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ABSTRACT 
 

Family Background and Income during the Rise of the Welfare State: 
Brother Correlations in Income for Swedish Men Born 1932–1968*

 
The goal of this study is to examine trends in the importance of family background in 
determining adult income in Sweden. We investigate whether the association between family 
background and income in Sweden has changed for cohorts born 1932-1968. Our main 
finding is that the share of the variance in long-run income that is attributable to family 
background, the so-called brother correlation in income, has fallen by some 11 percentage 
points from 0.34 for the cohorts of brothers born in the early 1930s to below 0.23 for the 
cohorts born around 1950. From then on, the correlations have been more or less stable and 
are in line with earlier estimates. When we adjust income for the income return to years of 
schooling, we find constant brother correlations in income. The main effect is coming from 
changes in the distribution of schooling across cohorts. This finding is consistent with the 
hypothesis that education policies have been a key factor in equalizing life chances in 
Sweden. 
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1. Introduction 

Social scientists from many academic disciplines have for a long time been interested in the 

association between family background, in a wide sense, and socio-economic status during 

adult life. In the last 10 – 15 years, economists have become more active in this research field 

and have, in particular, focused on the relationship between family background and adult 

income. Empirical research on such issues has become feasible in some countries thanks to 

household panel data sets (such as the Panel Study of Income Dynamics and the National 

Longitudinal Survey in the United States, and the German Socio-Economic Panel) in which 

families have been followed from one generation to the next. In other countries, such as the 

Nordic ones and Canada, administrative register data have been used to connect family 

members to each other. 

The most frequent analytical approach has been to estimate intergenerational 

income elasticities (or correlations) between fathers and sons. Solon (1999, 2002) summarizes 

such estimates for several countries. A less frequent, but very powerful approach is to 

estimate sibling correlations in income. The power of this approach comes from the fact that a 

sibling correlation tells us what fraction of the variation in the variable of interest (such as 

income) that can be attributed to factors that siblings share. Siblings who have grown up 

together, share both family factors, such as parental income, and neighborhood influences of 

various sorts, all of which affect their subsequent incomes. Thus, a sibling correlation is a 

broader measure of the importance of childhood conditions than an intergenerational one.1

Empirical research following these two approaches has produced a variety of 

interesting results. One of the most striking ones is the clear cross-national pattern that family 

background is more important for labor market achievement in the United States than in most 

                                                 
1 Note also that as long as closely spaced siblings are used to estimate a sibling correlation, income is measured 
for more or less the same income distribution. Parents’ and offsprings’ incomes are by necessity measured many 
years apart. Intergenerational estimates are, therefore, complicated by the fact that income distributions might be 
very different for the two generations. In such cases the intergenerational elasticity will deviate from the 
intergenerational correlation.  
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other rich countries. The Nordic countries turn out to have among the weakest associations 

between family background and labor market outcomes. Both estimated intergenerational 

income elasticities and sibling income correlations reveal such results. However, these results 

are limited in the sense that they have been obtained using data covering offspring (or 

siblings) that were born in the 1950s and early 1960s.2 It is, therefore, natural to ask whether 

this cross-national pattern has existed for a very long time, or if it is a more recent 

phenomenon, perhaps related to the rise of the ambitious Nordic welfare states. 

The main goal of this study is examine trends in the importance of family 

background in determining adult income in, starting with cohorts born in 1932. The main 

challenge is that we need data that satisfy the following requirements: First, we must be able 

to connect family members – either siblings or parents and children – to each other over a 

long period of time. Second, we need income data that are comparable across time for these 

family members. Third, we need large samples to measure brother correlations with a 

precision that is high enough to allow us to detect significant changes in family associations 

over time. To meet these requirements, we make use of the unique opportunity offered by 

Swedish administrative register data sets held by Statistics Sweden. Its multigenerational 

register records the parents of all children born since 1932 onward. Income data from 1968 

and onward are available from the tax assessment procedure. We use these data to estimate 

brother correlations in long-run income observed at ages 30 – 38 for closely spaced full 

siblings born 1932 – 1938, 1935 – 1941 and so on until 1962 – 1968. 

                                                 
2 See Solon (2002) and Corak (2006) for surveys of intergenerational elasticities. See Björklund et al. (2002) for 
comparable estimates of brother correlations in earnings for the Nordic countries (Denmark, Finland, Norway 
and Sweden) and the United States; Björklund et al. (2004) also report sister correlations for the Nordic 
countries. Regarding studies that explicitly focus on trends, the recent Norwegian trend studies by Bratberg et al. 
(2005, 2007) only go back to the cohort of offspring born 1950. Pekkala and Lucas (2007) study 
intergenerational mobility using Finnish data going back to cohorts born in 1930 and find a decline in the 
intergenerational elasticity from the cohorts born in 1930 through the early 1950s. However, they only observe 
income from 1970 onward for all cohorts and generations, so it is likely that their inference on trends is affected 
by so-called life-cycle bias. 
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The period covered by our data is quite long, so the cohorts that we analyze 

have grown up under markedly different circumstances. For example, several educational 

reforms took place during this period. The central theme of these reforms was to make the 

Swedish educational system more comprehensive and to extend the length of compulsory 

schooling. The fraction of each cohort that has gone to college has also increased 

substantially. To accommodate this expansion, new colleges have been established all over 

the country. The last cohorts were also affected by the expansion of daycare (or preschool) 

that started in the 1960s. Another change that could potentially affect the impact of family 

background is that hourly earnings and disposable income inequality fell during the 1960s and 

1970s.3 Significant changes in the Swedish family structure also took place during this period. 

Divorce rates started to increase in the 1960s and cohabitation (rather than formal marriage) 

became more frequent. At the same time, many women entered the labor market, first in the 

1960s and 1970s to mainly part-time jobs and later in the 1980s to full-time jobs.4

Our basic finding is that brother correlations in income have fallen by some 11 

percentage points from 0.34 for the cohorts born in the early 1930s to 0.23 for the cohorts 

born around 1950. From then on, the correlations have been more or less stable and are in-line 

with earlier estimates. In an initial attempt to say something about the mechanisms driving 

this decline, we repeat the experiment adding a control for schooling. This results in constant, 

or even somewhat rising, brother correlations in income. Thus, changes in the quantity of 

schooling and/or returns to schooling seem to be important factors behind the decline in 

brother correlations in income. The main effect appears to be coming from changes in the 

                                                 
3 See, e.g., Gustafsson and Uusitalo (1990) for an analysis of disposable income inequality for this period and 
Edin and Holmlund (1995) for hourly earnings inequality. Gustafsson and Uusitalo (1990) also show that there 
was no corresponding decline in total pre-tax factor income inequality over the same period; we use pre-tax 
factor income in this study. 
4 Women’s change from part-time to full-time work during our observation period would complicate the 
interpretation of changes in sister correlations. This is one reason why we only estimate brother correlations in 
this study. 
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distribution of schooling across cohorts. This finding is consistent with the hypothesis that 

school reforms have been a key factor in equalizing life chances in Sweden. 

The rest of the paper is organized as follows. In Section 2, we present the 

longitudinal income models that we use to estimate our brother correlations in income. We 

also explain how we estimate the models and discuss various sources of bias. Section 3 

describes the administrative data sources from which we have derived our samples as well as 

descriptive statistics for the cohorts we use in our analysis. The estimated correlations and 

sensitivity analyses are reported in Section 4. In Section 5, we present our attempts to account 

for the decline in sibling correlations. Section 6 concludes.  

 

2. Models and Estimation 

2.1 Modeling Income 

To clarify the useful interpretation of the sibling correlation, suppose first that we have a 

perfect measure of long-run income at our disposal. Long-run income, yij, for sibling j in 

family i can be modeled as 

 

(1) ijijy εµ += , 

 

where µ is the population mean and εij is an individual-specific component with population 

variance 2
εσ . The individual component represents the individual’s position in the long-run 

income distribution, which is what we want to focus our attention on. It can be viewed as the 

sum of two components 

 

(2)  ijiij ba +=ε , 
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where ia  is a permanent component common to all siblings in family i, and ijb  is a permanent 

component unique to individual  j in family i, which captures individual deviations from the 

family component.   The two components are independent by construction. Thus, the variance 

of ijε  can expressed as the sum of the stationary population variances of the family and 

individual components: 

 

(3) 222
ba σσσε += . 

 

The share of the variance in long-run income that can be attributed to family background 

effects is 

 

(4) 22

2

ba

a

σσ
σ

ρ
+

= . 

 

This share coincides with the income correlation of randomly drawn pairs of brothers, which 

is why ρ is called a sibling correlation. 

A sibling correlation can be thought of as an omnibus measure of the importance 

of family and community effects. It includes anything shared by siblings, -- -- parental income 

and parental influences such as aspirations and cultural inheritance, as well as things not 

directly experienced in the home  such as school, church and neighborhood effects. Genetic 

traits not shared by siblings, differential treatment of siblings, time-dependent changes in 

neighborhoods, schools, etc. are captured by the individual component ijb . If such non-shared 

factors are relatively more important than shared factor for incomes, the variance of the 

family effects will be small relative to the variance of the individual effects and the brother 
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correlation will be low. The more important the effects that brother share are, the larger is the 

brother correlation.  

We now turn to the practical case when we as researchers consider estimating 

long-run income by using panel data on annual income observations over a reasonably long 

period of time. Current income of sibling j in family i measured in year t can be modeled as 

 

(5) ijttijty εµ += , 

 

where tµ  is the population mean in year t and ijtε  is an individual-specific term with an 

assumed constant population variance 2
εσ . The error term, ijtε , can be viewed as the sum of 

three components 

 

(6) ijtijiijt vba ++=ε  

 

where (as before) ai is the permanent component common to all siblings in family i, and bij is 

the permanent component unique to individual j in family i. The new component, vijt, 

represents measurement errors and transitory shocks to income and age-related income 

differences. The model in (5) and (6) may be more realistic in multiplicative form. Thus all 

components are logged and we consider the sibling correlation of log income. 

This model can be further generalized by allowing the transitory shocks to be 

correlated across time. While, in principle, the full family of ARIMA processes is available, 

low order ARMA models are most practical. In particular, we examine the consequences for 

our estimated sibling correlations of allowing the transitory error to follow a stationary, first-

order autoregressive process 
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(7) ijtijtijt ηδνν += −1  

 

where ηijt is a mean zero, constant variance, ση², random shock to current income. This AR(1) 

process reflects the potential for persistence in transitory shocks, but will also pick up income 

changes due to life-cycle income profiles. It should be noted that we assume the white-noise 

errors in (7) to be uncorrelated across brothers.  

 

2.2 Estimation  

In order to calculate the sibling correlation in long-run income, ρ, we need estimates of the 

within-family variation, 2
bσ , and the between-family variation, σa². The two most common 

methods used in this context are the traditional analysis of variance (ANOVA) method and 

the restricted maximum likelihood (REML) method. The ANOVA method, however, has 

several drawbacks, particularly when dealing with unbalanced data as we are in this study. 

Our data are unbalanced because we include families with different numbers of brothers. 

The first, most serious drawback is that the distributional properties of the 

ANOVA estimators for unbalanced data are, in fact, not known. Second, we have no way of 

comparing the different ANOVA methods that are applied to unbalanced data in order to 

judge which method is most appropriate. Third, there is nothing to prevent ANOVA estimates 

of variance components from taking on negative values.5

The REML method, on the other hand, is known to produce consistent estimates 

of the necessary variance components even when the data are unbalanced (Searle et al., 1992). 

As such, it is clearly more suited to the task at hand. The only potential drawback of this 

method is that it forces us to make a number of a priori distributional assumptions concerning 

                                                 
5 See Searle et al. (1992) for more information on these and other topics concerning the estimation of variance 
components. Solon et al. (1991) and Björklund et al. (2002, 2004) apply the ANOVA method. Mazumder (2007) 
compare the performance of the ANOVA and REML methods and finds quite similar estimates from the two 
methods. Thus, we feel confident to compare our results with those in previous research.  
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the different variance components. But we would have been forced to do this anyway if we 

had used ANOVA estimates in any form of hypothesis testing.6

We use multiple-year observations on annual income to estimate the following 

mixed-effects model   

 

(8) ijtijiijtijt vbay +++= βX , 

 

where ai ~ N(0, σa²), bij ~ N(0, σb²) and vijt ~ N(0, σv²). This formulation allows for multiple 

fixed effects, β. The multiple fixed-effects model matrix Xijt includes a third-order polynomial 

in age in order to control for a deterministic age-income profile, reflecting the fact that 

individuals of different ages may find themselves at different points in their life-cycle income 

profile. Since we have multiple-year observations on current income, Xijt might also include 

year dummies, representing more general time effects such as inflation, business cycle and 

cohort effects. However, our age variable is perfectly co-linear with these time dummies. The 

controls for age and the intercept pick up differences in economic conditions and cohort 

effects instead.7  

 

2.3 Estimation Biases 

                                                 
6 The difference between the REML and full maximum likelihood (ML) approaches is that the ML estimates are 
obtained from joint maximization of the likelihood function with respect to both the fixed effects β and the 
variance components corresponding to equation (6) or (3). As discussed by Laird and Ware (1982), Harville 
(1977) and Dempster et al. (1981), REML estimation is in general preferable to ML, since the latter does not 
take into account the loss of degrees of freedom from the use of the residuals (rather than true errors) to estimate 
the variance components. While this inconsistency in ML would unlikely be important with the sample sizes we 
work with, there is no gain in working with ML rather than REML here. Searle et al (1992) and Pinheiro and 
Bates (1999) give readable expositions of estimating such models. Pinheiro and Bates (1999) discuss estimation 
under autocorrelated errors structures. 
7 We estimate the models using the xtmixed procedure in Stata (9.0). To estimate the model with autocorreacted 
AR(1) errors, we have used the lme package in R (Pinheiro and Bates, 1999). The computational burden was 
quite considerable. We needed to estimate the models on 64-bit processors in order to overcome the 3 gigabyte 
limit on process size built into 32-bit operating systems. 
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In our model of long-run income, the sibling correlation, ρ, was derived under the assumption 

that the transitory factors, vijt, were uncorrelated with the permanent components of income, ai 

and bij. To ensure that this condition holds, we estimate equation (8) using a large 

representative sample of the Swedish population. In contrast to this, many of the early 

estimates of sibling correlations were based on small, unusually homogeneous samples (e.g., 

Olneck, 1977; Kearl and Pope, 1986). More importantly, all of the studies prior to Solon et al. 

(1991) were based on single-year measures of current income, which (for lack of better data) 

was used as a proxy for long-run income. Furthermore, the age structure of the sample was 

most often ignored. As discussed in Solon et al. (1991), transitory shocks to income, age 

effects and cohort effects all tend to bias estimates of ρ strongly downwards. These biases 

become even more serious in homogeneous samples. 

Solon et al. (1991) proposed an ANOVA methodology for unbalanced data 

specifically designed to deal with these biases. Data from the PSID gave them multiple-year 

measures of current income. This allowed them to model transitory shocks to income as a 

first-order autoregressive process. They also included fixed age and year effects in order to 

deal with life-cycle, cohort and general time effects. Their methodology has since been used 

in several later studies (e.g., Björklund et al., 2002, 2004; Levine and Mazumder, 2007) and 

has been extended to the REML method by Mazumder (2007). 

We expand upon Solon et al.'s (1991) list of biases to include the phenomenon 

of life-cycle bias. Haider and Solon (2006) and Böhlmark and Lindquist (2006) demonstrate 

that the association between current and lifetime income varies strongly over the life-cycle. 

When this is true, the use of current income as a proxy for lifetime income leads to 

inconsistent parameter estimates, also known as life-cycle bias, even when the proxy is used 

as a dependent variable (as it is here).8

                                                 
8 For theoretical treatments of life-cycle bias in intergenerational estimates, see Jenkins (1987) and Grawe 
(2006). 
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Although this possibility has not been discussed in the previous literature, 

sibling correlations that use a single- or even a multiple-year measure of current income as a 

proxy for permanent income status will most likely suffer from this life-cycle bias. In 

Appendix A, we illustrate the basic idea underlying life-cycle bias in the context of sibling 

correlations using a rather simple income generating process. Our solution to this potential 

problem in this study is to stick to measuring income at the same ages for all cohort groups. If 

life-cycle bias is present but reasonably constant over time, our conclusions about trends will 

not be affected. Our choice has been to have income centered around age 34, an appropriate 

choice in Sweden, based on Böhlmark and Lindquist’s (2006) examination of the association 

between annual and lifetime income. 

 

3. The Data 

3.1 Data Description 

To identify siblings for several cohorts of Swedish brothers, we have extracted samples from 

Statistics Sweden's multigenerational register. This register covers all persons who were born 

in Sweden from 1932 onwards and have lived in Sweden (folkbokförda) at any time since 

1961. The register identifies the biological and adoptive parents and siblings of these persons. 

For the very first cohorts born in 1932 and 1933, only 37 and 69 percent of mothers, and 32 

and 62 percent of fathers, are identified. But for the 1934 cohort the corresponding numbers 

are as high as 81 and 74 percent, and from then on the identification improves gradually to 99 

percent of mothers and 95 percent of fathers in the 1950 cohort. 

We have extracted a 35 percent random sample of those born 1932 – 1967 from 

this register. For these individuals, we have identified all biological and adoptive siblings and 

parents and merged them to our analysis sample.9 There are very few adopted siblings and 

                                                 
9 Note that some siblings are born in 1968. 
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their frequency declined during the 1960s, so we have only included biological brothers in our 

analysis. 

The multigenerational register does not provide any information about family 

connections via cohabitation. To get such information from Swedish registers, one must 

instead use the censuses. The first census that is available for research purposes was done in 

1960 and subsequent ones were done every fifth year until 1990. Our data set also includes 

"social" siblings defined as those children who lived in the same census household, as well as 

"social" parents as the adults in the households with children. Of course, most social siblings 

and parents are also biological ones, so there are no strong reasons to suspect that the results 

are very sensitive to the choice of sibling definition. Indeed, Björklund et al. (2002) estimate 

brother correlations for cohorts born 1948 – 1965 by both a biological and a social sibling 

definition and found only small differences between the two definitions; 0.28 for biological 

brothers and 0.25 for social ones. So we stick to using biological siblings in our analysis of 

trends in Sweden. This allows us to go further back in time. 

We have merged income data from the official Swedish tax register for 1968 to 

2002 with our sibling sample. Our main income variable is total income from all sources of 

income (sammanräknad inkomst), or pre-tax total factor income. This variable is available 

from 1968 onward. As a complement, we use labor earnings (arbetsinkomst), but this variable 

is only available from 1974 onward. Although we would (of course) prefer to have data to 

allow us to go even further back in time, the income data for 1968 – 2002 allow us to estimate 

sibling correlations in income using yearly data centered around age 34. This is crucial, since 

we do not want life-cycle bias to affect our inference about trend in sibling correlations. 

One major change in the income concept took place between 1973 and 1974 

when some social benefits, most notably unemployment compensation, sickness benefits and 

parental leave benefits became taxable and were included in the income concept used in the 

income declaration process.  Because parental leave benefits were mainly used by mothers 
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and, at the time, were of rather short duration, the problematic transfers for our purposes are 

unemployment compensation and sickness pay. Fortunately, we have these benefits at our 

disposal for the years 1974 – 1980 so we can check the sensitivity to their inclusion from 

1974 onward. 

Our empirical model is based on the logarithm of annual income, so we have to 

make a decision about how to treat zero income observations as well as very low income 

observations. In our baseline estimations, we have followed the convention from previous 

research and excluded all zero observations. We also strived for a similar lower income limit 

over time and decided to use the largest of the minimum income observation for any year as 

the lower limit for each year. This lower limit is SEK342 (≈$50) in 2002 prices and thus this 

real income limit is applied to all years. We also exclude individuals who did not survive to 

the end of the observation window. 

We split our sample into eleven partly overlapping cohorts. The first cohort 

consists of brothers born 1932 – 1938. We then add three years to each consecutive cohort, so 

that the second cohort consists of brothers born 1935 – 1941. The last cohort consists of 

brothers born 1962 – 1968. Thus, our sibling correlations are estimated using closely spaced 

brothers only, i.e. born within seven calendar years of each other. 

 

3.2 Descriptive Statistics 

Descriptive statistics for the eleven cohorts we study are reported in Table 1. By following the 

rule that income should be observed in the age range 30 – 38 years, the mean age when 

income is observed ranges from 34.9 to 33.5 in our cohort groups. By construction of the sub 

samples, this age is somewhat higher for the first cohorts and somewhat lower for the last 

ones. These age differences are obviously small, but we have nonetheless checked that they 

do not affect our inferences about trends in the correlations. 
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The sample sizes, in terms of both the number of families and the number of 

individuals, are very large for each cohort group, which promises high precision in the 

estimates. We have followed the convention from previous studies to include singletons, 

which contribute to the precision of the estimation of the family variance component. Thus, 

the number of individuals is only some 20 – 30 percent higher than the number of families. 

Real log annual income fell slightly during the sluggish 1970s and 1980s, but rose again at the 

end of the observation period. The standard deviation of log annual income has increased over 

time. As mentioned in the introduction, this pattern is consistent with previous findings based 

on overall inequality measures for this income concept. Inequality of disposable income and 

hourly labor earnings, on the other hand, fell from 1960 to the early 1980s, when they started 

to rise again. 

The last column of the table gives information about the average number of 

income observations per individual and the fraction zeros among potential income 

observations. Note that the first two cohort groups are observed, on average, during a shorter 

period of time. The fraction of missing (or zero) income observations is low, ranging from 3.1 

percent for the first cohort group to 0.7 for the sixth group. It is important to note, however, 

that these zeros do not appear to be clustered within families. 

 

4. Results 

4.1 Baseline results 

We report our baseline results in Figure 1. The main impression is that the brother correlation 

declined significantly for the first five cohort groups, i.e., from the groups born 1932 – 1938 

through 1944 – 1950. For later cohorts, the brother correlation does not change very much. 

Since the estimates from then on are in the range 0.22 to 0.25, we conclude that brother 

correlations have been quite stable in the latter part of the period we study. The estimates for 
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the latter part of the period are also in the same ballpark as those in previous Swedish 

research. 

The decline from the first cohort (born 1932 – 1938) to the fifth (born 1944 – 

1950) is from 0.344 to 0.232. Thus, the fraction of income inequality attributable to family 

and community factors shared by closely spaced full brothers fell by just over 11 percentage 

points. We find this decline sizeable. Although 0.34 is below the estimates generally obtained 

for the United States for later cohorts, it is striking that a decline of this magnitude took place 

over such a short period. If this finding is robust to a number of sensitivity tests, an important 

next task is to understand the reasons for the decline in the importance of family background 

in income. 

Before turning to the sensitivity analyses, we look at the evolution of the 

variance components underlying the estimated sibling correlations in our baseline case. We 

report these components in Figure 2. We can see that the estimated variance of the family 

components first fell from the first cohort group to the fourth, and then started to rise again 

from the fifth group onwards. The latter rise was larger than the decline during the former 

period, so this variance component ended at a higher level than it started. The figure also 

shows that both the individual and the transitory variance components have risen over time. 

Thus, the large initial fall in the sibling correlation was caused by the fall in the family 

component. The subsequent, stable pattern of the sibling correlation is created by a 

“balanced” increase in both the family and the individual component. The last part of figure 2 

shows that the family component’s share of total income variation (including the transitory 

part), just like the sibling correlation in long-run income, fell by 11 percentage points. 

 

4.2 Sensitivity analyses 

Our baseline specification and sample definition involve a number of somewhat arbitrary 

choices. We investigate whether our results are robust with respect to a few of these decisions. 
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First, we consider our way of dealing with very low and zero (and missing) income 

observations. The reason that such observations are typically omitted from the samples used 

in the estimations in this literature is that the underlying model, with permanent family and 

individual components as well a transitory individual component, are usually fitted in 

logarithmic form. We report the number of missing income observations in Table 1 and at 

most they were 3.1 percent of all observations. These observations might represent truly low, 

or zero, incomes, but might also be missing due to missing reports to the tax authority. An 

alternative to omitting such observations is to assign a very low income to them . By doing so, 

and then logging this low value, one will give these observations very high weights in the 

estimations. Although we are skeptical of this alternative procedure, we want to illustrate that 

the consequences can be dramatic. In Figure 3a, we have set the missing values to SEK 1 

(≈$0.15). It turns out that we then get a different pattern, namely one of weakly rising sibling 

correlations, rather than the substantial decline of our baseline case. Furthermore, these new 

estimates are much smaller in magnitude than our baseline estimates. 

One could also argue the opposite, namely that very low, but positive income 

observations are inaccurate and poor indicators of long-run income. In that case, one might 

get more accurate results by eliminating these observations and by raising the lower income 

bound. In Figure 3b, we report results where we have done so. It turns out that the clear 

decline in our baseline case remains even when we raise the lower bound by the factors 10 

and 100. In Figure 3c, we report the results from an alternative experiment which treats zeros 

(and missing) and low incomes in what we believe to be a more appropriate fashion. Here, we 

have taken the mean of all income observations (including the zero and missing observations) 

from all nine years at ages 30 – 38. Then we logged this mean income and used it in the 

estimations. In doing so, we take these observations into account, but they do not get the 

extremely high weights that they get when the single income observation is logged. The price 

we pay is that we do not get a nice multiplicative model of the three earnings inequality 
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components; the transitory component is eliminated. But since the estimation of the transitory 

component is not the main purpose of our study, we are willing to pay this price. The results 

in Figure 3c show that the estimated brother correlations using this approach are very close to 

our baseline case. We, therefore, conclude that our basic result of falling correlations is not an 

artifact of our treatment of low income observations. 

In order to avoid the problem of life-cycle bias in our estimates, we chose to 

restrict our income variable to those observed between the ages of 30 and 38 years. As a 

rough check on the importance of the imposed age limits, we have re-estimated our trend 

using incomes for the ages 30 – 52. The results from this exercise are reported in Figure 4. 

We can see that there is a clear decline in the brother correlation even when the period over 

which we observe individual income is extended in this way. Indeed, the decline from the first 

cohort group to the last one is almost exactly the same as in the baseline. However, one must 

keep in mind that the estimates are comparable only for the first five cohort groups since from 

cohort group six onwards, the oldest individuals are younger than 52 years in 2002, the last 

year for our income observations.  If we restrict interest to the older cohort groups 1 – 5, we 

find a smaller decline over time, but one which is nonetheless statistically significant. 

Third, we should find out whether the results are affected by the change in the 

income concept that took place between 1973 and 1974. The major change for men was the 

inclusion of unemployment and sickness benefits in pre-tax factor income from then on. Since 

we have access to individual data for these transfers for the years 1974-80, we can investigate 

whether the results become clearly different when we deduct these transfers from total 

income. The results, reported in Figure 5, do not suggest that this is the case. We conclude 

that our basic finding is robust with respect to this change in the income concept. 

We have also estimated models with labor earnings instead of total factor 

income. These estimations, however, started with data from 1974, so we only have 

comparable estimates for cohort group five onward. The estimated brother correlations are 
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very close to those using total income -- the deviations were at most .02. Thus, we conclude 

that the stable pattern that we have found for brother correlations in total income also can be 

found for labor earnings. However, it is an open question whether the decline for the earlier 

previous cohorts also has taken place in brother correlations in labor earnings. 

Lastly, we have, examined if the trend in the sibling correlation is sensitive to 

autocorrelation in the transitory errors. Specifically, we re-estimate the baseline model, but 

now with an error term that follows an AR(1) process as in equation (7). The resulting sibling 

correlations are shown in Figure 6, along with the baseline. The level of the sibling correlation 

is substantially higher – now, about 7 to 8 percentage points more of the variation in 

permanent income is accounted for by the variance in family effects. However, the trend in 

the sibling correlation is not affected. The pattern here too is one of a declining importance of 

family background – albeit at a uniformly higher level than when the error is assumed to be 

white noise.10

Inspection of the estimated variance components shows that this upward shift in 

the level of our sibling correlations is due to a decrease in the individual-level variation, with 

no change in the family-specific component. Intuitively, this makes sense. The sizeable AR(1) 

autocorrelation parameter – varying between 0.58 and 0.62 – picks up a substantial part of the 

(across time) constant individual specific variation. 

The autocorrelated shocks are assumed to be uncorrelated across brothers, which 

means they do not reduce the variance of the family specific component. This increase in the 

sibling correlation through a decline in the individual-specific component is what is observed 

in other studies as well. For instance, Mazumder (2004) reports an increase of .04 in the 

correlation, using the exact same sample from the NLSY as in the white-noise case for the 

U.S. 

                                                 
10 Note that we do not provide confidence bounds to the estimated brother correlations in Figure 8, since for 
many of our cohorts, the estimation procedure in R, lme, was unable to estimate the variance of the estimated 
variance components.  

19 



 

The reason to worry about autocorrelation in the transitory error is that if the 

error process had undergone substantial change across time, this might have led us to observe 

a decline in sibling correlations even if none had in fact taken place. In particular, since the 

effect of a high autocorrelation is to reduce individual-specific variation and thus increase the 

family component's relative importance, a decline in the autocorrelation might increase the 

individual-specific component, reduce the sibling correlation and lead us to erroneously 

conclude that the share of family background had declined. This appears not to be the case.  

 
 

5. Understanding the fall in income correlations among brothers 

Having found a sizeable and robust decline in brother correlations in income from the cohorts 

born in the 1930s and 1940s to those born in the 1950s and 1960s, the next natural question to 

address is: Why has the importance of family background in determining adult income 

declined over time? The rise in the Swedish welfare state is one candidate explanation, but it 

is not a very precise one. The expansion of the welfare state included many different 

components, such as education policies of various sorts, housing policies, and transfer 

policies for the poor. In order to gain some clues about what type of mechanisms that might 

have been at work, we continue in section 5.1 with an analysis of the role of education. 

However, other factors not directly related to the expansion of the welfare state could have 

also made a difference. In section 5.2, we offer a short discussion of the role of changes in 

family structure as another explanation of the evolution of our brother correlations.   

 

5.1 Accounting for education 

We study the contribution of education in two steps. First, we “account” for the role of 

education in the estimated brother correlations by adding schooling variables with associated 

coefficients to the multiple fixed-effects matrix X in (8) above. In doing so, we estimate 
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income correlations among brothers using an income measure that is purged of the impact of 

education (and of variables correlated with education).11  Second, we investigate whether it is 

the quantity of schooling or the income return to schooling that accounts for the changes in 

the income correlations among brothers. To do this, we first look at the evolution of brother 

correlations in years of schooling. We then go on to investigate the role of the income return 

to education by keeping the schooling coefficient constant for all cohorts. 

Administrative register data on the Swedish population’s education are available 

from two sources. First, the 1970 census made a special effort to collect good nation-wide 

data on education. Second, in the mid-1980s, Statistics Sweden started a special education 

register covering the whole population. This register started out with the information in the 

1970 census, and was updated with reports from schools and various surveys. We use these 

two data sources in the following way. We strive for measuring education at age 31 or older 

and thus we use the 1970 census for cohorts born 1932 – 1939, the 1990 version of the 

education register for cohorts born 1940 – 1959, and the 1999 version of the register for 

cohorts born 1960 – 1968.  We infer years of schooling from seven main levels of education 

reported in these registers.12

We report descriptive statistics in Table 2. The second column shows that, as 

expected, the level of schooling has increased over time. This column also shows that the 

standard deviation of years of schooling was quite stable for the first five cohort groups and 

then fell by about a third. Taking into account that mean years of schooling increased over 

time, a relative measure of schooling inequality such as the coefficient of variation fell very 

little from the first to the fifth cohort group and then quite strongly for the rest of the period. 

The columns for the educational levels, denoted by the imputed years of schooling, show that 

                                                 
11 Mazumder (2007) performs such an analysis on US data and offers a further explanation of the approach. See 
also Levine and Mazumder (2007), who distinguish between years of schooling and the monetary return to years 
of schooling.  
12 We assign years of schooling as follows: 7 for old primary school, 9 for new compulsory school, 11 for short 
high school, 12 for long high school, 14 for short university, 15.5 for long university and 19 for a Ph.D. 
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the decline in schooling inequality can be mainly attributed to the fact that men have moved 

up from the lowest educational level to the next ones.  The last column reports the coefficient 

for years of schooling obtained when regressing the log of income on years of schooling and 

the age and year variables included in the multiple fixed-effects matrix X in equation (8) 

above. It appears that the evolution of the returns to schooling displays a U-shaped pattern as 

expected from the returns-to-schooling literature.13

In Figure 7, we report the estimated sibling correlations when we have purged 

income from the impact of years of schooling.14 It turns out that these correlations are quite 

stable over the whole period. Thus, we conclude that there is something associated with 

schooling that drives the decline in the overall sibling correlations. Ideally, we would now 

like conduct a formal decomposition analysis that breaks the impact of education down into 

changes in the quantity (years and/or distribution) of schooling and changes in the income 

return to schooling. While we are not aware of any such decomposition technique, we can 

attempt to illustrate the differential roles of quantities and prices. 

In Figure 8, we report estimated brother correlations in years of schooling.15 

These correlations are, as expected from previous research, higher than the income 

correlations. Our estimates cluster just below 0.50. Compared to the income correlations, the 

schooling correlations are more stable across cohorts. The only notable change is the one from 

0.52 for the first cohort group to 0.48 for the second, followed by another small decline to 

0.46 for the third group. In all this is a decline of 0.06, which can be compared with the 

decline of 0.07 for the income correlations for the first three cohorts and 0.11 for the first five 

cohorts. After this initial drop, we find a remarkable stability in the brother correlation in 

schooling. This fall in the sibling correlation could potentially explain part of the decline in 

                                                 
13 See e.g. Gustavsson (2006) for a recent overview. 
14 We have also used a more flexible specification with dummies for each level of education, but the results were 
basically the same. 
15 It should be noted that the REML procedure we use to estimate the variance components rely on the outcome 
being normally distributed. This assumption may not be valid for years of schooling, 

22 



 

the sibling correlation in income, at least for the first three cohorts. At the same time, the 

returns to education fell for the first five cohorts, which combined with the falling (and then 

stable) sibling correlation in schooling may also be part of the story. 

To investigate the relative roles of prices – the return to schooling – and 

quantities – the amount and distribution of years of schooling – in accounting for the observed 

decline in the sibling correlation, we have estimated sibling correlations for incomes with the 

return to schooling held constant at the level received by our first cohort ( 0.069). We have 

subtracted from each member of each cohort their schooling times the schooling coefficient 

for that cohort, and added in their schooling times 0.069. Thus, all members of a cohort get 

the return they would have had, if the return to schooling had remained constant across all 

cohorts.  

The results are shown in Figure 9. The estimated trend is very similar to that 

found for our base case in Figure 1, albeit that the decline is a little smaller, being around 0.10 

as opposed to 0.12 in the base case. Also, the decline with the return to schooling held 

constant in Figure 9 declines less rapidly than the base case, with a reasonably even secular 

decline across all cohorts (with the exception of the hump for cohort 8). We conclude that, 

although changes across cohorts in the return to education appear to have had an effect on the 

sibling correlation, the broad pattern of a substantial secular decline is still valid once we 

standardize the return to schooling. Thus, something in the distribution of years of schooling 

is likely to have a substantial role in the change in the importance of family background for 

adult male income in Sweden.  Levine and Mazumder (2007) also report a negligible role of 

changes in the returns to schooling. This finding is consistent with the hypothesis that school 

reforms have played a key role in equalizing life chances in Sweden. 

 

5.2 Other factors: family structure 
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Although our main motivation for this study is to learn how the relationship between income 

and family background evolved over the period when Sweden’s welfare state expanded 

substantially, it is important to recognize that a relationship such as the sibling correlation in 

income might be driven by quite different factors. Another candidate explanation is changes 

in family structure that might have had an impact on what brothers share of their family and 

neighborhood background. An obvious dimension of family structure is the age structure of 

the siblings. Most likely, closely spaced siblings share more background influences than more 

widely spaced ones. For example, closely spaced siblings are exposed to the same “shocks” of 

various sorts, be it parental income changes or unemployment experiences or parental 

separation. 

In Table 3, we report two measures of family structure from the samples we 

have used in our estimations, namely (i) the average number of brothers and (ii) the average 

age difference between the brothers. Both variables are measured for brothers within the age 

span of each cohort that we use in our estimations. The general pattern is that neither 

dimension of family structure has changed much over the period of our study. The number of 

brothers per family ranges from 1.20 to 1.22, which is consistent with the very stable cohort 

fertility rates close to 2.0 for Swedish women over the whole last century, see e.g. Björklund 

(2006). The average age difference between brothers did not change much either; the range is 

from 2.52 to 2.74 and only from 2.67 to 2.74 if the very first cohort group is eliminated. We 

find it quite unlikely that the sizeable decline in the brother correlation in long-run income 

from the cohorts born in the mid 1930s to those born around 1950 can be attributed to factors 

such as family size and the spacing of children. Nonetheless, we find it an interesting avenue 

for future research to explore how various dimensions of family structure affect similarities 

and differences among siblings.   

 

6. Conclusions 
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We have found that factors related to family background were more important for the incomes 

of Swedish men born in the 1930s and 1940s compared to those born during the 1950s and 

have been stable since then for cohorts born through 1968. Our estimated brother correlations 

in total factor income fell from 0.34 for men born in the early 1930s to 0.23 for men born 

some 15 years later. During the subsequent 15 years, the estimated brother correlations are 

quite stable. Our conclusion that there is a substantial decline in the importance of family 

background in income is robust to a number of sensitivity tests. 

In order to say something about the mechanisms driving this decline, we 

introduced years of schooling into the analysis. First, we re-estimated our brother correlations 

in income after having purged income from the income effect of years of schooling. We found 

that such correlations have been stable over time, which brought us to the conclusion that 

schooling (or something related to schooling) is able to account for the decline in the income 

correlations among brothers. Then we analyzed the role of schooling by examining brother 

correlations in years of schooling and by constructing a counterfactual with constant income 

returns to schooling. From this experiment, we conclude that changes in the distribution of 

schooling across cohorts appear to be more important than changes in the returns to schooling 

for explaining the observed decline in the brother correlations in income. This finding is 

consistent with the hypothesis that education policies have played a key role in equalizing life 

chances in Sweden. 

Needless to say, more research is required to find out about the mechanisms 

behind the changes we have observed. It would be both interesting per se and useful for 

analytical purposes to know whether intergenerational income relationships also declined over 

this period. The decline in income correlations among brothers could, in principle, be caused 

by a weaker impact of parental income on offspring, or by a weakening of factors that are 

orthogonal to parental income, or by some combination of these effects. Unfortunately, 

Swedish register data on income are not available long enough back in time to let us estimate 
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intergenerational income associations for the same cohorts for which we have estimated 

brother correlations. 

Using more readily available, non-income data, sociologists’ research on 

intergenerational class mobility in Sweden suggests that relative class-mobility rates (social 

fluidity) rose somewhat for the cohorts for which we observed falling correlations among 

brothers (Jonsson 2004). Because social class and long-run income are quite strongly 

correlated, we would guess that intergenerational income mobility also fell during this period 

of time. However, considering the very different metrics used in these two strands of literature 

it is hard to translate the changes in intergenerational class mobility into changes in 

intergenerational income associations. Thus, a cautious conclusion is that at least a part of the 

decline in income correlations among brothers may be attributed to weaker associations in 

income between fathers and sons. 
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Appendix A. Life-Cycle Bias in Sibling Correlations 
 
In this Appendix, we expand upon Solon et al.'s (1991) list of biases to include the 
phenomenon of life-cycle bias. Haider and Solon (2006) and Böhlmark and Lindquist (2006) 
demonstrate that the association between current and lifetime income varies strongly over the 
life-cycle. When this is true, the use of current income as a proxy for lifetime income leads to 
inconsistent parameter estimates, also known as life-cycle bias, even when the proxy is used 
as the dependent variable. 

Although this possibility has not been discussed in the previous literature, 
sibling correlations that use a single- or even a multiple-year measure of current income as a 
proxy for permanent income status will most likely suffer from this life-cycle bias. The 
following, rather simple income generating process can be used to illustrate the basic idea 
underlying life-cycle bias in the context of sibling correlations. 

Imagine that parents in family i invest an equal amount in each of their j 
children and that this investment allows their children to earn at least αi upon entering the 
labor market. This initial human capital endowment may vary across families by σα². Upon 
entering the labor market, each sibling actively manages his or her endowment by making 
decisions about hours worked, careers, further investments in human capital, etc. These 
choices allow their income to grow at a rate of γij that may vary across choices made and 
individuals by σγ². This income generating process can be written as 
 
yijt = αi + γijt. 
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In a two-period model, the income of child j in family i in period 1 is 
 
yij1 = αi + γij, 
 
with variance 
 
Var(yij1) = σα² + σγ², 
 
assuming that α and γ have a zero covariance. 
 
The sibling correlation calculated using current, period-1 income is 
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Income of child j in family i in period 2 is 
 
yij2 = αi + γij2, 
 
with variance 
 
Var(yij2) = σα² + 4σγ². 
 
The sibling correlation calculated using current, period-2 income is 
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The average, long-run income of sibling j in family i is given by16

 
yij = 1/2(αi + γij + αi + γij2) = αi + 3/2γij, 
 
with variance:  
 
Var(yij) = σα² + 9/4σγ². 
 
The sibling correlation calculated using permanent income is 
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In this simple two-period model, the true sibling correlation is under estimated using early 
observations and over estimated using late one, i.e., ρ1 > ρ > ρ2. 

Using current income as a proxy for long-run income produces a biased estimate 
of the sibling correlation, if what we are interested in is the effect of family background 

                                                 
16 Without loss of generality we can assume that agents do not discount period-2 income. 
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effects on permanent income status. In this particular example, we overestimate the similarity 
between siblings when they are young and underestimate it when they are old. This bias is 
due to the existence of heterogeneous income paths over the life cycle, i.e. to the fact that 
returns to human capital investments, γij, are allowed to vary across siblings and over time. 
This bias differs from the deterministic age and cohort effects discussed in Solon et al. (1991) 
and Mazumder (2007) in so much that it cannot be eliminated by adding fixed effects in age 
or years, since it is due to variations around the central tendency. 

It is important to keep in mind, however, that this simple example is only one of 
many possible income generating processes. The model above assumes that all siblings start 
off identical and become more different over time, as assumption embodied in a zero 
covariance between the intercept and the growth rate. But it could be the case that siblings 
start off different and become more similar over time, or that between family differences rise 
or fall over time, which would affect our estimates of the sibling correlation through changes 
in σα². Each of these possible scenarios would affect our estimate of the sibling correlation in 
long-run income differently. 

Our solution to this problem in this study is to stick to measuring income at the 
same ages for all cohort groups. If lifecycle bias is present but reasonably constant over time, 
our conclusions about trends will not be affected. Our choice has been to have income 
centered around age 34, an appropriate choice in Sweden, based on Böhlmark and Lindquist’s 
(2006) examination of the association between annual and lifetime income.
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Table 1. Sample Descriptives by Cohort. 

(Cohort) 
Born 

Years when 
income is 
observed 

Mean age at 
which 

income is 
observed 

Number 
of 

families 

Number of 
individuals 

Log 
annual 

incomea

Average number 
of income 

observations per 
individual; 

fraction of zero 
income 

observations. 
(1) 
1932-
1938 

1968-1976 34.9 
(2.4)b 67555 81793 9.65 

(.47 ) 5.5; .031 

(2) 
1935-
1941 

1968-1979 34.5 
(2.5) 98476 120498 9.66 

(.47) 7.1; .027 

(3) 
1938- 
1944 

1968-1982 34.1 
(2.6) 133597 164425 9.66 

(.49) 8.3; .021 

(4) 
1941-
1947 

1971-1985 34.0 
(2.6) 165464 204111 9.63 

(.51) 8.7; .014 

(5) 
1944-
1950 

1974-1988 34.0 
(2.6) 181053 221773 9.58 

(.53) 8.9; .009 

(6) 
1947-
1953 

1977-1991 34.0 
(3.7) 177489 214537 9.55 

(.56) 8.9; .007 

(7) 
1950-
1956 

1980-1994 34.0 
(3.7) 171608 206637 9.56 

(.59) 8.9; .008 

(8) 
1953-
1959 

1983-1997 34.0 
(2.6) 170336 205349 9.59 

(.62) 8.9; .010 

(9) 
1956-
1962 

1986-2000 34.0 
(2.6) 168320 202565 9.61 

(.66) 8.8; .014 

(10) 
1959- 
1965 

1989-2002 33.9 
(2.6) 167132 202933 9.66 

(.69) 8.7; .017 

(11) 
1962-
1968 

1992-2002 33.5 
(2.4) 150030 182696 9.70 

(.69) 8.7; .018 

(a) The mean and standard deviation of annual income is measured for all observations used in the estimations. 
(b) Numbers in parentheses are standard deviations. 
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Table 2. Schooling and Returns to Schooling by Cohort. 
Number of individuals in sample with n years of 

schooling. % of sample cohort. (Cohort) 
Born 

Mean years 
of 

schooling 7 9 11 12 14 15.5 19 

Income 
Returns

(1) 
1932-
1938 

9.45 
(2.91)a

47675 
52% 

4400 
5% 

17755 
19% 

11538 
13% 

3308 
4% 

6656 
7% 

671 
1% 

.069 
(.001) 

(2) 
1935-
1941 

9.84 
(3.02) 

59583 
45% 

6793 
5% 

27023 
21% 

18336 
14% 

6693 
5% 

11321 
9% 

1263 
1% 

.058 
(.000) 

(3) 
1938- 
1944 

10.41 
(3.11) 

63645 
36% 

10243 
6% 

38838 
22% 

27006 
15% 

12635 
7% 

19832 
11% 

2213 
1% 

.046 
(.000) 

(4) 
1941-
1947 

10.82 
(3.06) 

61467 
29% 

16276 
8% 

51184 
24% 

34949 
16% 

18115 
8% 

28588 
13% 

2744 
1% 

.041 
(.000) 

(5) 
1944-
1950 

11.08 
(2.91) 

49925 
22% 

25423 
11% 

59375 
26% 

37896 
17% 

21726 
9% 

32200 
14% 

2497 
1% 

.039 
(.000) 

(6) 
1947-
1953 

11.32 
(2.71) 

30305 
14% 

35400 
16% 

63159 
29% 

33343 
15% 

24733 
11% 

30747 
14% 

2125 
1% 

.041 
(.000) 

(7) 
1950-
1956 

11.49 
(2.48) 

13885 
7% 

44112 
21% 

69345 
33% 

26537 
13% 

26520 
13% 

27890 
13% 

1755 
1% 

.047 
(.000) 

(8) 
1953-
1959 

11.57 
(2.29) 

4667 
2% 

47675 
23% 

78335 
38% 

22369 
11% 

26208 
13% 

26589 
13% 

1367 
1% 

.057 
(.001) 

(9) 
1956-
1962 

11.68 
(2.19) 

1654 
1% 

41473 
21% 

84541 
42% 

20571 
10% 

27142 
13% 

25168 
12% 

1521 
1% 

.065 
(.001) 

(10) 
1959- 
1965 

11.79 
(2.15) 

1194 
1% 

35114 
17% 

88384 
44% 

20036 
10% 

30303 
15% 

23999 
12% 

1813 
1% 

.068 
(.001) 

(11) 
1962-
1968 

11.85 
(2.10) 

765 
0% 

27881 
15% 

82363 
46% 

17866 
10% 

29913 
17% 

20373 
11% 

1551 
1% 

.068 
(.001) 

(a) Numbers in parentheses are standard deviations. 
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Table 3. Number of Brothers per Family and Age Difference between Brothers by Cohort. 

(Cohort) 
Born 

Average number 
of brothers per 

family 

Average age 
difference 

(Cohort) 
Born 

Average number 
of brothers per 

family 

Average age 
difference 

(1) 
1932-
1938 

1.21 2.52 
(7) 
1950-
1956 

1.20 2.71 

(2) 
1935-
1941 

1.22 2.67 
 (8) 
1953-
1959 

1.21 2.70 

(3) 
1938-
1944 

1.23 2.74 
(9) 
1956-
1962 

1.20 2.72 

(4) 
1941-
1947 

1.23 2.69 
(10) 
1959-
1965 

1.21 2.74 

(5) 
1944-
1950 

1.22 2.71 
(11) 
1962-
1965 

1.22 2.64 

(6) 
1947-
1953 

1.21 2.71    
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Table A1. Baseline Estimations. 

(Cohort) 
Born 

Sibling 
Correlation 

Family 
Variation 

Individual 
Variation 

Transitory 
Variation 

Family Share 
of Total 

Variation 
(1) 

1932-1938 0.344 0.063 0.012 0.061 0.258 

 (0.0082)a (0.0016) (0.0015) (0.0001) (0.0062) 
(2) 

1935-1941 0.314 0.054 0.119 0.071 0.223 

 (0.0065) (0.0012) (0.0012) (0.0001) (0.0047) 
(3) 

1938-1944 0.272 0.045 0.120 0.087 0.178 

 (0.0056) (0.0010) (0.0010) (0.0001) (0.0037) 
(4) 

1941-1947 0.261 0.044 0.125 0.101 0.163 

 (0.0051) (0.0009) (0.0009) (0.0001) (0.0032) 
(5) 

1944-1950 0.232 0.042 0.137 0.113 0.142 

 (0.0050) (0.0009) (0.0010) (0.0001) (0.0031) 
(6) 

1947-1953 0.233 0.045 0.150 0.130 0.140 

 (0.0053) (0.0011) (0.0011) (0.0001) (0.0032) 
(7) 

1950-1956 0.230 0.050 0.167 0.148 0.137 

 (0.0054) (0.0012) (0.0013) (0.0002) (0.0033) 
(8) 

1953-1959 0.255 0.064 0.186 0.167 0.153 

 (0.0053) (0.0014) (0.0014) (0.0002) (0.0032) 
(9) 

1956-1962 0.236 0.069 0.225 0.181 0.146 

 (0.0053) (0.0016) (0.0017) (0.0002) (0.0033) 
(10) 

1959-1965 0.230 0.074 0.249 0.193 0.144 

 (0.0053) (0.0018) (0.0018) (0.0002) (0.0034) 
(11) 

1962-1968 0.220 0.072 0.256 0.193 0.138 

 (0.0056) (0.0019) (0.0020) (0.0002) (0.0036) 
(a) Numbers in parentheses are standard errors. The standard errors of the sibling correlations and of the family 
share of total variation are calculated with the delta method using the nlcom command in STATA. 
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Figure 1. Baseline estimates of brother correlations in income with 95 % 
confidence intervals. 
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Note: The estimates of the sibling correlations as well as their 
corresponding standard errors are reported in Table A1. The standard 
errors of the sibling correlations are calculated with the delta method using 
the nlcom command in STATA.  
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Figure 2. Estimated variance components for the baseline case.  
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Note: The estimates of the variance components as well as their 
corresponding standard errors are reported in Table A1. The standard 
errors of the family share of total variance are calculated with the delta 
method using the nlcom command in STATA.  
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Figure 3a. Sensitivity analysis of low income observations: setting missing 
values to SEK1.  
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Figure 3b. Sensitivity analysis of low income observations: raising the lower 
income bound. 
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Figure 3c. Sensitivity analysis of low income observations: using the log of 
average income at ages 30-38. 
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Figure 4. Sensitivity analysis of the impact of the age at income 
observations, 30-52 years instead of 30-38 in the baseline case. 
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Figure 5. Sensitivity analysis of the impact of the change in the change in 
the income concept from 1973-74. Subtraction of UI and sickness benefits 
for the years 1974-1980. 
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Figure 6. Sensitivity analysis allowing for an AR(1) process in the 
residuals. 
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Figure 7. Income correlations controlling for the income impact of years of 
schooling. 
 

.1
5

.2
.2

5
.3

.3
5

si
bl

in
g 

co
rr

el
at

io
n

1 2 3 4 5 6 7 8 9 10 11
cohort

schooling control baseline

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

42 



 

Figure 8. Brother correlations in years of schooling. 
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Figure 9. Brother correlation in income with constant returns to 
schooling. 
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