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Abstract

This paper concerns the problem of inferring the e¤ects of covariates on in-

tergenerational income mobility, i.e. on the relationship between the incomes of

parents and future earnings of their children. We focus on two di¤erent measures

of mobility- (i) traditional transition probability of movement across income quan-

tiles over generations and (ii) a new direct measure of upward mobility, viz. the

probability that an adult child�s relative position exceeds that of the parents. We

estimate the e¤ect of possibly continuously distributed covariates from data using

nonparametric regression and average derivatives and derive the distribution theory

for these measures. The analytical novelty in the derivation is that the dependent

variables involve nonsmooth functions of estimated components- marginal quantiles

for transition probabilities and relative ranks for upward mobility- thus necessi-

tating nontrivial modi�cations of standard nonparametric regression theory. We

use these methods on US data from the National Longitudinal Survey of Youth

to study black-white di¤erences in intergenerational mobility, a topic which has

received scant attention in the literature. We document that whites experience

greater intergenerational mobility than blacks. Estimates of conditional mobility

using nonparametric regression reveal that most of the interracial mobility gap can

be accounted for by di¤erences in cognitive skills during adolescence. The methods

developed here have wider applicability to estimation of nonparametric regression

and average derivatives where the dependent variable either involves a preliminary

�nite-dimensional estimate in a nonsmooth way or is a nonsmooth functional of

ranks of one or more random variables.
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1 Introduction

Intergenerational mobility (IGM, henceforth) refers to the extent of movement in eco-

nomic status across generations. A society with high mobility o¤ers greater "equality of

opportunity" at birth because parent�s economic status in such a society has a smaller

e¤ect on the eventual economic status of their children. Most of the empirical economic

literature on IGM has focused on a single parameter as a summary measure of mobility

viz. the elasticity of children�s earnings with respect to their parents�earnings.1 However,

there is clearly reason to think that mobility patterns might di¤er markedly across sub-

groups of the population. In the US, for instance, it is particularly interesting to know

whether the prospects for upward mobility di¤er across racial groups, given the legacy of

slavery and segregation. From a policy perspective, it is also important to understand

the channels through which intergenerational income persistence arises. For example,

if parents face borrowing constraints that impede human capital investment this could

induce lower mobility for parents with talented children but limited means (Becker and

Tomes, 1979). Therefore, it would be useful to know how mobility measures are a¤ected

by the inclusion of covariates that measure levels of human capital such as schooling or

test scores.

This paper develops a theory of nonparametric inference for estimating the e¤ects of

covariates on a set of statistics based on the joint distribution of parent and child income.

This distribution theory allows us to investigate di¤erences in IGM across population

subgroups and to examine how these di¤erences are a¤ected by covariates without making

restrictive distributional or functional form assumptions on the data generating process.

The methodology is then applied to data from the National Longitudinal Survey of Youth

(NLSY) where we investigate di¤erences in mobility patterns between black and white

men in the US.

Theoretical analysis of intergenerational income mobility has traditionally been based

on two broad and complementary measures- (i) the intergenerational elasticity (IGE)2

which is simply the regression coe¢ cient obtained by regressing (log) child�s permanent

income on (log) parents�permanent income and (ii) matrices of transition probabilities

1See Corak (2006) or Bowles and Gintis (2002) for recent surveys of the literature.
2The intergenerational correlation (IGC) has also been used by many researchers. The IGC is qal-

itatively similar to the IGE and the two measures are equivalent when the variance in in income is

unchanging across generations.
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which measure the rates of movement across quantiles of the distribution over subse-

quent generations. The IGE, therefore, relates mean economic status in one generation to

economic status in the previous generation,3 while transition probabilities capture rela-

tionships between relative positions across generations including positions far away from

the median. The IGE, for instance, tells us nothing about a son�s probability of staying

in the bottom quintile of the overall income distribution of his cohort, given his father�s

(relative) position among his generation.

Another important limitation of the IGE is that one cannot use it to analyze mobility

di¤erences across population subgroups with respect to the entire distribution. For ex-

ample, the IGE for blacks only describes the rate at which earnings among black children

regress to the black mean �not the mean of the entire distribution. In contrast, transition

probabilities can be used to make statements concerning the movements of blacks across

the income distribution of the entire population comprising both blacks and whites.

On the other hand, it is straightforward to measure e¤ects of covariates on the IGE,

one simply needs to include the covariates and their interactions with parents�income as

additional regressors and the statistical theory is straightforward. In contrast, a formal

statistical theory for using covariates in transition matrices seems to be lacking. The

development of such a theory therefore would combine the advantages of transition ma-

trix based approaches together with the ability to investigate the e¤ects of covariates on

mobility. For instance, using PSID data from the US, Hertz (2005) has previously shown

that mobility among blacks is low at the low end of the income distribution and high at

the high end relative to whites. Conditional transition probabilities will let us infer to

what extent this di¤erence can be attributed to di¤erences across say, education groups

rather than di¤erences within education levels. In other words, it can be used to answer

questions like: would an additional year of education increase a black son�s mobility by

more or less than that for a white son. In addition, we can also investigate black-white

di¤erences in the mobility "levels" at di¤erent points in the distribution of parent income.

In that sense, compared to the IGE, conditional transition probabilities allow us to answer

a richer set of questions that are of more direct relevance for policy design.

The distribution theory for estimated marginal transition probabilities was previously

developed in Formby, Smith and Zheng (2004), henceforth FSZ. When the relevant covari-

3One may use quantile regressions to calculate IGE to avoid problems of outliers in and top-coding of

earnings data.
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ates are discrete, one can simply apply the results of FSZ within each covariate category

to conduct inference on conditional transitions. But with continuously distributed covari-

ates, the parameters of interest are in�nite-dimensional and thus nonparametric smooth-

ing methods are warranted.4 The theory of inference here is distinct from that of usual

nonparametric regression because the dependent variable involves nonsmooth functions of

the relevant quantiles which are also typically estimated from the same data. One relevant

covariate of signi�cant interest is the son�s percentile score on Armed Forces Qualifying

Test (often taken to be an indicator of cognitive skills in adolescent years- see discussion

below) which runs from 1 to 100 in the data. Given the size of typical household surveys,

analysis within each percentile will be very imprecise, particularly when broken up by

racial subgroups. Furthermore, small di¤erences in AFQT percentiles, unlike di¤erences

in race, are unlikely to imply big changes in functional relationships. Therefore, treat-

ing AFQT score as a continuously distributed covariate will be the natural and correct

approach.

However, one drawback of using transition probabilities is its overtly disaggregate na-

ture (i.e. there are an in�nite number of transition probabilities depending on which

quantiles are compared) and a summary measure of mobility across relative income po-

sitions is useful for consolidating the information provided in transition matrices. In this

paper, we introduce a new and intuitively simple measure of overall upward mobility in

relative terms and derive distribution theories for inferring both its level and the e¤ects

of covariates on it from data. Our measure is simply the probability that a son�s income

rank in his generation exceeds his parents�rank in the prior generation. A nice feature

of this measure is that it probably captures what most policymakers actually think of

as mobility, namely to what extent are people doing better than their parents? It is a

single summary measure and therefore easy to interpret. At the same time, its value

does not depend on arbitrary discretization of income distributions, unlike existing mea-

sures of overall mobility.5 In our application with US data, we show that black-white

di¤erences in mobility are much smaller when based on our measure of upward mobility

4Parametric analysis is problematic here because it is unclear what type of joint distributions imply,

e.g. a probit form for conditional transition probabilities. In the application, we show that restrictive

parametric inference, as an approximation, can produce misleading qualitative conclusions (see �g. 7 and

discussion in section 4.2.1, below).
5Several overall mobility measures based on arbitrary discretization of income exist in the literature

(see section 2.2 below for more on this point).
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compared to traditional (upward) transition probabilities. This is because (i) our mea-

sure captures small upward movements in relative positions of a large number of Blacks

which are ignored by transition probabilities and (ii) blacks typically need much larger

upward mobility to surpass a common percentile threshold than whites because white in-

comes �rst-order stochastically dominate blacks everywhere (c.f. section 2.2 below) and,

in particular, below any common threshold.

1.1 Contributions

The key methodological contribution of this paper is to develop a nonparametric theory of

inference when the outcome variables of interest involve nonsmooth functions of initially

estimated parameters or functionals. For transition probabilities, the outcome variable

involves a nonsmooth function of marginal quantiles of income. For estimates of upward

mobility, the outcome variable involves nonsmooth functions of estimated ranks. To

our knowledge, no method currently exists in the econometric or statistics literature for

deriving the distribution theory for such estimates. In the present paper, we develop

precisely such a methodology.

For analysis of conditional transition probabilities and its derivatives, we control �rst

stage estimation errors using stochastic equicontinuity type arguments. But owing to

the peculiar forms of the parameters here, one cannot use su¢ cient conditions typically

used in the parametric or semiparametric literature (c.f. Andrews (1994), section 4). We

therefore establish equicontinuity properties directly using the U-statistic type forms of

the relevant error processes. For analysis of upward mobility involving estimated ranks in

the �rst stage, we show and use Hadamard di¤erentiability of the map from the joint c.d.f.

of father and son�s income to upward mobility and for controlling �rst stage estimation

errors, we use Hoe¤ding�s inequality.

For both measures, the initial estimation error a¤ects the asymptotic distribution

of both the unconditional mobility estimate and its density-weighted average derivative

(w.r.t. covariates) but not that of the level e¤ects of covariates on it. The intuition behind

this result is that the initial estimates have parametric or exponential rates of convergence

while estimated level e¤ects of covariates typically converges at slower rates.

Although the methods developed here are motivated by and are crucial for nonpara-

metric analysis of IGM, they have more general applicability. For one, these tools can

be directly used to analyze economic mobility for an individual over her own lifetime-
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i.e. how eventual position in the income distribution of her cohort (say, at retirement) is

related to her starting position. Another example would be the relation between initial

and eventual positions of a �rm in the size distribution of �rms in its industry. More gen-

erally, whenever the parameter of interest is a nonparametric regression or a functional

thereof but the dependent variable involves preliminary components estimated from the

same dataset, the methods developed here can be utilized to get the respective distribu-

tion theories. For instance, consider estimating the e¤ect of covariates on the probability

that a household lies below the poverty line. The poverty line is often estimated from

the same dataset6 and therefore the methods developed here will be applicable to that

case directly. Alternatively, consider estimating the e¤ects of covariates like study hours

and IQ score on the probability that a high school senior is in the top 5% of his graduat-

ing class. High school class rank often has important implications for college admissions

beyond high-school GPA on which this rank is based. They reveal a student�s relative

performance with respect to his peers in the same school and so implicitly control for

inter-school variations in absolute grades. The methodology of this paper can be used to

conduct statistical inference on regressions of such relative outcomes on covariates. Note

well that such relative regressions tell us something very di¤erent from quantile regres-

sions. The former captures e¤ects of covariates on the relative position in the marginal

distribution of the dependent variable but the latter pertains to relative position in its

conditional (on the covariate) distribution.

We also provide a number of novel substantive contributions to the empirical liter-

ature on IGM. We are the �rst to use a large and nationally representative sample of

blacks and whites to estimate interracial di¤erences in IGM.7 We document that there

are sizable di¤erences in upward transition probabilities between blacks and whites. We

apply nonparametric methods to investigate how a continuous measure of cognitive skill,

the Armed Forces Qualifying Test (AFQT), a¤ects the transition probabilities for blacks

and whites. AFQT scores have been previously used to account for other aspects of

black-white inequality (Neal and Johnson, 1996; Cameron and Heckman, 2001) but, to

our knowledge, have not been used in studies of IGM. Interestingly, we show that this

variable can account for most of the gap between blacks and whites in their ability to

6Zheng (2001) performs inference on the marginal rather than the conditional distribution of estimated

poverty with an estimated poverty line.
7Hertz (2005) also shows large black-white di¤erences using the PSID but for reasons we discuss in

the paper it is unclear whether the PSID sample of blacks is representative.

6



rise from the bottom quintile of the income distribution. We also �nd similar results with

respect to inter-racial di¤erences in our new measure of upward mobility. We show that

alternative parametric methodology, such as running probit regressions for conditional

transitions lead to misleading conclusions. The reader may note that in accordance with

virtually all of the existing literature on economic mobility including all the papers cited

above and below, what we propose here are essentially descriptive measures which are

suggestive and one should be cautious in attaching causal interpretations to them.

1.2 Plan of the paper

The plan of the paper is as follows. Section 2 describes the parameters of interest, section

3 discusses the asymptotic distribution theory, section 4 presents the application using

NLSY data. Finally, section 5 concludes. All proofs are collected in section 6. In the

statements of the theorems and in the proofs, c will denote a generic positive constant

not always having the same value and whenever derivatives (or Lebesgue densities) are

de�ned, they are implicitly assumed to exist.

2 Parameters of interest

We �rst describe the parameters of interest based on transition probabilities and then

those related to our new measure of upward mobility.

2.1 Conditional transition probabilities and derivatives

Let (�1; �0) denote the bottom tth and sth percentile of the overall income distribution for

sons and fathers, respectively. Then, the transition probability measures the probability

that a son is at or below �1, conditional on his father being at or below �0, i.e.

� (s; t) =
Pr [Y1 � �1; Y0 � �0]

Pr [Y0 � �0]
. (1)

� (s; t) can be decomposed by level of discrete and continuous covariates X such as age

and education of the father and/or the son as

� (s; t) =

Z
Pr [Y1 � �1; Y0 � �0jX = x]

Pr [Y0 � �0]
dF (x)

=

Z
� (x; s; t) dF (x) ,
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where

� (x; s; t) =
Pr [Y1 � �1; Y0 � �0jX = x]

Pr [Y0 � �0]
. (2)

Note that the denominator is not conditioned on X. So when X denotes, say, a son�s

education, the derivative of � (x; s; t) w.r.t. x represents the change in the son�s probability

of being stuck at or below �0 when x increases by 1 unit, where the population of interest

is all families whose fathers�incomes were at or below �0. When X denotes the father�s

education, � (x; s; t) can be used to infer how e¤ective is a highly educated father in

improving his son�s condition relative to a less educated father who was in the same

quantile of income as him.

Note also that from the transition probabilities as de�ned above, one can derive the

ones de�ned in, e.g. FSZ (2004) or Shorrocks (1978). The latter, upon conditioning,

would be de�ned as

� (x; (s1; s2) ; (t1; t2)) =
Pr
�
�1s1 � Y1 � �1s2 ; �0t1 � Y0 � �0t2 jX = x

�
Pr
�
�0t1 � Y0 � �0t2

� , (3)

where 0 < s1 < s2 < 1 and 0 < t1 < t2 < 1 and �1sj , �0tj denote the sj and tjth quantiles

of Y0 and Y1, respectively. The numerator equals

Pr
�
Y1 � �1s2 ; Y0 � �0t2jX = x

�
�Pr

�
Y1 � �1s2 ; Y0 � �0t1jX = x

�
�Pr

�
Y1 � �1s1 ; Y0 � �0t2jX = x

�
+Pr

�
Y1 � �1s1 ; Y0 � �0t1jX = x

�
and the denominator is Pr

�
Y0 � �0t2

�
�Pr

�
Y0 � �0t1

�
. Below, we derive distribution the-

ory for estimates of Pr [Y1 � �1s; Y0 � �0tjX = x] for a generic pair of quantiles (�1s; �0t)

from which one can easily get the distribution of the estimates of the numerator of

� (x; (s1; s2) ; (t1; t2)). The distribution theory for the estimate of � (x; (s1; s2) ; (t1; t2))

follows by the usual delta-method.

We choose to focus both our methodology and application on de�nition (2) rather than

(3) for two reasons. First, de�nition (2) with, say, s = t = 0:2 measures a son�s chances

of remaining stuck in the lowest quintile if his father was in the lowest quintile. This

probability seems to be of greater and more immediate policy appeal than the somewhat

pedantic �gure measuring the chances of the son being between the �rst and second

quintile given that the father was between the third and the fourth quintile. Secondly,
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derivation of the properties of the estimates of (2) are notationally less messy. As we

showed above, moving from one de�nition to the other is easy and does not involve any

serious technical challenge. Also, it should be obvious how to re�ne the de�nition of

� (x; s; t) to make it, say, race-speci�c.

Parameters of interest based on the above de�nitions are:

(i) Conditional mobility �B (x; s; t)� �W (x; s; t), measuring the black-white di¤erence
in transition at each value of x, where e.g.

�B (x; s; t) =
Pr [Y1 � �1; Y0 � �0jX = x;Black = 1]

Pr [Y0 � �0jBlack = 1]

and �1(�0) is still the marginal quantile of the Y1 (Y0) distribution comprising both blacks

and whites.

(ii) Marginal e¤ects @
@xj
f�B (x; s; t)� �W (x; s; t)g, measures the black-white di¤erence

in the e¤ect of increases in X (analogous to black-white di¤erence in returns to education)

(iii) (Weighted) average derivatives based on (ii), i.e. ��B (s; t) � ��W (s; t) where for
k = W;B

��k (s; t) =

Z
wk (x)

@

@xj
�k (x; s; t) dFk (x) =

Z
wk (x) dFk (x) (4)

using weights wk (:) which are typically the marginal density of X and FW (:) denotes the

c.d.f. of X for whites.

While (i) describes di¤erences in mobility levels by values of x, averaged over other

covariates, (ii) and (iii) shed light on the e¤ectiveness of policy in changing existing di¤er-

ences by in�uencing values of X. As is well-known, derivatives typically converge slower

than the original estimates which makes inference on (ii) very imprecise. We have a rela-

tively smaller number of observations on blacks in our data and estimating the marginal

e¤ects for blacks is an important substantive parameter for us. In view of these facts, we

concentrate on average derivative type estimates which summarize the black-white gap

in the marginal e¤ect of changing a continuous X. One would expect such an estimate

to have a parametric rate of convergence (and thus enable more precise inference), which

is what we rigorously show below. The technical innovation here is that the dependent

variable involves estimated quantiles. In the case of averaged derivatives, the estimation

error in the quantiles will a¤ect the asymptotic distribution of the averaged marginal ef-

fects but in the case of conditional probabilities, the e¤ect of this initial estimation error

will be shown to be negligible.
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2.2 Upward mobility

We now formally introduce our new measure of upward mobility. We �rst present the

analytic expressions and then discuss the substantive features which make our measure

both intuitively appealing and analytically di¤erent from measures based on transition

probabilities.

Our direct measure of upward mobility is simply the probability that the son�s per-

centile rank in the overall income distribution of his generation exceeds that of his parents�

in the income distribution of the parents�generation. We believe that this measure more

closely conforms to what most people think of as economic mobility. Indeed much of the

recent attention in the popular press concerning IGM has been couched in terms of the

prospects for upward mobility for those starting in the bottom of the distribution.8 Poli-

cymakers also tend to be more concerned about mobility with respect to what it signi�es

about the prospects for economic gains among the poor and disadvantaged groups and

whether government interventions are necessary to foster greater upward mobility.

Let Y0; Y1 denote parent and son�s income with respective marginal CDF�s F0 and F1.

Then for a �xed s 2 [0; 1], we de�ne upward mobility for families under percentile s by
an extent � 2 [0; 1� s] as

� (� ; s) = Pr (F1 (Y1)� F0 (Y0) > � jF0 (Y0) � s)

= 1� Pr (F1 (Y1)� F0 (Y0) < � jF0 (Y0) � s)

= 1� Pr (F1 (Y1)� F0 (Y0) < �; F0 (Y0) � s)
s

= 1� 1
s

Z F�10 (s)

1

Z F�11 (F0(y0)+�)

1

f (y0; y1) dy1dy0. (5)

Observe that F1 (Y1), F0 (Y0) are identically distributed uniform (0,1) variates and so the

distribution of F1 (Y1) � F0 (Y0) is symmetric around 0. This means that � (0; 1) = 0:5

and � (� ; 1) = 1� � (�� ; 1), no matter what the joint distribution of (Y0; Y1) is. However,
for an arbitrary s 2 (0; 1), the value of � (� ; s) will depend on the joint distribution of

8For example, the Wall Street Journal began a front page article about class mobility as follows:

"The notion that the U.S is a special place where any child can grow up to be president, a meritocracy

where smarts and ambition matter more than parenthood and class, dates to Benjamin Franklin. ... The

promise that a child born in poverty isn�t trapped there remains a staple of America�s self-portrait."

(Wessel, 2005) Similarly, in a frontpage article in the New York Times on social mobility (Scott and

Leonhardt, 2005) the public�s beliefs concerning mobility are described in a poll asking �Is it possible to

start out poor, work hard, and become rich?�
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(Y0; Y1) for every � , including � = 1. For the purpose of this paper, the leading case of

interest is where � = 0 which gives the probability that the son�s relative position exceeds

that of the father. But we develop inference theory for a general � and for a generic value

of s.

Introducing covariates X into the analysis, de�ne conditional upward mobility at val-

ues of X = x as

�c (� ; s;x) =
Pr (F1 (Y1)� F0 (Y0) > �; F0 (Y0) � sjX = x)

Pr (F0 (Y0) � s)

=
Pr (F1 (Y1)� F0 (Y0) > �; F0 (Y0) � sjX = x)

s
. (6)

This measure is analogous to (2) above. The idea is that we start with all families where

the father was below the sth percentile. This ensures that all the corresponding sons

have equal "space to move up". With these families constituting our population, we

evaluate the extent of upward mobility for children at various values x of X. Denote the

corresponding average derivative by

�� (� ; s) = EX

�
f (X)

@

@xj
�c (� ; s;X)

�
(7)

which (when normalized by EX [f (X)]) measures the average e¤ect of the jth component

of X on the probability of improving relative status.

Below, we will derive the statistical distribution theory for � (� ; s), �c (� ; s;x) and

�� (� ; s). In the application, we will contrast overall upward mobility among blacks versus

whites and then analyze how inclusion of relevant covariates a¤ects this di¤erence.

It is useful to note that one can alternatively de�ne overall mobility based on transition

matrices after incorporating e¤ects of covariates. Consider a transition matrix based

on an arbitrary M-class discretization of the marginal distributions of Y0 and Y1: ~� =n
~� (j; k)

o
j;k=1;:::M

. Then Shorrock�s measure of unconditional mobility is given by

M1 =
K � trace( ~�)

K � 1 = 1�
PK

j=1
~� (j; j)� 1
K � 1 .

One can incorporate covariates into the above formula and de�ne

M1 (x) = 1�
PK

j=1
~� (j; j;x)� 1
K � 1 (8)

where
~� (j; j;x) =

Pr
�
�j � Y1 � �j+1; �j � Y0 � �j+1jX = x

�
Pr
�
�j � Y0 � �j+1

� ,
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and �j; �j denote the jth marginal quantiles of (Y1; Y0) respectively. Given the simple

linear relation (8), inference on M1 (x) will follow straightforwardly from inference on
~� (j; j;x). However, this measure will depend crucially on the discretization employed

which is clearly an undesirable feature. Altering the above formulas to allow for a contin-

uous transition matrix seem complicated9 and we leave that to future research. Instead,

we focus on our measure � (0; s), which, we believe, is much closer to what is commonly

understood as mobility and whose enhancement appears to be a stated goal of liberal

policy. This single summary measure does not employ any discretization, has an imme-

diate intuitive interpretation and, unlike the IGE, is based on a direct comparison of the

relative positions between fathers and son.

Another notable feature of � (0; s) is that it counts small upward movements in

relative positions which are ignored by transition probabilities. Comparing � (0; s) =

Pr (F1 (Y1) > F0 (Y0) jF0 (Y0) � s) and 1 � � (s; s) = Pr [F1 (Y1) > sjF0 (Y0) � s], one can
see that unlike 1� � (s; s), � (0; s) is counting all sons whose ranks exceeded their fathers�
but did not exceed s. In our application, this makes a substantial impact on black-white

di¤erences in mobility (see �gure 3 below). We �nd that whites appear to be much more

upwardly mobile relative to blacks when measured by the transition probability of moving

out of a given quantile. The di¤erence between whites and blacks is much smaller when

measured in terms of our upward mobility index. The �rst reason for this is that many

black sons make relatively small upward movements which are missed by � (s; s) but cap-

tured by � (0; s). The second reason is that incomes of white fathers �rst order stochastic

dominates that of black fathers (�gure 4) everywhere. Therefore, for any overall percentile

F�10 (s), sons born to black fathers below F�10 (s) need a larger increase in absolute income

to surpass it compared to sons of white fathers below F�10 (s). This suggests that even

if rates of upward mobility are similar across groups, transition probabilities are likely to

be much larger for whites.

3 Estimation and distribution theory

We now turn to estimation of the parameters outlined above and derivation of asymptotic

properties of these estimates. Note that we have de�ned 6 parameters above, viz. (1),

9The problem is that
R 1
0
� (s; s) ds is not a probability, unlike

PK
j=1

~� (j; j) and one needs to replace

� (s; s) with a density type analog before integrating. What that analog should be is not obvious.
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(2), (4), (5), (6), (7). FSZ (2004) had analyzed only (1) and so, in what follows, we

will derive the distribution theory for the other �ve. The derivations for (2) and (4)

involve nontrivial modi�cations of the respective methods for kernel-based conditional

mean and Powell, Stock and Stoker�s (1989) (PSS, henceforth) density-weighted average

derivatives (dwad). The modi�cations are necessary because the dependent variable in

the �nal estimates involve initial estimates of quantiles which are estimated from the

same dataset. We will show below that this �rst-stage estimation has no e¤ect on the

asymptotic distribution of conditional mean estimates but has nontrivial e¤ects for the

dwad. This is intuitively natural because estimates of marginal quantiles converge at

parametric rates just like the dwad measures but the conditional mean has a slower rate

of convergence. However, lack of smoothness of the dependent variable in the quantiles

makes the formal justi�cations nontrivial.

The estimates of (5), (6) and (7) also require an altogether di¤erent type of analysis

from standard nonparametric regression theory owing to the presence of F̂1 (:) and F̂0 (:)

in the de�nition of the dependent variables. Our derivations will rely crucially on the

idea of Hadamard di¤erentiability and will use Hoe¤ding�s inequality to control the errors

involved in the estimation of F̂1 (:) and F̂0 (:).

3.1 Conditional transition probability

Recall from (2), that the conditional transition probabilities and their estimates are given

respectively by

� (x; s; t) =
Pr [Y1 � �1; Y0 � �0jX = x]

Pr [Y0 � �0]

�̂ (x; s; t) =

1
n�dn

Pn
i=1K

�
xi�x
�n

�
1
�
Y1i � �̂1; Y0i � �̂0

�
�

1
n�dn

Pn
i=1K

�
xi�x
�n

��
�
�
1
n

Pn
i=1 1

�
Y0i � �̂0

�� , (9)

where K (:) is a standard d-dimensional kernel and �n is a sequence of bandwidths. Also,

let

� (x; �0; �1) = Pr fY1i � �1; Y0i � �0jXi = xg =
Z �1

1

Z �0

1

f (y0; y1jx) dy0dy1

�1 (x; �0; �1) =

Z �0

1

f (y0; �jx) dy0, �0 (x; �0; �1) =
Z �1

1

f (�0; y1jx) dy1.

We now state the main theorem of this section which describes the asymptotic distribution

for conditional (on covariates) transition matrices. The key point is that the �rst-stage es-

13



timation of (�0; �1) has no e¤ect on that �nal distribution. In other words, the distribution

of

�̂
�
x; �̂0; �̂1

�
=

1
n�dn

Pn
i=1K

�
xi�x
�n

�
1
�
Y1i � �̂1; Y0i � �̂0

�
�

1
n�dn

Pn
i=1K

�
xi�x
�n

��
and that of the infeasible estimator �̂ (x; �0; �1) are identical. The intuition behind this

result is that
�
�̂0; �̂1

�
converges at the parametric

p
n rate but �̂ (x; �0; �1) converges

to � (x; �0; �1) slower than
p
n-rate. The proof is nonstandard due to the facts that (i)

�̂ (x; �0; �1) is not smooth in (�0; �1) and (ii) the problem here is the reverse of standard

semiparametric problems (c.f. Andrews (1994), section 3.4 and Pakes and Pollard (1989))

in that the initial estimator here, viz.
�
�̂0; �̂1

�
, is �nite-dimensional and the ultimate

parameter of interest, viz. � (x; �0; �1) is in�nite-dimensional, in contrast to the standard

case where it is the other way round.

We state this and subsequent theorems in terms of a d-dimensional X all of whose

components are continuously distributed. For discrete covariates, the analysis is identical

to that for the marginal (i.e. unconditional) measures.

Theorem 1 Let X be continuously distributed with dimension d and the data (Xi; Y1i; Y0i)

be i.i.d. Suppose that K (:) and �n in (9) satisfy standard conditions for mean-zero as-

ymptotic normality of conditional means (c.f. Pagan and Ullah (1999) theorem 3.5, 3.6).

Assume further that for X = x, (Y0; Y1) admits a nonnegative joint density w.r.t. the

Lebesgue measure everywhere on the joint support. Further, the function � (x; :; :) is Lip-

schitz with respect to the Euclidean norm k:k:

j� (x; �0; �1)� � (x; � 0; � 1)j � k(�0; �1)� (� 0; � 1)k � (x) (10)

with � (:) uniformly bounded on the support of X.10 Then one will have

�
n�dn

�1=2 �
�̂
�
x; �̂0; �̂1

�
� �

�
x; �00; �

0
1

��
! N

�
0;
�2 (x)

f (x)

Z
K2 (u) du

�
where �2 (x) = V ar

�
1
�
Y1i � �01; Y0i � �00

�
jX
�
= �

�
x; �00; �

0
1

�
�
�
1� �

�
x; �00; �

0
1

��
.

Proof. See appendix
10When conditional on X = x, the vector (Y0; Y1) is distributed with a density bounded above, uni-

formly in x, then this condition is automatically satis�ed.
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Returning to (9), by the usual delta method,

�
n�dn

�1=2 n
�̂B (x; s; t)� �0B (x; s; t)

o
=
�
n�dn

�1=2 ��̂B �x; �̂0; �̂1�� �B �x; �00; �01��
�B

+ op (1)

where

�B (x; �0; �1) = Pr fY1i � �1; Y0i � �0jXi = x;B = 1g ,

�B = Pr [Y0 � �0jB = 1] :

This follows because the estimate of �B will converge at parametric rates and will not

a¤ect the distribution of �̂B (x; s; t). One thus gets that�
n�dn

�1=2 n
�̂B (x; s; t)� �0B (x; s; t)

o
d! N

�
0;

�2B (x)

�2BfB (x)

Z
K2 (u) du

�
(11)

where �2B (x) = �B
�
x; �00; �

0
1

�
�
�
1� �B

�
x; �00; �

0
1

��
and fB (x) is simply the density of X

for blacks at x.

3.2 Distribution of the gap in levels

In this paper, our substantive interest is focused around the black-white gap in condi-

tional transition probabilities. In that context, it is interesting to note that the estimates�
n�dn

�1=2 n
�̂B (x; s; t)� �0B (x; s; t)

o
for blacks and

�
n�dn

�1=2 n
�̂W (x; s; t)� �0W (x; s; t)

o
for

whites will be asymptotically uncorrelated. The intuition for this result is as follows.

There are two ways in which these two quantities could be correlated- through (i) the com-

mon estimates �̂0; �̂1 which appear in the numerators of both �̂B (x; s; t) and �̂W (x; s; t)

and (ii) because the denominators are respectively
1
n

Pn
i=1Bi1(Y0i��̂0)
1
n

Pn
i=1Bi

and
1
n

Pn
i=1Wi1(Y0i��̂0)
1
n

Pn
i=1Wi

.

Using the same logic as above, the preliminary estimates �̂ will have no e¤ect on the as-

ymptotic distributions and this removes one source of dependence between �̂B (x; s; t) and

�̂W (x; s; t). Secondly, even
1
n

Pn
i=1Bi1(Y0i��0)
1
n

Pn
i=1Bi

and
1
n

Pn
i=1Wi1(Y0i��0)
1
n

Pn
i=1Wi

will be asymptotically

uncorrelated since they are sample averages of the random variable 1 (Y0 � �0) among
di¤erent subgroups. To see this formally, let yi = 1 (Y0i � �0) and let

ĝB =
1
n

Pn
i=1Biyi

1
n

Pn
i=1Bi

� �yB
�dB
and gB =

E (�yB)

E
�
�dB
� = �B

�B

15



Asymptotically,

p
n (ĝB � gB) =

1p
n

Pn
i=1 (Biyi � �B)
�B

� �B
�2B

1p
n

nX
i=1

(Biyi � �B) + op (1)

=

1p
n

Pn
i=1Biyi

�B
� �B
�2B

1p
n

nX
i=1

Biyi + op (1)

=
1p
n

nX
i=1

Bi
�B

�
yi �

�B
�B

�
+ op (1) .

So the asymptotic covariance is given by,

E

�
Bi
�B

�
yi �

�B
�B

�
Wi

�W

�
yi �

�W
�W

��
� E

�
Bi
�B

�
yi �

�B
�B

��
E

�
Wi

�W

�
yi �

�W
�W

��
= 0

since BiWi � 0 and

E

�
Wi

�W

�
yi �

�W
�W

��
= E

�
Wiyi
�W

� �W
�2W
Wi

�
= E

�
Wiyi
�W

�
� �W
�W

= 0.

Thus, we get that�
n�dn

�1=2 n
�̂B (x; s; t)� �0B (x; s; t)� �̂W (x; s; t) + �0W (x; s; t)

o
d! N

�
0;

�
�2B (x)

�2BfB (x)
+

�2W (x)

�2WfW (x)

�Z
K2 (u) du

�
(12)

where �2W (x) = �W
�
x; �00; �

0
1

�
�
�
1� �W

�
x; �00; �

0
1

��
and fW (x) is simply the density of

X for whites at x. This result simpli�es the calculation of asymptotic variances of the

black-white gap in conditional transition probabilities since no covariance term needs to

be calculated.

3.3 Density weighted average derivative (dwad) for transition

probabilities

Consider the quantity

��
�
�0
�
=

Z
X
�0j
�
x; �00; �

0
1

�
f 2 (x) dx

which is the density weighted average derivative of � (x; �0; �1) (de�ned above) w.r.t. the

jth component of X, �rst introduced in econometrics by PSS (1989). Using a standard

integration by parts formula and noting that �
�
x; �00; �

0
1

�
, being a probability, is uniformly

bounded in x, one gets that

��
�
�0
�
= �2

Z
X
f 0j (x)�

�
x; �00; �

0
1

�
f (x) dx = �2E

�
1 fY1 � �1; Y0 � �0g f 0j (X)

	
.
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So let

��
�
�0
�
= �2E

�
1
�
Y1 � �01; Y0 � �00

	
f 0j (X)

	
The natural estimate of this is �̂

� �
�̂
�
where

�̂
� �
�̂
�

= � 2
n

nX
i=1

1
�
Y1i � �̂1; Y0i � �̂0

� 1

(n� 1)�d+1n

X
l 6=i

K 0
j

�
Xi �Xl

�n

�

= � 2

n (n� 1)

nX
i=1

X
l 6=i

1
�
Y1i � �01; Y0i � �00

	 1

�d+1n

K 0
j

�
Xi �Xl

�n

�

� 2

n (n� 1)

nX
i=1

X
l 6=i

24 1
�
Y1i � �̂1; Y0i � �̂0

�
�1
�
Y1i � �01; Y0i � �00

	
35 1

�d+1n

K 0
j

�
Xi �Xl

�n

�
.

Thus, ignoring the factor 2 for now,

�
�
�̂
� �
�̂
�
� ��

�
�0
��

=
1

n (n� 1)

nX
i=1

X
l 6=i

1
�
Y1i � �01; Y0i � �00

	 1

�d+1n

K 0
j

�
Xi �Xl

�n

�
� ��

�
�0
�

+
1

n (n� 1)

nX
i=1

X
l 6=i

24 1
�
Y1i � �̂1; Y0i � �̂0

�
�1
�
Y1i � �01; Y0i � �00

	
35 1

�d+1n

K 0
j

�
Xi �Xl

�n

�
. (13)

The �rst term in the previous display can be handled directly by the PSS method whence

one gets that

p
n

 
1

n (n� 1)

nX
i=1

X
l 6=i

1
�
Y1i � �01; Y0i � �00

	 1

�d+1n

K 0
j

�
Xi �Xl

�n

�
� ��

�
�0
�!

=
1p
n

nX
i=1

 
f (Xi)

@
@xj
�
�
Xi; �

0
0; �

0
1

�
� @

@xj
f (Xi)

�
�
1
�
Y1i � �01; Y0i � �00

	
� �

�
Xi; �

0
0; �

0
1

�� !+ op (1)
� 1p

n

nX
i=1

	i + op (1) . (14)

The following theorem describes the behavior of the second term Tn in (13) by expressing

it as (asymptotically equivalent to) an empirical process, when scaled by
p
n.

Theorem 2 Under assumptions of theorem 3.3 of PSS (1989), with their Y replaced by

1
�
Y1 � �01; Y0 � �00

	
, and the conditions of theorem 1, we have that

p
nTn = �m�0 (�0)�

p
n
�
�̂ � �0

�
+ op (1) =

1p
n

nX
i=1

[ �m�0 (�0)� 'i] + op (1) , (15)
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where

�m�0 (�0)� 'i =
@

@�0

�
E
�
�0j
�
X; �00; �

0
1

�
f (X)

	�
�
s� 1

�
Y0i � �00

�
fY0
�
�00
�

+
@

@�1

�
E
�
�0j
�
X; �00; �

0
1

�
f (X)

	�
�
t� 1

�
Y1i � �01

�
fY1
�
�01
� .

Now (14), which follows from PSS theorem 3.3, plus (15) imply that

p
n
h
�̂
� �
�̂
�
� ��

�
�0
�i

= �m�0 (�0)�
p
n
�
�̂ � �0

�
+

1p
n

nX
i=1

	i + op (1)

=
1p
n

nX
i=1

f	i + �m�0 (�0)� 'ig+ op (1) .

Proof. See appendix

Putting back the factor 2, �nally, we have that

p
n
h
�̂
� �
�0
�
� ��

�
�̂
�i
= � 1p

n

nX
i=1


i + op (1) ,

with


i = 2f (Xi)
@

@xj
�
�
Xi; �

0
0; �

0
1

�
� 2 @

@xj
f (Xi)�

�
1
�
Y1i � �01; Y0i � �00

	
� �

�
Xi; �

0
0; �

0
1

��
+2

@

@�0

�
E
�
�0j
�
X; �00; �

0
1

�
f (X)

	�
�
s� 1

�
Y0i � �00

�
fY0
�
�00
�

+2
@

@�1

�
E
�
�0j
�
X; �00; �

0
1

�
f (X)

	�
�
t� 1

�
Y1i � �01

�
fY1
�
�01
� . (16)

3.3.1 Normalization

To be able to interpret the weighted average derivative estimator, it is necessary to nor-

malize its scale. We consider the natural normalization

�
�
�0
�
= ��

�
�0
�
=E (f (X)) .
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Then the natural estimate of this is �̂
�
�̂
�
= �̂

� �
�̂
�
=Ê (f (:)) which will satisfy

p
n
h
�̂
�
�̂
�
� �

�
�0
�i

=
1

E (f (X))

p
n
h
�̂
� �
�0
�
� ��

�
�̂
�i
� �2

�
�0
�p
n
h
Ê (f (:))� E (f (X))

i
+
p
n
h
�̂
� �
�0
�
� ��

�
�̂
�i
�
"

1

Ê (f (:))
� 1

E (f (X))

#

+
p
n
h
Ê (f (:))� E (f (X))

i
� �

�
�0
�
�
"

1

E (f (X))
� 1

Ê (f (:))

#
=

1

E (f (X))

p
n
h
�̂
� �
�0
�
� ��

�
�̂
�i
� �2

�
�0
�p
n
h
Ê (f (:))� E (f (X))

i
+ op (1)

provided Ê (f (:))
p! E (f (X)) >> 0. Now, one can get an asymptotically linear form of

p
n
h
Ê (f (:))� E (f (X))

i
by using the derivation in PSS. To see this, assume d = 2 for

notational simplicity. Note that

E (f (X1; X2)) =

Z Z
1:f 2 (x1; x2) dx1dx2

= �2
Z Z

x1
@f (x1; x2)

@x1
f (x1; x2) dx1dx2

= �2E
�
x1
@f (x1; x2)

@x1

�
.

This is exactly like the density-weighted average derivative estimator, except that the

dependent variable is now x1. Applying the PSS results (apply their their equation 3.1

and 3.17 with y = g (x) = x1), it now follows that

p
n
h
Ê (f (:))� E (f (X))

i
= � 2p

n

nX
i=1

(f (Xi)� E (f (X))) + op (1) .

Consequently,

p
n
h
�̂
�
�̂
�
� �

�
�0
�i
=

1p
n

nX
i=1


i �
2p
n

nX
i=1

(f (Xi)� E (f (X))) + op (1)

where 
i is de�ned in (16). The asymptotic distribution of �̂
�
�̂
�
follows.

3.4 Marginal upward mobility

The natural estimate of � (� ; s) de�ned in (5) is given by

�̂ (� ; s) = 1�
1
n

Pn
i=1 1

�
F̂1 (y1i) � F̂0 (y0i) + �

�
1
�
F̂0 (y0i) � s

�
s

(17)
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where

F̂1 (y1i) =
1

n

X
j 6=i

1 (y1j � y1i) .

We will now derive the asymptotic distribution of �̂ (� ; s). Let F (:; :) denote the joint

c.d.f. of (Y0; Y1) with corresponding joint density f (:; :). Then for �xed s; � , one may view

� (� ; s) as a functional � (F ). We can therefore estimate it by �
�
F̂
�
, where F̂ denotes

the usual empirical c.d.f.. We will obtain a large sample distribution of �
�
F̂
�
using

the functional delta method by showing that the functional F 7! � (F ) is Hadamard-

di¤erentiable.

If one assumes that the joint density of (Y0; Y1) is bounded away from zero on a com-

pact support, then the proof of Hadamard di¤erentiability is considerably simpler. This

assumption may be tenable if the population of interest excludes families with "abnor-

mally" high and low earnings in either generation which is typically where the density

will be close to zero. However, for the sake of greater generality, we dispense with this

assumption and establish Hadamard di¤erentiability under more general tail conditions

on the joint density and its partial derivatives.

Since all our measures are robust to monotone transformation of the income variables,

we will assume that the support of the income variables is contained in [1;1).
We are now ready to state a formal theorem. Let f (y0; y1) and f (0) (y0; y1) denote

respectively the joint density of (Y0; Y1) and its derivative w.r.t. the �rst argument,

evaluated at the point (y0; y1). Let f1 (y1) denote the marginal density of Y1 and let c

denote a generic positive constant.

Condition : (Ai) for some � > 1, we have f1 (x) � c
x�
for x large enough which

also implies that F�11 (u) < c (1� u)
1

1�� , (Aii) f (0)
�
y0; F

�1
1 (F0 (y0) + �)

�
� c

y
�0
0
for some

�0 > 0 , (Aiii) for some " > 0, 1� F0 (y0) > cy
(1+"��0)(��1)

�
0 and (Aiv)Z 1

1

(1� F0 (y0))
�

��1 f
�
y0; F

�1
1 (F0 (y0) + �)

�
dy0 <1:

Note that conditions A(i)-A(iii) concern the tail behavior of the densities and their

derivatives evaluated at the marginal quantiles. They are more general than the more

convenient but less realistic condition that the density is bounded away from zero uni-

formly on a compact support. Condition A(iv) is like a moment condition. Recall that

for a positive random variable X with marginal c.d.f. G (:) and support A, the quantityR
A
(1�G (x)) dx equals E (X).
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It is interesting to note that if (Y0; Y1) have a joint Pareto distribution, then all of

these conditions are automatically satis�ed. To see this, assume that (Y0; Y1) satisfy

Pr (Y0 � y0; Y1 � y1) =
1

(1 + (y0 � 1) + (y1 � 1))


for all y0; y1 � 1 for some 
 > 0. Then their joint density is given by

f (y0; y1) =

 (
 + 1)

(1 + (y0 � 1) + (y1 � 1))
+2
.

Then one may verify that conditions A(i)-A(iv) are satis�ed with � = 
 + 1, �0 = 
 + 2

and " = 1 + 
 + 
 (
 + 1).

An exactly symmetric set of conditions are assumed to hold for the marginal density

f0 (:) of Y0 as well.

(Bi) for some � > 1, we have f0 (x) � c
x�
for x large enough which also implies that

F�10 (u) < c (1� u)
1

1�� , (Bii) f (0)
�
F�10 (s) ; y1

�
� c

y
�0
1

for some �0 > 0 , (Biii) for some

� > 0, we have 1� F1 (y1) > cy
(1+���0)(��1)

�

1 and

(Biv)
Z 1

1

(1� F1 (y1))
�

��1 f
�
F�10 (s) ; y1

�
dy1 <1:

Theorem 3 The map F 7! � (F ) from �D[1;1)! R, de�ned as

� (F ) =

Z F�10 (s)

1

Z F�11 (F0(y0)+�)

1

f (y0; y1) dy1dy0

for any s 2 (0; 1) is Hadamard di¤erentially tangentially to D0 where �D[1;1) is the space
of cdf�s satisfying conditions (Ai)-(Aiv) and (Bi)-(Biv). D0 is the space of sample paths

corresponding to the composite Brownian bridge G� �F where G� is a standard Brownian
bridge and F is any c.d.f. in �D[1;1). The derivative at H = (H0; H1) is given by the

linear functional �0F (:) de�ned as

�0F (H) =
H0
�
F�10 (s)

�
f0
�
F�10 (s)

� Z F�11 (F0(y0)+�)

1

f
�
F�10 (s) ; y1

�
dy1

+

Z F�10 (s)

1

H0 (y0)�H1
�
F�11 (F0 (y0) + �)

�
f1
�
F�11 (F0 (y0) + �)

� f
�
y0; F

�1
1 (F0 (y0) + �)

�
dy0

+

Z F�10 (s)

1

Z F�11 (F0(y0)+�)

1

dH (y0; y1) .

Proof. in Appendix

Now it follows, via the functional delta method (c.f. van der Vaart and Wellner

(1996), theorem 3.9.11), that bootstrapping will lead to consistent approximation of the

distribution of the estimate of � (� ; s) and hence of 1� 1
s
� (� ; s).
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3.5 Conditional upward mobility

Recall from (6) that conditional upward mobility is given by

�c (� ; s;x) =
Pr (F1 (Y1)� F0 (Y0) > �; F0 (Y0) � sjX = x)

s
.

Ignoring the �xed s in the denominator, �c (� ; s;x) is estimated by

�̂c (� ; s;x) =

1
n�dn

Pn
i=1K

�
xi�x
�n

�
1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
1
n�dn

Pn
i=1K

�
xi�x
�n

� ,

where F̂1 (Y1i) = 1
n�1

P
j 6=i 1 (Yij � Y1i) and K (:) is a standard d-dimensional kernel func-

tion with a bandwidth sequence �n, satisfying the standard conditions for asymptotic

normality of conditional means (with undersmoothing).Therefore,

�̂c (� ; s;x)� �c (� ; s;x)

=

8<:
1
n�dn

Pn
i=1K

�
xi�x
�n

�
1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)
1
n�dn

Pn
i=1K

�
xi�x
�n

� � �c (� ; s;x)

9=;

+

1
n�dn

Pn
i=1K

�
xi�x
�n

�
�

24 1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
�1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

35
1
n�dn

Pn
i=1K

�
xi�x
�n

�
� T1n +

T2n

f̂ (x)
, say. (18)

We would like to show that T2n
f̂(x)

has a smaller order of magnitude than T1n. This will imply

that asymptotically, the distribution of �̂c (� ; s;x) will be that of a standard Nadaraya-

Watson regression function of the unobserved random variable 1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)
on X. The following proposition states this result formally and its proof appears in the

appendix.

Proposition 1 Let the data (Xi; Y1i; Y0i) be i.i.d. Let the kernel function K (:) and the

bandwidth sequence �n satisfy standard conditions for the asymptotic zero mean normality

of the (infeasible) Nadaraya-Watson regression estimate of 1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)
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on X. Then, we have thatp
n�dn (�̂c (� ; s;x)� �c (� ; s;x))

=
p
n�dn

(
Ê (1 (F1 (Y1)� F0 (Y0) > �; F0 (Y0) � s) jX = x)

s
� �c (� ; s;x)

)
+ op (1)

d! N

�
0;
�2 (x)

s2f (x)

Z
K2 (u) du

�
,

where �2 (x) = s � �c (� ; s;x)� (1� s� �c (� ; s;x)) and f (x) is the marginal density of
X.

3.6 Density Weighted Average Derivative (dwad) for upward

mobility

Let F denote the joint distribution function of (X;Y0; Y1) and consider the dwad parameter

based on (6)

�� (� ; s;F ) = EX

�
f (X)

@

@xj
�c (� ; s;X)

�
= �2EX;Y0;Y1

�
1 fF1 (Y1)� F0 (Y0) > �; F0 (Y0) � sg

@

@xj
f (x)

�
= �2EX

�
Pr fF1 (Y1)� F0 (Y0) > �; F0 (Y0) � sjXg

@

@xj
f (X)

�
= �2

Z
x2Supp(X)

"Z F�1
0jx (s)

1

Z F�1
1jx(F0jx(y0)+�)

1

f (y0; y1jx) dy1dy0

#
f (x)

@

@xj
f (x) dx,

where we have dropped the �xed s from the denominator for now. Its estimate is given

by

�̂�

�
� ; s; F̂

�
= � 2

n

nX
i=1

1
n
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

o 1

(n� 1)�d+1n

X
l 6=i

K 0
j

�
Xi �Xl

�n

�
.

The analysis of this estimator is exactly analogous to that of the dwad in section 3.3

above. The only di¤erence is that ordinary di¤erentiability with respect to � is now

replaced by Hadamard di¤erentiability with respect to the CDF�s (F0; F1), as in theorem

3. The speci�c steps are as follows.
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Observe that
p
n
�
�̂�

�
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�
� ��

�
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��
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��
+
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��
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� ��

�
� ; s;F 0

��
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�
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���i
=

p
n
�
�̂�
�
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�
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�
��

�
� ; s; F̂

�
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�
� ; s;F 0

��
+
�
vn

�
F̂
�
� vn

�
F 0
��
,

where vn (F ) =
p
n
h
�̂� (� ; s;F )� �� (� ; s;F )

i
. The �rst term in the above display can

be analyzed exactly as in PSS (1989) to get an asymptotically normal law. Next consider

the second term. Using steps analogous to those in the proof of theorem 3, one can show

that

�� (� ; s;F ) =

Z
x2Supp(X)

"Z F�1
0jx (s)

1

Z F�1
1jx(F0jx(y0)+�)

1

f (y0; y1jx) dy1dy0

#
f (x)

@

@xj
f (x) dx,

where F0jx; F1jx denote the marginal cdf�s of Y0 and Y1 and f (:; :jx) is their joint density
conditional onX = x, is Hadamard di¤erentiable w.r.t. F = (F0; F1). Since

p
n
�
F̂ � F 0

�
has a Gaussian limit, the distribution of the second term in the previous display will be

a mean-0 Gaussian. Finally, using steps analogous to theorem 2 one can analogously

show that vn (:) is stochastically equicontinuous. The key adjustment in the proof is to

note that for F 6= G, f�� (� ; s;F )� �� (� ; s;G)g will be the same order of magnitude as
kF �Gk which follows from the Hadamard di¤erentiability of ��� (� ; s;F ) in F , with a

uniformly bounded derivative.

Putting all of this together, the asymptotic distribution of
p
n
�
�̂�

�
� ; s; F̂

�
� �� (� ; s;F 0)

�
is the same as that of

p
n
�
�̂�
�
� ; s;F 0

�
� ��

�
� ; s;F 0

��
+
p
n
�
��

�
� ; s; F̂

�
� ��

�
� ; s;F 0

��
and thus mean 0 Gaussian.

4 Application

In this section we produce empirical estimates of IGM for black and white men using the

two measures described in the previous sections: transition probabilities and upward mo-
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bility. For each measure we show three sets of results: unconditional estimates, estimates

conditional on AFQT test scores, and density weighted average derivatives with respect

to AFQT test scores. For data, we use a sample of 2766 individuals from the National

Longitudinal Survey of Youth (NLSY) who were between the ages of 14 and 22 in 1979.

We measure the average family income of these individuals when they were living at home

with their parents in 1978, 1979 and 1980. We also measure their average annual earnings

as adults in 1996, 1998, 2000 and 2002.11

4.1 Marginal probabilities

4.1.1 Upward transition probabilities

We begin by showing estimates for upward IGM using transition probabilities. These

represent the probability that son�s income, (Y1) surpasses a given quantile conditional on

parent income (Y0) having been at or below the same quantile in the parent generation

(i.e. s = t in (1)). We also consider transition probabilities where the son must surpass

the quantile by a certain amount, � , to facilitate comparisons with the upward mobility

estimator we introduce in this paper.

�� (s) =
Pr [Y1 > �1 + � ; Y0 � �0]

Pr [Y0 � �0]
.

The results are shown in Table 1. In the �rst set of three columns we produce separate

estimates for whites, blacks, and the white-black di¤erence for the baseline case where

� = 0. In the subsequent sets of columns we allow � to vary from 0.1 to 0.3. In each row

we condition on parent income being below the s percentile where s goes from 5 to 50 in

increments of 5. It is immediately evident that the white-black di¤erences are dramatic.

For example, the baseline transition probability out of the bottom quartile is 71 percent

for whites but only 45 percent for black, or a 26 percentage point di¤erence. We plot

the transition probabilities for whites and blacks along with the 95 percent con�dence

intervals in Figure 1. As is evident in the chart, except for those at the very bottom of

the distribution (below the 5th percentile), blacks are signi�cantly less likely to surpass

11Speci�cally, we use the time average over any years during the relevant time period in which data

are available. This allows us to include individuals even if data is missing in some years. The time

averaging also provides a better measure of permanent income in both generations. All income variables

are de�ated to 1978 dollars using the CPI-U.
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the quantile thresholds.

This is an important �nding because most previous research on IGM has used measures

such as the intergenerational elasticity, which do not allow for comparisons of group

di¤erences in mobility with respect to the entire population. We are only aware of one

previous study, Hertz (2005) that has documented di¤erences between blacks and whites

in intergenerational transition probabilities. However, Hertz relied on PSID data where

there is some concern about the representativeness of intergenerational samples to identify

black-white di¤erences.12

Interestingly, the white-black di¤erence in the transition probability out of the bottom

quartile does not change very much as we allow � to vary. For example the racial gap

in the probability of rising from the bottom quartile to at least the 45th percentile (i.e.

� = 0:2) is 23 percentage points. When we condition on parents that are at or below the

median and allow � to be large (0.2 to 0.3) then we �nd that the interracial mobility gap

begins to narrow to a smaller, but still signi�cant, 10 percentage point di¤erence.

4.1.2 Upward mobility

We now show an analogous set of estimates of our measure of upward mobility for whites

and blacks and the white-black di¤erence in Table 2. We now �nd much smaller racial

di¤erences in our baseline case (� = 0). For example, among white men whose family

income during their youth was below the 25th percentile, 84 percent achieved a higher

percentile than their parents. The comparable �gure for black men is 76 percent implying

a di¤erence of about 8 percentage points. The results are plotted along with con�dence

bands in Figure 2. As the �gure makes clear, aside from those whose family income was

at or below the �fth percentile, whites appear to experience greater upward mobility than

blacks but not nearly as much as implied by the di¤erence in the transition probabilities.

The gap in most cases, however, is statistically signi�cant as is shown in �gure 3 where we

plot the white minus black di¤erence for both the transition probability and the upward

mobility along with con�dence bands.

Clearly, among poorer families there are many blacks who exceed their parents rank in

the distribution but do not surpass them by enough to move across quantiles. As discussed

12Lee and Solon (2006), for example raise concerns about the usefulness of the oversample of poorer

households in the PSID. In addition, there has been signi�cant attrition among black families in the

nationally representative portion of the PSID since the sample began in 1968 (Solon, 1992).
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in section 2, the fact that the white distribution of parent income lies to the right of blacks

will make it more likely that whites will surpass the quantile thresholds more easily. This

is illustrated in Figure 4 which plots the CDF�s of the parent income distribution for both

blacks and whites and shows that the white distribution stochastically dominates the

black distribution. This implies that if blacks and whites below the threshold experienced

equal sized percentile gains, then the transition probabilities would be higher for whites.

However, in other results (not shown) we also �nd that the magnitude of the percentile

gains for blacks are actually much lower than for whites. In any case, these results

provide some additional descriptive facts that are useful to consider when discussing IGM

di¤erences between whites and blacks. So while it is true that blacks do experience rates

of upward mobility that are only modestly lower than whites, the extent of this mobility

is vastly lower.

The remaining columns of Table 2 show the comparable results as � varies from 0.1

to 0.3. In each case, the magnitude of the black white di¤erence is generally between 15

and 25 percentage points and does not change too much as s changes. These results are

comparable to the upward transition probability results in Table 1 and suggest that the

two measures produce roughly similar results for larger values of � .

4.2 Conditional probabilities

The underlying mechanisms by which economic status is transmitted across generations is

not yet well understood and is clearly a question of great importance. Estimates of IGM

conditional on key covariates can potentially shed light on this question. Understanding

the source of the black-white mobility gap in particular, is of great policy interest.

Previous studies using the NLSY have taken advantage of the availability of scores

on the Armed Forces Qualifying Test (AFQT) as measure of cognitive skills to identify

this as a source of interracial inequality.13 For example, Neal and Johnson (1996) have

shown that the black-white wage gap among adults can largely be explained by pre-

market skills as proxied by AFQT scores during adolescence. Similarly, Cameron and

Heckman (2001) have shown that the sizable gap in college enrollment between whites

13All individuals in the NLSY were given the AFQT test in 1980 as part of the renorming of the test.

Following Neal and Johnson (1996) we use the 1989 version of the percentile score. The U.S. military

views the AFQT score as "a general measure of trainability and predictor of on-the-job performance".

(http://www.defenselink.mil/prhome/poprep2002/chapter2/c2_recruiting.htm)
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and blacks can largely be accounted for by AFQT scores. Cameron and Heckman view

the AFQT score as capturing the cumulative e¤ects of family background in�uences in

making students academically prepared for college. Therefore, it would not be surprising

if the IGM gap might also be accounted for by inclusion of AFQT scores. We produce

estimates of upward transition probabilities and our measure of upward mobility for black

and white men where we now include AFQT scores as a covariate.

4.2.1 Conditional Transition Probabilities

We estimate the e¤ect of AFQT scores on upward transition probabilities separately by

race by using Nadaraya-Watson regression. Our dependent variable is the probability of

leaving the bottom quintile.14 Figure 5 shows the result of this exercise. We �nd that

conditional on AFQT scores, whites have only slightly higher likelihood of exiting the

bottom quintile and that this gap does not vary a great deal across the AFQT distribution.

For example at the 25th percentile of AFQT scores, the transition probability for whites

is 0.65 and for blacks is 0.63, or a di¤erence of just 3 percentage points. At the 5th

percentile the gap is about 5 percentage points and at the 75th percentile the gap is

about 15 percentage points. At no point in the AFQT distribution can we reject the

hypothesis that the transition probabilities are the same.

The shape of the regression lines are also similar between blacks and whites for the

bottom half of the distribution. At the very low end of the AFQT distribution an increase

in the AFQT percentile leads to a sizable rise in the probability of exiting the bottom

quintile for both blacks and whites. In the upper half of the AFQT distribution, however,

the slopes di¤er and the lines fan apart. It is important to note however, that there is

relatively little data for blacks in the upper end of the AFQT distribution as is evidenced

by the wide con�dence intervals.

This �nding of similar conditional transition probabilities using AFQT scores can be

contrasted with results using years of education. In �gure 6, we do a similar exercise

where we instead use the sons�years of completed schooling as a covariate in estimating

the transition probabilities by race. Here we �nd sharp di¤erences in the transition

probability even conditional on years of schooling. For example among those with 10

14We used an Epanchnikov kernel and 0.8 times the sample size as the bandwidth. We experimented

with the leave-one-out cross validation approach but found that it gave little useful guidance. Our main

results are stable for a reasonably wide choice of bandwidths around this value.
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years of schooling, the transition probability out of the bottom quintile for whites is 60

percent while for blacks it is just 36 percent. The di¤erence of 24 percentage points

is statistically signi�cant. In similar exercises using measures of parent education (not

shown) we �nd broadly similar results. Therefore, like Hertz (2005), we �nd that parent

education cannot explain the black-white mobility gap. However, we �nd that accounting

for AFQT scores does appear to account for the gap.

Finally, we also �nd that using our nonparametric approach produces some important

substantive di¤erences compared to simply running a probit with AFQT as a covariate.

This is particularly true for blacks. In �gure 7 we compare the transition probability

results for blacks with the results from simply using a probit. As the chart shows, moving

from the �fth percentile of the black AFQT distribution to the median nearly doubles the

transition probability of leaving the bottom quintile from 0.28 to 0.54 when using the non-

parametric estimator. In contrast, the probit implies an increase of only 10 percentage

points from 0.40 to 0.50.

4.2.2 Conditional Upward Mobility

We also estimate the e¤ect of AFQT scores on our measure of upward mobility separately

by race. For this exercise, we condition on parent income being below the bottom quintile

and set � = 0. The results are shown in Figure 8. In this case the e¤ects on the black-

white gap are even more striking as the point estimates imply that upward mobility is

actually higher for blacks than whites once we condition on AFQT scores. We also �nd a

much �atter relationship between the AFQT score and upward mobility than we did with

the transition probability. For example, for blacks moving from the 25th percentile of the

AFQT distribution to the 50th percentile raises the probability of surpassing one parent�s

by just 6 percentage points, from 85 percent to 91. Similarly for whites the analogous

gain is also 6 percentage points, going from 81 percent to 87 percent.

4.2.3 Discussion of Results

We wish to be careful to point out that we do not think that the �nding that AFQT scores

can account for the black-white IGM gap lends itself to any simple interpretation or any

obvious policy remedy. The development of cognitive skills that we measure in adolescence

can be due to a range of factors including health endowments, parental investment, peer

in�uences or school quality. Understanding the formation of the black-white skills gap
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has been, and will likely continue to be, an area of intense research activity. Our results

suggest that whatever the underlying causes of the gap in cognitive skills it appears to

translate into signi�cant di¤erences in IGM.

4.3 Density Weighted Average Derivatives

4.3.1 Transition probabilities

The density weighted average derivative (DWAD) is used as a summary measure of the

e¤ect of the sons�AFQT on his probability of leaving the bottom quintile. The DWAD

gives us a single number which is a weighted average of the slope in a nonparametric

regression of transition probability on AFQT scores. The weight on the slope at a speci�c

value of AFQT is proportional to the density of AFQT at that point. The formula used

to compute the average derivative for blacks is the sample counterpart of

�2E
n
1 fY1 � �1; Y0 � �0g @

@(AFQT )
f (AFQT jB = 1)

o
Pr [Y0 � �0jB = 1]

,

where @
@(AFQT )

f (AFQT jB = 1) represents the derivative of the marginal density of AFQT
for blacks. The choice of bandwidth was guided by the discussion in Powell and Stoker

(1996). In this case, it is proportional to n�2=7 and the constant of proportionality was

chosen so that the DWAD are consistent with slopes of the conditional transition proba-

bilities (see also the discussion in Pagan and Ullah (1999), page 190).

In �gure 9 we show the average derivative, together with the 95% con�dence interval,

corresponding to transition probabilities out of the tth quantile as t varies from 15 to 50

in increments of 5. For both whites and blacks the average derivative gradually falls as

we increase t. We �nd for all the transition probabilities that the DWAD is larger for

blacks than whites but the di¤erence is not statistically signi�cant. It is not so obvious

a priori what one might expect to have found. On the one hand as Figure 5, shows,

the slope of the conditional transition probability appears to be steeper for whites than

for blacks through much of the distribution. On the other hand, the slope is steeper for

blacks at the bottom of the AFQT distribution and since these observations receive much

greater weight due to their higher density (see �g. 10), this would favor blacks having a

higher DWAD. It is worth emphasizing that the di¤erence between the DWAD for blacks

and that for whites cannot be directly interpreted as the di¤erence in return to AFQT.

Rather, it is the di¤erence in return to AFQT at the current levels of AFQT of the two
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groups. We are also cautious about interpreting these results too strongly for two reasons.

First, we have found that the results for the DWAD are more sensitive to the choice of

bandwidth than the conditional probabilities. Second the data on black AFQT scores

are very thin once we get to the upper half of the AFQT distribution. The di¤erence

in the DWAD is consistent with the notion that it might be much more important to

improve the mobility prospects for blacks at the low end of the AFQT distribution where

the returns are clearly very high.

4.3.2 Upward mobility

We show the results for calculating the DWAD for our upward mobility measure in Figure

11. For this exercise, we again condition on parent income being below the tth percentile

with t running from 15 to 50 in increments of 5 and set � = 0. As was the case with

the transition probabilities we �nd that blacks appear to have a higher average derivative

although again the di¤erences are not statistically signi�cant. Again we caution reading

too much into this result given the sensitivity to bandwidth choice and the limited data

on blacks in the upper half of the AFQT distribution.

5 Conclusion

In this paper, we have developed the analytic tools for investigating levels of IGM and

e¤ects of covariates on it, based on sample data. We have focused on nonparametric

regression of transition probabilities and a new direct measure of upward mobility on

continuously distributed covariates and average derivatives thereof. Available statistical

techniques cannot be used to derive the sampling distribution theory of these estimates

because the dependent variables here are nonsmooth functions of a separate set of initial

estimates. Therefore, we have developed the relevant asymptotic distribution theory

which allows us to investigate the di¤erence in the nature and causes of intergenerational

mobility across population subgroups using survey data.

Applying our techniques to micro data from the NLSY, we have demonstrated that

most of the black-white di¤erence in ability to rise out of the bottom quintile can be

accounted for by di¤erences in cognitive skills during adolescence as measured by the

AFQT score.

Although our analytical methods are applied in the context of intergenerational mo-
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bility here, they are applicable to any problem involving nonparametric regression and

average derivative estimation where the dependent variable involves nonsmooth functions

of preliminary �nite-dimensional estimates or estimated ranks.
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6 Appendix with Proofs

Proof of theorem 1:

Proof. Consider the expression

�m (�; x) =
1

n�dn

nX
i=1

K

�
Xi � x
�n

�
1 (Y1i � �1; Y0i � �0)

whose expectation is given by

�m� (�; x) = E

�
1
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�
1 (Y1i � �1; Y0i � �0)

�
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�
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Xi � x
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�
� (Xi; �0; �1)

�
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Z
K (u) f (x+ u�n)� (x+ u�n; �0; �1) du

= f (x)� (x; �0; �1) +O
�
�2n
�
.

So

�m�
�
�̂ ; x
�

= f (x)�
�
x; �̂0; �̂1

�
+O

�
�2n
�

= f (x)

24 � �x; �00; �01�+ �0 �x; ~�0; ~�1���̂0 � �0�
+�1

�
x; ~�0;

~�1

��
�̂1 � �1

� 35+O ��2n� ,
where ~�1 denote value intermediate between �̂1 and �

0
1 and similarly, ~�0. The numerator
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of our estimate (20) satis�es

1
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The third term will have a parametric rate of convergence and therefore will be asymptot-

ically negligible, relative to the second term. The second term is standard and will have

the variance of standard conditional mean type estimators. The nonstandard term is the

�rst one and we now demonstrate a stochastic equicontinuity property for this expression.

Letting

vn (�; x)

=
�
n�dn

�1=2 f �m (�; x)� �m� (�; x)g

=
1
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the the �rst term is
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Let us de�ne
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=
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so that
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Then for any �1 > �1 and �0 > �0, and � = (�0; �1), � = (�0; �1), we have that

vn (�; x)� vn (�; x) = vn (�; x)� ~vn (�; x) + ~vn (�; x)� vn (�; x)

+~vn (�; x)� ~vn (�; x) .

We will show that vn (�; x) is stochastically equicontinuous by showing that jvn (�; x)� vn (�; x)j
is asymptotically uniformly small in probability when k� � �k is small enough. This equiv-
alence follows from Andrews (1994), equation (2.3). Continuing from the previous display,
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since all terms with i 6= j have zero mean. Since �1 > �1 and �0 > �0, the random variable
1 (Y1i � �1; Y0i � �0)�1 (Y1i � �1; Y0i � �0) has a Bernoulli distribution conditional on Xi

with mean equal to � (Xi; �0; �1)�� (Xi; �0; �1) and variance [1� � (Xi; �0; �1) + � (Xi; �0; �1)]�
[� (Xi; �0; �1)� � (Xi; �0; �1)]. Therefore, the previous display equals
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stant c by the dominated convergence theorem. Further,
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The second term will go to 0 and the �rst term, by the Lipschitz property, will be at most
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2� :
Putting all of the together, it follows that jvn (�; x)� vn (�; x)j is Op (k(�0; �1)� (�0; �1)k),
whence the equicontinuity follows. Now, using the same steps as Andrews (1994) leading

to his equation (3.8), we conclude that vn
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Thus we conclude that estimating the quantiles has no e¤ect on the asymptotic distribu-

tion of the estimate of � (x; �0; �1). Therefore using standard theory for conditional mean

estimates (under undersmoothing), one would get that
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Proof of theorem 2:

Proof. The second term Tn in (13) equals
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so that
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with mean equal to � (Xi; �0; �1)�� (Xi; �0; �1) and variance [1� � (Xi; �0; �1) + � (Xi; �0; �1)]�
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1

n (n� 1)2
nX
i=1

X
l 6=i

E

24 f� (Xi; �0; �1)� � (Xi; �0; �1)g 1

�d+1n
K 0
j

�
Xi�Xl
�n

�
�E

n
f� (Xi; �0; �1)� � (Xi; �0; �1)g 1

�d+1n
K 0
j

�
Xi�Xl
�n

�o 352

=
1

(n� 1)E
�
f� (Xi; �0; �1)� � (Xi; �0; �1)g

1

�d+1n

K 0
j

�
Xi �Xl

�n

��2
� 1

(n� 1)

�
E

�
f� (Xi; �0; �1)� � (Xi; �0; �1)g

1

�d+1n

K 0
j

�
Xi �Xl

�n

���2
The �rst term is at most

k� � �k2 1

(n� 1)EXl

 
E

�
1

�
2(d+1)
n

K 0
j

�
Xi �Xl

�n

��2
jXl

!

= k� � �k2 1

(n� 1)

Z Z
1

�
2(d+1)
n

�
K 0
j

�
x� y
�n

��2
f (x) f (y) dydx

= k� � �k2 1

(n� 1)

Z Z
1

�2+dn

�
K 0
j (u)

	2
f (y + u�n) f (y) dudy

= k� � �k2 �O
�

1

n�d+2n

�
So if n�d+2n !1, which is an assumption in PSS (theorem 3.3), then �rst term is at most
o
�
k� � �k2

�
. The second term is bounded by the �rst term by Cauchy-Schwartz and so

is at most o
�
k� � �k2

�
.
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Terms with i = i0 and l 6= l0 will be the same order as

E

26666664

24 f� (Xi; �)� � (Xi; �)g 1

�d+1n
K 0
j

�
Xi�Xl
�n

�
�E

n
f� (Xi; �)� � (Xi; �)g 1

�d+1n
K 0
j

�
Xi�Xl
�n

�o 35
�

24 f� (Xi; �)� � (Xi; �)g 1

�d+1n
K 0
j

�
Xi�Xl0
�n

�
�E

n
f� (Xi; �)� � (Xi; �)g 1

�d+1n
K 0
j

�
Xi�Xl0
�n

�o 35

37777775
= E

�
f� (Xi; �)� � (Xi; �)g2

1

�
2(d+1)
n

K 0
j

�
Xi �Xl

�n

�
K 0
j

�
Xi �Xl0

�n

��
�E

�
f� (Xi; �)� � (Xi; �)g

1

�d+1n

K 0
j

�
Xi �Xl

�n

��
�E

�
f� (Xi; �)� � (Xi; �)g

1

�d+1n

K 0
j

�
Xi �Xl0

�n

��
.

The �rst term will be O
�
k� � �k2

�
because

E

�
1

�
2(d+1)
n

K 0
j

�
Xi �Xl

�n

�
K 0
j

�
Xi �Xl0

�n

��
=

1

�2n

Z �Z Z
K 0
j (x+ �nu)K

0
j (x+ �nv) f (x+ �nu) f (x+ �nv) dudv

�
f (x) dx

= �
Z �Z Z

f 0 (x+ �nu) f
0 (x+ �nv)K (u)K (v) dudv

�
f (x) dx

< 1.

The second term will also be at most O
�
k� � �k2

�
by Cauchy-Schwartz.

Terms with i 6= i0 but l = l0 give

E

24 f� (Xi; �0; �1)� � (Xi; �0; �1)g f� (Xi0 ; �0; �1)� � (Xi0 ; �0; �1)g
� 1

�
2(d+1)
n

K 0
j

�
Xi�Xl
�n

�
K 0
j

�
Xi0�Xl
�n

� 35
�

24 E nf� (Xi0 ; �0; �1)� � (Xi0 ; �0; �1)g 1

�d+1n
K 0
j

�
Xi0�Xl
�n

�o
�E

n
f� (Xi; �0; �1)� � (Xi; �0; �1)g 1

�d+1n
K 0
j

�
Xi�Xl
�n

�o 35
which is O

�
k� � �k2

�
by an analogous argument. This establishes that vn (�) is stochas-

tically equicontinuous. It follows that

p
nTn = �m�0 (�0)�

p
n
�
�̂ � �0

�
+ op (1) =

1p
n

nX
i=1

[ �m�0 (�0)� 'i] + op (1) .
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Proof of theorem 3:

Condition : (Ai) for some � > 1, we have f1 (x) � c
x�
for x large enough which also

implies that F�11 (u) < c (1� u)
1

1�� , (Aii) f (1)
�
y0; F

�1
1 (F0 (y0) + �)

�
� c0

y
�0
0
for some �0 >

0 , (Aiii) For some " > 0, 1�F0 (y0) > c

y

2(1+"��0)�
��1

0

and (Aiv)
R1
1
(1� F0 (y0))

�
��1 f

�
y0; F

�1
1 (F0 (y0) + �)

�
dy0 <

1.
(Bi) for some � > 1, we have f0 (x) � c

x�
for x large enough which also implies that

F�10 (u) < c (1� u)
1

1�� , (Bii) f (0)
�
F�10 (s) ; y1

�
� c0

y
�0
1

for some �0 > 0 , (Biii) for some

� > 0, 1� F1 (y1) > c

y

2(1+���0)�
��1

0

and (Biv)
R1
1
(1� F1 (y1))

�
��1 f

�
F�10 (s) ; y1

�
dy1 <1.

Proof. Consider perturbations Ft (y0; y1) = F (y0; y1) + tHt (y0; y1) with F0t (y0) =

F0 (y0)+tH0t (y0) and F1t (y0) = F1 (y1)+tH1t (y1t) denoting the corresponding marginals.

Let Ht ! H uniformly as t ! 0 and let H0 and H1 denote its marginals. We want to

show that for a linear functional �0F (:),����� (Ft)� � (F )t
� �0F (H)

����! 0 as t! 0. (20)

De�ne

z1 (y0) = F�11 (F0 (y0) + �) , z1t (y0) = F�11t (F0t (y0) + �)

z0 = F�10 (s) , z0t = F�10t (s) .

So we need to show�����
R z0t
1

R z1t(y0)
1

ft (y0; y1)�
R z0
1

R z1(y0)
1

f (y0; y1) dy1dy0

t
� �0F (H)

�����! 0 as t! 0.
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Note that the �rst term inside j:j can be expanded asZ z0t

1

z1t (y0)� z1 (y0)
t

f (�z1t (y0) ; y0) dy0 +
z0t � z0
t

�
Z z1(y0)

1

f (�z0t; y1) dy1

+

Z z0t

1

Z z1t(y0)

1

dHt (y0; y1)

=

266666664

Z z0t

1

z1t (y0)� z1 (y0)
t

[f (y0; �z1t (y0))� f (y0; z1 (y0))] dy0| {z }
T10t

+
z0t � z0
t

�
Z z1(y0)

1

[f (�z0t; y1)� f (z0; y1)] dy1| {z }
T11t

377777775
| {z }

T1t

+

Z z0t

1

z1t (y0)� z1 (y0)
t

f (z0; y1) dy1| {z }
T2t

+
z0t � z0
t

�
Z z1(y0)

1

f (z0; y1) dy1| {z }
T3t

+

Z z0t

1

Z z1t(y0)

1

dHt (y0; y1)�
Z z0t

1

Z z1t(y0)

1

dH (y0; y1)| {z }
T4t

+

Z z0t

1

Z z1t(y0)

1

dH (y0; y1)�
Z z0

1

Z z1(y0)

1

dH (y0; y1)| {z }
T5t

+

Z z0

1

Z z1(y0)

1

dH (y0; y1)| {z }
T6

.

We will show that as t! 0,

Step 1: jT1tj ! 0

Step 2:

T2t !
H0 (z0)

f0 (z0)

Z z1(y0)

1

f (z0; y1) dy1

Step 3:

T3t !
Z z0

1

H0 (y0)�H1 (z1 (y0))
f1 (z1 (y0))

f (y0; z1 (y0)) dy0

Step 4: jT4tj ! 0, jT5tj ! 0.
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Then we will have shown (20) with

�0F (H) =
H0
�
F�10 (s)

�
f0
�
F�10 (s)

� Z F�11 (F0(y0)+�)

1

f
�
F�10 (s) ; y1

�
dy1

+

Z F�10 (s)

1

H0 (y0)�H1
�
F�11 (F0 (y0) + �)

�
f1
�
F�11 (F0 (y0) + �)

� f
�
y0; F

�1
1 (F0 (y0) + �)

�
dy0

+

Z F�10 (s)

1

Z F�11 (F0(y0)+�)

1

dH (y0; y1)

which is linear in H.

For steps 1 and 2, we will need the following derivation.

F1 (z1t (y0)) + tH1t (z1t (y0)) = F1t (z1t (y0)) = F0t (y0) + �

= F0 (y0) + � + tH0t (y0) = F1 (z1 (y0)) + tH0t (y0)

implying that

tH1t (z1t (y0))� tH0t (y0) = F1 (z1 (y0))� F1 (z1t (y0))

= [z1 (y0)� z1t (y0)] f1 (~z1t (y0))

where for any y0 and t, ~zt (y0) lies in between z (y0) and zt (y0). Therefore,

z1t (y0)� z1 (y0)
t

=
H0t (y0)�H1t (zt (y0))

f1 (~z1t (y0))
. (21)

Similarly, F0 (z0) = s = F0t (z0t) = F0 (z0t) + tH0t (z0t), whence

z0t � z0
t

=
H0t (z0t)

f0 (~z0t)
. (22)

Below, c will denote a generic constant, not always of the same value.

Step 1: By a mean-value theorem argument,

jT10tj �
Z z0t

1

����z1t (y0)� z1 (y0)t
[f (y0; �z1t (y0))� f (y0; z1 (y0))]

���� dy0
�

Z z0t

1

����� [zt (y0)� z (y0)]2t
f (1) (y0; �z1t (y0))

����� dy0
where f (1) (:; :) denotes derivative w.r.t. the second argument and �z1t (y0) lies in between

z (y0) and zt (y0). Using (21), we get

jT10tj � t
Z 1

1

����� [H0t (y0)�H1t (z1t (y0) =)]2f 21 (~z1t (y0))
f (1) (y0; �z1t (y0))

����� dy0.
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We will show that (i) [H0t (y0)�H1t (z1t (y0))]2 is uniformly bounded, (ii) f 21 (~z1t (y0)) �
c

~z1t(y0)
2� � c (1� F0 (y0))

2�
1�� for y0 large enough and t small enough and (iii) f (1) (y0; �z1t (y0))

� c
y
�0
0
for some �0 > 1. Then we will have

jT10tj � ct
Z 1

1

����� 1

y�00 (1� F0 (y0))
2�
1��

����� dy0 � ct
Z 1

1

1

y1+"0

dy0 ! 0,

by A(iii).

To see (i), note that f[H0t (y0)�H1t (z1t (y0))]� [H0 (y0)�H1 (z1t (y0))]g converges
uniformly to 0 and H0 (:) and H0 (:) are uniformly bounded.

Next,

z1t (y0)

= F�11t (F0t (y0) + �)
(1)
< c (1� F0t (y0)� �)

1
1�� = c (1� F0 (y0)� tH0t (y0)� �)

1
1��

� c0 (1� F0 (y0)� �)
1

1��

� c (1� F0 (y0))
1

1�� (23)

for small enough t, since � > 1 and tH0t (:) converges uniformly to 0. Inequality (1) comes

from condition Ai. Similarly,

z1 (y0) � c (1� F0 (y0))
1

1�� (24)

and therefore (ii) follows. Finally (iii) follows from (23), (24) and condition Aii.

Next, for jT11tj, we have that

jT11tj �
�����z0t � z0t

�
Z z1(y0)

1

[f (�z0t; y1)� f (z0; y1)] dy1

�����
�

����� [z0t � z0]2t
�
Z z1(y0)

1

f (0) (�z0t; y1) dy1

�����
� t

�����
�
H0t (z0t)

f0 (~z0t)

�2
�
Z z1(y0)

1

f (0) (�z0t; y1) dy1

����� (2)� ct
Z z1(y0)

1

1

y1+�0

dy1 � ct
Z 1

1

1

y1+�0

dy1

for t small enough and some � > 0. Inequality (2) follows from conditions Bi, Bii, Biii

using arguments analogous to those for T10t. This implies that jT11tj ! 0.
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Step 2:�����T2t � H0 (z0)f0 (z0)

Z z1(y0)

1

f (z0; y1) dy1

�����
=

�����
Z z0t

1

z1t (y0)� z1 (y0)
t

f (z0; y1) dy0 �
H0 (z0)

f0 (z0)

Z z1(y0)

1

f (z0; y1) dy1

�����
=

�����
Z z0t

1

H0t (z0t)

f0 (~z0t)
f (z0; y1) dy1 �

H0 (z0)

f0 (z0)

Z z1(y0)

1

f (z0; y1) dy1

�����
�

Z z0t

1

����H0t (z0t)f0 (~z0t)
� H0 (z0)
f0 (z0)

���� f (z0; y1) dy1
(1)

� c
Z z0t

1

jH0t (z0t)�H0 (z0)j (1� F1 (y1))
�

��1 f (z0; y1) dy1

� c

�
sup
u
jH0t (u)�H0 (u)j+ jH0 (z0t)�H0 (z0)j

�Z 1

1

(1� F1 (y1))
�

��1 f (z0; y1) dy1

! 0

as t! 0, by B(iv). Inequality (1) is a consequence of B(i)-B(iii).

Step 3:����T3t � Z z0t

1

H0 (y0)�H1 (z1 (y0))
f1 (z1 (y0))

f (y0; z1 (y0)) dy0

����
=

����Z z0t

1

z1t (y0)� z1 (y0)
t

f (z1 (y0) ; y0) dy0 �
Z z0t

1

H0 (y0)�H1 (z1 (y0))
f1 (z1 (y0))

f (y0; z1 (y0)) dy0

����
�

Z z0t

1

����z1t (y0)� z1 (y0)t
� H0 (y0)�H1 (z1 (y0))

f1 (z1 (y0))

���� f (y0; z1 (y0)) dy0
=

Z 1

1

����H0t (y0)�H1t (z1t (y0))f1 (~z1t (y0))
� [H0 (y0)�H1 (z1 (y0))]

f1 (z1 (y0))

���� f (y0; z1 (y0)) dy0
(0)

� c
Z 1

1

jH0t (y0)�H1t (z1t (y0))� [H0 (y0)�H1 (z1 (y0))]j (1� F0 (y0))
�

��1 f (y0; z1 (y0)) dy0

� c sup
y0

jH0t (y0)�H1t (zt (y0))� [H0 (y0)�H1 (z (y0))]j �
Z 1

1

(1� F0 (y0))
�

��1 f (y0; z1 (y0)) dy0

which goes to zero if
R1
1
(1� F0 (y0))

�
��1 f (z (y0) ; y0) dy0 <1, which is condition (Aiv).

Note that the inequality
(0)

� follows from step (ii) in the proof of Step 1, above. Finally,

since
R z0t
1

H0(y0)�H1(z1(y0))
f1(z1(y0))

f (y0; z1 (y0)) dy0 is continuous in z0t, the conclusion follows.

Step 4:

T4t ! 0 since Ht ! H uniformly and T5t goes to zero by the continuous mapping

theorem since paths of an F -Brownian bridge are everywhere continuous with probability

1.
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Proof of proposition 1:

Proof. Recall display (18) and note that we want to show that T2n is of smaller order

of magnitude than T1n. We will show that E
�p

n�dn jT2nj
�
! 0 which will imply that

jT2nj = op

��
n�dn

��1=2�
. Together with the fact that T1n = Op

��
n�dn

��1=2�
, this would

establish the proposition.

First observe that

E

24������ 1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
�1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

������
35

= Pr

24������ 1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
�1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

������ 6= 0
35

= Pr
hn
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

o
\ (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)c

i
+Pr

hn
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

oc
\ (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

i
� Pr

hn
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

o
\ (F1 (Y1i)� F0 (Y0i) � �)

i
+Pr

hn
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

o
\ (F0 (Y0i) > s)

i
+Pr

h
fF1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � sg \

�
F̂1 (Y1i)� F̂0 (Y0i) � �

�i
+Pr

h
fF1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � sg \

�
F̂0 (Y0i) > s

�i
� Pr

h
F̂1 (Y1i)� F̂0 (Y0i) > �; F1 (Y1i)� F0 (Y0i) � �

i
+Pr

n
F̂1 (Y1i)� F̂0 (Y0i) � � ; F1 (Y1i)� F0 (Y0i) > �

o
+Pr

h
F̂0 (Y0i) � s; F0 (Y0i) > s

i
+ Pr

h
F0 (Y0i) � s; F̂0 (Y0i) > s

i
.
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Therefore,

E
�p

n�dn jT2nj
�

=
1p
n�dn

nX
i=1

E

0@K �Xi � x
�n

� ������ 1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
�1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

������
1A

=
1p
n�dn

nX
i=1

EXi;Y0i;Y1i

8>>><>>>:
K
�
Xi�x
�n

�
�

E

0@������ 1
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F̂0 (Y0i) � s

�
�1 (F1 (Y1i)� F0 (Y0i) > �; F0 (Y0i) � s)

������ jXi; Y0i; Y1i

1A
9>>>=>>>;

� 1p
n�dn

nX
i=1

EXi;Y0i;Y1i

(
K

�
Xi � x
�n

�
Pr

( 
F̂1 (Y1i)� F̂0 (Y0i) > �;
F1 (Y1i)� F0 (Y0i) � �

!
jXi; Y0i; Y1i

))

+
1p
n�dn

nX
i=1

EXi;Y0i;Y1i

(
K

�
Xi � x
�n

�
Pr

( 
F̂1 (Y1i)� F̂0 (Y0i) � � ;
F1 (Y1i)� F0 (Y0i) > �

!
jXi; Y0i; Y1i

))

+
1p
n�dn

nX
i=1

EXi;Y0iE

�
K

�
Xi � x
�n

�
Pr
n
F̂0 (Y0i) � s; F0 (Y0i) > sjXi; Y0i

o�
+

1p
n�dn

nX
i=1

EXi;Y0iE

�
K

�
Xi � x
�n

�
Pr
n
F̂0 (Y0i) > s; F0 (Y0i) � sjXi; Y0i

o�
� S1n + S2n + S3n + S4n, say. (25)

We will show that S1n ! 0 and an exactly analogous proof will show that S2n; S3n; S4n
are also o (1).

Now, for �xed Xi; Y0i; Y1i and the fact that e.g. F̂1 (Y1i) = 1
n�1

P
j 6=i 1 (Yij � Y1i), we

have that

Pr
�
F̂1 (Y1i)� F̂0 (Y0i) > �; F1 (Y1i)� F0 (Y0i) < � jXi; Y0i; Y1i

�
= Pr

 
F̂1 (Y1i)� F̂0 (Y0i)� (F1 (Y1i)� F0 (Y0i)) > � � (F1 (Y1i)� F0 (Y0i)) ;

F1 (Y1i)� F0 (Y0i) < � jXi; Y0i; Y1i

!
� exp

�
�2 (n� 1) (� � (F1 (Y1i)� F0 (Y0i)))2

�
� 1(F1 (Y1i)� F0 (Y0i) < �),

by Hoe¤ding�s inequality (note that conditional on Yi1, F̂1 (Y1i) = 1
n�1

P
j 6=i 1 (Yij � Y1i) is

an average of independent, binary (0; 1) random variables, thus satisfying the hypothesis
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of Hoe¤ding�s inequality). Thus, we have that

S1n � 1p
n�dn

nX
i=1

EXi;Y0i;Y1i

24 K �Xi�x�n

�
exp

�
�2 (n� 1) (� � (F1 (Y1i)� F0 (Y0i)))2

�
�1(F1 (Y1i)� F0 (Y0i) < �)

35
=

np
n�dn

EX;Y0;Y1

24 K �X�x�n

�
exp

�
�2 (n� 1) (� � (F1 (Y1)� F0 (Y0)))2

�
�1(F1 (Y1)� F0 (Y0) < �)

35
=

np
n�dn

EX

"
K

�
X � x
�n

� 
EY0;Y1jX

"
exp

�
�2 (n� 1) (� � (F1 (Y1)� F0 (Y0)))2

�
�1(F1 (Y1)� F0 (Y0) < �)

#!#

� np
n�dn

EX

�
K

�
X � x
�n

�
Gn(X)

�
, where

Gn(x) = EY0;Y1jX

"
exp

�
�2 (n� 1) (� � (F1 (Y1)� F0 (Y0)))2

�
�1(F1 (Y1)� F0 (Y0) < �)jX = x

#
.

Continuing with the previous display, we have

S1n � np
n�dn

EX

�
K

�
X � x
�n

�
Gn(X)

�
=

n�dnp
n�dn

Z
[K (u)Gn(x+ �nu)f (x+ �nu)] du

=
p
n�dn

Z
[K (u)Gn(x+ �nu)f (x+ �nu)] du

= f (x)
p
n�dn

Z
K (u)Gn(x)du+ terms of smaller order

= f (x)
p
n�dnGn(x) + terms of smaller order. (26)

Now, notice that Gn(x) is of the form

Gn(x) = EZjX
�
exp

�
�2 (n� 1)Z2

�
� 1(Z > 0)jX = x

�
� c

Z
exp

�
�2 (n� 1) z2

�
f (zjx) dz

� c0
Z
exp

�
�2 (n� 1) z2

�
dz

= O
�
n�1=2

�
(27)

by the normal (Gaussian) integral formula. From (26) and (27), it follows that

E
�p

n�dn jT2nj
�
= O

�
n�1=2 �

p
n�dn

�
= O

�p
�dn

�
= o (1) .
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Together with analogous proofs for S2n; S3n; S4n, this implies that in (18),
p
n�dnT2n =

op (1), but under standard assumptions for Nadaraya-Watson regressions, (c.f. Pagan and

Ullah (1999) theorem 3.5, 3.6),
p
n�dnT1n = Op (1) and f̂ (x) = f (x) + op (1). This shows

that p
n�dn (�̂c (� ; s;x)� �c (� ; s;x))

=
p
n�dn

(
Ê (1 (F1 (Y1)� F0 (Y0) > �; F0 (Y0) � s) jX = x)

s
� �c (� ; s;x)

)
+ op (1)

d! N

�
0;
�2 (x)

s2f (x)

Z
K2 (u) du

�
where �2 (x) = s� �c (� ; s;x)� (1� s� �c (� ; s;x)) and f (x) is the marginal density of
X.
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Table 1:  Transition Probability Estimates by Race

Prob(Y1>ξ+τ, Y0<ξ)/Prob ( Y0<ξ)

ξ Whites Blacks W-B Whites Blacks W-B Whites Blacks W-B Whites Blacks W-B

5 0.978 0.891 0.087 0.849 0.579 0.270 0.704 0.407 0.297 0.593 0.280 0.312
(0.034) (0.032) (0.049) (0.056) (0.048) (0.076) (0.072) (0.047) (0.089) (0.074) (0.047) (0.091)

10 0.917 0.702 0.216 0.760 0.458 0.302 0.632 0.340 0.292 0.555 0.249 0.306
(0.031) (0.027) (0.044) (0.044) (0.030) (0.053) (0.048) (0.031) (0.056) (0.051) (0.029) (0.057)

15 0.812 0.616 0.196 0.692 0.423 0.269 0.542 0.309 0.232 0.459 0.212 0.247
(0.030) (0.031) (0.044) (0.037) (0.030) (0.050) (0.040) (0.028) (0.049) (0.039) (0.024) (0.048)

20 0.752 0.524 0.228 0.618 0.389 0.229 0.496 0.281 0.215 0.379 0.192 0.187
(0.027) (0.025) (0.039) (0.031) (0.025) (0.040) (0.033) (0.023) (0.039) (0.036) (0.019) (0.039)

25 0.708 0.447 0.261 0.558 0.326 0.232 0.459 0.234 0.225 0.342 0.156 0.186
(0.025) (0.024) (0.038) (0.026) (0.020) (0.035) (0.027) (0.019) (0.034) (0.029) (0.015) (0.032)

30 0.646 0.403 0.244 0.539 0.290 0.249 0.418 0.200 0.217 0.305 0.131 0.174
(0.023) (0.023) (0.033) (0.024) (0.020) (0.031) (0.025) (0.018) (0.032) (0.023) (0.015) (0.028)

35 0.583 0.349 0.234 0.478 0.254 0.224 0.366 0.173 0.193 0.257 0.120 0.136
(0.020) (0.020) (0.031) (0.021) (0.018) (0.030) (0.022) (0.016) (0.028) (0.020) (0.013) (0.025)

40 0.544 0.311 0.233 0.427 0.223 0.203 0.315 0.148 0.167 0.228 0.105 0.122
(0.019) (0.019) (0.029) (0.019) (0.016) (0.027) (0.018) (0.014) (0.025) (0.016) (0.011) (0.022)

45 0.494 0.262 0.232 0.372 0.180 0.192 0.264 0.123 0.141 0.190 0.080 0.109
(0.015) (0.020) (0.027) (0.016) (0.015) (0.023) (0.015) (0.013) (0.020) (0.015) (0.010) (0.019)

50 0.428 0.226 0.202 0.320 0.152 0.168 0.227 0.107 0.119 0.147 0.065 0.082
(0.015) (0.015) (0.024) (0.014) (0.013) (0.022) (0.014) (0.010) (0.018) (0.013) (0.008) (0.016)

τ=0 τ=0.1 τ=0.2 τ=0.3

Notes: See text for a description of the estimator.  Data is from the NLSY and uses multiyear averages of son's income over 1996-2002
and parent income measured over 1978-1980.  Standard errors are in parentheses.



Table 2:  Upward Mobility Estimates by Race

Prob(F 1 (Y 1 )-F 0 (Y 0 )>τ| Y 0 <=s )

s Whites Blacks W-B Whites Blacks W-B Whites Blacks W-B Whites Blacks W-B

5 0.977 0.950 0.027 0.904 0.635 0.270 0.745 0.420 0.325 0.614 0.312 0.303
(0.024) (0.018) (0.033) (0.047) (0.044) (0.066) (0.065) (0.045) (0.083) (0.073) (0.040) (0.084)

10 0.947 0.883 0.065 0.840 0.574 0.266 0.698 0.377 0.321 0.595 0.288 0.307
(0.022) (0.022) (0.032) (0.035) (0.032) (0.051) (0.047) (0.031) (0.059) (0.053) (0.025) (0.061)

15 0.909 0.835 0.074 0.786 0.567 0.219 0.629 0.390 0.240 0.519 0.281 0.238
(0.021) (0.020) (0.029) (0.031) (0.027) (0.042) (0.040) (0.025) (0.047) (0.040) (0.025) (0.048)

20 0.871 0.796 0.075 0.755 0.556 0.198 0.592 0.387 0.205 0.485 0.285 0.200
(0.021) (0.017) (0.027) (0.029) (0.024) (0.039) (0.030) (0.022) (0.037) (0.032) (0.020) (0.039)

25 0.838 0.762 0.076 0.724 0.537 0.187 0.575 0.373 0.202 0.463 0.274 0.188
(0.021) (0.019) (0.030) (0.024) (0.024) (0.038) (0.028) (0.024) (0.036) (0.028) (0.019) (0.034)

30 0.821 0.734 0.087 0.715 0.521 0.193 0.568 0.360 0.208 0.447 0.262 0.185
(0.018) (0.019) (0.027) (0.021) (0.021) (0.033) (0.026) (0.020) (0.036) (0.025) (0.019) (0.035)

35 0.786 0.717 0.069 0.668 0.514 0.154 0.537 0.360 0.178 0.415 0.263 0.153
(0.019) (0.017) (0.026) (0.020) (0.023) (0.030) (0.021) (0.019) (0.031) (0.023) (0.016) (0.028)

40 0.757 0.704 0.052 0.641 0.506 0.135 0.513 0.357 0.156 0.393 0.254 0.139
(0.018) (0.016) (0.025) (0.017) (0.020) (0.028) (0.020) (0.019) (0.027) (0.019) (0.018) (0.027)

45 0.731 0.687 0.044 0.605 0.495 0.110 0.484 0.350 0.134 0.367 0.248 0.119
(0.015) (0.017) (0.024) (0.021) (0.021) (0.032) (0.019) (0.018) (0.028) (0.019) (0.017) (0.026)

50 0.695 0.668 0.028 0.578 0.481 0.097 0.457 0.342 0.115 0.342 0.242 0.100
(0.014) (0.018) (0.025) (0.016) (0.020) (0.028) (0.016) (0.018) (0.025) (0.017) (0.015) (0.024)

τ=0 τ=0.1 τ=0.2 τ=0.3

Notes: See text for a description of the estimator.  Data is from the NLSY and uses multiyear averages of son's income over 1996-2002
and parent income measured over 1978-1980.  Standard errors are in parentheses.



Figure 1: Transition Probabilities Conditional On Parent Percentile
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Figure 2: Upward Mobility Conditional On Parent Percentile
 Pr (F1>F0|F0<=s )
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Figure 3: Transition Probabilities vs Upward Mobility, Whites Minus Blacks
Conditional On Parent Percentile 
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Figure 4:  CDF of Parent Income Conditional on Being in the Bottom Quintile
Whites vs Blacks
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Figure 5: Probability of Leaving Bottom Quintile Conditional on AFQT
Whites vs Blacks
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Figure 6: Transition Probability of Leaving Bottom Quintile Conditional on Own Education
Whites vs Blacks
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Figure 7: Comparison of Probit and Non-Parametric Estimates
of Transition Probability of Blacks Leaving Bottom Quintile Conditional on AFQT
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Figure 8: Upward Mobility Conditional on AFQT Scores
Whites vs Blacks
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Figure 9: Density Weighted Average Derivative of Transition Probability (Son>Q|Dad<Q)
With Respect to AFQT, Blacks vs Whites 
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Figure 10:  Kernel Density Estimates of AFQT Percentiles
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Figure 11: Density Weighted Average Derivative of Upward Mobility
With Respect to AFQT, Blacks vs Whites 
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