER 2024). 
Although the subjects assessed vary slightly over time, we focus on reading and mathematics, 
which were consistently tested throughout our sample period. 

The NAAA is held on the 3rd or 4th Tuesday of April4, the month when the academic year 
begins in Japan. Consequently, the NAAA is designed to assess students’ understanding of the 
material covered until the previous academic year (NIER 2021). This timing aligns well with our 
research design on learning disruptions from the past summer and winter. Since the exam date is 
predetermined and the NAAA is centrally administered and graded, no room exists for 
endogenous choice in the timing of test-taking or score manipulation by schools and students. 

The NAAA is not a high-stakes exam for students or schools. Students’ scores do not affect 
their promotion to higher grades or better schools. Furthermore, school performance has no 
direct consequences, such as reduced federal funding, unlike test-based accountability systems 
such as the No Child Left Behind Act in the US. The only potential stakes are reputation 
concerns for schools (Morozumi and Tanaka 2023); however, publication of school-level scores 
is not allowed for years before 2014, and very few school councils do so in our sample period. 

We use 2007–2019 NAAA data with MEXT’s permission for the secondary use of 
confidential information. Table A.1 details the number of participating schools and students each 

 
2 This is entirely due to political reasons. In 2009, a change of government occurred, and the new 
administration chose to cut the NAAA’s budget. 
3 In 2022, 1.3% of primary and 7.7% of secondary students attended private schools (MEXT 2022).  
4 From 2019, it was held on Thursday instead of Tuesday. 
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year. From 2007 to 2019, approximately 22.8 million students took the exams, with 
approximately 30,000 schools participating annually (excluding 2010 and 2012). See Figure A.1 
for the school locations across the country. For statistical power, we combine both grades in the 
main analysis unless stated otherwise. Since the exams are administered to both grades on the 
same day, all students experience identical conditions, including cumulative heat exposure and 
test-day weather. 

Our primary outcome is the combined reading and math scores, although we also separately 
analyze each subject. Since exam difficulty varies by year, we calculate z-scores for each year 
and grade and multiply them by 100 for interpretation as percentage changes. Student-level data 
include limited demographics such as gender. The NAAA also conducts student surveys in every 
round and parental surveys in 2013 and 2017. Student surveys capture behaviors (e.g., after-
school study and study habits), while parental surveys (administered to about 4.8% of randomly 
selected schools)5 collect household information such as household income, father’s occupation, 
and parental education. Table A.2 (panel A) provides descriptive statistics of the individual 
characteristics. 

 
3.2. Temperature 

We use daily temperature data for 2006–2018 from the Japan Automated Meteorological 
Data Acquisition System (AMeDAS) operated by the Japan Meteorological Agency. We utilize 
AMeDAS data from a subset of 899 weather stations that have daily temperature information 
available for at least 99% of the days from 2006 to 2018. To create a balanced panel, missing 
daily observations were imputed using the nearest station with complete data. Each school was 
then assigned to its nearest weather station to ensure that our estimates remain unaffected by 
changes in the number or location of the stations. 

Figure A.2 displays the locations of all 899 weather stations as of 2018 and the cumulative 
distribution of the distance from the nearest station to each school. The density of stations is 
high, given the country’s size, and consequently, the mean (median) distance is 6.95 (6.48) km, 
compared with 15.6 km in the US (Park et al. 2020).  

Our primary measure of cumulative exposure to extreme temperatures is the number of hot 
and cold school days that a student experienced in the year leading up to the test in April (i.e., 
from April of the previous year to March of the test year). We utilize the daily maximum 
temperature as a measure, since schooling occurs during daytime hours when peak temperatures 
are typically observed. Following Park et al. (2020), we focus on temperatures during terms as 
school days and treat school break days and weekends during terms as separate non-school 

 
5 In 2013 and 2017, parental surveys covered 2,821 of 59,734 schools (4.72%) and 203,023 of 4,255,669 
students (4.77%), with an 84.9% response rate. 
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days.6 
We also use weather station data to construct both cumulative and test-date measures for 

rainfall, wind speed, and relative humidity. We also include pollution data from the nearest 
monitoring station, as it is known to impact short-term cognition (e.g., Ebenstein et al. 2016). 
Table A.2 (panel B) presents the descriptive statistics of the weather conditions.  

 

4. Econometric model 
4.1. Estimation of the average of marginal damages 

We exploit year-to-year variations in the number of hot and cold school days to identify the 
causal impact of exposure to extreme temperatures on human capital accumulation. Specifically, 
we compare the test scores of students in the same school who experienced hotter summers or 
cooler winters with those exposed to milder conditions.  

Figure A.4 shows both the spatial and temporal variations in the daily maximum 
temperature that students experienced from last April to March of the test year, highlighting 
significant climate differences across the region and considerable year-to-year variations in both 
cold and hot school days. 

To reduce the computational burden, we collapse the data into school-year cells and weigh 
all estimates by the number of students in each cell. Specifically, we estimate the following 
specifications:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠  + 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠 , [1] 

where the dependent variable is the average z-score for school s in year t. 𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘  represents the 
number of school days in the prior year where the maximum temperature falls into one of nine 
bins k: below 6°C, 6–10°C, 10–14°C, 14–18°C, 22–26°C, 26–30°C, 30–34°C, and above 34°C, 
with 18–22°C as the reference, the optimal range for test performance.  

This specification enabled us to flexibly capture the nonlinear temperature effects. The 

coefficient of interest are 𝛽𝛽𝑘𝑘. 𝜌𝜌𝑠𝑠 and 𝜃𝜃𝑠𝑠 are school FE and year FE, respectively. 𝑋𝑋𝑠𝑠𝑠𝑠′  includes 
other time-varying school-level controls, such as precipitation, humidity, and pollution. Standard 
errors are clustered at the weather station level (N=889) to account for potential serial 
correlations reflecting the underlying variations in our treatment variable (Abadie et al. 2023). 

The underlying assumption for 𝛽𝛽𝑘𝑘 to reflect the causal impact of temperature is that the temporal 
and geographic variations in prior-year temperature are uncorrelated with unobserved 
determinants of student learning.  

 
6 School days, school break days, and weekends during the terms are mutually exclusive, averaging 212.6, 
85.1, and 67.6 days, respectively. Lacking a comprehensive national school calendar dataset, we assign each 
school a probable start and end date using the 2018 calendar of its prefectural capital (Figure A.3). Colder 
regions tend to have shorter summer and longer winter breaks, while warmer regions exhibit a reverse pattern.  
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To visualize the identifying variations underlying the baseline specification, we plot 
residuals from a regression of the number of school days <6°C and >34°C against school fixed 
effects. Figure A.5 illustrates the interquartile and interdecile ranges of the residual variations by 
prefecture and year. These distributions confirm ample variations in the number of extreme-
temperature school days within each prefecture and each year, ensuring that our estimates are not 
driven by variations in a specific region or year. 
 
4.2. Estimating heterogeneous marginal damages 

This study’s main contribution is that it moves beyond the effect of temperature on average 
test scores (Equation [1]) and examines its distributional impacts. Using individual test scores 
linked to school IDs, we assess the effect of the temperature by the score rank within schools. 
Specifically, for each school, we compute the z-scores at the 10th, 25th, 50th, 75th, and 90th 
percentiles within schools. We then run each value separately as the outcome as follows:  

𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴 𝐴𝐴𝑎𝑎 𝑋𝑋 𝑝𝑝𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝐴𝐴 (𝑋𝑋 = 10, 25, 50, 75,𝐴𝐴𝑝𝑝𝑎𝑎 90)𝑠𝑠𝑠𝑠 

= ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠+ 𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠. [2] 

We occasionally use the test score gap at different percentiles (e.g., the 90th-10th test gap) as the 
outcome.  

What does the student’s within-school rank capture? Using the 2013 and 2017 NAAA 
surveys of parents in a subset of schools, Figure 2 illustrates a strong positive correlation 
between student’s rank and socioeconomic background, namely household income (panel A), 
and father’s education (panel B). The income gap between the 90th and 10th percentiles is 1.79 
million yen (approximately 17.9K USD), while the gap in fathers’ university education is 30.4 
percentage points. Overall, we posit that a student’s within-school rank is largely indicative of 
their socioeconomic status. 

Finally, we demonstrate that the variations in scores within schools reflect most of the 
variation in scores at the national level. Figure A.6 shows the within-school score distribution by 
school rank, grouping schools into ventiles based on each year’s average scores. While higher-
ranked schools have more compressed score distributions, considerable within-school variations 
exist across all ranks. This addresses the concern that within-school test score variations are 
small and potentially missing larger national-level variations in test scores.7  

 

 
7 The decomposition of the variation in test scores shows that as much as 91–93% occurs within schools rather 
than between schools over the years, likely due to the relatively uniform quality of public schools compared 
with private ones. Furthermore, the school curriculum is uniformly determined by the MEXT’s Course of 
Study. 
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5. Baseline results 
5.1. Average impacts 

First, we present graphical evidence of the average impacts of cumulative exposure to heat 

and cold on test scores. Figure 3A shows 𝛽𝛽𝑘𝑘 from equation [1] with 95% confidence intervals. 
The test scores are measured in 0.01σ. Highlighting the nonlinear effect of temperature on 
learning, the figure shows that test scores decline as the number of hot or cold school days 
increases, especially for the extremely hot days at the right end of the figure (>34°C) and the 
extremely cold days at the left end (<6°C). 

This aligns with the well-documented “U-shaped” mortality-temperature relationship (or 
“inverse-U” in our case, as damage is negative), where both hot and cold days increase mortality 
globally (e.g., Barreca et al. 2016; Carleton et al. 2022; Cohen and Dechezleprêtre 2022; Heutel 
et al. 2021). While some studies have examined the cumulative effects of heat (Cho 2017; Park 
et al. 2020, 2021a) and cold (Johnston et al. 2021) on test scores separately, we are the first to 
show that both extremes in the same country impair students’ learning environments and hinder 
teachers’ abilities to teach by causing distractions and a loss of concentration. 

In terms of magnitude, one additional school day <6°C or >34°C in the previous year 
(compared with 18–22°C) reduces test scores by 0.13% SD and 0.19% SD, respectively (p < 
0.01). These estimates align with prior research on the effects of cumulative exposure to heat or 
cold on test scores, as shown in Table A.3.  

 
5.2. Distributional impacts 

Next, we examine whether the negative impacts of extreme temperatures significantly vary 

among students across different score distributions. Figure 3B presents 𝛽𝛽𝑘𝑘 from Equation [2], 
which clearly indicates that the negative effects of extreme temperatures are significantly greater 
for lower-performing students (see Table A.4 for corresponding estimates).  

One additional hot day >34°C lowers scores by 0.09% SD for students in the top 10th 
percentile, while the impact on the bottom 10th percentile is 0.30% SD, which is approximately 
three times larger. Adverse effects consistently increase as the rank decreases. Similarly, an extra 
cold day <6°C leads to a negligible reduction of 0.03% SD for students in the top 10th percentile 
(not statistically significant), while the bottom 10th percentile experiences a decline of 0.26% 
SD. Consequently, both the extremely hot and cold conditions widens the 90th–10th score gap 
by 0.22% and 0.23% SD, respectively. Given the strong link between academic performance and 
SES (Figure 2), these results suggest that exposure to extreme temperatures exacerbates pre-
existing academic inequality by SES among children.  

Source of varying vulnerability—. Importantly, since we compare temperature effects 
within schools, keeping “exposure” at school constant, our results are not driven by school 
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resources (e.g., class size, teacher quality, or AC). Instead, they are consistent with those in panel 
B of Figure 1, likely reflecting “vulnerability”—individual or household adaptations outside 
school (e.g., private tutoring). This study’s main goal is to uncover the presence of 
socioeconomic disparities in vulnerability to extreme temperatures. Consequently, it is beyond 
the scope of this study to fully explore the underlying sources of such heterogeneity in 
vulnerability owing to limited data on detailed student and household behaviors during the hot 
and cold days of the previous summer and winter. 

Nevertheless, Figure A.7 shows that higher-SES students tend to study longer after school, 
spend more money on education, and are more likely to attend cram school. Additionally, Table 
A.5 suggests that longer after-school study hours may mitigate the negative effects of heat 
exposure.8 However, other factors such as better baseline health among higher-SES students 
(Case et al. 2002), may also contribute to the observed heterogeneity. Understanding the specific 
sources of these unequal vulnerabilities is an avenue for future research. 

 

6. The impact of AC 
6.1. AC penetration 

AC is the main technology for adapting to heat (Barreca et al. 2016), but its widespread 
adoption in public primary and secondary schools in Japan has occurred only recently. During 
the sample period from 2006 to 2018, AC coverage in public primary and secondary schools 
increased from approximately 10% to 50%, reaching nearly 100% by 2022.9 

Unfortunately, the government began reporting the penetration rates of school AC in public 
primary and secondary schools at the municipal level only in 2017 (MEXT 2024b). The school 
council of each municipality determines the installation of AC in public schools within the 
municipality.10 Using this data in 2018, the last year of the sample period, we categorize schools 
into municipalities with 0% (“schools without AC”), 100% (“schools with AC”), and 
intermediate AC penetration. Thus, schools without AC had no AC throughout the entire period 
of 2006–2018 without any measurement error. Conversely, schools with AC only indicate full 
availability at some point during the sample period, likely leading to an underestimation of the 
positive impact of AC on test scores. 

Figure 4A maps municipalities with 100% (“schools with AC”), 0% (“schools without 
AC”), and partial (>0% and <100%) AC penetration. Clearly, schools without AC are more 
common in the cooler northern region, while both with and without AC are widely distributed in 

 
8 Educational spending and cram school attendance data are limited to parental surveys from 2014 and 2017, 
covering only 4.7% of students. Thus, unlike after-school hours from student surveys available for all years, 
they cannot be included as mediators.  
9 Source: https://www.mext.go.jp/content/20240930-mxt_sisetujo01-000013462_02.pdf  
10 A total of 1,724 municipalities exist as of April 1, 2019.  
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central Honshu, Japan’s main and largest island. 
One concern is that school AC penetration may correlate with many factors at the school or 

municipal levels that could directly impact test scores. However, Figure A.8 shows that after 
controlling for the average temperature, the AC penetration rate in 2018 is not strongly linked to 
taxable income per capita or the student-to-teacher ratio, a measure of per-pupil educational 
expenditure at school. As school AC could still correlate with other adaptive technologies or 
resources that may independently enhance student learning, the results below should be 
interpreted with caution. 

Furthermore, Figure A.9 shows that in 2007 (the first year of the our sample period), when 
AC penetration was only 10.2%, the test score distributions between schools with and without 
AC were nearly identical, suggesting that the observed differential patterns are unlikely to be due 
to systematic differences in test scores between the two groups (e.g., the 10th percentile score 
with AC matches the 90th percentile score without AC).  

 
6.2. Average impacts 

We now examine the average impact of access to school AC on test scores. Figure 4B 

illustrates 𝛽𝛽𝑘𝑘 from Equation [1] separately for schools with and without AC. Strikingly, most of 
the negative effects of heat are concentrated in schools that lack AC throughout the sample 
period. Conversely, AC largely mitigates the adverse impact on learning if taken causally. 

To assess how effectively school AC mitigates the impact of heat on learning, we conduct a 
formal regression analysis. Specifically, we interact the cross-sectional measure of AC 
penetration in 2018 (“school AC” dummy; 𝐴𝐴𝐴𝐴𝑠𝑠) with the number of school days in each 
temperature bin and include them in our baseline specification [1]. To highlight the effect of AC 
availability, we focus on schools in municipalities with either 0% or 100% AC (56.9% of school-
year observations). However, as Figure A.10 shows, results remain robust when including 
schools from municipalities with partial AC (>0% & <100%) in the “with AC” category. 
Specifically, we estimate 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑍𝑍- 𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 + ∑ 𝛾𝛾𝑘𝑘𝑇𝑇𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠 + 𝜌𝜌𝑠𝑠 + 𝜃𝜃𝑠𝑠 + 𝜏𝜏𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴𝑠𝑠 +  𝛿𝛿𝑋𝑋𝑠𝑠𝑠𝑠′ +  𝜀𝜀𝑠𝑠𝑠𝑠, [3] 

where 𝛽𝛽𝑘𝑘 now measures the impact of heat on a school without AC, while 𝛾𝛾𝑘𝑘 represents the 
difference in that impact compared to a fully air-conditioned school. Column (1) of Table 1 
shows that school AC largely offsets the negative effects of extreme heat (>34°C). Without AC, 
test scores drop by 0.56% SD, but the interaction with the AC dummy reduces this by 0.41% SD, 
suggesting that AC mitigates approximately 73% of the adverse impact of heat on learning. 

The offsetting effect of school AC may reflect other factors that correlate with AC 
availability. To address this concern, Table A.6 controls for interactions between temperature 
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bins, municipality-level taxable income per capita, the student-teacher ratio, and home AC share, 
but the results remain robust.  

Other robustness—. Table A.7 presents additional robustness checks. The estimates for the 
days with the maximum temperature exceeding 34°C and their interaction with the school AC 
dummy are reported due to their greatest relevance to global warming. The estimates remain 
largely unaffected by controlling for test-day weather conditions (temperature, precipitation, 
wind speed, and humidity), test-day air pollution, cumulative weather conditions other than 
temperature, and hot days during non-school periods.11 

Heterogeneity—. Figure A.12 and Table A.8 explore the heterogeneous effects of heat 

>34℃ and the mitigating role of school AC across grades (6th vs. 9th), subjects (math vs. 

reading), gender (girls vs. boys), question difficulty (basic vs. advanced),12 and climate (cool vs. 
warm regions). Overall, the impact of temperature >34°C and offsetting effect of AC appear to 
be consistent across contexts, with a few notable exceptions that extreme heat affects 6th graders 
and boys more than 9th graders and girls by approximately 50%, suggesting their greater 
vulnerability to heat. Notably, school AC offsets the effect on basic but not advanced questions, 
aligning with its stronger benefit for lower-achieving students, as shown next. 

 
6.3. Distributional impact 

Finally, we analyze how the impact of school AC availability differs among students across 

various score distributions. Figures 4C and 4D present 𝛽𝛽𝑘𝑘 from Equation [2], separately for 
schools without AC and with AC. In schools without AC, heat disproportionately harms lower-
ranked students, whereas in schools with AC, nearly all the negative effects disappear across 
ranks, resulting in a larger benefit for low-achieving students. As expected, school AC does not 
affect performance under extremely cold conditions (<6°C). However, as shown in Figure 4C, 
without school AC, heat is much more likely to exacerbate pre-existing academic inequalities 
than cold, without any intervention. 

To formally assess how school AC mitigates heat-driven inequality in learning, we estimate 
a variant of Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 90th 
percentiles within schools. The estimates from other percentiles can be found in Table A.9.  

Column (2) shows that high temperatures (>34°C) without AC reduce scores at the 10th 

 
11 Figure A.11, which uses minimum rather than maximum temperatures, shows no discernible effect on test 
scores, suggesting that sleep disruption due to nighttime temperatures (Mullins and White 2019) is not the 
channel through which cumulative heat exposure negatively affects academic performance. 
12 Both math and reading included basic and advanced questions (until 2018), with basic skills practically 
applied to advanced ones. For example, in 6th grade math, a basic question asks for simple multiplication, 
while an advanced one requires using it to find a square’s area (Figure A.13). The two scores are highly 
correlated, with correlations of 0.90 (average), 0.83 (math), and 0.85 (reading) for 6th graders. 
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percentile by 0.93% SD. Since these schools lack AC, the estimates reflect the “pure” negative 
impact of heat without reflecting any offsetting effects.13 However, the interaction term is 
positive and as large as 0.69% SD (p<0.01), indicating that school AC significantly offsets the 
damage from heat exposure. Conversely, column (3) shows that high temperatures (>34°C) 
reduce scores at the 90th percentile only by 0.22% SD (p<0.01), while the offsetting effect of AC 
is 0.14% SD, albeit not statistically significant. Consequently, column (4) indicates that without 
AC, extreme heat widens the 90th–10th score gap by 0.71% SD, whereas school AC reduces this 
widening gap by 0.55% SD, suggesting that the benefit of school AC is progressive.14 

We demonstrate that school facilities help reduce the widening test score gap between 
advantaged and disadvantaged students caused by heat. This suggests that the widening gap in 
the absence of school AC is not primarily caused by differences in outside-of-school heat 
exposure (e.g., longer commutes for disadvantaged students); if this were the case, we would not 
expect school AC to counteract the widening of the achievement gap. Simultaneously, school AC 
did not fully offset the growing gap, likely because of measurement errors in the AC penetration 
measure and/or remaining outside-of-school adaptations by socioeconomic background (e.g., 
access to clam school).15  

This finding suggests that public investment in school AC, rather than household-level 
adaptation, can largely reduce heat’s inequality-enhancing negative effects. Thus, adequate 
investment in school infrastructure can mitigate unevenly distributed damage caused by heat to 
student learning, thereby promoting both efficiency and equity. This is encouraging because both 
primary and secondary education are mandatory in Japan, as in many other countries, where 
public investment plays a vital role. Moreover, Dechezleprêtre et al. (2025) demonstrate that 
climate policies that are both environmentally effective and distributionally progressive are more 
likely to garner public support. However, it should be emphasized that while school AC largely 
offsets the widening of socioeconomic inequalities, pre-existing socioeconomic disparities 
persist. 

 

7. Conclusion 
Many studies have investigated the average impact of extreme temperatures but their 

 
13 Conversely, the distributional impact of a cold day (temperature <6°C) is similar for schools with and 
without school AC.  
14 Table A.10 confirms that the impact of school AC on the 90th–10th score gap remains robust when 
controlling for interactions with municipality-level taxable income per capita, the student-teacher ratio, and 
prefecture-level home AC share. 
15 We cannot entirely dismiss the possibility that this persistent widening gap stems from differing outside-of-
school exposure, resulting in varying in-school vulnerabilities. For example, limited access to AC at home 
deteriorates sleep quality (outside-of-school exposure), which in turn leads to diminished focus and 
concentration at school (in-school vulnerability), even within the same classroom environment. 
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distributional impact across different SES remains poorly understood. Even less explored is how 
different socioeconomic groups adapt to environmental stressors such as heat. Using nationwide 
exam data from Japan for 2007–2019, we find that extreme temperatures disproportionately 
hinder the human capital accumulation of low-achieving students, deepening academic and 
social inequalities. However, school AC largely offsets these negative effects, highlighting the 
potential for public infrastructure investments to reduce heat-related learning disparities. 

This study offers several avenues for future research. First, it is essential to determine 
whether the inequality-enhancing effects of heat exposure on learning persist across different 
contexts and environments. Second, although we focus on heat damage because of its relevance 
to global warming, understanding how to mitigate the adverse effects of cold exposure, although 
smaller, may be important in specific situations. Third, while we highlight the presence of social 
disparities in vulnerabilities, understanding the sources of these differential vulnerabilities, 
supported by more comprehensive data on individual and household behaviors, is essential for 
addressing social disparities. Finally, it is also important to examine whether the inequality-
enhancing effects of heat exposure on learning translate into inequalities in long-term economic 
outcomes such as wages and income.  
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Figure 1—Heterogeneity in marginal damages from two different explanations 
A. Single nonlinear damage functions B. Differing vulnerability 

  

Notes: Adapted from Hsiang et al. (2019, Figure 1), this figure presents two different explanations for the empirically 
observed heterogeneity in marginal damages between high and low socioeconomic status (SES): a single nonlinear 
damage function, illustrated in panel A, or different damage functions (i.e., differential vulnerability) related to SES 
that correlate with exposure levels, as shown in panel B. 
 

Figure 2—Within-school student rank and socioeconomic status  
A. Household income B. Father’s education: ≥University graduate 

  
Notes: The data are obtained from parent surveys in 2013 and 2017 NAAA. The bin scatter plot illustrates the 
relationship between within-school student rank and various measures of students’ socioeconomic status, net of 
school fixed effects, specifically household income (panel A), and the proportion of fathers with education at or above 
a 4-year university/college degree (panel B). Household income (panel A) is reported in hundreds of thousands of 
yen, with US$1 equal to approximately 100 yen. We transform the median of each household income bin into a 
continuous variable.  
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Figure 3—Cumulative heat/cold exposure and test performance  
A. Average impacts 

 
B. Distributional impacts 

 
Notes: Panel A plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1], where the average z-score (measured in 0.01𝜎𝜎) is regressed 
on the number of school days within a given maximum temperature bin in the year prior to the test date, along with 
the 95% confidence intervals. Panel B plots 𝛽𝛽𝑘𝑘 from an estimating Equation [2], where z-scores at the 10th, 25th, 
50th, 75th, and 90th percentiles within schools (measured in 0.01𝜎𝜎) are regressed separately on the number of school 
days within a given maximum temperature bin from the year prior to the test date, along with the 95% confidence 
intervals. The omitted category is the temperature range between 18–22°C. 
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Figure 4—The impact of school AC 
A. Map of the school AC penetration B.  Average impacts 

  
C. Distributional impact without school AC D. Distributional impact with school AC 

  
Notes: Panel A displays the locations of municipalities according to the degree of school AC penetration rate. Using school AC penetration rates for public primary 
and secondary schools at the municipal level in 2018 (the last year of the sample period), schools are categorized into municipalities with a 0% share (in white), a 
100% share (in dark blue), and the remaining (in light blue) of school AC penetration as of 2018. Panel B plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1]. Panels C and D 
plot 𝛽𝛽𝑘𝑘 from an estimating Equation [2], separately for schools without AC and with AC in 2018, respectively, along with the 95% confidence intervals. The omitted 
category is the temperature range between 18–22℃. 
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Table 1—The impact of school AC 
  (1)   (2)   (3)   (4) 

Outcomes: Average Z-score  10th percentile score  90th percentile score  90th-10th score gap 
    × school AC     × school AC     × school AC     × school AC 

Days 6℃≤ -0.216*** 0.068   -0.320*** 0.040   -0.099** 0.050   0.222** 0.011 
  (0.069) (0.090)   (0.101) (0.124)   (0.047) (0.076)   (0.086) (0.110) 

Days 6-10℃ -0.158*** 0.114   -0.207** 0.088   -0.075* 0.104*   0.132* 0.016 
  (0.053) (0.076)   (0.083) (0.103)   (0.040) (0.059)   (0.078) (0.089) 

Days 10-14℃ -0.098* 0.046   -0.196** 0.043   -0.047 0.067   0.149** 0.025 
  (0.054) (0.084)   (0.082) (0.108)   (0.035) (0.053)   (0.074) (0.088) 

Days 14-18℃ -0.040 0.031   -0.027 -0.039   -0.046 0.067   -0.019 0.106 
  (0.041) (0.057)   (0.062) (0.083)   (0.030) (0.042)   (0.052) (0.078) 

Days 22-26℃ -0.024 -0.043   -0.034 -0.070   -0.000 -0.042   0.034 0.028 
  (0.039) (0.063)   (0.057) (0.083)   (0.026) (0.043)   (0.050) (0.068) 

Days 26-30℃ -0.134*** 0.050   -0.218*** 0.075   -0.030 -0.024   0.188*** -0.099 
  (0.046) (0.066)   (0.063) (0.087)   (0.035) (0.046)   (0.053) (0.075) 

Days 30-34℃ -0.177*** 0.097   -0.271*** 0.136   -0.065 0.020   0.207*** -0.116 
  (0.061) (0.073)   (0.085) (0.102)   (0.049) (0.058)   (0.076) (0.094) 

Days 34℃> -0.562*** 0.413***   -0.932*** 0.690***   -0.223*** 0.139   0.709*** -0.551*** 
  (0.112) (0.145)   (0.176) (0.201)   (0.085) (0.108)   (0.170) (0.184) 
                        

R-squared 0.751    0.669    0.603    0.552  
Observations 190,210    190,210    190,210    190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. Column (1) presents the estimates from Equation 
[3] where the outcome is the average test score at the school-year level (measured in 0.01σ). Columns (2) and (3) present the estimates from the variant of Equation 
[3], where the outcomes are z-scores at the 10th and 90th percentiles within schools (measured in 0.01σ). School AC is a dummy variable that equals one if an air 
conditioner was available at the school in 2018. Figure 4A shows the locations of the schools within each AC penetration category. The complete table showing the 
results for the other percentiles is presented in Table A.9. Column (4) presents the estimate of the score gap between the 90th and 10th percentiles within the school 
(measured in 0.01σ). Standard errors are clustered at the weather station level in parentheses. The estimates are weighted by the number of students in each school-
year. The omitted category is the temperature range between 18 and 22℃. Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix A: Additional figures and tables 
 

Figure A.1—Location of schools 
A. Primary schools (grade 6) B. Secondary schools (grade 9) 

  
Notes: Panels A and B illustrate the locations of primary (grade 6) and secondary schools (grade 9) as of April 2019. 
There are 19,304 primary schools and 9,776 secondary schools. 
 
 

Figure A.2—Weather stations 
A. Location of weather stations B. Distance to the weather stations 

 
 

Notes: Panel A displays the locations of all 899 weather stations as of 2019. Panel B shows the cumulative distribution 
of the distances from schools to the nearest weather stations. The mean (median) distance from the weather stations 
is 6.95 (6.48) km. 
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Figure A.3—School days by region  

 
Notes: The figure displays the academic calendar of the prefectural capital in the school’s prefecture for 2018. Japan 
is divided into 47 prefectures. The academic calendar mostly comprises three terms: spring, fall, and winter.  
 
 

Figure A.4—Spatial and temporal variations in prior year temperature 
A. Average temperature B. Number of school days 

 

 

 
Notes: The figures illustrate the spatial variations in the mean daily maximum temperature in the year preceding the 
test year (panel A) and temporal variations in the number of school days within a given maximum temperature bin 
from last April to March of the test year, as experienced by students on school days (panel B). 



26 
 

Figure A.5—Identifying variations in prior year temperature 
A. Number of days below 6°C B. Number of days above 34°C 

By prefecture By prefecture 

  
By year By year 

  
Notes: This figure illustrates the interquartile and interdecile ranges of the residual variation, net of school fixed 
effects, in the number of school days below 6°C in the year prior to the test date (panel A) and the number of school 
days above 34°C in the year prior to the test date (panel B), by prefecture and year. Japan has a total of 47 prefectures. 
The estimates are weighted by the number of students in each school. 
 
 

Figure A.6—Within-school score distribution across school ranks  

 
Notes: This figure illustrates the variations in within-school score distribution across school ranks based on the 
average school scores. Specifically, we group schools into ventiles based on their average scores each year and plot 
the average interquartile and interdecile ranges of the within-school score distribution for every ventile. 
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Figure A.7—Socioeconomic status and studying after school 
A. Household income and studying after school 

 
B. Household income and education expenses C. Household income and clam school 

  
Notes: The data are obtained from parent surveys in the 2013 and 2017 NAAA, except for the fraction of students 
who study for more than 1 hour or 2 hours in panel A, which is obtained from student surveys in the 2013 and 2017 
NAAA. The binscatter plot illustrates the relationship between students’ socioeconomic status, as indicated by 
household income, and various study-related variables after school, net of school fixed effects. Specifically, it shows 
the proportion of students studying after school for more than 1 hour or 2 hours (panel A), monthly education 
expenses (panel B), and the proportion of students attending cram schools (panel C). Household income (panels A-
C) is presented in hundreds of thousands of yen, while monthly education expenses (panel B) are presented in 
thousands of yen, with US$1 being approximately equal to 100 yen. For both variables, we use the median of each 
household income/monthly education expense bin to transform them into continuous variables. 
 

Figure A.8—Correlation with school AC penetration rates 
A. Taxable income per capita B. Student-teacher ratio 

  
Notes: The binscatter plot illustrates the cross-sectional relationship between school AC penetration rates at the 
municipality level and taxable income per capita (panel A) as well as the student-teacher ratio (panel B) for 2018, 
after controlling for the average temperature between 2006 and 2018. Both taxable income per capita and the student-
teacher ratio were averaged over the period from 2006 to 2018. 
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Figure A.9—Test score distributions between schools with and without AC in 2007 

 
Notes: This figure plots the average test scores at 5-percentile increments in 2007 (the first year of our sample period), 
when AC penetration was only 10.2%, separately for schools with and without AC. These averages were obtained by 
first calculating test scores at each 5th percentile within schools, then averaging across schools within each group. 
 
 

Figure A.10—Cumulative heat/cold exposure and test performance 
(school AC 0% vs. AC>0%) 

 
Notes: The figure displays 𝛽𝛽𝑘𝑘  from an estimating Equation [1], separately for schools in municipalities with a 
positive share of AC and those in municipalities with 0% AC availability in 2018, along with the 95% confidence 
intervals. The omitted category is the temperature range between 18 and 22℃. Figure 4A shows the locations of 
schools for each school AC penetration category.   
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Figure A.11—Minimum temperature and test performance (average impacts) 
A. All schools 

 
B. Schools with vs. without AC 

 
Notes: Panel A plots 𝛽𝛽𝑘𝑘 from an estimating Equation [1], where the average z-score (measured in 0.01𝜎𝜎) is regressed 
on the number of school days within a given minimum temperature bin in the year prior to the test date, and panel B 
plots 𝛽𝛽𝑘𝑘 separately for schools with and without AC in 2018, along with the 95% confidence intervals. The omitted 
category is the temperature range (8–12℃). 
 
  



30 
 

Figure A.12—Heterogeneity: Cumulative heat/cold exposure and test performance 
(with and without school AC) 

 
A. By grade 

Grade 6 Grage 9 

  
B. By subjects 

Math Reading 

 
 

 
 

C. By gender 
Girls Boys 
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D. By difficulty 
Basic Advanced 

  
 

E. By region 
Cold region Warm region 

  
Notes: The figures plot 𝛽𝛽𝑘𝑘 from an estimating Equation [1], separately for schools with and without AC in 2018, 
along with the 95% confidence intervals. Figure 4A shows the locations of schools for each school AC penetration 
category. The omitted category is the temperature range (18–22℃). Panels A-D divide the sample by grade (grade 6 
vs. grade 9), subject (math vs. reading), student gender (girls vs. boys), and the difficulty of the test questions (basic 
vs. advanced). Finally, panel E divides the sample into cool and warm regions by the national median temperature 
between 2006 and 2018. 
 
 

Figure A.13—Examples of basic and advanced questions (math for grade 6)  
Basic Advanced 

  
Notes: The examples are from mathematics for grade 6 in the NAAA.  
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Table A.1—Number of participating schools and students in NAAA 
  N of schools   N of students 

Year Total Grade 6 Grade 9   Total Grade 6 Grade 9 
2007 31,899  21,523  10,376    2,203,309  1,115,808  1,087,501  
2008 32,095  21,670  10,425    2,243,391  1,162,311  1,081,080  
2009 31,835  21,498  10,337    2,264,473  1,153,059  1,111,414  
2010 9,866  5,421  4,445    708,995  271,004  437,991  
2011 - - -   - - - 
2012 9,545  5,177  4,368    703,244  262,114  441,130  
2013 30,560  20,468  10,092    2,207,777  1,124,018  1,083,759  
2014 30,233  20,221  10,012    2,162,765  1,097,584  1,065,181  
2015 29,962  20,030  9,932    2,136,316  1,076,832  1,059,484  
2016 29,125  19,397  9,728    2,076,404  1,037,066  1,039,338  
2017 29,174  19,375  9,799    2,047,892  1,018,505  1,029,387  
2018 29,248  19,431  9,817    2,012,527  1,041,474  971,053  
2019 28,989  19,252  9,737    2,025,844  1,046,722  979,122  
Total 322,531  213,463  109,068    22,792,937  11,406,497  11,386,440  

Notes: This table shows the number of schools and students participating in the National Assessment of Academic 
Ability (NAAA) each year. We exclude schools that are observed only once during the sample period, along with 
their corresponding students, and those without math and reading scores (0.24% of schools and 1.59% of students). 
The NAAA has been conducted annually across the nation by the Ministry of Education, Culture, Sports, Science, 
and Technology (MEXT) since 2007. Exceptions occurred in 2011, when the NAAA was entirely canceled because 
of the Great East Japan Earthquake, and in 2010 and 2012, when it was administered to a random subset of schools: 
approximately 25% of sixth graders and 40% of ninth graders. 
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Table A.2—Descriptive statistics 
Variable: N of 

schools Mean Std. dev. Min Max N of 
station 

Available 
period 

Panel A. Student information               
Student survey:               
  Female 301,821 0.48 0.08 0 1 - 2007-2019 
  Study time after school: >1 hour 323,144 0.65 0.13 0 1 - 2007-2019 
  Study time after school: >2 hours 323,144 0.31 0.13 0 1 - 2007-2019 
Parent survey:               
  Household income 2,624 62.26 31.68 10  150  - 2013, 2017 
  Father’s educ: ≥University graduate 2,779 0.31 0.46 0  1  - 2013, 2017 
  Education expenses 2,628 17.03 14.48 0  50  - 2013, 2017 
  Attending a cram school 1,952 0.33 0.47 0  1  - 2017  
Regional information:               

  School AC 322,962 0.60 0.46 0 1 - 2018  
  Taxable income per capita 323,153 32.29 5.86 18.89 126.67 - 2007-2019 
  Student-teacher ratio 321,263 15.63 3.06 0.09 25.05 - 2007-2019 
  Home AC 323,153 0.90 0.15 0.27 0.99 - 2014  

                  
Panel B. Weather condition               
Number of school days               
  6℃≤ 322,531 11.02 16.83 0 194 891 2007-2019 
  6-10℃ 322,531 22.59 8.37 0 53 891 2007-2019 
  10-14℃ 322,531 30.93 8.78 0 60 891 2007-2019 
  14-18℃ 322,531 27.20 5.80 0 58 891 2007-2019 
  18-22℃ 322,531 32.42 6.34 0 71 891 2007-2019 
  22-26℃ 322,531 38.37 8.51 0 88 891 2007-2019 
  26-30℃ 322,531 32.95 9.58 0 97 891 2007-2019 
  30-34℃ 322,531 14.87 8.90 0 79 891 2007-2019 
  34℃> 322,531 2.25 2.95 0 20 891 2007-2019 
Mean precipitation (mm) 322,531 4.53 1.37 0.82 21.48 1,165  2007-2019 
Mean wind speed (m/s) 322,531 2.51 0.91 0.26 8.75 887 2007-2019 
Mean relative humidity 322,531 68.44 4.92 58.39 82.94 153 2007-2019 

Notes: Panel A provides descriptive statistics of student information aggregated at the school level. Gender 
information for grade 6 was not collected in 2015. Household income is presented in hundreds of thousands of yen, 
while monthly education expenses are shown in thousands of yen, with US$1 being approximately equal to 100 yen. 
For both variables, we calculate the median household income and monthly education expense bin to convert them 
into continuous variables. For school and home AC, data from 2018 and 2014, respectively, are applied to all years. 
Panel B displays the descriptive statistics of the cumulative weather conditions from last April to March of the test 
year, as experienced by students on school days.  
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Table A.3—Comparison with previous studies of cumulative exposure to heat or cold on test scores 
Study Country 

(period) 
Exam type Stakes Grades Representation Exam Days Effect size by one additional day 

Our Study Japan 
(‘07-’19) 

Achievement 
test 

Low G6 and G9 All students in 
public schools 

3rd or 4th 
Tuesday in 
April 

Reference: 18–22°C 
Above 34°C 
↓ 0.19% SD 
Below 6° 
↓ 0.13% SD 

Cho  
(2017) 

Korea 
(‘09-’13) 

College 
entrance 
exam 

High G12   Takers of 
university 
entrance exam 

2nd Thursday 
in November 

Reference: 28–30°C 
Above 34°C 
↓ 0.42% SD (Math)  
↓ 0.64% SD (English) 

Park et al.  
(2020) 

US 
(’01-’14) 

PSAT Intermediate G10 or G11 Takers of PSAT 
at least twice 

3rd week of 
October 

Reference: 60–69°F (15.6-20.6°C) 
Above 100°F (37.8°C) 
↓ 0.07% SD 
Above 90°F (32.2°C)  
↓ 0.05% SD 

Park et al.  
(2021) 

US 
(’09-’15) 

State-specific 
exams 

Intermediate G3 to G8 12,000 US school 
districts 

Spring 
(differ by 
state) 

Reference: 60–69°F (15.6-20.6°C) 
Above 80°F (26.7°C)  
↓ 0.10% SD (G3–G5) 
↓ 0.03% SD (G6–G8) 

Johnston et al. 
(2021) 

Australia 
(’09-’18) 

Achievement 
test 

Low G3, G5, G7 
and G9 

All students in 
public schools in 
New South Wales 

2nd week of 
May 

Reference: 65–75°F (18.3-23.9°C) 
Below 60°F (15.6°C) 
↓ 0.15% SD 

References: 
Cho, Hyunkuk. 2017. “Effect of Summer Heat on Test Scores: A Cohort Analysis.” Journal of Environmental Economics and Management, 83: 185–196. 
Park, R. Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. “Heat and Learning.” American Economic Journal: Economic Policy, 12(2): 306–

339. 
Park, R. Jisung, A. Patrick Behrer, and Joshua Goodman. 2021. “Learning is inhibited by heat exposure, both internationally and within the United States.” Nature 

Human Behaviour, 5: 19–27. 
Johnston, David W., Rachel Knott, Silvia Mendolia, and Peter Siminski. 2021. “Upside-Down Down-Under: Cold Temperatures Reduce Learning in Australia.” 

Economics of Education Review, 85: 102172. 
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Table A.4—Distributional impact of cumulative heat/cold exposure 
  (1) (2) (3) (4) (5)   (6) (7) (8) 

Outcomes:  10th  25th  50th  75th  90th    Resulting score gap 

  percentile percentile percentile percentile percentile   90th-10th 90th-50th 50th-10th 

Days 6℃≤ -0.260*** -0.185*** -0.117** -0.066 -0.028   0.231*** 0.089*** 0.142*** 
  (0.053) (0.052) (0.050) (0.042) (0.032)   (0.042) (0.026) (0.036) 

Days 6-10℃ -0.177*** -0.144*** -0.105** -0.050 -0.008   0.169*** 0.097*** 0.072** 
  (0.047) (0.046) (0.044) (0.037) (0.027)   (0.037) (0.023) (0.032) 

Days 10-14℃ -0.187*** -0.133** -0.074 -0.028 -0.007   0.180*** 0.067*** 0.113*** 
  (0.049) (0.052) (0.048) (0.037) (0.026)   (0.036) (0.026) (0.027) 

Days 14-18℃ -0.079** -0.047 -0.033 -0.028 -0.018   0.060* 0.015 0.046* 
  (0.037) (0.036) (0.031) (0.027) (0.021)   (0.036) (0.019) (0.027) 

Days 22-26℃ -0.075* -0.062 -0.052 -0.036 -0.028   0.047 0.024 0.022 
  (0.040) (0.039) (0.035) (0.030) (0.022)   (0.031) (0.019) (0.023) 

Days 26-30℃ -0.108*** -0.089** -0.068* -0.041 -0.034*   0.074** 0.033 0.040* 
  (0.041) (0.041) (0.035) (0.029) (0.021)   (0.034) (0.021) (0.024) 

Days 30-34℃ -0.124** -0.118** -0.095** -0.063* -0.032   0.092** 0.063** 0.029 
  (0.051) (0.050) (0.045) (0.035) (0.027)   (0.043) (0.027) (0.029) 

Days 34℃> -0.303*** -0.231*** -0.209*** -0.120* -0.087**   0.216*** 0.123*** 0.093** 
  (0.079) (0.080) (0.075) (0.062) (0.044)   (0.062) (0.043) (0.047) 
                    

R-squared 0.648 0.687 0.691 0.647 0.573   0.531 0.532 0.359 
Observations 322,531  322,531  322,531  322,531  322,531    322,531  322,531  322,531  
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. Columns (1)–(5) present the estimates from Equation [2], where the outcome is the z-scores at the 10th, 25th, 
50th, 75th, and 90th percentiles within school (measured in 0.01𝜎𝜎), along with standard errors clustered at the weather 
station level in parentheses. Columns (6), (7), and (8) present the estimate of the score gap between the 90th and 10th 
percentiles, 90th and 50th percentiles, and 50th and 10th percentiles within the school, respectively, measured in 0.01𝜎𝜎. 
The estimates are weighted by the number of students in each school-year. The omitted category is the temperature 
range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Table A.5—The impact of studying after school  
  (1)  (2) 
Outcomes: Average Z-score  Average Z-score 

    
× study  

more than 1 
hour 

    
× study  

more than 2 
hours 

Days 6℃≤ -0.117*** 0.151***   -0.126*** -0.042 
  (0.041) (0.038)   (0.041) (0.049) 

Days 6-10℃ -0.064* 0.376***   -0.095** 0.599*** 
  (0.036) (0.047)   (0.037) (0.060) 

Days 10-14℃ -0.080** 0.331***   -0.084** 0.316*** 
  (0.039) (0.053)   (0.039) (0.058) 

Days 14-18℃ -0.052** 0.415***   -0.047* 0.188** 
  (0.026) (0.063)   (0.025) (0.080) 

Days 22-26℃ -0.053 0.039   -0.047 0.007 
  (0.032) (0.040)   (0.031) (0.045) 

Days 26-30℃ -0.075** 0.288***   -0.077** 0.212*** 
  (0.030) (0.042)   (0.030) (0.051) 

Days 30-34℃ -0.094** 0.248***   -0.101*** 0.149** 
  (0.037) (0.069)   (0.038) (0.070) 

Days 34℃> -0.186*** 0.403**   -0.206*** 0.150 
  (0.060) (0.170)   (0.062) (0.201) 
            

R-squared 0.748    0.737  
Observations 322,523    322,523  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. The dependent variable is the average test score at the school-year level, measured in 0.01𝜎𝜎. Estimates from a 
variant of Equation [1], which additionally includes the interaction between the fraction of students studying after 
school for more than 1 hour (column 1) and for 2 hours (column 2), with the number of days in each temperature bin 
during school days from the previous year, are reported along with standard errors clustered at the weather station 
level in parentheses. Note that both fractions of students studying after school for more than 1 (column 1) and 2 hours 
(column 2) are demeaned by the average for the NAAA between 2007 and 2019. The interaction terms in columns 
(1) and (2) reflect the offsetting effect of studying after school, as the fraction of students studying for more than 1 
or 2 hours after school increased from 0% to 100%. The estimates are weighted by the number of students in each 
school-year. The omitted category is the temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, 
* p<0.10. 
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Table A.6—The average impact of school AC 
  (1)   (2)   (3) 
Outcomes: Average Z-score  Average Z-score  Average Z-score 
    × school AC     × school AC     × school AC 

Days 6℃≤ -0.216*** 0.068   -0.235*** 0.061   -0.080 -0.109 
  (0.069) (0.090)   (0.077) (0.097)   (0.061) (0.082) 

Days 6-10℃ -0.158*** 0.114   -0.111** -0.007   -0.063 0.010 
  (0.053) (0.076)   (0.056) (0.074)   (0.052) (0.074) 

Days 10-14℃ -0.098* 0.046   -0.082 -0.059   -0.041 -0.044 
  (0.054) (0.084)   (0.059) (0.073)   (0.047) (0.082) 

Days 14-18℃ -0.040 0.031   -0.020 -0.040   0.043 -0.080 
  (0.041) (0.057)   (0.050) (0.064)   (0.043) (0.053) 

Days 22-26℃ -0.024 -0.043   -0.042 0.019   -0.115*** 0.069 
  (0.039) (0.063)   (0.043) (0.057)   (0.042) (0.081) 

Days 26-30℃ -0.134*** 0.050   -0.140*** 0.125*   -0.243*** 0.187*** 
  (0.046) (0.066)   (0.050) (0.067)   (0.048) (0.069) 

Days 30-34℃ -0.177*** 0.097   -0.209*** 0.202*   -0.298*** 0.310*** 
  (0.061) (0.073)   (0.071) (0.113)   (0.065) (0.084) 

Days 34℃> -0.562*** 0.413***   -0.565*** 0.476***   -0.623*** 0.501*** 
  (0.112) (0.145)   (0.121) (0.141)   (0.107) (0.153) 
                  

Interaction with       
taxable income   X   
student-teacher ratio   X   
home AC share     X 

R-squared 0.751    0.752    0.751  
Observations 190,210    188,911   190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. The dependent variable is the average test score at the school-year level, measured in 0.01𝜎𝜎. The estimates from 
Equation [3] are reported, along with standard errors clustered at the weather station level in parentheses. School AC 
is a dummy variable that equals one if an air conditioner was available at the school in 2018. Figure 4A shows the 
locations of the schools within each AC penetration category. Column (1) replicates column (1) of Table 1 for 
reference. Column (2) adds to column (1) the interaction of municipality-level taxable income per capita and the 
student-teacher ratio in 2018 with the number of school days within a given maximum temperature bin in the year 
prior to the test date. Column (3) adds to column (1) the interaction of prefecture-level home AC shares in 2014 with 
the number of school days within a given maximum temperature bin in the year before the test date. The estimates 
are weighted by the number of students in each school-year. The omitted category is the temperature range (18–22℃). 
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Table A.7—Robustness of the impact of heat 
  (1) (2) (3) (4) (5) (6) (7) (8) 
Outcomes: Average Z-score 

Days above 34℃ -0.562*** -0.568*** -0.557*** -0.278*** -0.503*** -0.493*** -0.482*** -0.551*** 
  (0.112) (0.113) (0.111) (0.105) (0.113) (0.105) (0.130) (0.123) 
                  

Days above 34℃ × school AC 0.413*** 0.425*** 0.421*** 0.401*** 0.363** 0.386*** 0.409** 0.440*** 
  (0.145) (0.145) (0.139) (0.126) (0.146) (0.130) (0.164) (0.150) 
                  

R-squared 0.751 0.751 0.751 0.772 0.751 0.751 0.751 0.759 
Observations 190,210  190,210  190,210  145,769  190,210  190,210  190,210  141,733  
Sample period Full Full Full 2009-2019 Full Full Full Full 
Temperature (test day)  X       
Weather (test day)   X      
Pollution (test day)    X     
Weather (cumulative)     X    
Temperature (school holidays)      X   
Temperature (weekend)       X  
Stations within 10 km 

       X 
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. The dependent variable is the average test score 
at the school-year level, measured in 0.01𝜎𝜎. The estimates are obtained from Equation [3], along with the standard errors clustered at the weather station level in 
parentheses. The estimates for the number of school days above 34℃ and their interaction with the school AC dummy are reported, while the estimates for days in 
other temperature ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was available at the school in 
2018. Figure 4A shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school year. 
The omitted category is the temperature range (18–22℃). The full sample period is from 2007 to 2019. Column (1) presents the baseline estimate without any controls 
other than school and year fixed effects, as reported in column (1) of Table 1. Column (2) adds the test-day temperature and column (3) includes additional test-day 
weather conditions (precipitation, wind speed, and relative humidity). Column (4) includes test-day air pollution (SO2, NO, NO2, CO, OX, and PM10) for the 2009-
2019 period, as pollution data are only available for this period. Column (5) includes other cumulative weather conditions (precipitation, wind speed, and relative 
humidity). Columns (6) and (7) control the number of days during school break days and weekends, respectively, within a given maximum temperature bin from the 
year prior to the test date. Finally, column (8) restricts the sample to schools located within 10 km of the weather stations. Significance levels: *** p<0.01, ** p<0.05, 
* p<0.10. 
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Table A.8—Heterogeneous impacts of heat 
  (1) (2)   (3) (4)   (5) (6)   (7) (8)   (9) (10) 

Outcomes: Average Z-score  Average Z-score  Average Z-score  Average Z-score  Average Z-score 

  By grade   By subject   By gender   By difficulty   By region 

  6th 9th   Math Reading   Girls Boys   Basic Advanced   Cool Warm 

Days above 34℃ -0.731*** -0.443***   -0.523*** -0.504***   -0.467*** -0.755***   -0.588*** -0.465***   -0.530*** -0.520*** 
  (0.180) (0.109)   (0.111) (0.118)   (0.123) (0.145)   (0.123) (0.108)   (0.128) (0.178) 

                              

Days above 34℃ × school AC 0.378* 0.495***   0.309** 0.431***   0.356** 0.581***   0.395*** 0.132   0.470*** 0.312 
  (0.210) (0.148)   (0.145) (0.142)   (0.153) (0.176)   (0.153) (0.141)   (0.142) (0.220) 

                              
R-squared 0.682 0.807   0.742 0.712   0.676 0.679   0.741 0.753   0.721 0.778 

Observations 115,312  74,898    190,210  190,210    176,297  176,169    173,005  173,005    105,672  84,538  
Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. The dependent variable is the average test score 
at the school-year level, measured in 0.01𝜎𝜎. The estimates are obtained from Equation [3], along with the standard errors clustered at the weather station level in 
parentheses. The estimates for the number of school days above 34℃ and their interaction with the school AC dummy are reported, while the estimates for days in 
other temperature ranges are omitted for expositional purposes. School AC is a dummy variable that takes the value of one if an AC was available at the school in 2018. 
Figure 4A shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school-year. The 
omitted category is the temperature range (18–22℃). Columns (1) and (2) present the estimates by grade (grade 6 vs. grade 9). Columns (3) and (4) show estimates 
by subject area (math vs. reading). Columns (5) and (6) show estimates by student gender (girls vs. boys). Columns (6) and (7) present the estimates based on the 
difficulty of the test questions (basic vs. advanced). Finally, Columns (9) and (10) divide the sample into cool and warm regions based on the national median of the 
average temperature from 2006 to 2018. Note that the number of observations is at the school-year level; therefore, we observe the average test score of each school-
year for each subject, gender, and question difficulty, while we observe only one test score for each grade and each region, as they are mutually exclusive. Thus, the 
sum of the observations in columns (1) and (2) and the sum of the observations in columns (9) and (10) is 190,210, which is equal to the number of school-years in 
columns (3) and (4). The slightly smaller observations for columns (5) and (6), compared with columns (3) and (4), are because gender information was not collected 
for grade 6 in 2015. Similarly, the slightly smaller observations in columns (7) and (8) compared to those in columns (3) and (4) are due to the absence of such a 
distinction in 2019. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A.9—Distributional impact of school AC (full) 
  (1)   (2)   (3)   (4)   (5) 

Outcomes: 10th percentile score  25th percentile score  50th percentile score  75th percentile score  90th percentile score 
    × school AC     × school AC     × school AC     × school AC     × school AC 

Days 6℃≤ -0.320*** 0.040   -0.293*** 0.112   -0.257*** 0.143   -0.152** 0.044   -0.099** 0.050 
  (0.101) (0.124)   (0.092) (0.113)   (0.080) (0.107)   (0.062) (0.090)   (0.047) (0.076) 

Days 6-10℃ -0.207** 0.088   -0.187*** 0.098   -0.206*** 0.166*   -0.124** 0.115   -0.075* 0.104* 
  (0.083) (0.103)   (0.072) (0.097)   (0.061) (0.091)   (0.051) (0.076)   (0.040) (0.059) 

Days 10-14℃ -0.196** 0.043   -0.113 0.001   -0.117* 0.081   -0.059 0.064   -0.047 0.067 
  (0.082) (0.108)   (0.074) (0.109)   (0.065) (0.102)   (0.049) (0.077)   (0.035) (0.053) 

Days 14-18℃ -0.027 -0.039   -0.009 -0.017   -0.047 0.050   -0.053 0.064   -0.046 0.067 
  (0.062) (0.083)   (0.057) (0.080)   (0.045) (0.067)   (0.037) (0.053)   (0.030) (0.042) 

Days 22-26℃ -0.034 -0.070   -0.044 -0.049   -0.045 -0.019   -0.013 -0.036   -0.000 -0.042 
  (0.057) (0.083)   (0.054) (0.082)   (0.049) (0.075)   (0.037) (0.061)   (0.026) (0.043) 

Days 26-30℃ -0.218*** 0.075   -0.187*** 0.056   -0.150*** 0.077   -0.083* 0.041   -0.030 -0.024 
  (0.063) (0.087)   (0.061) (0.089)   (0.056) (0.079)   (0.047) (0.065)   (0.035) (0.046) 

Days 30-34℃ -0.271*** 0.136   -0.274*** 0.149   -0.187** 0.108   -0.110* 0.057   -0.065 0.020 
  (0.085) (0.102)   (0.081) (0.097)   (0.074) (0.090)   (0.062) (0.074)   (0.049) (0.058) 

Days 34℃> -0.932*** 0.690***   -0.813*** 0.624***   -0.610*** 0.461***   -0.341*** 0.262*   -0.223*** 0.139 
  (0.176) (0.201)   (0.151) (0.186)   (0.133) (0.171)   (0.113) (0.149)   (0.085) (0.108) 
                              

R-squared 0.669    0.708    0.714    0.673    0.603  
Observations 190,210    190,210    190,210    190,210    190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-year. Columns (1)–(5) present the estimates from the 
variant of Equation [3], where the outcomes are z-scores at the 10th, 25th, 50th, 75th, and 90th percentiles within schools (measured in 0.01σ), along with standard 
errors clustered at the weather station level in parentheses. School AC is a dummy variable that equals one if an air conditioner is available at the school in 2018. 
Figure 4A shows the locations of the schools within each AC penetration category. The estimates are weighted by the number of students in each school-year. The 
omitted category is the temperature range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.  
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Table A.10—Robustness: The impact of school AC on academic inequality 
  (1)   (2)   (3) 
Outcomes: 90th-10th score gap  90th-10th score gap  90th-10th score gap 
    × school AC     × school AC     × school AC 

Days 6℃≤ 0.222** 0.011   0.225*** 0.025   0.154 0.107 
  (0.086) (0.110)   (0.086) (0.110)   (0.094) (0.123) 

Days 6-10℃ 0.132* 0.016   0.121 -0.015   0.052 0.122 
  (0.078) (0.089)   (0.077) (0.089)   (0.086) (0.102) 

Days 10-14℃ 0.149** 0.025   0.134* 0.065   0.115 0.081 
  (0.074) (0.088)   (0.074) (0.088)   (0.079) (0.099) 

Days 14-18℃ -0.019 0.106   -0.054 0.130*   -0.051 0.146 
  (0.052) (0.078)   (0.056) (0.078)   (0.063) (0.089) 

Days 22-26℃ 0.034 0.028   0.029 0.037   0.063 -0.008 
  (0.050) (0.068)   (0.053) (0.070)   (0.057) (0.078) 

Days 26-30℃ 0.188*** -0.099   0.185*** -0.137*   0.233*** -0.154* 
  (0.053) (0.075)   (0.054) (0.072)   (0.058) (0.081) 

Days 30-34℃ 0.207*** -0.116   0.213*** -0.143   0.257*** -0.213** 
  (0.076) (0.094)   (0.078) (0.098)   (0.082) (0.107) 

Days 34℃> 0.709*** -0.551***   0.629*** -0.402**   0.714*** -0.584*** 
  (0.170) (0.184)   (0.172) (0.191)   (0.169) (0.199) 
                  

Interaction with       
taxable income   X   
student-teacher ratio   X   
home AC share     X 

R-squared 0.552    0.553    0.552  
Observations 190,210    188,911   190,210  

Notes: The data are from the 2007–2019 NAAA and 2006–2018 AMeDAS. The unit of observation is the school-
year. Columns (1)–(3) present the estimates from the variant of Equation [2], which additionally includes the 
interaction of the number of school days within a given maximum temperature bin in the year prior to the test date 
and the school AC dummy, along with standard errors clustered at the weather station level in parentheses. School 
AC is a dummy variable that equals one if an air conditioner is available at the school in 2018. Figure 4A shows the 
locations of the schools within each AC penetration category. The outcome is the gap between the 90th and 10th 
percentile scores within the school, measured at 0.01𝜎𝜎. Column (1) replicates the estimates in column (3) of Table 2. 
The estimates are weighted by the number of students in each school-year. The omitted category is the temperature 
range (18–22℃). Significance levels: *** p<0.01, ** p<0.05, * p<0.10. 
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Appendix B: Data Appendix 
 

Data Source 
National 
Assessment of 
Academic 
Ability 
(NAAA) 

Years: 2007–2019 
Data description: Reading and math scores for grades 6 and 9, after-school study 
participation (student survey), and students’ socioeconomic status (parent survey, 
conducted only in 2013 and 2017) 
Source: The National Institute for Educational Policy Research 
https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html  
 

Weather Years: 2006–2019 
Data description: daily temperature (maximum, average, minimum) 
Source: Japan Automated Meteorological Data Acquisition System (AMeDAS)  
operated by the Japan Meteorological Agency (JMA) 
https://www.data.jma.go.jp/obd/stats/etrn/ 
 

Pollution Years: 2009 April–2019 March 
Data description: hourly SO2, NO, NO2, CO, OX, PM10 
Source: National Institute for Environmental Studies 
https://tenbou.nies.go.jp/download/  
 

Taxable 
income 

Years: 2006–2018 
Data description: taxable income per capita at the municipality level 
Source: Survey on Municipal Taxation Status (Shichōsonzei kazeijōky tou no shirabe) 
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html 
 

Student-
teacher ratio 

Years: 2006–2018 
Data description: student-teacher ratio at municipality level 
Source: School Basic Survey 
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm 
 

School AC 
penetration 
rate 

Year: 2018 
Data description: school AC penetration rate for public primary and secondary schools 
at the municipality level 
Source: Survey of Air Conditioning Installation Status in Public School Facilities 
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html 
 

Home AC 
share 

Year: 2014 
Data description: home AC share at the prefecture level 
National Survey of Family Income and Expenditure 
https://www.stat.go.jp/data/zensho/2014/index.html  

 

https://www.nier.go.jp/kaihatsu/zenkokugakuryoku.html
https://www.data.jma.go.jp/obd/stats/etrn/
https://tenbou.nies.go.jp/download/
https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09.html
https://www.mext.go.jp/b_menu/toukei/chousa01/kihon/1267995.htm
https://www.mext.go.jp/a_menu/shotou/zyosei/mext_01278.html
https://www.stat.go.jp/data/zensho/2014/index.html
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